github.com/walkingsparrow/docker@v1.4.2-0.20151218153551-b708a2249bfa/man/docker-run.1.md (about) 1 % DOCKER(1) Docker User Manuals 2 % Docker Community 3 % JUNE 2014 4 # NAME 5 docker-run - Run a command in a new container 6 7 # SYNOPSIS 8 **docker run** 9 [**-a**|**--attach**[=*[]*]] 10 [**--add-host**[=*[]*]] 11 [**--blkio-weight**[=*[BLKIO-WEIGHT]*]] 12 [**--blkio-weight-device**[=*[]*]] 13 [**--cpu-shares**[=*0*]] 14 [**--cap-add**[=*[]*]] 15 [**--cap-drop**[=*[]*]] 16 [**--cgroup-parent**[=*CGROUP-PATH*]] 17 [**--cidfile**[=*CIDFILE*]] 18 [**--cpu-period**[=*0*]] 19 [**--cpu-quota**[=*0*]] 20 [**--cpuset-cpus**[=*CPUSET-CPUS*]] 21 [**--cpuset-mems**[=*CPUSET-MEMS*]] 22 [**-d**|**--detach**[=*false*]] 23 [**--device**[=*[]*]] 24 [**--device-read-bps**[=*[]*]] 25 [**--device-write-bps**[=*[]*]] 26 [**--dns**[=*[]*]] 27 [**--dns-opt**[=*[]*]] 28 [**--dns-search**[=*[]*]] 29 [**-e**|**--env**[=*[]*]] 30 [**--entrypoint**[=*ENTRYPOINT*]] 31 [**--env-file**[=*[]*]] 32 [**--expose**[=*[]*]] 33 [**--group-add**[=*[]*]] 34 [**-h**|**--hostname**[=*HOSTNAME*]] 35 [**--help**] 36 [**-i**|**--interactive**[=*false*]] 37 [**--ipc**[=*IPC*]] 38 [**--isolation**[=*default*]] 39 [**--kernel-memory**[=*KERNEL-MEMORY*]] 40 [**-l**|**--label**[=*[]*]] 41 [**--label-file**[=*[]*]] 42 [**--link**[=*[]*]] 43 [**--log-driver**[=*[]*]] 44 [**--log-opt**[=*[]*]] 45 [**-m**|**--memory**[=*MEMORY*]] 46 [**--mac-address**[=*MAC-ADDRESS*]] 47 [**--memory-reservation**[=*MEMORY-RESERVATION*]] 48 [**--memory-swap**[=*MEMORY-SWAP*]] 49 [**--memory-swappiness**[=*MEMORY-SWAPPINESS*]] 50 [**--name**[=*NAME*]] 51 [**--net**[=*"bridge"*]] 52 [**--oom-kill-disable**[=*false*]] 53 [**--oom-score-adj**[=*0*]] 54 [**-P**|**--publish-all**[=*false*]] 55 [**-p**|**--publish**[=*[]*]] 56 [**--pid**[=*[]*]] 57 [**--privileged**[=*false*]] 58 [**--read-only**[=*false*]] 59 [**--restart**[=*RESTART*]] 60 [**--rm**[=*false*]] 61 [**--security-opt**[=*[]*]] 62 [**--stop-signal**[=*SIGNAL*]] 63 [**--shm-size**[=*[]*]] 64 [**--sig-proxy**[=*true*]] 65 [**-t**|**--tty**[=*false*]] 66 [**--tmpfs**[=*[CONTAINER-DIR[:<OPTIONS>]*]] 67 [**-u**|**--user**[=*USER*]] 68 [**--ulimit**[=*[]*]] 69 [**--uts**[=*[]*]] 70 [**-v**|**--volume**[=*[[HOST-DIR:]CONTAINER-DIR[:OPTIONS]]*]] 71 [**--volume-driver**[=*DRIVER*]] 72 [**--volumes-from**[=*[]*]] 73 [**-w**|**--workdir**[=*WORKDIR*]] 74 IMAGE [COMMAND] [ARG...] 75 76 # DESCRIPTION 77 78 Run a process in a new container. **docker run** starts a process with its own 79 file system, its own networking, and its own isolated process tree. The IMAGE 80 which starts the process may define defaults related to the process that will be 81 run in the container, the networking to expose, and more, but **docker run** 82 gives final control to the operator or administrator who starts the container 83 from the image. For that reason **docker run** has more options than any other 84 Docker command. 85 86 If the IMAGE is not already loaded then **docker run** will pull the IMAGE, and 87 all image dependencies, from the repository in the same way running **docker 88 pull** IMAGE, before it starts the container from that image. 89 90 # OPTIONS 91 **-a**, **--attach**=[] 92 Attach to STDIN, STDOUT or STDERR. 93 94 In foreground mode (the default when **-d** 95 is not specified), **docker run** can start the process in the container 96 and attach the console to the process’s standard input, output, and standard 97 error. It can even pretend to be a TTY (this is what most commandline 98 executables expect) and pass along signals. The **-a** option can be set for 99 each of stdin, stdout, and stderr. 100 101 **--add-host**=[] 102 Add a custom host-to-IP mapping (host:ip) 103 104 Add a line to /etc/hosts. The format is hostname:ip. The **--add-host** 105 option can be set multiple times. 106 107 **--blkio-weight**=*0* 108 Block IO weight (relative weight) accepts a weight value between 10 and 1000. 109 110 **--blkio-weight-device**=[] 111 Block IO weight (relative device weight, format: `DEVICE_NAME:WEIGHT`). 112 113 **--cpu-shares**=*0* 114 CPU shares (relative weight) 115 116 By default, all containers get the same proportion of CPU cycles. This proportion 117 can be modified by changing the container's CPU share weighting relative 118 to the weighting of all other running containers. 119 120 To modify the proportion from the default of 1024, use the **--cpu-shares** 121 flag to set the weighting to 2 or higher. 122 123 The proportion will only apply when CPU-intensive processes are running. 124 When tasks in one container are idle, other containers can use the 125 left-over CPU time. The actual amount of CPU time will vary depending on 126 the number of containers running on the system. 