github.com/wzbox/go-ethereum@v1.9.2/p2p/rlpx.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package p2p 18 19 import ( 20 "bytes" 21 "crypto/aes" 22 "crypto/cipher" 23 "crypto/ecdsa" 24 "crypto/elliptic" 25 "crypto/hmac" 26 "crypto/rand" 27 "encoding/binary" 28 "errors" 29 "fmt" 30 "hash" 31 "io" 32 "io/ioutil" 33 mrand "math/rand" 34 "net" 35 "sync" 36 "time" 37 38 "github.com/ethereum/go-ethereum/common/bitutil" 39 "github.com/ethereum/go-ethereum/crypto" 40 "github.com/ethereum/go-ethereum/crypto/ecies" 41 "github.com/ethereum/go-ethereum/rlp" 42 "github.com/golang/snappy" 43 "golang.org/x/crypto/sha3" 44 ) 45 46 const ( 47 maxUint24 = ^uint32(0) >> 8 48 49 sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2 50 sigLen = 65 // elliptic S256 51 pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte 52 shaLen = 32 // hash length (for nonce etc) 53 54 authMsgLen = sigLen + shaLen + pubLen + shaLen + 1 55 authRespLen = pubLen + shaLen + 1 56 57 eciesOverhead = 65 /* pubkey */ + 16 /* IV */ + 32 /* MAC */ 58 59 encAuthMsgLen = authMsgLen + eciesOverhead // size of encrypted pre-EIP-8 initiator handshake 60 encAuthRespLen = authRespLen + eciesOverhead // size of encrypted pre-EIP-8 handshake reply 61 62 // total timeout for encryption handshake and protocol 63 // handshake in both directions. 64 handshakeTimeout = 5 * time.Second 65 66 // This is the timeout for sending the disconnect reason. 67 // This is shorter than the usual timeout because we don't want 68 // to wait if the connection is known to be bad anyway. 69 discWriteTimeout = 1 * time.Second 70 ) 71 72 // errPlainMessageTooLarge is returned if a decompressed message length exceeds 73 // the allowed 24 bits (i.e. length >= 16MB). 74 var errPlainMessageTooLarge = errors.New("message length >= 16MB") 75 76 // rlpx is the transport protocol used by actual (non-test) connections. 77 // It wraps the frame encoder with locks and read/write deadlines. 78 type rlpx struct { 79 fd net.Conn 80 81 rmu, wmu sync.Mutex 82 rw *rlpxFrameRW 83 } 84 85 func newRLPX(fd net.Conn) transport { 86 fd.SetDeadline(time.Now().Add(handshakeTimeout)) 87 return &rlpx{fd: fd} 88 } 89 90 func (t *rlpx) ReadMsg() (Msg, error) { 91 t.rmu.Lock() 92 defer t.rmu.Unlock() 93 t.fd.SetReadDeadline(time.Now().Add(frameReadTimeout)) 94 return t.rw.ReadMsg() 95 } 96 97 func (t *rlpx) WriteMsg(msg Msg) error { 98 t.wmu.Lock() 99 defer t.wmu.Unlock() 100 t.fd.SetWriteDeadline(time.Now().Add(frameWriteTimeout)) 101 return t.rw.WriteMsg(msg) 102 } 103 104 func (t *rlpx) close(err error) { 105 t.wmu.Lock() 106 defer t.wmu.Unlock() 107 // Tell the remote end why we're disconnecting if possible. 108 if t.rw != nil { 109 if r, ok := err.(DiscReason); ok && r != DiscNetworkError { 110 // rlpx tries to send DiscReason to disconnected peer 111 // if the connection is net.Pipe (in-memory simulation) 112 // it hangs forever, since net.Pipe does not implement 113 // a write deadline. Because of this only try to send 114 // the disconnect reason message if there is no error. 