github.com/x04/go/src@v0.0.0-20200202162449-3d481ceb3525/crypto/tls/conn.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // TLS low level connection and record layer
     6  
     7  package tls
     8  
     9  import (
    10  	"github.com/x04/go/src/bytes"
    11  	"github.com/x04/go/src/crypto/cipher"
    12  	"github.com/x04/go/src/crypto/subtle"
    13  	"github.com/x04/go/src/crypto/x509"
    14  	"github.com/x04/go/src/errors"
    15  	"github.com/x04/go/src/fmt"
    16  	"github.com/x04/go/src/io"
    17  	"github.com/x04/go/src/net"
    18  	"github.com/x04/go/src/sync"
    19  	"github.com/x04/go/src/sync/atomic"
    20  	"github.com/x04/go/src/time"
    21  )
    22  
    23  // A Conn represents a secured connection.
    24  // It implements the net.Conn interface.
    25  type Conn struct {
    26  	// constant
    27  	conn		net.Conn
    28  	isClient	bool
    29  
    30  	// handshakeStatus is 1 if the connection is currently transferring
    31  	// application data (i.e. is not currently processing a handshake).
    32  	// This field is only to be accessed with sync/atomic.
    33  	handshakeStatus	uint32
    34  	// constant after handshake; protected by handshakeMutex
    35  	handshakeMutex	sync.Mutex
    36  	handshakeErr	error	// error resulting from handshake
    37  	vers		uint16	// TLS version
    38  	haveVers	bool	// version has been negotiated
    39  	config		*Config	// configuration passed to constructor
    40  	// handshakes counts the number of handshakes performed on the
    41  	// connection so far. If renegotiation is disabled then this is either
    42  	// zero or one.
    43  	handshakes		int
    44  	didResume		bool	// whether this connection was a session resumption
    45  	cipherSuite		uint16
    46  	ocspResponse		[]byte		// stapled OCSP response
    47  	scts			[][]byte	// signed certificate timestamps from server
    48  	peerCertificates	[]*x509.Certificate
    49  	// verifiedChains contains the certificate chains that we built, as
    50  	// opposed to the ones presented by the server.
    51  	verifiedChains	[][]*x509.Certificate
    52  	// serverName contains the server name indicated by the client, if any.
    53  	serverName	string
    54  	// secureRenegotiation is true if the server echoed the secure
    55  	// renegotiation extension. (This is meaningless as a server because
    56  	// renegotiation is not supported in that case.)
    57  	secureRenegotiation	bool
    58  	// ekm is a closure for exporting keying material.
    59  	ekm	func(label string, context []byte, length int) ([]byte, error)
    60  	// resumptionSecret is the resumption_master_secret for handling
    61  	// NewSessionTicket messages. nil if config.SessionTicketsDisabled.
    62  	resumptionSecret	[]byte
    63  
    64  	// clientFinishedIsFirst is true if the client sent the first Finished
    65  	// message during the most recent handshake. This is recorded because
    66  	// the first transmitted Finished message is the tls-unique
    67  	// channel-binding value.
    68  	clientFinishedIsFirst	bool
    69  
    70  	// closeNotifyErr is any error from sending the alertCloseNotify record.
    71  	closeNotifyErr	error
    72  	// closeNotifySent is true if the Conn attempted to send an
    73  	// alertCloseNotify record.
    74  	closeNotifySent	bool
    75  
    76  	// clientFinished and serverFinished contain the Finished message sent
    77  	// by the client or server in the most recent handshake. This is
    78  	// retained to support the renegotiation extension and tls-unique
    79  	// channel-binding.
    80  	clientFinished	[12]byte
    81  	serverFinished	[12]byte
    82  
    83  	clientProtocol		string
    84  	clientProtocolFallback	bool
    85  
    86  	// input/output
    87  	in, out		halfConn
    88  	rawInput	bytes.Buffer	// raw input, starting with a record header
    89  	input		bytes.Reader	// application data waiting to be read, from rawInput.Next
    90  	hand		bytes.Buffer	// handshake data waiting to be read
    91  	outBuf		[]byte		// scratch buffer used by out.encrypt
    92  	buffering	bool		// whether records are buffered in sendBuf
    93  	sendBuf		[]byte		// a buffer of records waiting to be sent
    94  
    95  	// bytesSent counts the bytes of application data sent.
