github.com/vmware/govmomi@v0.37.2/vim25/json/encode.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package json implements encoding and decoding of JSON as defined in
     6  // RFC 7159. The mapping between JSON and Go values is described
     7  // in the documentation for the Marshal and Unmarshal functions.
     8  //
     9  // See "JSON and Go" for an introduction to this package:
    10  // https://golang.org/doc/articles/json_and_go.html
    11  package json
    12  
    13  import (
    14  	"bytes"
    15  	"encoding"
    16  	"encoding/base64"
    17  	"fmt"
    18  	"math"
    19  	"reflect"
    20  	"sort"
    21  	"strconv"
    22  	"strings"
    23  	"sync"
    24  	"unicode"
    25  	"unicode/utf8"
    26  )
    27  
    28  // Marshal returns the JSON encoding of v.
    29  //
    30  // Marshal traverses the value v recursively.
    31  // If an encountered value implements the Marshaler interface
    32  // and is not a nil pointer, Marshal calls its MarshalJSON method
    33  // to produce JSON. If no MarshalJSON method is present but the
    34  // value implements encoding.TextMarshaler instead, Marshal calls
    35  // its MarshalText method and encodes the result as a JSON string.
    36  // The nil pointer exception is not strictly necessary
    37  // but mimics a similar, necessary exception in the behavior of
    38  // UnmarshalJSON.
    39  //
    40  // Otherwise, Marshal uses the following type-dependent default encodings:
    41  //
    42  // Boolean values encode as JSON booleans.
    43  //
    44  // Floating point, integer, and Number values encode as JSON numbers.
    45  //
    46  // String values encode as JSON strings coerced to valid UTF-8,
    47  // replacing invalid bytes with the Unicode replacement rune.
    48  // So that the JSON will be safe to embed inside HTML <script> tags,
    49  // the string is encoded using HTMLEscape,
    50  // which replaces "<", ">", "&", U+2028, and U+2029 are escaped
    51  // to "\u003c","\u003e", "\u0026", "\u2028", and "\u2029".
    52  // This replacement can be disabled when using an Encoder,
    53  // by calling SetEscapeHTML(false).
    54  //
    55  // Array and slice values encode as JSON arrays, except that
    56  // []byte encodes as a base64-encoded string, and a nil slice
    57  // encodes as the null JSON value.
    58  //
    59  // Struct values encode as JSON objects.
    60  // Each exported struct field becomes a member of the object, using the
    61  // field name as the object key, unless the field is omitted for one of the
    62  // reasons given below.
    63  //
    64  // The encoding of each struct field can be customized by the format string
    65  // stored under the "json" key in the struct field's tag.
    66  // The format string gives the name of the field, possibly followed by a
    67  // comma-separated list of options. The name may be empty in order to
    68  // specify options without overriding the default field name.
    69  //
    70  // The "omitempty" option specifies that the field should be omitted
    71  // from the encoding if the field has an empty value, defined as
    72  // false, 0, a nil pointer, a nil interface value, and any empty array,
    73  // slice, map, or string.
    74  //
    75  // As a special case, if the field tag is "-", the field is always omitted.
    76  // Note that a field with name "-" can still be generated using the tag "-,".
    77  //
    78  // Examples of struct field tags and their meanings:
    79  //
    80  //	// Field appears in JSON as key "myName".
    81  //	Field int `json:"myName"`
    82  //
    83  //	// Field appears in JSON as key "myName" and
    84  //	// the field is omitted from the object if its value is empty,
    85  //	// as defined above.
    86  //	Field int `json:"myName,omitempty"`
    87  //
    88  //	// Field appears in JSON as key "Field" (the default), but
    89  //	// the field is skipped if empty.
    90  //	// Note the leading comma.
    91  //	Field int `json:",omitempty"`
    92  //
    93  //	// Field is ignored by this package.
    94  //	Field int `json:"-"`
    95  //
    96  //	// Field appears in JSON as key "-".
    97  //	Field int `json:"-,"`
    98  //
    99  // The "string" option signals that a field is stored as JSON inside a
   100  // JSON-encoded string. It applies only to fields of string, floating point,
   101  // integer, or boolean types. This extra level of encoding is sometimes used
   102  // when communicating with JavaScript programs:
   103  //
   104  //	Int64String int64 `json:",string"`
   105  //
   106  // The key name will be used if it's a non-empty string consisting of
   107  // only Unicode letters, digits, and ASCII punctuation except quotation
   108  // marks, backslash, and comma.
   109  //
   110  // Anonymous struct fields are usually marshaled as if their inner exported fields
   111  // were fields in the outer struct, subject to the usual Go visibility rules amended
   112  // as described in the next paragraph.
   113  // An anonymous struct field with a name given in its JSON tag is treated as
   114  // having that name, rather than being anonymous.
   115  // An anonymous struct field of interface type is treated the same as having
   116  // that type as its name, rather than being anonymous.
   117  //
   118  // The Go visibility rules for struct fields are amended for JSON when
   119  // deciding which field to marshal or unmarshal. If there are
   120  // multiple fields at the same level, and that level is the least
   121  // nested (and would therefore be the nesting level selected by the
   122  // usual Go rules), the following extra rules apply:
   123  //
   124  // 1) Of those fields, if any are JSON-tagged, only tagged fields are considered,
   125  // even if there are multiple untagged fields that would otherwise conflict.
   126  //
   127  // 2) If there is exactly one field (tagged or not according to the first rule), that is selected.
   128  //
   129  // 3) Otherwise there are multiple fields, and all are ignored; no error occurs.
   130  //
   131  // Handling of anonymous struct fields is new in Go 1.1.
   132  // Prior to Go 1.1, anonymous struct fields were ignored. To force ignoring of
   133  // an anonymous struct field in both current and earlier versions, give the field
   134  // a JSON tag of "-".
   135  //
   136  // Map values encode as JSON objects. The map's key type must either be a
   137  // string, an integer type, or implement encoding.TextMarshaler. The map keys
   138  // are sorted and used as JSON object keys by applying the following rules,
   139  // subject to the UTF-8 coercion described for string values above:
   140  //   - keys of any string type are used directly
   141  //   - encoding.TextMarshalers are marshaled
   142  //   - integer keys are converted to strings
   143  //
   144  // Pointer values encode as the value pointed to.
   145  // A nil pointer encodes as the null JSON value.
   146  //
   147  // Interface values encode as the value contained in the interface.
   148  // A nil interface value encodes as the null JSON value.
   149  //
   150  // Channel, complex, and function values cannot be encoded in JSON.
   151  // Attempting to encode such a value causes Marshal to return
   152  // an UnsupportedTypeError.
   153  //
   154  // JSON cannot represent cyclic data structures and Marshal does not
   155  // handle them. Passing cyclic structures to Marshal will result in
   156  // an error.