127 128 For example, consider three containers, one has a cpu-share of 1024 and 129 two others have a cpu-share setting of 512. When processes in all three 130 containers attempt to use 100% of CPU, the first container would receive 131 50% of the total CPU time. If you add a fourth container with a cpu-share 132 of 1024, the first container only gets 33% of the CPU. The remaining containers 133 receive 16.5%, 16.5% and 33% of the CPU. 134 135 On a multi-core system, the shares of CPU time are distributed over all CPU 136 cores. Even if a container is limited to less than 100% of CPU time, it can 137 use 100% of each individual CPU core. 138 139 For example, consider a system with more than three cores. If you start one 140 container **{C0}** with **-c=512** running one process, and another container 141 **{C1}** with **-c=1024** running two processes, this can result in the following 142 division of CPU shares: 143 144 PID container CPU CPU share 145 100 {C0} 0 100% of CPU0 146 101 {C1} 1 100% of CPU1 147 102 {C1} 2 100% of CPU2 148 149 **--cap-add**=[] 150 Add Linux capabilities 151 152 **--cap-drop**=[] 153 Drop Linux capabilities 154 155 **--cgroup-parent**="" 156 Path to cgroups under which the cgroup for the container will be created. If the path is not absolute, the path is considered to be relative to the cgroups path of the init process. Cgroups will be created if they do not already exist. 157 158 **--cidfile**="" 159 Write the container ID to the file 160 161 **--cpu-period**=*0* 162 Limit the CPU CFS (Completely Fair Scheduler) period 163 164 Limit the container's CPU usage. This flag tell the kernel to restrict the container's CPU usage to the period you specify. 165 166 **--cpuset-cpus**="" 167 CPUs in which to allow execution (0-3, 0,1) 168 169 **--cpuset-mems**="" 170 Memory nodes (MEMs) in which to allow execution (0-3, 0,1). Only effective on NUMA systems. 171 172 If you have four memory nodes on your system (0-3), use `--cpuset-mems=0,1` 173 then processes in your Docker container will only use memory from the first 174 two memory nodes. 175 176 **--cpu-quota**=*0* 177 Limit the CPU CFS (Completely Fair Scheduler) quota 178 179 Limit the container's CPU usage. By default, containers run with the full 180 CPU resource. This flag tell the kernel to restrict the container's CPU usage 181 to the quota you specify. 182 183 **-d**, **--detach**=*true*|*false* 184 Detached mode: run the container in the background and print the new container ID. The default is *false*. 185 186 At any time you can run **docker ps** in 187 the other shell to view a list of the running containers. You can reattach to a 188 detached container with **docker attach**. If you choose to run a container in 189 the detached mode, then you cannot use the **-rm** option. 190 191 When attached in the tty mode, you can detach from a running container without 192 stopping the process by pressing the keys CTRL-P CTRL-Q. 193 194 **--device**=[] 195 Add a host device to the container (e.g. --device=/dev/sdc:/dev/xvdc:rwm) 196 197 **--device-read-bps**=[] 198 Limit read rate from a device (e.g. --device-read-bps=/dev/sda:1mb) 199 200 **--device-write-bps**=[] 201 Limit write rate to a device (e.g. --device-write-bps=/dev/sda:1mb) 202 203 **--dns-search**=[] 204 Set custom DNS search domains (Use --dns-search=. if you don't wish to set the search domain) 205 206 **--dns-opt**=[] 207 Set custom DNS options 208 209 **--dns**=[] 210 Set custom DNS servers 211 212 This option can be used to override the DNS 213 configuration passed to the container. Typically this is necessary when the 214 host DNS configuration is invalid for the container (e.g., 127.0.0.1). When this 215 is the case the **--dns** flags is necessary for every run. 216 217 **-e**, **--env**=[] 218 Set environment variables 219 220 This option allows you to specify arbitrary 221 environment variables that are available for the process that will be launched 222 inside of the container. 223 224 **--entrypoint**="" 225 Overwrite the default ENTRYPOINT of the image 226 227 This option allows you to overwrite the default entrypoint of the image that 228 is set in the Dockerfile. The ENTRYPOINT of an image is similar to a COMMAND 229 because it specifies what executable to run when the container starts, but it is 230 (purposely) more difficult to override. The ENTRYPOINT gives a container its 231 default nature or behavior, so that when you set an ENTRYPOINT you can run the 232 container as if it were that binary, complete with default options, and you can 233 pass in more options via the COMMAND. But, sometimes an operator may want to run 234 something else inside the container, so you can override the default ENTRYPOINT 235 at runtime by using a **--entrypoint** and a string to specify the new 236 ENTRYPOINT. 