    96  	// packetsSent counts packets.
    97  	bytesSent	int64
    98  	packetsSent	int64
    99  
   100  	// retryCount counts the number of consecutive non-advancing records
   101  	// received by Conn.readRecord. That is, records that neither advance the
   102  	// handshake, nor deliver application data. Protected by in.Mutex.
   103  	retryCount	int
   104  
   105  	// activeCall is an atomic int32; the low bit is whether Close has
   106  	// been called. the rest of the bits are the number of goroutines
   107  	// in Conn.Write.
   108  	activeCall	int32
   109  
   110  	// TlsFingerprint is the TLS fingerprint for the connection formatted as a JA3 fingerprint.
   111  	// https://github.com/salesforce/ja3, https://ja3er.com/
   112  	TlsFingerprint	string
   113  
   114  	tmp	[16]byte
   115  }
   116  
   117  // Access to net.Conn methods.
   118  // Cannot just embed net.Conn because that would
   119  // export the struct field too.
   120  
   121  // LocalAddr returns the local network address.
   122  func (c *Conn) LocalAddr() net.Addr {
   123  	return c.conn.LocalAddr()
   124  }
   125  
   126  // RemoteAddr returns the remote network address.
   127  func (c *Conn) RemoteAddr() net.Addr {
   128  	return c.conn.RemoteAddr()
   129  }
   130  
   131  // SetDeadline sets the read and write deadlines associated with the connection.
   132  // A zero value for t means Read and Write will not time out.
   133  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
   134  func (c *Conn) SetDeadline(t time.Time) error {
   135  	return c.conn.SetDeadline(t)
   136  }
   137  
   138  // SetReadDeadline sets the read deadline on the underlying connection.
   139  // A zero value for t means Read will not time out.
   140  func (c *Conn) SetReadDeadline(t time.Time) error {
   141  	return c.conn.SetReadDeadline(t)
   142  }
   143  
   144  // SetWriteDeadline sets the write deadline on the underlying connection.
   145  // A zero value for t means Write will not time out.
   146  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
   147  func (c *Conn) SetWriteDeadline(t time.Time) error {
   148  	return c.conn.SetWriteDeadline(t)
   149  }
   150  
   151  // A halfConn represents one direction of the record layer
   152  // connection, either sending or receiving.
   153  type halfConn struct {
   154  	sync.Mutex
   155  
   156  	err		error		// first permanent error
   157  	version		uint16		// protocol version
   158  	cipher		interface{}	// cipher algorithm
   159  	mac		macFunction
   160  	seq		[8]byte		// 64-bit sequence number
   161  	additionalData	[13]byte	// to avoid allocs; interface method args escape
   162  
   163  	nextCipher	interface{}	// next encryption state
   164  	nextMac		macFunction	// next MAC algorithm
   165  
   166  	trafficSecret	[]byte	// current TLS 1.3 traffic secret
   167  }
   168  
   169  func (hc *halfConn) setErrorLocked(err error) error {
   170  	hc.err = err
   171  	return err
   172  }
   173  
   174  // prepareCipherSpec sets the encryption and MAC states
   175  // that a subsequent changeCipherSpec will use.
   176  func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) {
   177  	hc.version = version
   178  	hc.nextCipher = cipher
   179  	hc.nextMac = mac
   180  }
   181  
   182  // changeCipherSpec changes the encryption and MAC states
   183  // to the ones previously passed to prepareCipherSpec.
   184  func (hc *halfConn) changeCipherSpec() error {
   185  	if hc.nextCipher == nil || hc.version == VersionTLS13 {
   186  		return alertInternalError
   187  	}
   188  	hc.cipher = hc.nextCipher
   189  	hc.mac = hc.nextMac
   190  	hc.nextCipher = nil
   191  	hc.nextMac = nil
   192  	for i := range hc.seq {
   193  		hc.seq[i] = 0
   194  	}
   195  	return nil
   196  }
   197  
   198  func (hc *halfConn) setTrafficSecret(suite *cipherSuiteTLS13, secret []byte) {
   199  	hc.trafficSecret = secret
   200  	key, iv := suite.trafficKey(secret)
   201  	hc.cipher = suite.aead(key, iv)
   202  	for i := range hc.seq {
   203  		hc.seq[i] = 0
   204  	}
   205  }
   206  
   207  // incSeq increments the sequence number.