   157  func Marshal(v interface{}) ([]byte, error) {
   158  	e := newEncodeState()
   159  
   160  	err := e.marshal(v, encOpts{escapeHTML: true})
   161  	if err != nil {
   162  		return nil, err
   163  	}
   164  	buf := append([]byte(nil), e.Bytes()...)
   165  
   166  	encodeStatePool.Put(e)
   167  
   168  	return buf, nil
   169  }
   170  
   171  // MarshalIndent is like Marshal but applies Indent to format the output.
   172  // Each JSON element in the output will begin on a new line beginning with prefix
   173  // followed by one or more copies of indent according to the indentation nesting.
   174  func MarshalIndent(v interface{}, prefix, indent string) ([]byte, error) {
   175  	b, err := Marshal(v)
   176  	if err != nil {
   177  		return nil, err
   178  	}
   179  	var buf bytes.Buffer
   180  	err = Indent(&buf, b, prefix, indent)
   181  	if err != nil {
   182  		return nil, err
   183  	}
   184  	return buf.Bytes(), nil
   185  }
   186  
   187  // HTMLEscape appends to dst the JSON-encoded src with <, >, &, U+2028 and U+2029
   188  // characters inside string literals changed to \u003c, \u003e, \u0026, \u2028, \u2029
   189  // so that the JSON will be safe to embed inside HTML <script> tags.
   190  // For historical reasons, web browsers don't honor standard HTML
   191  // escaping within <script> tags, so an alternative JSON encoding must
   192  // be used.
   193  func HTMLEscape(dst *bytes.Buffer, src []byte) {
   194  	// The characters can only appear in string literals,
   195  	// so just scan the string one byte at a time.
   196  	start := 0
   197  	for i, c := range src {
   198  		if c == '<' || c == '>' || c == '&' {
   199  			if start < i {
   200  				dst.Write(src[start:i])
   201  			}
   202  			dst.WriteString(`\u00`)
   203  			dst.WriteByte(hex[c>>4])
   204  			dst.WriteByte(hex[c&0xF])
   205  			start = i + 1
   206  		}
   207  		// Convert U+2028 and U+2029 (E2 80 A8 and E2 80 A9).
   208  		if c == 0xE2 && i+2 < len(src) && src[i+1] == 0x80 && src[i+2]&^1 == 0xA8 {
   209  			if start < i {
   210  				dst.Write(src[start:i])
   211  			}
   212  			dst.WriteString(`\u202`)
   213  			dst.WriteByte(hex[src[i+2]&0xF])
   214  			start = i + 3
   215  		}
   216  	}
   217  	if start < len(src) {
   218  		dst.Write(src[start:])
   219  	}
   220  }
   221  
   222  // Marshaler is the interface implemented by types that
   223  // can marshal themselves into valid JSON.
   224  type Marshaler interface {
   225  	MarshalJSON() ([]byte, error)
   226  }
   227  
   228  // An UnsupportedTypeError is returned by Marshal when attempting
   229  // to encode an unsupported value type.
   230  type UnsupportedTypeError struct {
   231  	Type reflect.Type
   232  }
   233  
   234  func (e *UnsupportedTypeError) Error() string {
   235  	return "json: unsupported type: " + e.Type.String()
   236  }
   237  
   238  // An UnsupportedValueError is returned by Marshal when attempting
   239  // to encode an unsupported value.
   240  type UnsupportedValueError struct {
   241  	Value reflect.Value
   242  	Str   string
   243  }
   244  
   245  func (e *UnsupportedValueError) Error() string {
   246  	return "json: unsupported value: " + e.Str
   247  }
   248  
   249  // Before Go 1.2, an InvalidUTF8Error was returned by Marshal when
   250  // attempting to encode a string value with invalid UTF-8 sequences.
   251  // As of Go 1.2, Marshal instead coerces the string to valid UTF-8 by
   252  // replacing invalid bytes with the Unicode replacement rune U+FFFD.
   253  //
   254  // Deprecated: No longer used; kept for compatibility.
   255  type InvalidUTF8Error struct {
   256  	S string // the whole string value that caused the error
   257  }
   258  
   259  func (e *InvalidUTF8Error) Error() string {
   260  	return "json: invalid UTF-8 in string: " + strconv.Quote(e.S)
   261  }
   262  
   263  // A MarshalerError represents an error from calling a MarshalJSON or MarshalText method.
   264  type MarshalerError struct {
   265  	Type       reflect.Type
   266  	Err        error
   267  	sourceFunc string
   268  }
   269  
   270  func (e *MarshalerError) Error() string {
   271  	srcFunc := e.sourceFunc
   272  	if srcFunc == "" {
   273  		srcFunc = "MarshalJSON"
   274  	}
   275  	return "json: error calling " + srcFunc +
   276  		" for type " + e.Type.String() +
   277  		": " + e.Err.Error()
   278  }
   279  
   280  // Unwrap returns the underlying error.
   281  func (e *MarshalerError) Unwrap() error { return e.Err }
   282  
   283  var hex = "0123456789abcdef"
   284  
   285  // An encodeState encodes JSON into a bytes.Buffer.
   286  type encodeState struct {
   287  	bytes.Buffer // accumulated output
   288  	scratch      [64]byte
   289  
   290  	// Keep track of what pointers we've seen in the current recursive call
   291  	// path, to avoid cycles that could lead to a stack overflow. Only do
   292  	// the relatively expensive map operations if ptrLevel is larger than
   293  	// startDetectingCyclesAfter, so that we skip the work if we're within a
   294  	// reasonable amount of nested pointers deep.
   295  	ptrLevel uint
   296  	ptrSeen  map[interface{}]struct{}
   297  
   298  	// discriminatorEncodeTypeName is set to true when the type name should
   299  	// be encoded along with a map or struct value. The flag is flipped back
   300  	// to false as soon as the type name is encoded to prevent impacting
   301  	// subsequent values.
   302  	discriminatorEncodeTypeName bool
   303  }
   304  
   305  const startDetectingCyclesAfter = 1000
   306  
   307  var encodeStatePool sync.Pool
   308  
   309  func newEncodeState() *encodeState {
   310  	if v := encodeStatePool.Get(); v != nil {
   311  		e := v.(*encodeState)
   312  		e.Reset()
   313  		if len(e.ptrSeen) > 0 {
   314  			panic("ptrEncoder.encode should have emptied ptrSeen via defers")
   315  		}
   316  		e.ptrLevel = 0
   317  		e.discriminatorEncodeTypeName = false
   318  		return e
   319  	}
   320  	return &encodeState{ptrSeen: make(map[interface{}]struct{})}
   321  }
   322  
   323  // jsonError is an error wrapper type for internal use only.
   324  // Panics with errors are wrapped in jsonError so that the top-level recover
   325  // can distinguish intentional panics from this package.