115 if err := t.fd.SetWriteDeadline(time.Now().Add(discWriteTimeout)); err == nil { 116 SendItems(t.rw, discMsg, r) 117 } 118 } 119 } 120 t.fd.Close() 121 } 122 123 func (t *rlpx) doProtoHandshake(our *protoHandshake) (their *protoHandshake, err error) { 124 // Writing our handshake happens concurrently, we prefer 125 // returning the handshake read error. If the remote side 126 // disconnects us early with a valid reason, we should return it 127 // as the error so it can be tracked elsewhere. 128 werr := make(chan error, 1) 129 go func() { werr <- Send(t.rw, handshakeMsg, our) }() 130 if their, err = readProtocolHandshake(t.rw); err != nil { 131 <-werr // make sure the write terminates too 132 return nil, err 133 } 134 if err := <-werr; err != nil { 135 return nil, fmt.Errorf("write error: %v", err) 136 } 137 // If the protocol version supports Snappy encoding, upgrade immediately 138 t.rw.snappy = their.Version >= snappyProtocolVersion 139 140 return their, nil 141 } 142 143 func readProtocolHandshake(rw MsgReader) (*protoHandshake, error) { 144 msg, err := rw.ReadMsg() 145 if err != nil { 146 return nil, err 147 } 148 if msg.Size > baseProtocolMaxMsgSize { 149 return nil, fmt.Errorf("message too big") 150 } 151 if msg.Code == discMsg { 152 // Disconnect before protocol handshake is valid according to the 153 // spec and we send it ourself if the post-handshake checks fail. 154 // We can't return the reason directly, though, because it is echoed 155 // back otherwise. Wrap it in a string instead. 156 var reason [1]DiscReason 157 rlp.Decode(msg.Payload, &reason) 158 return nil, reason[0] 159 } 160 if msg.Code != handshakeMsg { 161 return nil, fmt.Errorf("expected handshake, got %x", msg.Code) 162 } 163 var hs protoHandshake 164 if err := msg.Decode(&hs); err != nil { 165 return nil, err 166 } 167 if len(hs.ID) != 64 || !bitutil.TestBytes(hs.ID) { 168 return nil, DiscInvalidIdentity 169 } 170 return &hs, nil 171 } 172 173 // doEncHandshake runs the protocol handshake using authenticated 174 // messages. the protocol handshake is the first authenticated message 175 // and also verifies whether the encryption handshake 'worked' and the 176 // remote side actually provided the right public key. 177 func (t *rlpx) doEncHandshake(prv *ecdsa.PrivateKey, dial *ecdsa.PublicKey) (*ecdsa.PublicKey, error) { 178 var ( 179 sec secrets 180 err error 181 ) 182 if dial == nil { 183 sec, err = receiverEncHandshake(t.fd, prv) 184 } else { 185 sec, err = initiatorEncHandshake(t.fd, prv, dial) 186 } 187 if err != nil { 188 return nil, err 189 } 190 t.wmu.Lock() 191 t.rw = newRLPXFrameRW(t.fd, sec) 192 t.wmu.Unlock() 193 return sec.Remote.ExportECDSA(), nil 194 } 195 196 // encHandshake contains the state of the encryption handshake. 197 type encHandshake struct { 198 initiator bool 199 remote *ecies.PublicKey // remote-pubk 200 initNonce, respNonce []byte // nonce 201 randomPrivKey *ecies.PrivateKey // ecdhe-random 202 remoteRandomPub *ecies.PublicKey // ecdhe-random-pubk 203 } 204 205 // secrets represents the connection secrets 206 // which are negotiated during the encryption handshake. 207 type secrets struct { 208 Remote *ecies.PublicKey 209 AES, MAC []byte 210 EgressMAC, IngressMAC hash.Hash 211 Token []byte 212 } 213 214 // RLPx v4 handshake auth (defined in EIP-8). 