237 238 **--env-file**=[] 239 Read in a line delimited file of environment variables 240 241 **--expose**=[] 242 Expose a port, or a range of ports (e.g. --expose=3300-3310) informs Docker 243 that the container listens on the specified network ports at runtime. Docker 244 uses this information to interconnect containers using links and to set up port 245 redirection on the host system. 246 247 **--group-add**=[] 248 Add additional groups to run as 249 250 **-h**, **--hostname**="" 251 Container host name 252 253 Sets the container host name that is available inside the container. 254 255 **--help** 256 Print usage statement 257 258 **-i**, **--interactive**=*true*|*false* 259 Keep STDIN open even if not attached. The default is *false*. 260 261 When set to true, keep stdin open even if not attached. The default is false. 262 263 **--ipc**="" 264 Default is to create a private IPC namespace (POSIX SysV IPC) for the container 265 'container:<name|id>': reuses another container shared memory, semaphores and message queues 266 'host': use the host shared memory,semaphores and message queues inside the container. Note: the host mode gives the container full access to local shared memory and is therefore considered insecure. 267 268 **--isolation**="*default*" 269 Isolation specifies the type of isolation technology used by containers. 270 271 **-l**, **--label**=[] 272 Set metadata on the container (e.g., --label com.example.key=value) 273 274 **--kernel-memory**="" 275 Kernel memory limit (format: `<number>[<unit>]`, where unit = b, k, m or g) 276 277 Constrains the kernel memory available to a container. If a limit of 0 278 is specified (not using `--kernel-memory`), the container's kernel memory 279 is not limited. If you specify a limit, it may be rounded up to a multiple 280 of the operating system's page size and the value can be very large, 281 millions of trillions. 282 283 **--label-file**=[] 284 Read in a line delimited file of labels 285 286 **--link**=[] 287 Add link to another container in the form of <name or id>:alias or just <name or id> 288 in which case the alias will match the name 289 290 If the operator 291 uses **--link** when starting the new client container, then the client 292 container can access the exposed port via a private networking interface. Docker 293 will set some environment variables in the client container to help indicate 294 which interface and port to use. 295 296 **--log-driver**="*json-file*|*syslog*|*journald*|*gelf*|*fluentd*|*awslogs*|*splunk*|*none*" 297 Logging driver for container. Default is defined by daemon `--log-driver` flag. 298 **Warning**: the `docker logs` command works only for the `json-file` and 299 `journald` logging drivers. 300 301 **--log-opt**=[] 302 Logging driver specific options. 303 304 **-m**, **--memory**="" 305 Memory limit (format: <number>[<unit>], where unit = b, k, m or g) 306 307 Allows you to constrain the memory available to a container. If the host 308 supports swap memory, then the **-m** memory setting can be larger than physical 309 RAM. If a limit of 0 is specified (not using **-m**), the container's memory is 310 not limited. The actual limit may be rounded up to a multiple of the operating 311 system's page size (the value would be very large, that's millions of trillions). 312 313 **--memory-reservation**="" 314 Memory soft limit (format: <number>[<unit>], where unit = b, k, m or g) 315 316 After setting memory reservation, when the system detects memory contention 317 or low memory, containers are forced to restrict their consumption to their 318 reservation. So you should always set the value below **--memory**, otherwise the 319 hard limit will take precedence. By default, memory reservation will be the same 320 as memory limit. 321 322 **--memory-swap**="" 323 Total memory limit (memory + swap) 324 325 Set `-1` to disable swap (format: <number>[<unit>], where unit = b, k, m or g). 326 This value should always larger than **-m**, so you should always use this with **-m**. 327 328 **--mac-address**="" 329 Container MAC address (e.g. 92:d0:c6:0a:29:33) 330 331 Remember that the MAC address in an Ethernet network must be unique. 332 The IPv6 link-local address will be based on the device's MAC address 333 according to RFC4862. 334 335 **--name**="" 336 Assign a name to the container 337 338 The operator can identify a container in three ways: 339 UUID long identifier (“f78375b1c487e03c9438c729345e54db9d20cfa2ac1fc3494b6eb60872e74778”) 340 UUID short identifier (“f78375b1c487”) 341 Name (“jonah”) 342 343 The UUID identifiers come from the Docker daemon, and if a name is not assigned 344 to the container with **--name** then the daemon will also generate a random 345 string name. The name is useful when defining links (see **--link**) (or any 346 other place you need to identify a container). This works for both background 347 and foreground Docker containers. 