   326  type jsonError struct{ error }
   327  
   328  var interfaceType = reflect.TypeOf((*interface{})(nil)).Elem()
   329  
   330  func (e *encodeState) marshal(v interface{}, opts encOpts) (err error) {
   331  	defer func() {
   332  		if r := recover(); r != nil {
   333  			if je, ok := r.(jsonError); ok {
   334  				err = je.error
   335  			} else {
   336  				panic(r)
   337  			}
   338  		}
   339  	}()
   340  
   341  	val := reflect.ValueOf(v)
   342  	if val.IsValid() && opts.isDiscriminatorSet() && opts.discriminatorEncodeMode.root() {
   343  		val = val.Convert(interfaceType)
   344  	}
   345  	e.reflectValue(val, opts)
   346  
   347  	return nil
   348  }
   349  
   350  // error aborts the encoding by panicking with err wrapped in jsonError.
   351  func (e *encodeState) error(err error) {
   352  	panic(jsonError{err})
   353  }
   354  
   355  func isEmptyValue(v reflect.Value) bool {
   356  	switch v.Kind() {
   357  	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
   358  		return v.Len() == 0
   359  	case reflect.Bool:
   360  		return !v.Bool()
   361  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   362  		return v.Int() == 0
   363  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   364  		return v.Uint() == 0
   365  	case reflect.Float32, reflect.Float64:
   366  		return v.Float() == 0
   367  	case reflect.Interface, reflect.Ptr:
   368  		return v.IsNil()
   369  	}
   370  	return false
   371  }
   372  
   373  func (e *encodeState) reflectValue(v reflect.Value, opts encOpts) {
   374  	valueEncoder(v)(e, v, opts)
   375  }
   376  
   377  type encOpts struct {
   378  	// quoted causes primitive fields to be encoded inside JSON strings.
   379  	quoted bool
   380  	// escapeHTML causes '<', '>', and '&' to be escaped in JSON strings.
   381  	escapeHTML bool
   382  	// see Encoder.SetDiscriminator
   383  	discriminatorTypeFieldName string
   384  	// see Encoder.SetDiscriminator
   385  	discriminatorValueFieldName string
   386  	// see Encoder.SetDiscriminator
   387  	discriminatorValueFn TypeToDiscriminatorFunc
   388  	// see Encoder.SetDiscriminator
   389  	discriminatorEncodeMode DiscriminatorEncodeMode
   390  }
   391  
   392  type encoderFunc func(e *encodeState, v reflect.Value, opts encOpts)
   393  
   394  var encoderCache sync.Map // map[reflect.Type]encoderFunc
   395  
   396  func valueEncoder(v reflect.Value) encoderFunc {
   397  	if !v.IsValid() {
   398  		return invalidValueEncoder
   399  	}
   400  	return typeEncoder(v.Type())
   401  }
   402  
   403  func typeEncoder(t reflect.Type) encoderFunc {
   404  	if fi, ok := encoderCache.Load(t); ok {
   405  		return fi.(encoderFunc)
   406  	}
   407  
   408  	// To deal with recursive types, populate the map with an
   409  	// indirect func before we build it. This type waits on the
   410  	// real func (f) to be ready and then calls it. This indirect
   411  	// func is only used for recursive types.
   412  	var (
   413  		wg sync.WaitGroup
   414  		f  encoderFunc
   415  	)
   416  	wg.Add(1)
   417  	fi, loaded := encoderCache.LoadOrStore(t, encoderFunc(func(e *encodeState, v reflect.Value, opts encOpts) {
   418  		wg.Wait()
   419  		f(e, v, opts)
   420  	}))
   421  	if loaded {
   422  		return fi.(encoderFunc)
   423  	}
   424  
   425  	// Compute the real encoder and replace the indirect func with it.
   426  	f = newTypeEncoder(t, true)
   427  	wg.Done()
   428  	encoderCache.Store(t, f)
   429  	return f
   430  }
   431  
   432  var (
   433  	marshalerType     = reflect.TypeOf((*Marshaler)(nil)).Elem()
   434  	textMarshalerType = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem()
   435  )
   436  
   437  // newTypeEncoder constructs an encoderFunc for a type.
   438  // The returned encoder only checks CanAddr when allowAddr is true.
   439  func newTypeEncoder(t reflect.Type, allowAddr bool) encoderFunc {
   440  	// If we have a non-pointer value whose type implements
   441  	// Marshaler with a value receiver, then we're better off taking
   442  	// the address of the value - otherwise we end up with an
   443  	// allocation as we cast the value to an interface.
   444  	if t.Kind() != reflect.Ptr && allowAddr && reflect.PtrTo(t).Implements(marshalerType) {
   445  		return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, false))
   446  	}
   447  	if t.Implements(marshalerType) {
   448  		return marshalerEncoder
   449  	}
   450  	if t.Kind() != reflect.Ptr && allowAddr && reflect.PtrTo(t).Implements(textMarshalerType) {
   451  		return newCondAddrEncoder(addrTextMarshalerEncoder, newTypeEncoder(t, false))
   452  	}
   453  	if t.Implements(textMarshalerType) {
   454  		return textMarshalerEncoder
   455  	}
   456  
   457  	switch t.Kind() {
   458  	case reflect.Bool:
   459  		return boolEncoder
   460  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   461  		return intEncoder
   462  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   463  		return uintEncoder
   464  	case reflect.Float32:
   465  		return float32Encoder
   466  	case reflect.Float64:
   467  		return float64Encoder
   468  	case reflect.String:
   469  		return stringEncoder
   470  	case reflect.Interface:
   471  		return interfaceEncoder
   472  	case reflect.Struct:
   473  		return newStructEncoder(t)
   474  	case reflect.Map:
   475  		return newMapEncoder(t)
   476  	case reflect.Slice:
   477  		return newSliceEncoder(t)
   478  	case reflect.Array:
   479  		return newArrayEncoder(t)
   480  	case reflect.Ptr:
   481  		return newPtrEncoder(t)
   482  	default:
   483  		return unsupportedTypeEncoder
   484  	}
   485  }
   486  
   487  func invalidValueEncoder(e *encodeState, v reflect.Value, _ encOpts) {
   488  	e.WriteString("null")
   489  }
   490  
   491  func marshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   492  	if v.Kind() == reflect.Ptr && v.IsNil() {
   493  		e.WriteString("null")
   494  		return
   495  	}
   496  	m, ok := v.Interface().(Marshaler)
   497  	if !ok {
   498  		e.WriteString("null")
   499  		return
   500  	}
   501  	b, err := m.MarshalJSON()
   502  	if err == nil {
   503  		// copy JSON into buffer, checking validity.
   504  		err = compact(&e.Buffer, b, opts.escapeHTML)
   505  	}
   506  	if err != nil {
   507  		e.error(&MarshalerError{v.Type(), err, "MarshalJSON"})
   508  	}
   509  }
   510  
   511  func addrMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   512  	va := v.Addr()
   513  	if va.IsNil() {
   514  		e.WriteString("null")
   515  		return
   516  	}
   517  	m := va.Interface().(Marshaler)
   518  	b, err := m.MarshalJSON()
   519  	if err == nil {
   520  		// copy JSON into buffer, checking validity.
