github.com/waltonchain/waltonchain_gwtc_src@v1.1.4-0.20201225072101-8a298c95a819/swarm/storage/chunker.go (about) 1 // Copyright 2016 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-wtc library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-wtc library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package storage 18 19 import ( 20 "encoding/binary" 21 "errors" 22 "fmt" 23 "io" 24 "sync" 25 "time" 26 ) 27 28 /* 29 The distributed storage implemented in this package requires fix sized chunks of content. 30 31 Chunker is the interface to a component that is responsible for disassembling and assembling larger data. 32 33 TreeChunker implements a Chunker based on a tree structure defined as follows: 34 35 1 each node in the tree including the root and other branching nodes are stored as a chunk. 36 37 2 branching nodes encode data contents that includes the size of the dataslice covered by its entire subtree under the node as well as the hash keys of all its children : 38 data_{i} := size(subtree_{i}) || key_{j} || key_{j+1} .... || key_{j+n-1} 39 40 3 Leaf nodes encode an actual subslice of the input data. 41 42 4 if data size is not more than maximum chunksize, the data is stored in a single chunk 43 key = hash(int64(size) + data) 44 45 5 if data size is more than chunksize*branches^l, but no more than chunksize* 46 branches^(l+1), the data vector is split into slices of chunksize* 47 branches^l length (except the last one). 48 key = hash(int64(size) + key(slice0) + key(slice1) + ...) 49 50 The underlying hash function is configurable 51 */ 52 53 54 /* 55 Tree chunker is a concrete implementation of data chunking. 56 This chunker works in a simple way, it builds a tree out of the document so that each node either represents a chunk of real data or a chunk of data representing an branching non-leaf node of the tree. In particular each such non-leaf chunk will represent is a concatenation of the hash of its respective children. This scheme simultaneously guarantees data integrity as well as self addressing. Abstract nodes are transparent since their represented size component is strictly greater than their maximum data size, since they encode a subtree. 57 58 If all is well it is possible to implement this by simply composing readers so that no extra allocation or buffering is necessary for the data splitting and joining. This means that in principle there can be direct IO between : memory, file system, network socket (bzz peers storage request is read from the socket). In practice there may be need for several stages of internal buffering. 59 The hashing itself does use extra copies and allocation though, since it does need it. 60 */ 61 62 var ( 63 errAppendOppNotSuported = errors.New("Append operation not supported") 64 errOperationTimedOut = errors.New("operation timed out") 65 ) 66 67 type TreeChunker struct { 68 branches int64 69 hashFunc SwarmHasher 70 // calculated 71 hashSize int64 // self.hashFunc.New().Size() 72 chunkSize int64 // hashSize* branches 73 workerCount int64 // the number of worker routines used 74 workerLock sync.RWMutex // lock for the worker count 75 } 76 77 func NewTreeChunker(params *ChunkerParams) (self *TreeChunker) { 78 self = &TreeChunker{} 79 self.hashFunc = MakeHashFunc(params.Hash) 80 self.branches = params.Branches 81 self.hashSize = int64(self.hashFunc().Size()) 82 self.chunkSize = self.hashSize * self.branches 83 self.workerCount = 0 84 85 return 86 } 87 88 // func (self *TreeChunker) KeySize() int64 { 89 // return self.hashSize 90 // } 91 92 // String() for pretty printing 93 func (self *Chunk) String() string { 94 return fmt.Sprintf("Key: %v TreeSize: %v Chunksize: %v", self.Key.Log(), self.Size, len(self.SData)) 95 } 96 97 type hashJob struct { 98 key Key 99 chunk []byte 100 size int64 101 parentWg *sync.WaitGroup 102 } 103 104 func (self *TreeChunker) incrementWorkerCount() { 