348 349 **--net**="*bridge*" 350 Set the Network mode for the container 351 'bridge': create a network stack on the default Docker bridge 352 'none': no networking 353 'container:<name|id>': reuse another container's network stack 354 'host': use the Docker host network stack. Note: the host mode gives the container full access to local system services such as D-bus and is therefore considered insecure. 355 '<network-name>|<network-id>': connect to a user-defined network 356 357 **--oom-kill-disable**=*true*|*false* 358 Whether to disable OOM Killer for the container or not. 359 360 **--oom-score-adj**="" 361 Tune the host's OOM preferences for containers (accepts -1000 to 1000) 362 363 **-P**, **--publish-all**=*true*|*false* 364 Publish all exposed ports to random ports on the host interfaces. The default is *false*. 365 366 When set to true publish all exposed ports to the host interfaces. The 367 default is false. If the operator uses -P (or -p) then Docker will make the 368 exposed port accessible on the host and the ports will be available to any 369 client that can reach the host. When using -P, Docker will bind any exposed 370 port to a random port on the host within an *ephemeral port range* defined by 371 `/proc/sys/net/ipv4/ip_local_port_range`. To find the mapping between the host 372 ports and the exposed ports, use `docker port`. 373 374 **-p**, **--publish**=[] 375 Publish a container's port, or range of ports, to the host. 376 377 Format: `ip:hostPort:containerPort | ip::containerPort | hostPort:containerPort | containerPort` 378 Both hostPort and containerPort can be specified as a range of ports. 379 When specifying ranges for both, the number of container ports in the range must match the number of host ports in the range. 380 (e.g., `docker run -p 1234-1236:1222-1224 --name thisWorks -t busybox` 381 but not `docker run -p 1230-1236:1230-1240 --name RangeContainerPortsBiggerThanRangeHostPorts -t busybox`) 382 With ip: `docker run -p 127.0.0.1:$HOSTPORT:$CONTAINERPORT --name CONTAINER -t someimage` 383 Use `docker port` to see the actual mapping: `docker port CONTAINER $CONTAINERPORT` 384 385 **--pid**=*host* 386 Set the PID mode for the container 387 **host**: use the host's PID namespace inside the container. 388 Note: the host mode gives the container full access to local PID and is therefore considered insecure. 389 390 **--uts**=*host* 391 Set the UTS mode for the container 392 **host**: use the host's UTS namespace inside the container. 393 Note: the host mode gives the container access to changing the host's hostname and is therefore considered insecure. 394 395 **--privileged**=*true*|*false* 396 Give extended privileges to this container. The default is *false*. 397 398 By default, Docker containers are 399 “unprivileged” (=false) and cannot, for example, run a Docker daemon inside the 400 Docker container. This is because by default a container is not allowed to 401 access any devices. A “privileged” container is given access to all devices. 402 403 When the operator executes **docker run --privileged**, Docker will enable access 404 to all devices on the host as well as set some configuration in AppArmor to 405 allow the container nearly all the same access to the host as processes running 406 outside of a container on the host. 407 408 **--read-only**=*true*|*false* 409 Mount the container's root filesystem as read only. 410 411 By default a container will have its root filesystem writable allowing processes 412 to write files anywhere. By specifying the `--read-only` flag the container will have 413 its root filesystem mounted as read only prohibiting any writes. 414 415 **--restart**="*no*" 416 Restart policy to apply when a container exits (no, on-failure[:max-retry], always, unless-stopped). 417 418 **--rm**=*true*|*false* 419 Automatically remove the container when it exits (incompatible with -d). The default is *false*. 420 421 **--security-opt**=[] 422 Security Options 423 424 "label:user:USER" : Set the label user for the container 425 "label:role:ROLE" : Set the label role for the container 426 "label:type:TYPE" : Set the label type for the container 427 "label:level:LEVEL" : Set the label level for the container 428 "label:disable" : Turn off label confinement for the container 429 430 **--stop-signal**=*SIGTERM* 431 Signal to stop a container. Default is SIGTERM. 432 433 **--shm-size**="" 434 Size of `/dev/shm`. The format is `<number><unit>`. 435 `number` must be greater than `0`. Unit is optional and can be `b` (bytes), `k` (kilobytes), `m`(megabytes), or `g` (gigabytes). 436 If you omit the unit, the system uses bytes. If you omit the size entirely, the system uses `64m`. 437 438 **--sig-proxy**=*true*|*false* 439 Proxy received signals to the process (non-TTY mode only). SIGCHLD, SIGSTOP, and SIGKILL are not proxied. The default is *true*. 