215 type authMsgV4 struct { 216 gotPlain bool // whether read packet had plain format. 217 218 Signature [sigLen]byte 219 InitiatorPubkey [pubLen]byte 220 Nonce [shaLen]byte 221 Version uint 222 223 // Ignore additional fields (forward-compatibility) 224 Rest []rlp.RawValue `rlp:"tail"` 225 } 226 227 // RLPx v4 handshake response (defined in EIP-8). 228 type authRespV4 struct { 229 RandomPubkey [pubLen]byte 230 Nonce [shaLen]byte 231 Version uint 232 233 // Ignore additional fields (forward-compatibility) 234 Rest []rlp.RawValue `rlp:"tail"` 235 } 236 237 // secrets is called after the handshake is completed. 238 // It extracts the connection secrets from the handshake values. 239 func (h *encHandshake) secrets(auth, authResp []byte) (secrets, error) { 240 ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen) 241 if err != nil { 242 return secrets{}, err 243 } 244 245 // derive base secrets from ephemeral key agreement 246 sharedSecret := crypto.Keccak256(ecdheSecret, crypto.Keccak256(h.respNonce, h.initNonce)) 247 aesSecret := crypto.Keccak256(ecdheSecret, sharedSecret) 248 s := secrets{ 249 Remote: h.remote, 250 AES: aesSecret, 251 MAC: crypto.Keccak256(ecdheSecret, aesSecret), 252 } 253 254 // setup sha3 instances for the MACs 255 mac1 := sha3.NewLegacyKeccak256() 256 mac1.Write(xor(s.MAC, h.respNonce)) 257 mac1.Write(auth) 258 mac2 := sha3.NewLegacyKeccak256() 259 mac2.Write(xor(s.MAC, h.initNonce)) 260 mac2.Write(authResp) 261 if h.initiator { 262 s.EgressMAC, s.IngressMAC = mac1, mac2 263 } else { 264 s.EgressMAC, s.IngressMAC = mac2, mac1 265 } 266 267 return s, nil 268 } 269 270 // staticSharedSecret returns the static shared secret, the result 271 // of key agreement between the local and remote static node key. 272 func (h *encHandshake) staticSharedSecret(prv *ecdsa.PrivateKey) ([]byte, error) { 273 return ecies.ImportECDSA(prv).GenerateShared(h.remote, sskLen, sskLen) 274 } 275 276 // initiatorEncHandshake negotiates a session token on conn. 277 // it should be called on the dialing side of the connection. 278 // 279 // prv is the local client's private key. 280 func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remote *ecdsa.PublicKey) (s secrets, err error) { 281 h := &encHandshake{initiator: true, remote: ecies.ImportECDSAPublic(remote)} 282 authMsg, err := h.makeAuthMsg(prv) 283 if err != nil { 284 return s, err 285 } 286 authPacket, err := sealEIP8(authMsg, h) 287 if err != nil { 288 return s, err 289 } 290 if _, err = conn.Write(authPacket); err != nil { 291 return s, err 292 } 293 294 authRespMsg := new(authRespV4) 295 authRespPacket, err := readHandshakeMsg(authRespMsg, encAuthRespLen, prv, conn) 296 if err != nil { 297 return s, err 298 } 299 if err := h.handleAuthResp(authRespMsg); err != nil { 300 return s, err 301 } 302 return h.secrets(authPacket, authRespPacket) 303 } 304 305 // makeAuthMsg creates the initiator handshake message. 306 func (h *encHandshake) makeAuthMsg(prv *ecdsa.PrivateKey) (*authMsgV4, error) { 307 // Generate random initiator nonce. 