105 self.workerLock.Lock() 106 defer self.workerLock.Unlock() 107 self.workerCount += 1 108 } 109 110 func (self *TreeChunker) getWorkerCount() int64 { 111 self.workerLock.RLock() 112 defer self.workerLock.RUnlock() 113 return self.workerCount 114 } 115 116 func (self *TreeChunker) decrementWorkerCount() { 117 self.workerLock.Lock() 118 defer self.workerLock.Unlock() 119 self.workerCount -= 1 120 } 121 122 func (self *TreeChunker) Split(data io.Reader, size int64, chunkC chan *Chunk, swg, wwg *sync.WaitGroup) (Key, error) { 123 if self.chunkSize <= 0 { 124 panic("chunker must be initialised") 125 } 126 127 128 jobC := make(chan *hashJob, 2*ChunkProcessors) 129 wg := &sync.WaitGroup{} 130 errC := make(chan error) 131 quitC := make(chan bool) 132 133 // wwg = workers waitgroup keeps track of hashworkers spawned by this split call 134 if wwg != nil { 135 wwg.Add(1) 136 } 137 138 self.incrementWorkerCount() 139 go self.hashWorker(jobC, chunkC, errC, quitC, swg, wwg) 140 141 depth := 0 142 treeSize := self.chunkSize 143 144 // takes lowest depth such that chunksize*HashCount^(depth+1) > size 145 // power series, will find the order of magnitude of the data size in base hashCount or numbers of levels of branching in the resulting tree. 146 for ; treeSize < size; treeSize *= self.branches { 147 depth++ 148 } 149 150 key := make([]byte, self.hashFunc().Size()) 151 // this waitgroup member is released after the root hash is calculated 152 wg.Add(1) 153 //launch actual recursive function passing the waitgroups 154 go self.split(depth, treeSize/self.branches, key, data, size, jobC, chunkC, errC, quitC, wg, swg, wwg) 155 156 // closes internal error channel if all subprocesses in the workgroup finished 157 go func() { 158 // waiting for all threads to finish 159 wg.Wait() 160 // if storage waitgroup is non-nil, we wait for storage to finish too 161 if swg != nil { 162 swg.Wait() 163 } 164 close(errC) 165 }() 166 167 168 defer close(quitC) 169 select { 170 case err := <-errC: 171 if err != nil { 172 return nil, err 173 } 174 case <-time.NewTimer(splitTimeout).C: 175 return nil,errOperationTimedOut 176 } 177 178 return key, nil 179 } 180 181 func (self *TreeChunker) split(depth int, treeSize int64, key Key, data io.Reader, size int64, jobC chan *hashJob, chunkC chan *Chunk, errC chan error, quitC chan bool, parentWg, swg, wwg *sync.WaitGroup) { 182 183 // 184 185 for depth > 0 && size < treeSize { 186 treeSize /= self.branches 187 depth-- 188 } 189 190 if depth == 0 { 191 // leaf nodes -> content chunks 192 chunkData := make([]byte, size+8) 193 binary.LittleEndian.PutUint64(chunkData[0:8], uint64(size)) 194 var readBytes int64 195 for readBytes < size { 196 n, err := data.Read(chunkData[8+readBytes:]) 197 readBytes += int64(n) 198 if err != nil && !(err == io.EOF && readBytes == size) { 199 errC <- err 200 return 201 } 202 } 203 select { 204 case jobC <- &hashJob{key, chunkData, size, parentWg}: 205 case <-quitC: 206 } 207 return 208 } 209 // dept > 0 210 // intermediate chunk containing child nodes hashes 211 branchCnt := int64((size + treeSize - 1) / treeSize) 212 213 var chunk []byte = make([]byte, branchCnt*self.hashSize+8) 214 var pos, i int64 215 216 binary.LittleEndian.PutUint64(chunk[0:8], uint64(size)) 217 218 childrenWg := &sync.WaitGroup{} 219 var secSize int64 220 for i < branchCnt { 221 // the last item can have shorter data 222 if size-pos < treeSize { 223 secSize = size - pos 224 } else { 225 secSize = treeSize 226 } 227 // the hash of that data 228 subTreeKey := chunk[8+i*self.hashSize : 8+(i+1)*self.hashSize] 229 230 childrenWg.Add(1) 231 self.split(depth-1, treeSize/self.branches, subTreeKey, data, secSize, jobC, chunkC, errC, quitC, childrenWg, swg, wwg) 232 233 i++ 234 pos += treeSize 235 } 236 // wait for all the children to complete calculating their hashes and copying them onto sections of the chunk 237 // parentWg.Add(1) 238 // go func() { 239 childrenWg.Wait() 240 241 worker := self.getWorkerCount() 242 if int64(len(jobC)) > worker && worker < ChunkProcessors { 243 if wwg != nil { 244 wwg.Add(1) 245 } 246 self.incrementWorkerCount() 247 go self.hashWorker(jobC, chunkC, errC, quitC, swg, wwg) 248 249 } 250 select { 251 case jobC <- &hashJob{key, chunk, size, parentWg}: 252 case <-quitC: 253 } 254 } 255 256 func (self *TreeChunker) hashWorker(jobC chan *hashJob, chunkC chan *Chunk, errC chan error, quitC chan bool, swg, wwg *sync.WaitGroup) { 257 defer self.decrementWorkerCount() 258 259 hasher := self.hashFunc() 260 if wwg != nil { 261 defer wwg.Done() 262 } 263 for { 264 select { 265 266 case job, ok := <-jobC: 267 if !ok { 268 return 269 } 270 // now we got the hashes in the chunk, then hash the chunks 271 self.hashChunk(hasher, job, chunkC, swg) 272 case <-quitC: 273 return 274 } 275 } 276 } 277 278 // The treeChunkers own Hash hashes together 279 // - the size (of the subtree encoded in the Chunk) 280 // - the Chunk, ie. the contents read from the input reader 281 func (self *TreeChunker) hashChunk(hasher SwarmHash, job *hashJob, chunkC chan *Chunk, swg *sync.WaitGroup) { 282 hasher.ResetWithLength(job.chunk[:8]) // 8 bytes of length 283 hasher.Write(job.chunk[8:]) // minus 8 []byte length 284 h := hasher.Sum(nil) 285 286 newChunk := &Chunk{ 287 Key: h, 288 SData: job.chunk, 289 Size: job.size, 290 wg: swg, 291 } 292 293 // report hash of this chunk one level up (keys corresponds to the proper subslice of the parent chunk) 294 copy(job.key, h) 295 // send off new chunk to storage 296 if chunkC != nil { 297 if swg != nil { 298 swg.Add(1) 299 } 300 } 301 job.parentWg.Done() 302 303 if chunkC != nil { 304 chunkC <- newChunk 305 } 306 } 307 308 func (self *TreeChunker) Append(key Key, data io.Reader, chunkC chan *Chunk, swg, wwg *sync.WaitGroup) (Key, error) { 309 return nil, errAppendOppNotSuported 310 } 311 312 // LazyChunkReader implements LazySectionReader 313 type LazyChunkReader struct { 314 key Key // root key 315 chunkC chan *Chunk // chunk channel to send retrieve requests on 316 chunk *Chunk // size of the entire subtree 317 off int64 // offset 318 chunkSize int64 // inherit from chunker 319 branches int64 // inherit from chunker 320 hashSize int64 // inherit from chunker 321 } 322 323 // implements the Joiner interface 324 func (self *TreeChunker) Join(key Key, chunkC chan *Chunk) LazySectionReader { 325 return &LazyChunkReader{ 326 key: key, 327 chunkC: chunkC, 328 chunkSize: self.chunkSize, 329 branches: self.branches, 330 hashSize: self.hashSize, 331 } 332 } 333 334 // Size is meant to be called on the LazySectionReader 335 func (self *LazyChunkReader) Size(quitC chan bool) (n int64, err error) { 336 if self.chunk != nil { 337 return self.chunk.Size, nil 338 } 339 chunk := retrieve(self.key, self.chunkC, quitC) 340 if chunk == nil { 341 select { 342 case <-quitC: 343 return 0, errors.New("aborted") 344 default: 345 return 0, fmt.Errorf("root chunk not found for %v", self.key.Hex()) 346 } 347 } 348 self.chunk = chunk 349 return chunk.Size, nil 350 } 351 352 // read at can be called numerous times 353 // concurrent reads are allowed 354 // Size() needs to be called synchronously on the LazyChunkReader first 355 func (self *LazyChunkReader) ReadAt(b []byte, off int64) (read int, err error) { 356 // this is correct, a swarm doc cannot be zero length, so no EOF is expected 357 if len(b) == 0 { 358 return 0, nil 359 } 360 quitC := make(chan bool) 361 size, err := self.Size(quitC) 362 if err != nil { 363 return 0, err 364 } 365 366 errC := make(chan error) 367 368 // } 369 var treeSize int64 370 var depth int 371 // calculate depth and max treeSize 372 treeSize = self.chunkSize 373 for ; treeSize < size; treeSize *= self.branches { 374 depth++ 375 } 376 wg := sync.WaitGroup{} 377 wg.Add(1) 378 go