440 441 **--memory-swappiness**="" 442 Tune a container's memory swappiness behavior. Accepts an integer between 0 and 100. 443 444 **-t**, **--tty**=*true*|*false* 445 Allocate a pseudo-TTY. The default is *false*. 446 447 When set to true Docker can allocate a pseudo-tty and attach to the standard 448 input of any container. This can be used, for example, to run a throwaway 449 interactive shell. The default is false. 450 451 The **-t** option is incompatible with a redirection of the docker client 452 standard input. 453 454 **--tmpfs**=[] Create a tmpfs mount 455 456 Mount a temporary filesystem (`tmpfs`) mount into a container, for example: 457 458 $ docker run -d --tmpfs /tmp:rw,size=787448k,mode=1777 my_image 459 460 This command mounts a `tmpfs` at `/tmp` within the container. The mount copies 461 the underlying content of `my_image` into `/tmp`. For example if there was a 462 directory `/tmp/content` in the base image, docker will copy this directory and 463 all of its content on top of the tmpfs mounted on `/tmp`. The supported mount 464 options are the same as the Linux default `mount` flags. If you do not specify 465 any options, the systems uses the following options: 466 `rw,noexec,nosuid,nodev,size=65536k`. 467 468 **-u**, **--user**="" 469 Sets the username or UID used and optionally the groupname or GID for the specified command. 470 471 The followings examples are all valid: 472 --user [user | user:group | uid | uid:gid | user:gid | uid:group ] 473 474 Without this argument the command will be run as root in the container. 475 476 **--ulimit**=[] 477 Ulimit options 478 479 **-v**|**--volume**[=*[[HOST-DIR:]CONTAINER-DIR[:OPTIONS]]*] 480 Create a bind mount. If you specify, ` -v /HOST-DIR:/CONTAINER-DIR`, Docker 481 bind mounts `/HOST-DIR` in the host to `/CONTAINER-DIR` in the Docker 482 container. If 'HOST-DIR' is omitted, Docker automatically creates the new 483 volume on the host. The `OPTIONS` are a comma delimited list and can be: 484 485 * [rw|ro] 486 * [z|Z] 487 * [`[r]shared`|`[r]slave`|`[r]private`] 488 489 The `CONTAINER-DIR` must be an absolute path such as `/src/docs`. The `HOST-DIR` 490 can be an absolute path or a `name` value. A `name` value must start with an 491 alphanumeric character, followed by `a-z0-9`, `_` (underscore), `.` (period) or 492 `-` (hyphen). An absolute path starts with a `/` (forward slash). 493 494 If you supply a `HOST-DIR` that is an absolute path, Docker bind-mounts to the 495 path you specify. If you supply a `name`, Docker creates a named volume by that 496 `name`. For example, you can specify either `/foo` or `foo` for a `HOST-DIR` 497 value. If you supply the `/foo` value, Docker creates a bind-mount. If you 498 supply the `foo` specification, Docker creates a named volume. 499 500 You can specify multiple **-v** options to mount one or more mounts to a 501 container. To use these same mounts in other containers, specify the 502 **--volumes-from** option also. 503 504 You can add `:ro` or `:rw` suffix to a volume to mount it read-only or 505 read-write mode, respectively. By default, the volumes are mounted read-write. 506 See examples. 507 508 Labeling systems like SELinux require that proper labels are placed on volume 509 content mounted into a container. Without a label, the security system might 510 prevent the processes running inside the container from using the content. By 511 default, Docker does not change the labels set by the OS. 512 513 To change a label in the container context, you can add either of two suffixes 514 `:z` or `:Z` to the volume mount. These suffixes tell Docker to relabel file 515 objects on the shared volumes. The `z` option tells Docker that two containers 516 share the volume content. As a result, Docker labels the content with a shared 517 content label. Shared volume labels allow all containers to read/write content. 518 The `Z` option tells Docker to label the content with a private unshared label. 519 Only the current container can use a private volume. 520 521 By default bind mounted volumes are `private`. That means any mounts done 522 inside container will not be visible on host and vice-a-versa. One can change 523 this behavior by specifying a volume mount propagation property. Making a 524 volume `shared` mounts done under that volume inside container will be 525 visible on host and vice-a-versa. Making a volume `slave` enables only one 526 way mount propagation and that is mounts done on host under that volume 527 will be visible inside container but not the other way around. 