308 h.initNonce = make([]byte, shaLen) 309 _, err := rand.Read(h.initNonce) 310 if err != nil { 311 return nil, err 312 } 313 // Generate random keypair to for ECDH. 314 h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil) 315 if err != nil { 316 return nil, err 317 } 318 319 // Sign known message: static-shared-secret ^ nonce 320 token, err := h.staticSharedSecret(prv) 321 if err != nil { 322 return nil, err 323 } 324 signed := xor(token, h.initNonce) 325 signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA()) 326 if err != nil { 327 return nil, err 328 } 329 330 msg := new(authMsgV4) 331 copy(msg.Signature[:], signature) 332 copy(msg.InitiatorPubkey[:], crypto.FromECDSAPub(&prv.PublicKey)[1:]) 333 copy(msg.Nonce[:], h.initNonce) 334 msg.Version = 4 335 return msg, nil 336 } 337 338 func (h *encHandshake) handleAuthResp(msg *authRespV4) (err error) { 339 h.respNonce = msg.Nonce[:] 340 h.remoteRandomPub, err = importPublicKey(msg.RandomPubkey[:]) 341 return err 342 } 343 344 // receiverEncHandshake negotiates a session token on conn. 345 // it should be called on the listening side of the connection. 346 // 347 // prv is the local client's private key. 348 func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey) (s secrets, err error) { 349 authMsg := new(authMsgV4) 350 authPacket, err := readHandshakeMsg(authMsg, encAuthMsgLen, prv, conn) 351 if err != nil { 352 return s, err 353 } 354 h := new(encHandshake) 355 if err := h.handleAuthMsg(authMsg, prv); err != nil { 356 return s, err 357 } 358 359 authRespMsg, err := h.makeAuthResp() 360 if err != nil { 361 return s, err 362 } 363 var authRespPacket []byte 364 if authMsg.gotPlain { 365 authRespPacket, err = authRespMsg.sealPlain(h) 366 } else { 367 authRespPacket, err = sealEIP8(authRespMsg, h) 368 } 369 if err != nil { 370 return s, err 371 } 372 if _, err = conn.Write(authRespPacket); err != nil { 373 return s, err 374 } 375 return h.secrets(authPacket, authRespPacket) 376 } 377 378 func (h *encHandshake) handleAuthMsg(msg *authMsgV4, prv *ecdsa.PrivateKey) error { 379 // Import the remote identity. 380 rpub, err := importPublicKey(msg.InitiatorPubkey[:]) 381 if err != nil { 382 return err 383 } 384 h.initNonce = msg.Nonce[:] 385 h.remote = rpub 386 387 // Generate random keypair for ECDH. 388 // If a private key is already set, use it instead of generating one (for testing). 389 if h.randomPrivKey == nil { 390 h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil) 391 if err != nil { 392 return err 393 } 394 } 395 396 // Check the signature. 397 token, err := h.staticSharedSecret(prv) 398 if err != nil { 399 return err 400 } 401 signedMsg := xor(token, h.initNonce) 402 remoteRandomPub, err := crypto.Ecrecover(signedMsg, msg.Signature[:]) 403 if err != nil { 404 return err 405 } 406 h.remoteRandomPub, _ = importPublicKey(remoteRandomPub) 407 return nil 408 } 409 410 func (h *encHandshake) makeAuthResp() (msg *authRespV4, err error) { 411 // Generate random nonce. 