github.com/whiteCcinn/protobuf-go@v1.0.9/internal/impl/legacy_message.go (about)

     1  // Copyright 2018 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package impl
     6  
     7  import (
     8  	"fmt"
     9  	"reflect"
    10  	"strings"
    11  	"sync"
    12  
    13  	"github.com/whiteCcinn/protobuf-go/internal/descopts"
    14  	ptag "github.com/whiteCcinn/protobuf-go/internal/encoding/tag"
    15  	"github.com/whiteCcinn/protobuf-go/internal/errors"
    16  	"github.com/whiteCcinn/protobuf-go/internal/filedesc"
    17  	"github.com/whiteCcinn/protobuf-go/internal/strs"
    18  	"github.com/whiteCcinn/protobuf-go/reflect/protoreflect"
    19  	"github.com/whiteCcinn/protobuf-go/runtime/protoiface"
    20  )
    21  
    22  // legacyWrapMessage wraps v as a protoreflect.Message,
    23  // where v must be a *struct kind and not implement the v2 API already.
    24  func legacyWrapMessage(v reflect.Value) protoreflect.Message {
    25  	t := v.Type()
    26  	if t.Kind() != reflect.Ptr || t.Elem().Kind() != reflect.Struct {
    27  		return aberrantMessage{v: v}
    28  	}
    29  	mt := legacyLoadMessageInfo(t, "")
    30  	return mt.MessageOf(v.Interface())
    31  }
    32  
    33  // legacyLoadMessageType dynamically loads a protoreflect.Type for t,
    34  // where t must be not implement the v2 API already.
    35  // The provided name is used if it cannot be determined from the message.
    36  func legacyLoadMessageType(t reflect.Type, name protoreflect.FullName) protoreflect.MessageType {
    37  	if t.Kind() != reflect.Ptr || t.Elem().Kind() != reflect.Struct {
    38  		return aberrantMessageType{t}
    39  	}
    40  	return legacyLoadMessageInfo(t, name)
    41  }
    42  
    43  var legacyMessageTypeCache sync.Map // map[reflect.Type]*MessageInfo
    44  
    45  // legacyLoadMessageInfo dynamically loads a *MessageInfo for t,
    46  // where t must be a *struct kind and not implement the v2 API already.
    47  // The provided name is used if it cannot be determined from the message.
    48  func legacyLoadMessageInfo(t reflect.Type, name protoreflect.FullName) *MessageInfo {
    49  	// Fast-path: check if a MessageInfo is cached for this concrete type.
    50  	if mt, ok := legacyMessageTypeCache.Load(t); ok {
    51  		return mt.(*MessageInfo)
    52  	}
    53  
    54  	// Slow-path: derive message descriptor and initialize MessageInfo.
    55  	mi := &MessageInfo{
    56  		Desc:          legacyLoadMessageDesc(t, name),
    57  		GoReflectType: t,
    58  	}
    59  
    60  	var hasMarshal, hasUnmarshal bool
    61  	v := reflect.Zero(t).Interface()
    62  	if _, hasMarshal = v.(legacyMarshaler); hasMarshal {
    63  		mi.methods.Marshal = legacyMarshal
    64  
    65  		// We have no way to tell whether the type's Marshal method
    66  		// supports deterministic serialization or not, but this
    67  		// preserves the v1 implementation's behavior of always
    68  		// calling Marshal methods when present.
    69  		mi.methods.Flags |= protoiface.SupportMarshalDeterministic
    70  	}
    71  	if _, hasUnmarshal = v.(legacyUnmarshaler); hasUnmarshal {
    72  		mi.methods.Unmarshal = legacyUnmarshal
    73  	}
    74  	if _, hasMerge := v.(legacyMerger); hasMerge || (hasMarshal && hasUnmarshal) {
    75  		mi.methods.Merge = legacyMerge
    76  	}
    77  
    78  	if mi, ok := legacyMessageTypeCache.LoadOrStore(t, mi); ok {
    79  		return mi.(*MessageInfo)
    80  	}
    81  	return mi
    82  }
    83  
    84  var legacyMessageDescCache sync.Map // map[reflect.Type]protoreflect.MessageDescriptor
    85  
    86  // LegacyLoadMessageDesc returns an MessageDescriptor derived from the Go type,
    87  // which should be a *struct kind and must not implement the v2 API already.