   208  func (hc *halfConn) incSeq() {
   209  	for i := 7; i >= 0; i-- {
   210  		hc.seq[i]++
   211  		if hc.seq[i] != 0 {
   212  			return
   213  		}
   214  	}
   215  
   216  	// Not allowed to let sequence number wrap.
   217  	// Instead, must renegotiate before it does.
   218  	// Not likely enough to bother.
   219  	panic("TLS: sequence number wraparound")
   220  }
   221  
   222  // explicitNonceLen returns the number of bytes of explicit nonce or IV included
   223  // in each record. Explicit nonces are present only in CBC modes after TLS 1.0
   224  // and in certain AEAD modes in TLS 1.2.
   225  func (hc *halfConn) explicitNonceLen() int {
   226  	if hc.cipher == nil {
   227  		return 0
   228  	}
   229  
   230  	switch c := hc.cipher.(type) {
   231  	case cipher.Stream:
   232  		return 0
   233  	case aead:
   234  		return c.explicitNonceLen()
   235  	case cbcMode:
   236  		// TLS 1.1 introduced a per-record explicit IV to fix the BEAST attack.
   237  		if hc.version >= VersionTLS11 {
   238  			return c.BlockSize()
   239  		}
   240  		return 0
   241  	default:
   242  		panic("unknown cipher type")
   243  	}
   244  }
   245  
   246  // extractPadding returns, in constant time, the length of the padding to remove
   247  // from the end of payload. It also returns a byte which is equal to 255 if the
   248  // padding was valid and 0 otherwise. See RFC 2246, Section 6.2.3.2.
   249  func extractPadding(payload []byte) (toRemove int, good byte) {
   250  	if len(payload) < 1 {
   251  		return 0, 0
   252  	}
   253  
   254  	paddingLen := payload[len(payload)-1]
   255  	t := uint(len(payload)-1) - uint(paddingLen)
   256  	// if len(payload) >= (paddingLen - 1) then the MSB of t is zero
   257  	good = byte(int32(^t) >> 31)
   258  
   259  	// The maximum possible padding length plus the actual length field
   260  	toCheck := 256
   261  	// The length of the padded data is public, so we can use an if here
   262  	if toCheck > len(payload) {
   263  		toCheck = len(payload)
   264  	}
   265  
   266  	for i := 0; i < toCheck; i++ {
   267  		t := uint(paddingLen) - uint(i)
   268  		// if i <= paddingLen then the MSB of t is zero
   269  		mask := byte(int32(^t) >> 31)
   270  		b := payload[len(payload)-1-i]
   271  		good &^= mask&paddingLen ^ mask&b
   272  	}
   273  
   274  	// We AND together the bits of good and replicate the result across
   275  	// all the bits.
   276  	good &= good << 4
   277  	good &= good << 2
   278  	good &= good << 1
   279  	good = uint8(int8(good) >> 7)
   280  
   281  	// Zero the padding length on error. This ensures any unchecked bytes
   282  	// are included in the MAC. Otherwise, an attacker that could
   283  	// distinguish MAC failures from padding failures could mount an attack
   284  	// similar to POODLE in SSL 3.0: given a good ciphertext that uses a
   285  	// full block's worth of padding, replace the final block with another
   286  	// block. If the MAC check passed but the padding check failed, the
   287  	// last byte of that block decrypted to the block size.
   288  	//
   289  	// See also macAndPaddingGood logic below.
   290  	paddingLen &= good
   291  
   292  	toRemove = int(paddingLen) + 1
   293  	return
   294  }
   295  
   296  func roundUp(a, b int) int {
   297  	return a + (b-a%b)%b
   298  }
   299  
   300  // cbcMode is an interface for block ciphers using cipher block chaining.
   301  type cbcMode interface {
   302  	cipher.BlockMode
   303  	SetIV([]byte)
   304  }
   305  
   306  // decrypt authenticates and decrypts the record if protection is active at
   307  // this stage. The returned plaintext might overlap with the input.
   308  func (hc *halfConn) decrypt(record []byte) ([]byte, recordType, error) {
   309  	var plaintext []byte
   310  	typ := recordType(record[0])
   311  	payload := record[recordHeaderLen:]
   312  
   313  	// In TLS 1.3, change_cipher_spec messages are to be ignored without being
   314  	// decrypted. See RFC 8446, