github.com/waltonchain/waltonchain_gwtc_src@v1.1.4-0.20201225072101-8a298c95a819/crypto/secp256k1/curve.go (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Copyright 2011 ThePiachu. All rights reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // * Redistributions of source code must retain the above copyright 9 // notice, this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above 11 // copyright notice, this list of conditions and the following disclaimer 12 // in the documentation and/or other materials provided with the 13 // distribution. 14 // * Neither the name of Google Inc. nor the names of its 15 // contributors may be used to endorse or promote products derived from 16 // this software without specific prior written permission. 17 // * The name of ThePiachu may not be used to endorse or promote products 18 // derived from this software without specific prior written permission. 19 // 20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 23 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 24 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 25 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 26 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 27 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 28 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 29 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 30 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 31 32 package secp256k1 33 34 import ( 35 "crypto/elliptic" 36 "math/big" 37 "sync" 38 "unsafe" 39 40 "github.com/wtc/go-wtc/common/math" 41 ) 42 43 /* 44 #include "libsecp256k1/include/secp256k1.h" 45 extern int secp256k1_pubkey_scalar_mul(const secp256k1_context* ctx, const unsigned char *point, const unsigned char *scalar); 46 */ 47 import "C" 48 49 // This code is from https://github.com/ThePiachu/GoBit and implements 50 // several Koblitz elliptic curves over prime fields. 51 // 52 // The curve methods, internally, on Jacobian coordinates. For a given 53 // (x, y) position on the curve, the Jacobian coordinates are (x1, y1, 54 // z1) where x = x1/z1² and y = y1/z1³. The greatest speedups come 55 // when the whole calculation can be performed within the transform 56 // (as in ScalarMult and ScalarBaseMult). But even for Add and Double, 57 // it's faster to apply and reverse the transform than to operate in 58 // affine coordinates. 59 60 // A BitCurve represents a Koblitz Curve with a=0. 61 // See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html 62 type BitCurve struct { 63 P *big.Int // the order of the underlying field 64 N *big.Int // the order of the base point 65 B *big.Int // the constant of the BitCurve equation 66 Gx, Gy *big.Int // (x,y) of the base point 67 BitSize int // the size of the underlying field 68 } 69 70 func (BitCurve *BitCurve) Params() *elliptic.CurveParams { 71 return &elliptic.CurveParams{ 72 P: BitCurve.P, 73 N: BitCurve.N, 74 B: BitCurve.B, 75 Gx: BitCurve.Gx, 76 Gy: BitCurve.Gy, 77 BitSize: BitCurve.BitSize, 78 } 79 } 80 81 // IsOnBitCurve returns true if the given (x,y) lies on the BitCurve. 82 func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool { 83 // y² = x³ + b 84 y2 := new(big.Int).Mul(y, y) //y² 85 y2.Mod(y2, BitCurve.P) //y²%P 86 87 x3 := new(big.Int).Mul(x, x) //x² 88 x3.Mul(x3, x) //x³ 89 90 x3.Add(x3, BitCurve.B) //x³+B 91 x3.Mod(x3, BitCurve.P) //(x³+B)%P 92 93 return x3.Cmp(y2) == 0 94 } 95 96 //TODO: double check if the function is okay 97 // affineFromJacobian reverses the Jacobian transform. See the comment at the 98 // top of the file. 99 func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) { 100 zinv := new(big.Int).ModInverse(z, BitCurve.P) 101 zinvsq := new(big.Int).Mul(zinv, zinv) 102 103 xOut = new(big.Int).Mul(x, zinvsq) 104 xOut.Mod(xOut, BitCurve.P) 105 zinvsq.Mul(zinvsq, zinv) 106 yOut = new(big.Int).Mul(y, zinvsq) 107 yOut.Mod(yOut, BitCurve.P) 108 return 109 } 110 111 // Add returns the sum of (x1,y1) and (x2,y2) 112 func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { 113 z := new(big.Int).SetInt64(1) 114 return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z)) 115 } 116 117 // addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and 118 // (x2, y2, z2) and returns their sum, also in Jacobian form. 119 func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) { 120 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl 121 z1z1 := new(big.Int).Mul(z1, z1) 122 z1z1.Mod(z1z1, BitCurve.P) 123 z2z2 := new(big.Int).Mul(z2, z2) 124 z2z2.Mod(z2z2, BitCurve.P) 125 126 u1 := new(big.Int).Mul(x1, z2z2) 127 u1.Mod(u1, BitCurve.P) 128 u2 := new(big.Int).Mul(x2, z1z1) 129 u2.Mod(u2, BitCurve.P) 130 h := new(big.Int).Sub(u2, u1) 131 if h.Sign() == -1 { 132 h.Add(h, BitCurve.P) 133 } 134 i := new(big.Int).Lsh(h, 1) 135 i.Mul(i, i) 136 j := new(big.Int).Mul(h, i) 137 138 s1 := new(big.Int).Mul(y1, z2) 139 s1.Mul(s1, z2z2) 140 s1.Mod(s1, BitCurve.P) 141 s2 := new(big.Int).Mul(y2, z1) 142 s2.Mul(s2, z1z1) 143 s2.Mod(s2, BitCurve.P) 