    88  //
    89  // This is exported for testing purposes.
    90  func LegacyLoadMessageDesc(t reflect.Type) protoreflect.MessageDescriptor {
    91  	return legacyLoadMessageDesc(t, "")
    92  }
    93  func legacyLoadMessageDesc(t reflect.Type, name protoreflect.FullName) protoreflect.MessageDescriptor {
    94  	// Fast-path: check if a MessageDescriptor is cached for this concrete type.
    95  	if mi, ok := legacyMessageDescCache.Load(t); ok {
    96  		return mi.(protoreflect.MessageDescriptor)
    97  	}
    98  
    99  	// Slow-path: initialize MessageDescriptor from the raw descriptor.
   100  	mv := reflect.Zero(t).Interface()
   101  	if _, ok := mv.(protoreflect.ProtoMessage); ok {
   102  		panic(fmt.Sprintf("%v already implements proto.Message", t))
   103  	}
   104  	mdV1, ok := mv.(messageV1)
   105  	if !ok {
   106  		return aberrantLoadMessageDesc(t, name)
   107  	}
   108  
   109  	// If this is a dynamic message type where there isn't a 1-1 mapping between
   110  	// Go and protobuf types, calling the Descriptor method on the zero value of
   111  	// the message type isn't likely to work. If it panics, swallow the panic and
   112  	// continue as if the Descriptor method wasn't present.
   113  	b, idxs := func() ([]byte, []int) {
   114  		defer func() {
   115  			recover()
   116  		}()
   117  		return mdV1.Descriptor()
   118  	}()
   119  	if b == nil {
   120  		return aberrantLoadMessageDesc(t, name)
   121  	}
   122  
   123  	// If the Go type has no fields, then this might be a proto3 empty message
   124  	// from before the size cache was added. If there are any fields, check to
   125  	// see that at least one of them looks like something we generated.
   126  	if t.Elem().Kind() == reflect.Struct {
   127  		if nfield := t.Elem().NumField(); nfield > 0 {
   128  			hasProtoField := false
   129  			for i := 0; i < nfield; i++ {
   130  				f := t.Elem().Field(i)
   131  				if f.Tag.Get("protobuf") != "" || f.Tag.Get("protobuf_oneof") != "" || strings.HasPrefix(f.Name, "XXX_") {
   132  					hasProtoField = true
   133  					break
   134  				}
   135  			}
   136  			if !hasProtoField {
   137  				return aberrantLoadMessageDesc(t, name)
   138  			}
   139  		}
   140  	}
   141  
   142  	md := legacyLoadFileDesc(b).Messages().Get(idxs[0])
   143  	for _, i := range idxs[1:] {
   144  		md = md.Messages().Get(i)
   145  	}
   146  	if name != "" && md.FullName() != name {
   147  		panic(fmt.Sprintf("mismatching message name: got %v, want %v", md.FullName(), name))
   148  	}
   149  	if md, ok := legacyMessageDescCache.LoadOrStore(t, md); ok {
   150  		return md.(protoreflect.MessageDescriptor)
   151  	}
   152  	return md
   153  }
   154  
   155  var (
   156  	aberrantMessageDescLock  sync.Mutex
   157  	aberrantMessageDescCache map[reflect.Type]protoreflect.MessageDescriptor
   158  )
   159  
   160  // aberrantLoadMessageDesc returns an MessageDescriptor derived from the Go type,
   161  // which must not implement protoreflect.ProtoMessage or messageV1.