   521  		err = compact(&e.Buffer, b, opts.escapeHTML)
   522  	}
   523  	if err != nil {
   524  		e.error(&MarshalerError{v.Type(), err, "MarshalJSON"})
   525  	}
   526  }
   527  
   528  func textMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   529  	if v.Kind() == reflect.Ptr && v.IsNil() {
   530  		e.WriteString("null")
   531  		return
   532  	}
   533  	m, ok := v.Interface().(encoding.TextMarshaler)
   534  	if !ok {
   535  		e.WriteString("null")
   536  		return
   537  	}
   538  	b, err := m.MarshalText()
   539  	if err != nil {
   540  		e.error(&MarshalerError{v.Type(), err, "MarshalText"})
   541  	}
   542  	e.stringBytes(b, opts.escapeHTML)
   543  }
   544  
   545  func addrTextMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   546  	va := v.Addr()
   547  	if va.IsNil() {
   548  		e.WriteString("null")
   549  		return
   550  	}
   551  	m := va.Interface().(encoding.TextMarshaler)
   552  	b, err := m.MarshalText()
   553  	if err != nil {
   554  		e.error(&MarshalerError{v.Type(), err, "MarshalText"})
   555  	}
   556  	e.stringBytes(b, opts.escapeHTML)
   557  }
   558  
   559  func boolEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   560  	if opts.quoted {
   561  		e.WriteByte('"')
   562  	}
   563  	if v.Bool() {
   564  		e.WriteString("true")
   565  	} else {
   566  		e.WriteString("false")
   567  	}
   568  	if opts.quoted {
   569  		e.WriteByte('"')
   570  	}
   571  }
   572  
   573  func intEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   574  	b := strconv.AppendInt(e.scratch[:0], v.Int(), 10)
   575  	if opts.quoted {
   576  		e.WriteByte('"')
   577  	}
   578  	e.Write(b)
   579  	if opts.quoted {
   580  		e.WriteByte('"')
   581  	}
   582  }
   583  
   584  func uintEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   585  	b := strconv.AppendUint(e.scratch[:0], v.Uint(), 10)
   586  	if opts.quoted {
   587  		e.WriteByte('"')
   588  	}
   589  	e.Write(b)
   590  	if opts.quoted {
   591  		e.WriteByte('"')
   592  	}
   593  }
   594  
   595  type floatEncoder int // number of bits
   596  
   597  func (bits floatEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   598  	f := v.Float()
   599  	if math.IsInf(f, 0) || math.IsNaN(f) {
   600  		e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))})
   601  	}
   602  
   603  	// Convert as if by ES6 number to string conversion.
   604  	// This matches most other JSON generators.
   605  	// See golang.org/issue/6384 and golang.org/issue/14135.
   606  	// Like fmt %g, but the exponent cutoffs are different
   607  	// and exponents themselves are not padded to two digits.
   608  	b := e.scratch[:0]
   609  	abs := math.Abs(f)
   610  	fmt := byte('f')
   611  	// Note: Must use float32 comparisons for underlying float32 value to get precise cutoffs right.
   612  	if abs != 0 {
   613  		if bits == 64 && (abs < 1e-6 || abs >= 1e21) || bits == 32 && (float32(abs) < 1e-6 || float32(abs) >= 1e21) {
   614  			fmt = 'e'
   615  		}
   616  	}
   617  	b = strconv.AppendFloat(b, f, fmt, -1, int(bits))
   618  	if fmt == 'e' {
   619  		// clean up e-09 to e-9
   620  		n := len(b)
   621  		if n >= 4 && b[n-4] == 'e' && b[n-3] == '-' && b[n-2] == '0' {
   622  			b[n-2] = b[n-1]
   623  			b = b[:n-1]
   624  		}
   625  	}
   626  
   627  	if opts.quoted {
   628  		e.WriteByte('"')
   629  	}
   630  	e.Write(b)
   631  	if opts.quoted {
   632  		e.WriteByte('"')
   633  	}
   634  }
   635  
   636  var (
   637  	float32Encoder = (floatEncoder(32)).encode
   638  	float64Encoder = (floatEncoder(64)).encode
   639  )
   640  
   641  func stringEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   642  	if v.Type() == numberType {
   643  		numStr := v.String()
   644  		// In Go1.5 the empty string encodes to "0", while this is not a valid number literal
   645  		// we keep compatibility so check validity after this.
   646  		if numStr == "" {
   647  			numStr = "0" // Number's zero-val
   648  		}
   649  		if !isValidNumber(numStr) {
   650  			e.error(fmt.Errorf("json: invalid number literal %q", numStr))
   651  		}
   652  		if opts.quoted {
   653  			e.WriteByte('"')
   654  		}
   655  		e.WriteString(numStr)
   656  		if opts.quoted {
   657  			e.WriteByte('"')
   658  		}
   659  		return
   660  	}
   661  	if opts.quoted {
   662  		e2 := newEncodeState()
   663  		// Since we encode the string twice, we only need to escape HTML
   664  		// the first time.
   665  		e2.string(v.String(), opts.escapeHTML)
   666  		e.stringBytes(e2.Bytes(), false)
   667  		encodeStatePool.Put(e2)
   668  	} else {
   669  		e.string(v.String(), opts.escapeHTML)
   670  	}
   671  }
   672  
   673  // isValidNumber reports whether s is a valid JSON number literal.
   674  func isValidNumber(s string) bool {
   675  	// This function implements the JSON numbers grammar.
   676  	// See https://tools.ietf.org/html/rfc7159#section-6
   677  	// and https://www.json.org/img/number.png
   678  
   679  	if s == "" {
   680  		return false
   681  	}
   682  
   683  	// Optional -
   684  	if s[0] == '-' {
   685  		s = s[1:]
   686  		if s == "" {
   687  			return false
   688  		}
   689  	}
   690  
   691  	// Digits
   692  	switch {
   693  	default:
   694  		return false
   695  
   696  	case s[0] == '0':
   697  		s = s[1:]
   698  
   699  	case '1' <= s[0] && s[0] <= '9':
   700  		s = s[1:]
   701  		for len(s) > 0 && '0' <= s[0] && s[0] <= '9' {
   702  			s = s[1:]
   703  		}
   704  	}
   705  
   706  	// . followed by 1 or more digits.
   707  	if len(s) >= 2 && s[0] == '.' && '0' <= s[1] && s[1] <= '9' {
   708  		s = s[2:]
   709  		for len(s) > 0 && '0' <= s[0] && s[0] <= '9' {
   710  			s = s[1:]
   711  		}
   712  	}
   713  
   714  	// e or E followed by an optional - or + and
   715  	// 1 or more digits.