528 529 To control mount propagation property of volume one can use `:[r]shared`, 530 `:[r]slave` or `:[r]private` propagation flag. Propagation property can 531 be specified only for bind mounted volumes and not for internal volumes or 532 named volumes. For mount propagation to work source mount point (mount point 533 where source dir is mounted on) has to have right propagation properties. For 534 shared volumes, source mount point has to be shared. And for slave volumes, 535 source mount has to be either shared or slave. 536 537 Use `df <source-dir>` to figure out the source mount and then use 538 `findmnt -o TARGET,PROPAGATION <source-mount-dir>` to figure out propagation 539 properties of source mount. If `findmnt` utility is not available, then one 540 can look at mount entry for source mount point in `/proc/self/mountinfo`. Look 541 at `optional fields` and see if any propagaion properties are specified. 542 `shared:X` means mount is `shared`, `master:X` means mount is `slave` and if 543 nothing is there that means mount is `private`. 544 545 To change propagation properties of a mount point use `mount` command. For 546 example, if one wants to bind mount source directory `/foo` one can do 547 `mount --bind /foo /foo` and `mount --make-private --make-shared /foo`. This 548 will convert /foo into a `shared` mount point. Alternatively one can directly 549 change propagation properties of source mount. Say `/` is source mount for 550 `/foo`, then use `mount --make-shared /` to convert `/` into a `shared` mount. 551 552 **--volume-driver**="" 553 Container's volume driver. This driver creates volumes specified either from 554 a Dockerfile's `VOLUME` instruction or from the `docker run -v` flag. 555 See **docker-volume-create(1)** for full details. 556 557 **--volumes-from**=[] 558 Mount volumes from the specified container(s) 559 560 Mounts already mounted volumes from a source container onto another 561 container. You must supply the source's container-id. To share 562 a volume, use the **--volumes-from** option when running 563 the target container. You can share volumes even if the source container 564 is not running. 565 566 By default, Docker mounts the volumes in the same mode (read-write or 567 read-only) as it is mounted in the source container. Optionally, you 568 can change this by suffixing the container-id with either the `:ro` or 569 `:rw ` keyword. 570 571 If the location of the volume from the source container overlaps with 572 data residing on a target container, then the volume hides 573 that data on the target. 574 575 **-w**, **--workdir**="" 576 Working directory inside the container 577 578 The default working directory for 579 running binaries within a container is the root directory (/). The developer can 580 set a different default with the Dockerfile WORKDIR instruction. The operator 581 can override the working directory by using the **-w** option. 582 583 # Exit Status 584 585 The exit code from `docker run` gives information about why the container 586 failed to run or why it exited. When `docker run` exits with a non-zero code, 587 the exit codes follow the `chroot` standard, see below: 588 589 **_125_** if the error is with Docker daemon **_itself_** 590 591 $ docker run --foo busybox; echo $? 592 # flag provided but not defined: --foo 593 See 'docker run --help'. 594 125 595 596 **_126_** if the **_contained command_** cannot be invoked 597 598 $ docker run busybox /etc; echo $? 599 # exec: "/etc": permission denied 600 docker: Error response from daemon: Contained command could not be invoked 601 126 602 603 **_127_** if the **_contained command_** cannot be found 604 605 $ docker run busybox foo; echo $? 606 # exec: "foo": executable file not found in $PATH 607 docker: Error response from daemon: Contained command not found or does not exist 608 127 609 610 **_Exit code_** of **_contained command_** otherwise 611 612 $ docker run busybox /bin/sh -c 'exit 3' 613 # 3 614 615 # EXAMPLES 616 617 ## Running container in read-only mode 618 619 During container image development, containers often need to write to the image 620 content. Installing packages into /usr, for example. In production, 621 applications seldom need to write to the image. Container applications write 622 to volumes if they need to write to file systems at all. Applications can be 623 made more secure by running them in read-only mode using the --read-only switch. 624 This protects the containers image from modification. Read only containers may 625 still need to write temporary data. The best way to handle this is to mount 626 tmpfs directories on /run and /tmp. 627 628 # docker run --read-only --tmpfs /run --tmpfs /tmp -i -t fedora /bin/bash 629 630 ## Exposing log messages from the container to the host's log 631 632 If you want messages that are logged in your container to show up in the host's 633 syslog/journal then you should bind mount the /dev/log directory as follows. 634 635 # docker run -v /dev/log:/dev/log -i -t fedora /bin/bash 636 637 From inside the container you can test this by sending a message to the log. 638 639 (bash)# logger "Hello from my container" 640 641 Then exit and check the journal. 