412 h.respNonce = make([]byte, shaLen) 413 if _, err = rand.Read(h.respNonce); err != nil { 414 return nil, err 415 } 416 417 msg = new(authRespV4) 418 copy(msg.Nonce[:], h.respNonce) 419 copy(msg.RandomPubkey[:], exportPubkey(&h.randomPrivKey.PublicKey)) 420 msg.Version = 4 421 return msg, nil 422 } 423 424 func (msg *authMsgV4) sealPlain(h *encHandshake) ([]byte, error) { 425 buf := make([]byte, authMsgLen) 426 n := copy(buf, msg.Signature[:]) 427 n += copy(buf[n:], crypto.Keccak256(exportPubkey(&h.randomPrivKey.PublicKey))) 428 n += copy(buf[n:], msg.InitiatorPubkey[:]) 429 n += copy(buf[n:], msg.Nonce[:]) 430 buf[n] = 0 // token-flag 431 return ecies.Encrypt(rand.Reader, h.remote, buf, nil, nil) 432 } 433 434 func (msg *authMsgV4) decodePlain(input []byte) { 435 n := copy(msg.Signature[:], input) 436 n += shaLen // skip sha3(initiator-ephemeral-pubk) 437 n += copy(msg.InitiatorPubkey[:], input[n:]) 438 copy(msg.Nonce[:], input[n:]) 439 msg.Version = 4 440 msg.gotPlain = true 441 } 442 443 func (msg *authRespV4) sealPlain(hs *encHandshake) ([]byte, error) { 444 buf := make([]byte, authRespLen) 445 n := copy(buf, msg.RandomPubkey[:]) 446 copy(buf[n:], msg.Nonce[:]) 447 return ecies.Encrypt(rand.Reader, hs.remote, buf, nil, nil) 448 } 449 450 func (msg *authRespV4) decodePlain(input []byte) { 451 n := copy(msg.RandomPubkey[:], input) 452 copy(msg.Nonce[:], input[n:]) 453 msg.Version = 4 454 } 455 456 var padSpace = make([]byte, 300) 457 458 func sealEIP8(msg interface{}, h *encHandshake) ([]byte, error) { 459 buf := new(bytes.Buffer) 460 if err := rlp.Encode(buf, msg); err != nil { 461 return nil, err 462 } 463 // pad with random amount of data. the amount needs to be at least 100 bytes to make 464 // the message distinguishable from pre-EIP-8 handshakes. 465 pad := padSpace[:mrand.Intn(len(padSpace)-100)+100] 466 buf.Write(pad) 467 prefix := make([]byte, 2) 468 binary.BigEndian.PutUint16(prefix, uint16(buf.Len()+eciesOverhead)) 469 470 enc, err := ecies.Encrypt(rand.Reader, h.remote, buf.Bytes(), nil, prefix) 471 return append(prefix, enc...), err 472 } 473 474 type plainDecoder interface { 475 decodePlain([]byte) 476 } 477 478 func readHandshakeMsg(msg plainDecoder, plainSize int, prv *ecdsa.PrivateKey, r io.Reader) ([]byte, error) { 479 buf := make([]byte, plainSize) 480 if _, err := io.ReadFull(r, buf); err != nil { 481 return buf, err 482 } 483 // Attempt decoding pre-EIP-8 "plain" format. 484 key := ecies.ImportECDSA(prv) 485 if dec, err := key.Decrypt(buf, nil, nil); err == nil { 486 msg.decodePlain(dec) 487 return buf, nil 488 } 489 // Could be EIP-8 format, try that. 490 prefix := buf[:2] 491 size := binary.BigEndian.Uint16(prefix) 492 if size < uint16(plainSize) { 493 return buf, fmt.Errorf("size underflow, need at least %d bytes", plainSize) 494 } 495 buf = append(buf, make([]byte, size-uint16(plainSize)+2)...) 496 if _, err := io.ReadFull(r, buf[plainSize:]); err != nil { 497 return buf, err 498 } 499 dec, err := key.Decrypt(buf[2:], nil, prefix) 500 if err != nil { 501 return buf, err 502 } 503 // Can't use rlp.DecodeBytes here because it rejects 504 // trailing data (forward-compatibility). 505 s := rlp.NewStream(bytes.NewReader(dec), 0) 506 return buf, s.Decode(msg) 507 } 508 509 // importPublicKey unmarshals 512 bit public keys. 510 func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) { 511 var pubKey65 []byte 512 switch len(pubKey) { 513 case 64: 514 // add 'uncompressed key' flag 515 pubKey65 = append([]byte{0x04}, pubKey...) 