   716  	if len(s) >= 2 && (s[0] == 'e' || s[0] == 'E') {
   717  		s = s[1:]
   718  		if s[0] == '+' || s[0] == '-' {
   719  			s = s[1:]
   720  			if s == "" {
   721  				return false
   722  			}
   723  		}
   724  		for len(s) > 0 && '0' <= s[0] && s[0] <= '9' {
   725  			s = s[1:]
   726  		}
   727  	}
   728  
   729  	// Make sure we are at the end.
   730  	return s == ""
   731  }
   732  
   733  func interfaceEncoder(e *encodeState, v reflect.Value, opts encOpts) {
   734  	if v.IsNil() {
   735  		e.WriteString("null")
   736  		return
   737  	}
   738  	if opts.isDiscriminatorSet() {
   739  		discriminatorInterfaceEncode(e, v, opts)
   740  		return
   741  	}
   742  	e.reflectValue(v.Elem(), opts)
   743  }
   744  
   745  func unsupportedTypeEncoder(e *encodeState, v reflect.Value, _ encOpts) {
   746  	e.error(&UnsupportedTypeError{v.Type()})
   747  }
   748  
   749  type structEncoder struct {
   750  	fields structFields
   751  }
   752  
   753  type structFields struct {
   754  	list      []field
   755  	nameIndex map[string]int
   756  }
   757  
   758  func (se structEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   759  	next := byte('{')
   760  	if opts.isDiscriminatorSet() {
   761  		next = discriminatorStructEncode(e, v, opts)
   762  	}
   763  FieldLoop:
   764  	for i := range se.fields.list {
   765  		f := &se.fields.list[i]
   766  
   767  		// Find the nested struct field by following f.index.
   768  		fv := v
   769  		for _, i := range f.index {
   770  			if fv.Kind() == reflect.Ptr {
   771  				if fv.IsNil() {
   772  					continue FieldLoop
   773  				}
   774  				fv = fv.Elem()
   775  			}
   776  			fv = fv.Field(i)
   777  		}
   778  
   779  		if f.omitEmpty && isEmptyValue(fv) {
   780  			continue
   781  		}
   782  		e.WriteByte(next)
   783  		next = ','
   784  		if opts.escapeHTML {
   785  			e.WriteString(f.nameEscHTML)
   786  		} else {
   787  			e.WriteString(f.nameNonEsc)
   788  		}
   789  		opts.quoted = f.quoted
   790  
   791  		f.encoder(e, fv, opts)
   792  	}
   793  	if next == '{' {
   794  		e.WriteString("{}")
   795  	} else {
   796  		e.WriteByte('}')
   797  	}
   798  }
   799  
   800  func newStructEncoder(t reflect.Type) encoderFunc {
   801  	se := structEncoder{fields: cachedTypeFields(t)}
   802  	return se.encode
   803  }
   804  
   805  type mapEncoder struct {
   806  	elemEnc encoderFunc
   807  }
   808  
   809  func (me mapEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   810  	if v.IsNil() {
   811  		e.WriteString("null")
   812  		return
   813  	}
   814  	if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter {
   815  		// We're a large number of nested ptrEncoder.encode calls deep;
   816  		// start checking if we've run into a pointer cycle.
   817  		ptr := v.Pointer()
   818  		if _, ok := e.ptrSeen[ptr]; ok {
   819  			e.error(&UnsupportedValueError{v, fmt.Sprintf("encountered a cycle via %s", v.Type())})
   820  		}
   821  		e.ptrSeen[ptr] = struct{}{}
   822  		defer delete(e.ptrSeen, ptr)
   823  	}
   824  	e.WriteByte('{')
   825  
   826  	if opts.isDiscriminatorSet() {
   827  		discriminatorMapEncode(e, v, opts)
   828  	}
   829  
   830  	// Extract and sort the keys.
   831  	sv := make([]reflectWithString, v.Len())
   832  	mi := v.MapRange()
   833  	for i := 0; mi.Next(); i++ {
   834  		sv[i].k = mi.Key()
   835  		sv[i].v = mi.Value()
   836  		if err := sv[i].resolve(); err != nil {
   837  			e.error(fmt.Errorf("json: encoding error for type %q: %q", v.Type().String(), err.Error()))
   838  		}
   839  	}
   840  	sort.Slice(sv, func(i, j int) bool { return sv[i].ks < sv[j].ks })
   841  
   842  	for i, kv := range sv {
   843  		if i > 0 {
   844  			e.WriteByte(',')
   845  		}
   846  		e.string(kv.ks, opts.escapeHTML)
   847  		e.WriteByte(':')
   848  		me.elemEnc(e, kv.v, opts)
   849  	}
   850  	e.WriteByte('}')
   851  	e.ptrLevel--
   852  }
   853  
   854  func newMapEncoder(t reflect.Type) encoderFunc {
   855  	switch t.Key().Kind() {
   856  	case reflect.String,
   857  		reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
   858  		reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   859  	default:
   860  		if !t.Key().Implements(textMarshalerType) {
   861  			return unsupportedTypeEncoder
   862  		}
   863  	}
   864  	me := mapEncoder{typeEncoder(t.Elem())}
   865  	return me.encode
   866  }
   867  
   868  func encodeByteSlice(e *encodeState, v reflect.Value, _ encOpts) {
   869  	if v.IsNil() {
   870  		e.WriteString("null")
   871  		return
   872  	}
   873  	s := v.Bytes()
   874  	e.WriteByte('"')
   875  	encodedLen := base64.StdEncoding.EncodedLen(len(s))
   876  	if encodedLen <= len(e.scratch) {
   877  		// If the encoded bytes fit in e.scratch, avoid an extra
   878  		// allocation and use the cheaper Encoding.Encode.
   879  		dst := e.scratch[:encodedLen]
   880  		base64.StdEncoding.Encode(dst, s)
   881  		e.Write(dst)
   882  	} else if encodedLen <= 1024 {
   883  		// The encoded bytes are short enough to allocate for, and
   884  		// Encoding.Encode is still cheaper.
   885  		dst := make([]byte, encodedLen)
   886  		base64.StdEncoding.Encode(dst, s)
   887  		e.Write(dst)
   888  	} else {
   889  		// The encoded bytes are too long to cheaply allocate, and
   890  		// Encoding.Encode is no longer noticeably cheaper.
   891  		enc := base64.NewEncoder(base64.StdEncoding, e)
   892  		enc.Write(s)
   893  		enc.Close()
   894  	}
   895  	e.WriteByte('"')
   896  }
   897  
   898  // sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil.
   899  type sliceEncoder struct {
   900  	arrayEnc encoderFunc
   901  }
   902  
   903  func (se sliceEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   904  	if v.IsNil() {
   905  		e.WriteString("null")
   906  		return
   907  	}
   908  	if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter {
   909  		// We're a large number of nested ptrEncoder.encode calls deep;
   910  		// start checking if we've run into a pointer cycle.