   162  //
   163  // This is a best-effort derivation of the message descriptor using the protobuf
   164  // tags on the struct fields.
   165  func aberrantLoadMessageDesc(t reflect.Type, name protoreflect.FullName) protoreflect.MessageDescriptor {
   166  	aberrantMessageDescLock.Lock()
   167  	defer aberrantMessageDescLock.Unlock()
   168  	if aberrantMessageDescCache == nil {
   169  		aberrantMessageDescCache = make(map[reflect.Type]protoreflect.MessageDescriptor)
   170  	}
   171  	return aberrantLoadMessageDescReentrant(t, name)
   172  }
   173  func aberrantLoadMessageDescReentrant(t reflect.Type, name protoreflect.FullName) protoreflect.MessageDescriptor {
   174  	// Fast-path: check if an MessageDescriptor is cached for this concrete type.
   175  	if md, ok := aberrantMessageDescCache[t]; ok {
   176  		return md
   177  	}
   178  
   179  	// Slow-path: construct a descriptor from the Go struct type (best-effort).
   180  	// Cache the MessageDescriptor early on so that we can resolve internal
   181  	// cyclic references.
   182  	md := &filedesc.Message{L2: new(filedesc.MessageL2)}
   183  	md.L0.FullName = aberrantDeriveMessageName(t, name)
   184  	md.L0.ParentFile = filedesc.SurrogateProto2
   185  	aberrantMessageDescCache[t] = md
   186  
   187  	if t.Kind() != reflect.Ptr || t.Elem().Kind() != reflect.Struct {
   188  		return md
   189  	}
   190  
   191  	// Try to determine if the message is using proto3 by checking scalars.
   192  	for i := 0; i < t.Elem().NumField(); i++ {
   193  		f := t.Elem().Field(i)
   194  		if tag := f.Tag.Get("protobuf"); tag != "" {
   195  			switch f.Type.Kind() {
   196  			case reflect.Bool, reflect.Int32, reflect.Int64, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.String:
   197  				md.L0.ParentFile = filedesc.SurrogateProto3
   198  			}
   199  			for _, s := range strings.Split(tag, ",") {
   200  				if s == "proto3" {
   201  					md.L0.ParentFile = filedesc.SurrogateProto3
   202  				}
   203  			}
   204  		}
   205  	}
   206  
   207  	// Obtain a list of oneof wrapper types.
   208  	var oneofWrappers []reflect.Type
   209  	for _, method := range []string{"XXX_OneofFuncs", "XXX_OneofWrappers"} {
   210  		if fn, ok := t.MethodByName(method); ok {
   211  			for _, v := range fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))}) {
   212  				if vs, ok := v.Interface().([]interface{}); ok {
   213  					for _, v := range vs {
   214  						oneofWrappers = append(oneofWrappers, reflect.TypeOf(v))
   215  					}
   216  				}
   217  			}
   218  		}
   219  	}
   220  
   221  	// Obtain a list of the extension ranges.
   222  	if fn, ok := t.MethodByName("ExtensionRangeArray"); ok {
   223  		vs := fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[0]
   224  		for i := 0; i < vs.Len(); i++ {
   225  			v := vs.Index(i)
   226  			md.L2.ExtensionRanges.List = append(md.L2.ExtensionRanges.List, [2]protoreflect.FieldNumber{
   227  				protoreflect.FieldNumber(v.FieldByName("Start").Int()),
   228  				protoreflect.FieldNumber(v.FieldByName("End").Int() + 1),
   229  			})
   230  			md.L2.ExtensionRangeOptions = append(md.L2.ExtensionRangeOptions, nil)
   231  		}
   232  	}
   233  
   234  	// Derive the message fields by inspecting the struct fields.