144 r := new(big.Int).Sub(s2, s1) 145 if r.Sign() == -1 { 146 r.Add(r, BitCurve.P) 147 } 148 r.Lsh(r, 1) 149 v := new(big.Int).Mul(u1, i) 150 151 x3 := new(big.Int).Set(r) 152 x3.Mul(x3, x3) 153 x3.Sub(x3, j) 154 x3.Sub(x3, v) 155 x3.Sub(x3, v) 156 x3.Mod(x3, BitCurve.P) 157 158 y3 := new(big.Int).Set(r) 159 v.Sub(v, x3) 160 y3.Mul(y3, v) 161 s1.Mul(s1, j) 162 s1.Lsh(s1, 1) 163 y3.Sub(y3, s1) 164 y3.Mod(y3, BitCurve.P) 165 166 z3 := new(big.Int).Add(z1, z2) 167 z3.Mul(z3, z3) 168 z3.Sub(z3, z1z1) 169 if z3.Sign() == -1 { 170 z3.Add(z3, BitCurve.P) 171 } 172 z3.Sub(z3, z2z2) 173 if z3.Sign() == -1 { 174 z3.Add(z3, BitCurve.P) 175 } 176 z3.Mul(z3, h) 177 z3.Mod(z3, BitCurve.P) 178 179 return x3, y3, z3 180 } 181 182 // Double returns 2*(x,y) 183 func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { 184 z1 := new(big.Int).SetInt64(1) 185 return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1)) 186 } 187 188 // doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and 189 // returns its double, also in Jacobian form. 190 func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) { 191 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l 192 193 a := new(big.Int).Mul(x, x) //X1² 194 b := new(big.Int).Mul(y, y) //Y1² 195 c := new(big.Int).Mul(b, b) //B² 196 197 d := new(big.Int).Add(x, b) //X1+B 198 d.Mul(d, d) //(X1+B)² 199 d.Sub(d, a) //(X1+B)²-A 200 d.Sub(d, c) //(X1+B)²-A-C 201 d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C) 202 203 e := new(big.Int).Mul(big.NewInt(3), a) //3*A 204 f := new(big.Int).Mul(e, e) //E² 205 206 x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D 207 x3.Sub(f, x3) //F-2*D 208 x3.Mod(x3, BitCurve.P) 209 210 y3 := new(big.Int).Sub(d, x3) //D-X3 211 y3.Mul(e, y3) //E*(D-X3) 212 y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C 213 y3.Mod(y3, BitCurve.P) 214 215 z3 := new(big.Int).Mul(y, z) //Y1*Z1 216 z3.Mul(big.NewInt(2), z3) //3*Y1*Z1 217 z3.Mod(z3, BitCurve.P) 218 219 return x3, y3, z3 220 } 221 222 func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) { 223 // Ensure scalar is exactly 32 bytes. We pad always, even if 224 // scalar is 32 bytes long, to avoid a timing side channel. 225 if len(scalar) > 32 { 226 panic("can't handle scalars > 256 bits") 227 } 228 // NOTE: potential timing issue 229 padded := make([]byte, 32) 230 copy(padded[32-len(scalar):], scalar) 231 scalar = padded 232 233 // Do the multiplication in C, updating point. 234 point := make([]byte, 64) 235 math.ReadBits(Bx, point[:32]) 236 math.ReadBits(By, point[32:]) 237 pointPtr := (*C.uchar)(unsafe.Pointer(&point[0])) 238 scalarPtr := (*C.uchar)(unsafe.Pointer(&scalar[0])) 239 res := C.secp256k1_pubkey_scalar_mul(context, pointPtr, scalarPtr) 240 241 // Unpack the result and clear temporaries. 242 x := new(big.Int).SetBytes(point[:32]) 243 y := new(big.Int).SetBytes(point[32:]) 244 for i := range point { 245 point[i] = 0 246 } 247 for i := range padded { 248 scalar[i] = 0 249 } 250 if res != 1 { 251 return nil, nil 252 } 253 return x, y 254 } 255 256 // ScalarBaseMult returns k*G, where G is the base point of the group and k is 257 // an integer in big-endian form. 258 func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { 259 return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k) 260 } 261 262 // Marshal converts a point into the form specified in section 4.3.6 of ANSI 263 // X9.62. 264 func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte { 265 byteLen := (BitCurve.BitSize + 7) >> 3 266 267 ret := make([]byte, 1+2*byteLen) 268 ret[0] = 4 // uncompressed point 269 270 xBytes := x.Bytes() 271 copy(ret[1+byteLen-len(xBytes):], xBytes) 272 yBytes := y.Bytes() 273 copy(ret[1+2*byteLen-len(yBytes):], yBytes) 274 return ret 275 } 276 277 // Unmarshal converts a point, serialised by Marshal, into an x, y pair. On 278 // error, x = nil. 279 func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) { 280 byteLen := (BitCurve.BitSize + 7) >> 3 281 if len(data) != 1+2*byteLen { 282 return 283 } 284 if data[0] != 4 { // uncompressed form 285 return 286 } 287 x = new(big.Int).SetBytes(data[1 : 1+byteLen]) 288 y = new(big.Int).SetBytes(data[1+byteLen:]) 289 return 290 } 291 292 var ( 293 initonce sync.Once 294 theCurve *BitCurve 295 ) 296 297 // S256 returns a BitCurve which implements secp256k1 (see SEC 2 section 2.7.1) 298 func S256() *BitCurve { 299 initonce.Do(func() { 300 // See SEC 2 section 2.7.1 301 // curve parameters taken from: 302 // http://www.secg.org/collateral/sec2_final.pdf 303 theCurve = new(BitCurve) 304 theCurve.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16) 305 theCurve.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16) 306 theCurve.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16) 307 theCurve.Gx, _ = new(big.Int).SetString("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16) 308 theCurve.Gy, _ = new(big.Int).SetString("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16) 309 theCurve.BitSize = 256 310 }) 311 return theCurve 312 }