   911  		// Here we use a struct to memorize the pointer to the first element of the slice
   912  		// and its length.
   913  		ptr := struct {
   914  			ptr uintptr
   915  			len int
   916  		}{v.Pointer(), v.Len()}
   917  		if _, ok := e.ptrSeen[ptr]; ok {
   918  			e.error(&UnsupportedValueError{v, fmt.Sprintf("encountered a cycle via %s", v.Type())})
   919  		}
   920  		e.ptrSeen[ptr] = struct{}{}
   921  		defer delete(e.ptrSeen, ptr)
   922  	}
   923  	se.arrayEnc(e, v, opts)
   924  	e.ptrLevel--
   925  }
   926  
   927  func newSliceEncoder(t reflect.Type) encoderFunc {
   928  	// Byte slices get special treatment; arrays don't.
   929  	if t.Elem().Kind() == reflect.Uint8 {
   930  		p := reflect.PtrTo(t.Elem())
   931  		if !p.Implements(marshalerType) && !p.Implements(textMarshalerType) {
   932  			return encodeByteSlice
   933  		}
   934  	}
   935  	enc := sliceEncoder{newArrayEncoder(t)}
   936  	return enc.encode
   937  }
   938  
   939  type arrayEncoder struct {
   940  	elemEnc encoderFunc
   941  }
   942  
   943  func (ae arrayEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   944  	e.WriteByte('[')
   945  	n := v.Len()
   946  	for i := 0; i < n; i++ {
   947  		if i > 0 {
   948  			e.WriteByte(',')
   949  		}
   950  		ae.elemEnc(e, v.Index(i), opts)
   951  	}
   952  	e.WriteByte(']')
   953  }
   954  
   955  func newArrayEncoder(t reflect.Type) encoderFunc {
   956  	enc := arrayEncoder{typeEncoder(t.Elem())}
   957  	return enc.encode
   958  }
   959  
   960  type ptrEncoder struct {
   961  	elemEnc encoderFunc
   962  }
   963  
   964  func (pe ptrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   965  	if v.IsNil() {
   966  		e.WriteString("null")
   967  		return
   968  	}
   969  	if e.ptrLevel++; e.ptrLevel > startDetectingCyclesAfter {
   970  		// We're a large number of nested ptrEncoder.encode calls deep;
   971  		// start checking if we've run into a pointer cycle.
   972  		ptr := v.Interface()
   973  		if _, ok := e.ptrSeen[ptr]; ok {
   974  			e.error(&UnsupportedValueError{v, fmt.Sprintf("encountered a cycle via %s", v.Type())})
   975  		}
   976  		e.ptrSeen[ptr] = struct{}{}
   977  		defer delete(e.ptrSeen, ptr)
   978  	}
   979  	pe.elemEnc(e, v.Elem(), opts)
   980  	e.ptrLevel--
   981  }
   982  
   983  func newPtrEncoder(t reflect.Type) encoderFunc {
   984  	enc := ptrEncoder{typeEncoder(t.Elem())}
   985  	return enc.encode
   986  }
   987  
   988  type condAddrEncoder struct {
   989  	canAddrEnc, elseEnc encoderFunc
   990  }
   991  
   992  func (ce condAddrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
   993  	if v.CanAddr() {
   994  		ce.canAddrEnc(e, v, opts)
   995  	} else {
   996  		ce.elseEnc(e, v, opts)
   997  	}
   998  }
   999  
  1000  // newCondAddrEncoder returns an encoder that checks whether its value
  1001  // CanAddr and delegates to canAddrEnc if so, else to elseEnc.
  1002  func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc {
  1003  	enc := condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc}
  1004  	return enc.encode
  1005  }
  1006  
  1007  func isValidTag(s string) bool {
  1008  	if s == "" {
  1009  		return false
  1010  	}
  1011  	for _, c := range s {
  1012  		switch {
  1013  		case strings.ContainsRune("!#$%&()*+-./:;<=>?@[]^_{|}~ ", c):
  1014  			// Backslash and quote chars are reserved, but
  1015  			// otherwise any punctuation chars are allowed
  1016  			// in a tag name.
  1017  		case !unicode.IsLetter(c) && !unicode.IsDigit(c):
  1018  			return false
  1019  		}
  1020  	}
  1021  	return true
  1022  }
  1023  
  1024  func typeByIndex(t reflect.Type, index []int) reflect.Type {
  1025  	for _, i := range index {
  1026  		if t.Kind() == reflect.Ptr {
  1027  			t = t.Elem()
  1028  		}
  1029  		t = t.Field(i).Type
  1030  	}
  1031  	return t
  1032  }
  1033  
  1034  type reflectWithString struct {
  1035  	k  reflect.Value
  1036  	v  reflect.Value
  1037  	ks string
  1038  }
  1039  
  1040  func (w *reflectWithString) resolve() error {
  1041  	if w.k.Kind() == reflect.String {
  1042  		w.ks = w.k.String()
  1043  		return nil
  1044  	}
  1045  	if tm, ok := w.k.Interface().(encoding.TextMarshaler); ok {
  1046  		if w.k.Kind() == reflect.Ptr && w.k.IsNil() {
  1047  			return nil
  1048  		}
  1049  		buf, err := tm.MarshalText()
  1050  		w.ks = string(buf)
  1051  		return err
  1052  	}
  1053  	switch w.k.Kind() {
  1054  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
  1055  		w.ks = strconv.FormatInt(w.k.Int(), 10)
  1056  		return nil
  1057  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
  1058  		w.ks = strconv.FormatUint(w.k.Uint(), 10)
  1059  		return nil
  1060  	}
  1061  	panic("unexpected map key type")
  1062  }
  1063  
  1064  // NOTE: keep in sync with stringBytes below.
  1065  func (e *encodeState) string(s string, escapeHTML bool) {
  1066  	e.WriteByte('"')
  1067  	start := 0
  1068  	for i := 0; i < len(s); {
  1069  		if b := s[i]; b < utf8.RuneSelf {
  1070  			if htmlSafeSet[b] || (!escapeHTML && safeSet[b]) {
  1071  				i++
  1072  				continue
  1073  			}
  1074  			if start < i {
  1075  				e.WriteString(s[start:i])
  1076  			}
  1077  			e.WriteByte('\\')
  1078  			switch b {
  1079  			case '\\', '"':
  1080  				e.WriteByte(b)
  1081  			case '\n':
  1082  				e.WriteByte('n')
  1083  			case '\r':
  1084  				e.WriteByte('r')
  1085  			case '\t':
  1086  				e.WriteByte('t')
  1087  			default:
  1088  				// This encodes bytes < 0x20 except for \t, \n and \r.
  1089  				// If escapeHTML is set, it also escapes <, >, and &
  1090  				// because they can lead to security holes when
  1091  				// user-controlled strings are rendered into JSON
  1092  				// and served to some browsers.