   235  	for i := 0; i < t.Elem().NumField(); i++ {
   236  		f := t.Elem().Field(i)
   237  		if tag := f.Tag.Get("protobuf"); tag != "" {
   238  			tagKey := f.Tag.Get("protobuf_key")
   239  			tagVal := f.Tag.Get("protobuf_val")
   240  			aberrantAppendField(md, f.Type, tag, tagKey, tagVal)
   241  		}
   242  		if tag := f.Tag.Get("protobuf_oneof"); tag != "" {
   243  			n := len(md.L2.Oneofs.List)
   244  			md.L2.Oneofs.List = append(md.L2.Oneofs.List, filedesc.Oneof{})
   245  			od := &md.L2.Oneofs.List[n]
   246  			od.L0.FullName = md.FullName().Append(protoreflect.Name(tag))
   247  			od.L0.ParentFile = md.L0.ParentFile
   248  			od.L0.Parent = md
   249  			od.L0.Index = n
   250  
   251  			for _, t := range oneofWrappers {
   252  				if t.Implements(f.Type) {
   253  					f := t.Elem().Field(0)
   254  					if tag := f.Tag.Get("protobuf"); tag != "" {
   255  						aberrantAppendField(md, f.Type, tag, "", "")
   256  						fd := &md.L2.Fields.List[len(md.L2.Fields.List)-1]
   257  						fd.L1.ContainingOneof = od
   258  						od.L1.Fields.List = append(od.L1.Fields.List, fd)
   259  					}
   260  				}
   261  			}
   262  		}
   263  	}
   264  
   265  	return md
   266  }
   267  
   268  func aberrantDeriveMessageName(t reflect.Type, name protoreflect.FullName) protoreflect.FullName {
   269  	if name.IsValid() {
   270  		return name
   271  	}
   272  	func() {
   273  		defer func() { recover() }() // swallow possible nil panics
   274  		if m, ok := reflect.Zero(t).Interface().(interface{ XXX_MessageName() string }); ok {
   275  			name = protoreflect.FullName(m.XXX_MessageName())
   276  		}
   277  	}()
   278  	if name.IsValid() {
   279  		return name
   280  	}
   281  	if t.Kind() == reflect.Ptr {
   282  		t = t.Elem()
   283  	}
   284  	return AberrantDeriveFullName(t)
   285  }
   286  
   287  func aberrantAppendField(md *filedesc.Message, goType reflect.Type, tag, tagKey, tagVal string) {
   288  	t := goType
   289  	isOptional := t.Kind() == reflect.Ptr && t.Elem().Kind() != reflect.Struct
   290  	isRepeated := t.Kind() == reflect.Slice && t.Elem().Kind() != reflect.Uint8
   291  	if isOptional || isRepeated {
   292  		t = t.Elem()
   293  	}
   294  	fd := ptag.Unmarshal(tag, t, placeholderEnumValues{}).(*filedesc.Field)
   295  
   296  	// Append field descriptor to the message.
   297  	n := len(md.L2.Fields.List)
   298  	md.L2.Fields.List = append(md.L2.Fields.List, *fd)
   299  	fd = &md.L2.Fields.List[n]
   300  	fd.L0.FullName = md.FullName().Append(fd.Name())
   301  	fd.L0.ParentFile = md.L0.ParentFile
   302  	fd.L0.Parent = md
   303  	fd.L0.Index = n
   304  
   305  	if fd.L1.IsWeak || fd.L1.HasPacked {
   306  		fd.L1.Options = func() protoreflect.ProtoMessage {
   307  			opts := descopts.Field.ProtoReflect().New()
   308  			if fd.L1.IsWeak {
   309  				opts.Set(opts.Descriptor().Fields().ByName("weak"), protoreflect.ValueOfBool(true))
   310  			}
   311  			if fd.L1.HasPacked {
   312  				opts.Set(opts.Descriptor().Fields().ByName("packed"), protoreflect.ValueOfBool(fd.L1.IsPacked))
   313  			}
   314  			return opts.Interface()
   315  		}
   316  	}
   317  
   318  	// Populate Enum and Message.