516 case 65: 517 pubKey65 = pubKey 518 default: 519 return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey)) 520 } 521 // TODO: fewer pointless conversions 522 pub, err := crypto.UnmarshalPubkey(pubKey65) 523 if err != nil { 524 return nil, err 525 } 526 return ecies.ImportECDSAPublic(pub), nil 527 } 528 529 func exportPubkey(pub *ecies.PublicKey) []byte { 530 if pub == nil { 531 panic("nil pubkey") 532 } 533 return elliptic.Marshal(pub.Curve, pub.X, pub.Y)[1:] 534 } 535 536 func xor(one, other []byte) (xor []byte) { 537 xor = make([]byte, len(one)) 538 for i := 0; i < len(one); i++ { 539 xor[i] = one[i] ^ other[i] 540 } 541 return xor 542 } 543 544 var ( 545 // this is used in place of actual frame header data. 546 // TODO: replace this when Msg contains the protocol type code. 547 zeroHeader = []byte{0xC2, 0x80, 0x80} 548 // sixteen zero bytes 549 zero16 = make([]byte, 16) 550 ) 551 552 // rlpxFrameRW implements a simplified version of RLPx framing. 553 // chunked messages are not supported and all headers are equal to 554 // zeroHeader. 555 // 556 // rlpxFrameRW is not safe for concurrent use from multiple goroutines. 557 type rlpxFrameRW struct { 558 conn io.ReadWriter 559 enc cipher.Stream 560 dec cipher.Stream 561 562 macCipher cipher.Block 563 egressMAC hash.Hash 564 ingressMAC hash.Hash 565 566 snappy bool 567 } 568 569 func newRLPXFrameRW(conn io.ReadWriter, s secrets) *rlpxFrameRW { 570 macc, err := aes.NewCipher(s.MAC) 571 if err != nil { 572 panic("invalid MAC secret: " + err.Error()) 573 } 574 encc, err := aes.NewCipher(s.AES) 575 if err != nil { 576 panic("invalid AES secret: " + err.Error()) 577 } 578 // we use an all-zeroes IV for AES because the key used 579 // for encryption is ephemeral. 580 iv := make([]byte, encc.BlockSize()) 581 return &rlpxFrameRW{ 582 conn: conn, 583 enc: cipher.NewCTR(encc, iv), 584 dec: cipher.NewCTR(encc, iv), 585 macCipher: macc, 586 egressMAC: s.EgressMAC, 587 ingressMAC: s.IngressMAC, 588 } 589 } 590 591 func (rw *rlpxFrameRW) WriteMsg(msg Msg) error { 592 ptype, _ := rlp.EncodeToBytes(msg.Code) 593 594 // if snappy is enabled, compress message now 595 if rw.snappy { 596 if msg.Size > maxUint24 { 597 return errPlainMessageTooLarge 598 } 599 payload, _ := ioutil.ReadAll(msg.Payload) 600 payload = snappy.Encode(nil, payload) 601 602 msg.Payload = bytes.NewReader(payload) 603 msg.Size = uint32(len(payload)) 604 } 605 // write header 606 headbuf := make([]byte, 32) 607 fsize := uint32(len(ptype)) + msg.Size 608 if fsize > maxUint24 { 609 return errors.New("message size overflows uint24") 610 } 611 putInt24(fsize, headbuf) // TODO: check overflow 612 copy(headbuf[3:], zeroHeader) 613 rw.enc.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now encrypted 614 615 // write header MAC 616 copy(headbuf[16:], updateMAC(rw.egressMAC, rw.macCipher, headbuf[:16])) 617 if _, err := rw.conn.Write(headbuf); err != nil { 618 return err 619 } 620 621 // write encrypted frame, updating the egress MAC hash with 622 // the data written to conn. 623 tee := cipher.StreamWriter{S: rw.enc, W: io.MultiWriter(rw.conn, rw.egressMAC)} 624 if _, err := tee.Write(ptype); err != nil { 625 return err 626 } 627 if _, err := io.Copy(tee, msg.Payload); err != nil { 628 return err 629 } 630 if padding := fsize % 16; padding > 0 { 631 if _, err := tee.Write(zero16[:16-padding]); err != nil { 632 return err 633 } 634 } 635 636 // write frame MAC. egress MAC hash is up to date because 637 // frame content was written to it as well. 638 fmacseed := rw.egressMAC.Sum(nil) 639 mac := updateMAC(rw.egressMAC, rw.macCipher, fmacseed) 640 _, err := rw.conn.Write(mac) 641 return err 642 } 643 644 func (rw *rlpxFrameRW) ReadMsg() (msg Msg, err error) { 645 // read the header 646 headbuf := make([]byte, 32) 647 if _, err := io.ReadFull(rw.conn, headbuf); err != nil { 648 return msg, err 649 } 650 // verify header mac 651 shouldMAC := updateMAC(rw.ingressMAC, rw.macCipher, headbuf[:16]) 652 if !hmac.Equal(shouldMAC, headbuf[16:]) { 653 return msg, errors.New("bad header MAC") 654 } 655 rw.dec.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now decrypted 656 fsize := readInt24(headbuf) 657 // ignore protocol type for now 658 659 // read the frame content 660 var rsize = fsize // frame size rounded up to 16 byte boundary 661 if padding := fsize % 16; padding > 0 { 662 rsize += 16 - padding 663 } 664 framebuf := make([]byte, rsize) 665 if _, err := io.ReadFull(rw.conn, framebuf); err != nil { 666 return msg, err 667 } 668 669 // read and validate frame MAC. we can re-use headbuf for that. 670 rw.ingressMAC.Write(framebuf) 671 fmacseed := rw.ingressMAC.Sum(nil) 672 if _, err := io.ReadFull(rw.conn, headbuf[:16]); err != nil { 673 return msg, err 674 } 675 shouldMAC = updateMAC(rw.ingressMAC, rw.macCipher, fmacseed) 676 if !hmac.Equal(shouldMAC, headbuf[:16]) { 677 return msg, errors.New("bad frame MAC") 678 } 679 680 // decrypt frame content 681 rw.dec.XORKeyStream(framebuf, framebuf) 682 683 // decode message code 684 content := bytes.NewReader(framebuf[:fsize]) 685 if err := rlp.Decode(content, &msg.Code); err != nil { 686 return msg, err 687 } 688 msg.Size = uint32(content.Len()) 689 msg.Payload = content 690 691 // if snappy is enabled, verify and decompress message 692 if rw.snappy { 693 payload, err := ioutil.ReadAll(msg.Payload) 694 if err != nil { 695 return msg, err 696 } 697 size, err := snappy.DecodedLen(payload) 698 if err != nil { 699 return msg, err 700 } 701 if size > int(maxUint24) { 702 return msg, errPlainMessageTooLarge 703 } 704 payload, err = snappy.Decode(nil, payload) 705 if err != nil { 706 return msg, err 707 } 708 msg.Size, msg.Payload = uint32(size), bytes.NewReader(payload) 709 } 710 return msg, nil 711 } 712 713 // updateMAC reseeds the given hash with encrypted seed. 714 // it returns the first 16 bytes of the hash sum after seeding. 715 func updateMAC(mac hash.Hash, block cipher.Block, seed []byte) []byte { 716 aesbuf := make([]byte, aes.BlockSize) 717 block.Encrypt(aesbuf, mac.Sum(nil)) 718 for i := range aesbuf { 719 aesbuf[i] ^= seed[i] 720 } 721 mac.Write(aesbuf) 722 return mac.Sum(nil)[:16] 723 } 724 725 func readInt24(b []byte) uint32 { 726 return uint32(b[2]) | uint32(b[1])<<8 | uint32(b[0])<<16 727 } 728 729 func putInt24(v uint32, b []byte) { 730 b[0] = byte(v >> 16) 731 b[1] = byte(v >> 8) 732 b[2] = byte(v) 733 }