  1093  				e.WriteString(`u00`)
  1094  				e.WriteByte(hex[b>>4])
  1095  				e.WriteByte(hex[b&0xF])
  1096  			}
  1097  			i++
  1098  			start = i
  1099  			continue
  1100  		}
  1101  		c, size := utf8.DecodeRuneInString(s[i:])
  1102  		if c == utf8.RuneError && size == 1 {
  1103  			if start < i {
  1104  				e.WriteString(s[start:i])
  1105  			}
  1106  			e.WriteString(`\ufffd`)
  1107  			i += size
  1108  			start = i
  1109  			continue
  1110  		}
  1111  		// U+2028 is LINE SEPARATOR.
  1112  		// U+2029 is PARAGRAPH SEPARATOR.
  1113  		// They are both technically valid characters in JSON strings,
  1114  		// but don't work in JSONP, which has to be evaluated as JavaScript,
  1115  		// and can lead to security holes there. It is valid JSON to
  1116  		// escape them, so we do so unconditionally.
  1117  		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
  1118  		if c == '\u2028' || c == '\u2029' {
  1119  			if start < i {
  1120  				e.WriteString(s[start:i])
  1121  			}
  1122  			e.WriteString(`\u202`)
  1123  			e.WriteByte(hex[c&0xF])
  1124  			i += size
  1125  			start = i
  1126  			continue
  1127  		}
  1128  		i += size
  1129  	}
  1130  	if start < len(s) {
  1131  		e.WriteString(s[start:])
  1132  	}
  1133  	e.WriteByte('"')
  1134  }
  1135  
  1136  // NOTE: keep in sync with string above.
  1137  func (e *encodeState) stringBytes(s []byte, escapeHTML bool) {
  1138  	e.WriteByte('"')
  1139  	start := 0
  1140  	for i := 0; i < len(s); {
  1141  		if b := s[i]; b < utf8.RuneSelf {
  1142  			if htmlSafeSet[b] || (!escapeHTML && safeSet[b]) {
  1143  				i++
  1144  				continue
  1145  			}
  1146  			if start < i {
  1147  				e.Write(s[start:i])
  1148  			}
  1149  			e.WriteByte('\\')
  1150  			switch b {
  1151  			case '\\', '"':
  1152  				e.WriteByte(b)
  1153  			case '\n':
  1154  				e.WriteByte('n')
  1155  			case '\r':
  1156  				e.WriteByte('r')
  1157  			case '\t':
  1158  				e.WriteByte('t')
  1159  			default:
  1160  				// This encodes bytes < 0x20 except for \t, \n and \r.
  1161  				// If escapeHTML is set, it also escapes <, >, and &
  1162  				// because they can lead to security holes when
  1163  				// user-controlled strings are rendered into JSON
  1164  				// and served to some browsers.
  1165  				e.WriteString(`u00`)
  1166  				e.WriteByte(hex[b>>4])
  1167  				e.WriteByte(hex[b&0xF])
  1168  			}
  1169  			i++
  1170  			start = i
  1171  			continue
  1172  		}
  1173  		c, size := utf8.DecodeRune(s[i:])
  1174  		if c == utf8.RuneError && size == 1 {
  1175  			if start < i {
  1176  				e.Write(s[start:i])
  1177  			}
  1178  			e.WriteString(`\ufffd`)
  1179  			i += size
  1180  			start = i
  1181  			continue
  1182  		}
  1183  		// U+2028 is LINE SEPARATOR.
  1184  		// U+2029 is PARAGRAPH SEPARATOR.
  1185  		// They are both technically valid characters in JSON strings,
  1186  		// but don't work in JSONP, which has to be evaluated as JavaScript,
  1187  		// and can lead to security holes there. It is valid JSON to
  1188  		// escape them, so we do so unconditionally.
  1189  		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
  1190  		if c == '\u2028' || c == '\u2029' {
  1191  			if start < i {
  1192  				e.Write(s[start:i])
  1193  			}
  1194  			e.WriteString(`\u202`)
  1195  			e.WriteByte(hex[c&0xF])
  1196  			i += size
  1197  			start = i
  1198  			continue
  1199  		}
  1200  		i += size
  1201  	}
  1202  	if start < len(s) {
  1203  		e.Write(s[start:])
  1204  	}
  1205  	e.WriteByte('"')
  1206  }
  1207  
  1208  // A field represents a single field found in a struct.
  1209  type field struct {
  1210  	name      string
  1211  	nameBytes []byte                 // []byte(name)
  1212  	equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent
  1213  
  1214  	nameNonEsc  string // `"` + name + `":`
  1215  	nameEscHTML string // `"` + HTMLEscape(name) + `":`
  1216  
  1217  	tag       bool
  1218  	index     []int
  1219  	typ       reflect.Type
  1220  	omitEmpty bool
  1221  	quoted    bool
  1222  
  1223  	encoder encoderFunc
  1224  }
  1225  
  1226  // byIndex sorts field by index sequence.
  1227  type byIndex []field
  1228  
  1229  func (x byIndex) Len() int { return len(x) }
  1230  
  1231  func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
  1232  
  1233  func (x byIndex) Less(i, j int) bool {
  1234  	for k, xik := range x[i].index {
  1235  		if k >= len(x[j].index) {
  1236  			return false
  1237  		}
  1238  		if xik != x[j].index[k] {
  1239  			return xik < x[j].index[k]
  1240  		}
  1241  	}
  1242  	return len(x[i].index) < len(x[j].index)
  1243  }
  1244  
  1245  // typeFields returns a list of fields that JSON should recognize for the given type.
  1246  // The algorithm is breadth-first search over the set of structs to include - the top struct
  1247  // and then any reachable anonymous structs.
  1248  func typeFields(t reflect.Type) structFields {
  1249  	// Anonymous fields to explore at the current level and the next.
  1250  	current := []field{}
  1251  	next := []field{{typ: t}}
  1252  
  1253  	// Count of queued names for current level and the next.
  1254  	var count, nextCount map[reflect.Type]int
  1255  
  1256  	// Types already visited at an earlier level.
  1257  	visited := map[reflect.Type]bool{}
  1258  
  1259  	// Fields found.
  1260  	var fields []field
  1261  
  1262  	// Buffer to run HTMLEscape on field names.
  1263  	var nameEscBuf bytes.Buffer
  1264  
  1265  	for len(next) > 0 {
  1266  		current, next = next, current[:0]
  1267  		count, nextCount = nextCount, map[reflect.Type]int{}
  1268  
  1269  		for _, f := range current {
  1270  			if visited[f.typ] {
  1271  				continue
  1272  			}
  1273  			visited[f.typ] = true
  1274  
  1275  			// Scan f.typ for fields to include.