   319  	if fd.Enum() == nil && fd.Kind() == protoreflect.EnumKind {
   320  		switch v := reflect.Zero(t).Interface().(type) {
   321  		case protoreflect.Enum:
   322  			fd.L1.Enum = v.Descriptor()
   323  		default:
   324  			fd.L1.Enum = LegacyLoadEnumDesc(t)
   325  		}
   326  	}
   327  	if fd.Message() == nil && (fd.Kind() == protoreflect.MessageKind || fd.Kind() == protoreflect.GroupKind) {
   328  		switch v := reflect.Zero(t).Interface().(type) {
   329  		case protoreflect.ProtoMessage:
   330  			fd.L1.Message = v.ProtoReflect().Descriptor()
   331  		case messageV1:
   332  			fd.L1.Message = LegacyLoadMessageDesc(t)
   333  		default:
   334  			if t.Kind() == reflect.Map {
   335  				n := len(md.L1.Messages.List)
   336  				md.L1.Messages.List = append(md.L1.Messages.List, filedesc.Message{L2: new(filedesc.MessageL2)})
   337  				md2 := &md.L1.Messages.List[n]
   338  				md2.L0.FullName = md.FullName().Append(protoreflect.Name(strs.MapEntryName(string(fd.Name()))))
   339  				md2.L0.ParentFile = md.L0.ParentFile
   340  				md2.L0.Parent = md
   341  				md2.L0.Index = n
   342  
   343  				md2.L1.IsMapEntry = true
   344  				md2.L2.Options = func() protoreflect.ProtoMessage {
   345  					opts := descopts.Message.ProtoReflect().New()
   346  					opts.Set(opts.Descriptor().Fields().ByName("map_entry"), protoreflect.ValueOfBool(true))
   347  					return opts.Interface()
   348  				}
   349  
   350  				aberrantAppendField(md2, t.Key(), tagKey, "", "")
   351  				aberrantAppendField(md2, t.Elem(), tagVal, "", "")
   352  
   353  				fd.L1.Message = md2
   354  				break
   355  			}
   356  			fd.L1.Message = aberrantLoadMessageDescReentrant(t, "")
   357  		}
   358  	}
   359  }
   360  
   361  type placeholderEnumValues struct {
   362  	protoreflect.EnumValueDescriptors
   363  }
   364  
   365  func (placeholderEnumValues) ByNumber(n protoreflect.EnumNumber) protoreflect.EnumValueDescriptor {
   366  	return filedesc.PlaceholderEnumValue(protoreflect.FullName(fmt.Sprintf("UNKNOWN_%d", n)))
   367  }
   368  
   369  // legacyMarshaler is the proto.Marshaler interface superseded by protoiface.Methoder.
   370  type legacyMarshaler interface {
   371  	Marshal() ([]byte, error)
   372  }
   373  
   374  // legacyUnmarshaler is the proto.Unmarshaler interface superseded by protoiface.Methoder.
   375  type legacyUnmarshaler interface {
   376  	Unmarshal([]byte) error
   377  }
   378  
   379  // legacyMerger is the proto.Merger interface superseded by protoiface.Methoder.
   380  type legacyMerger interface {
   381  	Merge(protoiface.MessageV1)
   382  }
   383  
   384  var aberrantProtoMethods = &protoiface.Methods{
   385  	Marshal:   legacyMarshal,
   386  	Unmarshal: legacyUnmarshal,
   387  	Merge:     legacyMerge,
   388  
   389  	// We have no way to tell whether the type's Marshal method
   390  	// supports deterministic serialization or not, but this
   391  	// preserves the v1 implementation's behavior of always
   392  	// calling Marshal methods when present.
   393  	Flags: protoiface.SupportMarshalDeterministic,
   394  }
   395  
   396  func legacyMarshal(in protoiface.MarshalInput) (protoiface.MarshalOutput, error) {
   397  	v := in.Message.(unwrapper).protoUnwrap()
   398  	marshaler, ok := v.(legacyMarshaler)
   399  	if !ok {
   400  		return protoiface.MarshalOutput{}, errors.New("%T does not implement Marshal", v)
   401  	}
   402  	out, err := marshaler.Marshal()
   403  	if in.Buf != nil {
   404  		out = append(in.Buf, out...)
   405  	}
   406  	return protoiface.MarshalOutput{
   407  		Buf: out,
   408  	}, err
   409  }
   410  
   411  func legacyUnmarshal(in protoiface.UnmarshalInput) (protoiface.UnmarshalOutput, error) {
   412  	v := in.Message.(unwrapper).protoUnwrap()
   413  	unmarshaler, ok := v.(legacyUnmarshaler)
   414  	if !ok {
   415  		return protoiface.UnmarshalOutput{}, errors.New("%T does not implement Unmarshal", v)
   416  	}
   417  	return protoiface.UnmarshalOutput{}, unmarshaler.Unmarshal(in.Buf)
   418  }
   419  
   420  func legacyMerge(in protoiface.MergeInput) protoiface.MergeOutput {
   421  	// Check whether this supports the legacy merger.
   422  	dstv := in.Destination.(unwrapper).protoUnwrap()
   423  	merger, ok := dstv.(legacyMerger)
   424  	if ok {
   425  		merger.Merge(Export{}.ProtoMessageV1Of(in.Source))
   426  		return protoiface.MergeOutput{Flags: protoiface.MergeComplete}
   427  	}
   428  
   429  	// If legacy merger is unavailable, implement merge in terms of
   430  	// a marshal and unmarshal operation.
   431  	srcv := in.Source.(unwrapper).protoUnwrap()
   432  	marshaler, ok := srcv.(legacyMarshaler)
   433  	if !ok {
   434  		return protoiface.MergeOutput{}
   435  	}
   436  	dstv = in.Destination.(unwrapper).protoUnwrap()
   437  	unmarshaler, ok := dstv.(legacyUnmarshaler)
   438  	if !ok {
   439  		return protoiface.MergeOutput{}
   440  	}
   441  	if !in.Source.IsValid() {
   442  		// Legacy Marshal methods may not function on nil messages.
   443  		// Check for a typed nil source only after we confirm that
   444  		// legacy Marshal/Unmarshal methods are present, for
   445  		// consistency.
   446  		return protoiface.MergeOutput{Flags: protoiface.MergeComplete}
   447  	}
   448  	b, err := marshaler.Marshal()
   449  	if err != nil {
   450  		return protoiface.MergeOutput{}
   451  	}
   452  	err = unmarshaler.Unmarshal(b)
   453  	if err != nil {
   454  		return protoiface.MergeOutput{}
   455  	}
   456  	return protoiface.MergeOutput{Flags: protoiface.MergeComplete}
   457  }
   458  
   459  // aberrantMessageType implements MessageType for all types other than pointer-to-struct.
   460  type aberrantMessageType struct {
   461  	t reflect.Type
   462  }
   463  
   464  func (mt aberrantMessageType) New() protoreflect.Message {
   465  	if mt.t.Kind() == reflect.Ptr {
   466  		return aberrantMessage{reflect.New(mt.t.Elem())}
   467  	}
   468  	return aberrantMessage{reflect.Zero(mt.t)}
   469  }
   470  func (mt aberrantMessageType) Zero() protoreflect.Message {
   471  	return aberrantMessage{reflect.Zero(mt.t)}
   472  }
   473  func (mt aberrantMessageType) GoType() reflect.Type {
   474  	return mt.t
   475  }
   476  func (mt aberrantMessageType) Descriptor() protoreflect.MessageDescriptor {
   477  	return LegacyLoadMessageDesc(mt.t)
   478  }
   479  
   480  // aberrantMessage implements Message for all types other than pointer-to-struct.
   481  //
   482  // When the underlying type implements legacyMarshaler or legacyUnmarshaler,
   483  // the aberrant Message can be marshaled or unmarshaled. Otherwise, there is
   484  // not much that can be done with values of this type.