self.join(b, off, off+int64(len(b)), depth, treeSize/self.branches, self.chunk, &wg, errC, quitC) 379 go func() { 380 wg.Wait() 381 close(errC) 382 }() 383 384 err = <-errC 385 if err != nil { 386 close(quitC) 387 388 return 0, err 389 } 390 if off+int64(len(b)) >= size { 391 return len(b), io.EOF 392 } 393 return len(b), nil 394 } 395 396 func (self *LazyChunkReader) join(b []byte, off int64, eoff int64, depth int, treeSize int64, chunk *Chunk, parentWg *sync.WaitGroup, errC chan error, quitC chan bool) { 397 defer parentWg.Done() 398 // return NewDPA(&LocalStore{}) 399 400 // chunk.Size = int64(binary.LittleEndian.Uint64(chunk.SData[0:8])) 401 402 // find appropriate block level 403 for chunk.Size < treeSize && depth > 0 { 404 treeSize /= self.branches 405 depth-- 406 } 407 408 // leaf chunk found 409 if depth == 0 { 410 extra := 8 + eoff - int64(len(chunk.SData)) 411 if extra > 0 { 412 eoff -= extra 413 } 414 copy(b, chunk.SData[8+off:8+eoff]) 415 return // simply give back the chunks reader for content chunks 416 } 417 418 // subtree 419 start := off / treeSize 420 end := (eoff + treeSize - 1) / treeSize 421 422 wg := &sync.WaitGroup{} 423 defer wg.Wait() 424 425 for i := start; i < end; i++ { 426 soff := i * treeSize 427 roff := soff 428 seoff := soff + treeSize 429 430 if soff < off { 431 soff = off 432 } 433 if seoff > eoff { 434 seoff = eoff 435 } 436 if depth > 1 { 437 wg.Wait() 438 } 439 wg.Add(1) 440 go func(j int64) { 441 childKey := chunk.SData[8+j*self.hashSize : 8+(j+1)*self.hashSize] 442 chunk := retrieve(childKey, self.chunkC, quitC) 443 if chunk == nil { 444 select { 445 case errC <- fmt.Errorf("chunk %v-%v not found", off, off+treeSize): 446 case <-quitC: 447 } 448 return 449 } 450 if soff < off { 451 soff = off 452 } 453 self.join(b[soff-off:seoff-off], soff-roff, seoff-roff, depth-1, treeSize/self.branches, chunk, wg, errC, quitC) 454 }(i) 455 } //for 456 } 457 458 // the helper method submits chunks for a key to a oueue (DPA) and 459 // block until they time out or arrive 460 // abort if quitC is readable 461 func retrieve(key Key, chunkC chan *Chunk, quitC chan bool) *Chunk { 462 chunk := &Chunk{ 463 Key: key, 464 C: make(chan bool), // close channel to signal data delivery 465 } 466 // submit chunk for retrieval 467 select { 468 case chunkC <- chunk: // submit retrieval request, someone should be listening on the other side (or we will time out globally) 469 case <-quitC: 470 return nil 471 } 472 // waiting for the chunk retrieval 473 select { // chunk.Size = int64(binary.LittleEndian.Uint64(chunk.SData[0:8])) 474 475 case <-quitC: 476 // this is how we control process leakage (quitC is closed once join is finished (after timeout)) 477 return nil 478 case <-chunk.C: // bells are ringing, data have been delivered 479 } 480 if len(chunk.SData) == 0 { 481 return nil // chunk.Size = int64(binary.LittleEndian.Uint64(chunk.SData[0:8])) 482 483 } 484 return chunk 485 } 486 487 // Read keeps a cursor so cannot be called simulateously, see ReadAt 488 func (self *LazyChunkReader) Read(b []byte) (read int, err error) { 489 read, err = self.ReadAt(b, self.off) 490 491 self.off += int64(read) 492 return 493 } 494 495 // completely analogous to standard SectionReader implementation 496 var errWhence = errors.New("Seek: invalid whence") 497 var errOffset = errors.New("Seek: invalid offset") 498 499 func (s *LazyChunkReader) Seek(offset int64, whence int) (int64, error) { 500 switch whence { 501 default: 502 return 0, errWhence 503 case 0: 504 offset += 0 505 case 1: 506 offset += s.off 507 case 2: 508 if s.chunk == nil { //seek from the end requires rootchunk for size. call Size first 509 _, err := s.Size(nil) 510 if err != nil { 511 return 0, fmt.Errorf("can't get size: %v", err) 512 } 513 } 514 offset += s.chunk.Size 515 } 516 517 if offset < 0 { 518 return 0, errOffset 519 } 520 s.off = offset 521 return offset, nil 522 }