642 643 # exit 644 645 # journalctl -b | grep Hello 646 647 This should list the message sent to logger. 648 649 ## Attaching to one or more from STDIN, STDOUT, STDERR 650 651 If you do not specify -a then Docker will attach everything (stdin,stdout,stderr) 652 . You can specify to which of the three standard streams (stdin, stdout, stderr) 653 you’d like to connect instead, as in: 654 655 # docker run -a stdin -a stdout -i -t fedora /bin/bash 656 657 ## Sharing IPC between containers 658 659 Using shm_server.c available here: https://www.cs.cf.ac.uk/Dave/C/node27.html 660 661 Testing `--ipc=host` mode: 662 663 Host shows a shared memory segment with 7 pids attached, happens to be from httpd: 664 665 ``` 666 $ sudo ipcs -m 667 668 ------ Shared Memory Segments -------- 669 key shmid owner perms bytes nattch status 670 0x01128e25 0 root 600 1000 7 671 ``` 672 673 Now run a regular container, and it correctly does NOT see the shared memory segment from the host: 674 675 ``` 676 $ docker run -it shm ipcs -m 677 678 ------ Shared Memory Segments -------- 679 key shmid owner perms bytes nattch status 680 ``` 681 682 Run a container with the new `--ipc=host` option, and it now sees the shared memory segment from the host httpd: 683 684 ``` 685 $ docker run -it --ipc=host shm ipcs -m 686 687 ------ Shared Memory Segments -------- 688 key shmid owner perms bytes nattch status 689 0x01128e25 0 root 600 1000 7 690 ``` 691 Testing `--ipc=container:CONTAINERID` mode: 692 693 Start a container with a program to create a shared memory segment: 694 ``` 695 $ docker run -it shm bash 696 $ sudo shm/shm_server & 697 $ sudo ipcs -m 698 699 ------ Shared Memory Segments -------- 700 key shmid owner perms bytes nattch status 701 0x0000162e 0 root 666 27 1 702 ``` 703 Create a 2nd container correctly shows no shared memory segment from 1st container: 704 ``` 705 $ docker run shm ipcs -m 706 707 ------ Shared Memory Segments -------- 708 key shmid owner perms bytes nattch status 709 ``` 710 711 Create a 3rd container using the new --ipc=container:CONTAINERID option, now it shows the shared memory segment from the first: 712 713 ``` 714 $ docker run -it --ipc=container:ed735b2264ac shm ipcs -m 715 $ sudo ipcs -m 716 717 ------ Shared Memory Segments -------- 718 key shmid owner perms bytes nattch status 719 0x0000162e 0 root 666 27 1 720 ``` 721 722 ## Linking Containers 723 724 The link feature allows multiple containers to communicate with each other. For 725 example, a container whose Dockerfile has exposed port 80 can be run and named 726 as follows: 727 728 # docker run --name=link-test -d -i -t fedora/httpd 729 730 A second container, in this case called linker, can communicate with the httpd 731 container, named link-test, by running with the **--link=<name>:<alias>** 732 733 # docker run -t -i --link=link-test:lt --name=linker fedora /bin/bash 734 735 Now the container linker is linked to container link-test with the alias lt. 736 Running the **env** command in the linker container shows environment variables 737 with the LT (alias) context (**LT_**) 738 739 # env 740 HOSTNAME=668231cb0978 741 TERM=xterm 742 LT_PORT_80_TCP=tcp://172.17.0.3:80 743 LT_PORT_80_TCP_PORT=80 744 LT_PORT_80_TCP_PROTO=tcp 745 LT_PORT=tcp://172.17.0.3:80 746 PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 747 PWD=/ 748 LT_NAME=/linker/lt 749 SHLVL=1 750 HOME=/ 751 LT_PORT_80_TCP_ADDR=172.17.0.3 752 _=/usr/bin/env 753 754 When linking two containers Docker will use the exposed ports of the container 755 to create a secure tunnel for the parent to access. 756 757 If a container is connected to the default bridge network and `linked` 758 with other containers, then the container's `/etc/hosts` file is updated 759 with the linked container's name. 760 761 > **Note** Since Docker may live update the container’s `/etc/hosts` file, there 762 may be situations when processes inside the container can end up reading an 763 empty or incomplete `/etc/hosts` file. In most cases, retrying the read again 764 should fix the problem. 