   485  type aberrantMessage struct {
   486  	v reflect.Value
   487  }
   488  
   489  // Reset implements the v1 proto.Message.Reset method.
   490  func (m aberrantMessage) Reset() {
   491  	if mr, ok := m.v.Interface().(interface{ Reset() }); ok {
   492  		mr.Reset()
   493  		return
   494  	}
   495  	if m.v.Kind() == reflect.Ptr && !m.v.IsNil() {
   496  		m.v.Elem().Set(reflect.Zero(m.v.Type().Elem()))
   497  	}
   498  }
   499  
   500  func (m aberrantMessage) ProtoReflect() protoreflect.Message {
   501  	return m
   502  }
   503  
   504  func (m aberrantMessage) Descriptor() protoreflect.MessageDescriptor {
   505  	return LegacyLoadMessageDesc(m.v.Type())
   506  }
   507  func (m aberrantMessage) Type() protoreflect.MessageType {
   508  	return aberrantMessageType{m.v.Type()}
   509  }
   510  func (m aberrantMessage) New() protoreflect.Message {
   511  	if m.v.Type().Kind() == reflect.Ptr {
   512  		return aberrantMessage{reflect.New(m.v.Type().Elem())}
   513  	}
   514  	return aberrantMessage{reflect.Zero(m.v.Type())}
   515  }
   516  func (m aberrantMessage) Interface() protoreflect.ProtoMessage {
   517  	return m
   518  }
   519  func (m aberrantMessage) Range(f func(protoreflect.FieldDescriptor, protoreflect.Value) bool) {
   520  	return
   521  }
   522  func (m aberrantMessage) Has(protoreflect.FieldDescriptor) bool {
   523  	return false
   524  }
   525  func (m aberrantMessage) Clear(protoreflect.FieldDescriptor) {
   526  	panic("invalid Message.Clear on " + string(m.Descriptor().FullName()))
   527  }
   528  func (m aberrantMessage) Get(fd protoreflect.FieldDescriptor) protoreflect.Value {
   529  	if fd.Default().IsValid() {
   530  		return fd.Default()
   531  	}
   532  	panic("invalid Message.Get on " + string(m.Descriptor().FullName()))
   533  }
   534  func (m aberrantMessage) Set(protoreflect.FieldDescriptor, protoreflect.Value) {
   535  	panic("invalid Message.Set on " + string(m.Descriptor().FullName()))
   536  }
   537  func (m aberrantMessage) Mutable(protoreflect.FieldDescriptor) protoreflect.Value {
   538  	panic("invalid Message.Mutable on " + string(m.Descriptor().FullName()))
   539  }
   540  func (m aberrantMessage) NewField(protoreflect.FieldDescriptor) protoreflect.Value {
   541  	panic("invalid Message.NewField on " + string(m.Descriptor().FullName()))
   542  }
   543  func (m aberrantMessage) WhichOneof(protoreflect.OneofDescriptor) protoreflect.FieldDescriptor {
   544  	panic("invalid Message.WhichOneof descriptor on " + string(m.Descriptor().FullName()))
   545  }
   546  func (m aberrantMessage) GetUnknown() protoreflect.RawFields {
   547  	return nil
   548  }
   549  func (m aberrantMessage) SetUnknown(protoreflect.RawFields) {
   550  	// SetUnknown discards its input on messages which don't support unknown field storage.
   551  }
   552  func (m aberrantMessage) IsValid() bool {
   553  	if m.v.Kind() == reflect.Ptr {
   554  		return !m.v.IsNil()
   555  	}
   556  	return false
   557  }
   558  func (m aberrantMessage) ProtoMethods() *protoiface.Methods {
   559  	return aberrantProtoMethods
   560  }
   561  func (m aberrantMessage) protoUnwrap() interface{} {
   562  	return m.v.Interface()
   563  }