  1276  			for i := 0; i < f.typ.NumField(); i++ {
  1277  				sf := f.typ.Field(i)
  1278  				if sf.Anonymous {
  1279  					t := sf.Type
  1280  					if t.Kind() == reflect.Ptr {
  1281  						t = t.Elem()
  1282  					}
  1283  					if !sf.IsExported() && t.Kind() != reflect.Struct {
  1284  						// Ignore embedded fields of unexported non-struct types.
  1285  						continue
  1286  					}
  1287  					// Do not ignore embedded fields of unexported struct types
  1288  					// since they may have exported fields.
  1289  				} else if !sf.IsExported() {
  1290  					// Ignore unexported non-embedded fields.
  1291  					continue
  1292  				}
  1293  				tag := sf.Tag.Get("json")
  1294  				if tag == "-" {
  1295  					continue
  1296  				}
  1297  				name, opts := parseTag(tag)
  1298  				if !isValidTag(name) {
  1299  					name = ""
  1300  				}
  1301  				index := make([]int, len(f.index)+1)
  1302  				copy(index, f.index)
  1303  				index[len(f.index)] = i
  1304  
  1305  				ft := sf.Type
  1306  				if ft.Name() == "" && ft.Kind() == reflect.Ptr {
  1307  					// Follow pointer.
  1308  					ft = ft.Elem()
  1309  				}
  1310  
  1311  				// Only strings, floats, integers, and booleans can be quoted.
  1312  				quoted := false
  1313  				if opts.Contains("string") {
  1314  					switch ft.Kind() {
  1315  					case reflect.Bool,
  1316  						reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
  1317  						reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr,
  1318  						reflect.Float32, reflect.Float64,
  1319  						reflect.String:
  1320  						quoted = true
  1321  					}
  1322  				}
  1323  
  1324  				// Record found field and index sequence.
  1325  				if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
  1326  					tagged := name != ""
  1327  					if name == "" {
  1328  						name = sf.Name
  1329  					}
  1330  					field := field{
  1331  						name:      name,
  1332  						tag:       tagged,
  1333  						index:     index,
  1334  						typ:       ft,
  1335  						omitEmpty: opts.Contains("omitempty"),
  1336  						quoted:    quoted,
  1337  					}
  1338  					field.nameBytes = []byte(field.name)
  1339  					field.equalFold = foldFunc(field.nameBytes)
  1340  
  1341  					// Build nameEscHTML and nameNonEsc ahead of time.
  1342  					nameEscBuf.Reset()
  1343  					nameEscBuf.WriteString(`"`)
  1344  					HTMLEscape(&nameEscBuf, field.nameBytes)
  1345  					nameEscBuf.WriteString(`":`)
  1346  					field.nameEscHTML = nameEscBuf.String()
  1347  					field.nameNonEsc = `"` + field.name + `":`
  1348  
  1349  					fields = append(fields, field)
  1350  					if count[f.typ] > 1 {
  1351  						// If there were multiple instances, add a second,
  1352  						// so that the annihilation code will see a duplicate.
  1353  						// It only cares about the distinction between 1 or 2,
  1354  						// so don't bother generating any more copies.
  1355  						fields = append(fields, fields[len(fields)-1])
  1356  					}
  1357  					continue
  1358  				}
  1359  
  1360  				// Record new anonymous struct to explore in next round.
  1361  				nextCount[ft]++
  1362  				if nextCount[ft] == 1 {
  1363  					next = append(next, field{name: ft.Name(), index: index, typ: ft})
  1364  				}
  1365  			}
  1366  		}
  1367  	}
  1368  
  1369  	sort.Slice(fields, func(i, j int) bool {
  1370  		x := fields
  1371  		// sort field by name, breaking ties with depth, then
  1372  		// breaking ties with "name came from json tag", then
  1373  		// breaking ties with index sequence.
  1374  		if x[i].name != x[j].name {
  1375  			return x[i].name < x[j].name
  1376  		}
  1377  		if len(x[i].index) != len(x[j].index) {
  1378  			return len(x[i].index) < len(x[j].index)
  1379  		}
  1380  		if x[i].tag != x[j].tag {
  1381  			return x[i].tag
  1382  		}
  1383  		return byIndex(x).Less(i, j)
  1384  	})
  1385  
  1386  	// Delete all fields that are hidden by the Go rules for embedded fields,
  1387  	// except that fields with JSON tags are promoted.
  1388  
  1389  	// The fields are sorted in primary order of name, secondary order
  1390  	// of field index length. Loop over names; for each name, delete
  1391  	// hidden fields by choosing the one dominant field that survives.
  1392  	out := fields[:0]
  1393  	for advance, i := 0, 0; i < len(fields); i += advance {
  1394  		// One iteration per name.
  1395  		// Find the sequence of fields with the name of this first field.
  1396  		fi := fields[i]
  1397  		name := fi.name
  1398  		for advance = 1; i+advance < len(fields); advance++ {
  1399  			fj := fields[i+advance]
  1400  			if fj.name != name {
  1401  				break
  1402  			}
  1403  		}
  1404  		if advance == 1 { // Only one field with this name
  1405  			out = append(out, fi)
  1406  			continue
  1407  		}
  1408  		dominant, ok := dominantField(fields[i : i+advance])
  1409  		if ok {
  1410  			out = append(out, dominant)
  1411  		}
  1412  	}
  1413  
  1414  	fields = out
  1415  	sort.Sort(byIndex(fields))
  1416  
  1417  	for i := range fields {
  1418  		f := &fields[i]
  1419  		f.encoder = typeEncoder(typeByIndex(t, f.index))
  1420  	}
  1421  	nameIndex := make(map[string]int, len(fields))
  1422  	for i, field := range fields {
  1423  		nameIndex[field.name] = i
  1424  	}
  1425  	return structFields{fields, nameIndex}
  1426  }
  1427  
  1428  // dominantField looks through the fields, all of which are known to
  1429  // have the same name, to find the single field that dominates the
  1430  // others using Go's embedding rules, modified by the presence of
  1431  // JSON tags. If there are multiple top-level fields, the boolean
  1432  // will be false: This condition is an error in Go and we skip all
  1433  // the fields.
  1434  func dominantField(fields []field) (field, bool) {
  1435  	// The fields are sorted in increasing index-length order, then by presence of tag.
  1436  	// That means that the first field is the dominant one. We need only check
  1437  	// for error cases: two fields at top level, either both tagged or neither tagged.
  1438  	if len(fields) > 1 && len(fields[0].index) == len(fields[1].index) && fields[0].tag == fields[1].tag {
  1439  		return field{}, false
  1440  	}
  1441  	return fields[0], true
  1442  }
  1443  
  1444  var fieldCache sync.Map // map[reflect.Type]structFields
  1445  
  1446  // cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
  1447  func cachedTypeFields(t reflect.Type) structFields {
  1448  	if f, ok := fieldCache.Load(t); ok {
  1449  		return f.(structFields)
  1450  	}
  1451  	f, _ := fieldCache.LoadOrStore(t, typeFields(t))
  1452  	return f.(structFields)
  1453  }