765 766 767 ## Mapping Ports for External Usage 768 769 The exposed port of an application can be mapped to a host port using the **-p** 770 flag. For example, a httpd port 80 can be mapped to the host port 8080 using the 771 following: 772 773 # docker run -p 8080:80 -d -i -t fedora/httpd 774 775 ## Creating and Mounting a Data Volume Container 776 777 Many applications require the sharing of persistent data across several 778 containers. Docker allows you to create a Data Volume Container that other 779 containers can mount from. For example, create a named container that contains 780 directories /var/volume1 and /tmp/volume2. The image will need to contain these 781 directories so a couple of RUN mkdir instructions might be required for you 782 fedora-data image: 783 784 # docker run --name=data -v /var/volume1 -v /tmp/volume2 -i -t fedora-data true 785 # docker run --volumes-from=data --name=fedora-container1 -i -t fedora bash 786 787 Multiple --volumes-from parameters will bring together multiple data volumes from 788 multiple containers. And it's possible to mount the volumes that came from the 789 DATA container in yet another container via the fedora-container1 intermediary 790 container, allowing to abstract the actual data source from users of that data: 791 792 # docker run --volumes-from=fedora-container1 --name=fedora-container2 -i -t fedora bash 793 794 ## Mounting External Volumes 795 796 To mount a host directory as a container volume, specify the absolute path to 797 the directory and the absolute path for the container directory separated by a 798 colon: 799 800 # docker run -v /var/db:/data1 -i -t fedora bash 801 802 When using SELinux, be aware that the host has no knowledge of container SELinux 803 policy. Therefore, in the above example, if SELinux policy is enforced, the 804 `/var/db` directory is not writable to the container. A "Permission Denied" 805 message will occur and an avc: message in the host's syslog. 806 807 808 To work around this, at time of writing this man page, the following command 809 needs to be run in order for the proper SELinux policy type label to be attached 810 to the host directory: 811 812 # chcon -Rt svirt_sandbox_file_t /var/db 813 814 815 Now, writing to the /data1 volume in the container will be allowed and the 816 changes will also be reflected on the host in /var/db. 817 818 ## Using alternative security labeling 819 820 You can override the default labeling scheme for each container by specifying 821 the `--security-opt` flag. For example, you can specify the MCS/MLS level, a 822 requirement for MLS systems. Specifying the level in the following command 823 allows you to share the same content between containers. 824 825 # docker run --security-opt label:level:s0:c100,c200 -i -t fedora bash 826 827 An MLS example might be: 828 829 # docker run --security-opt label:level:TopSecret -i -t rhel7 bash 830 831 To disable the security labeling for this container versus running with the 832 `--permissive` flag, use the following command: 833 834 # docker run --security-opt label:disable -i -t fedora bash 835 836 If you want a tighter security policy on the processes within a container, 837 you can specify an alternate type for the container. You could run a container 838 that is only allowed to listen on Apache ports by executing the following 839 command: 840 841 # docker run --security-opt label:type:svirt_apache_t -i -t centos bash 842 843 Note: 844 845 You would have to write policy defining a `svirt_apache_t` type. 846 847 ## Setting device weight 848 849 If you want to set `/dev/sda` device weight to `200`, you can specify the device 850 weight by `--blkio-weight-device` flag. Use the following command: 851 852 # docker run -it --blkio-weight-device "/dev/sda:200" ubuntu 853 854 ## Specify isolation technology for container (--isolation) 855 856 This option is useful in situations where you are running Docker containers on 857 Microsoft Windows. The `--isolation <value>` option sets a container's isolation 858 technology. On Linux, the only supported is the `default` option which uses 859 Linux namespaces. These two commands are equivalent on Linux: 860 861 ``` 862 $ docker run -d busybox top 863 $ docker run -d --isolation default busybox top 864 ``` 865 866 On Microsoft Windows, can take any of these values: 867 868 * `default`: Use the value specified by the Docker daemon's `--exec-opt` . If the `daemon` does not specify an isolation technology, Microsoft Windows uses `process` as its default value. 869 * `process`: Namespace isolation only. 870 * `hyperv`: Hyper-V hypervisor partition-based isolation. 871 872 In practice, when running on Microsoft Windows without a `daemon` option set, these two commands are equivalent: 873 874 ``` 875 $ docker run -d --isolation default busybox top 876 $ docker run -d --isolation process busybox top 877 ``` 878 879 If you have set the `--exec-opt isolation=hyperv` option on the Docker `daemon`, any of these commands also result in `hyperv` isolation: 880 881 ``` 882 $ docker run -d --isolation default busybox top 883 $ docker run -d --isolation hyperv busybox top 884 ``` 885 886 # HISTORY 887 April 2014, Originally compiled by William Henry (whenry at redhat dot com) 888 based on docker.com source material and internal work. 889 June 2014, updated by Sven Dowideit <SvenDowideit@home.org.au> 890 July 2014, updated by Sven Dowideit <SvenDowideit@home.org.au> 891 November 2015, updated by Sally O'Malley <somalley@redhat.com>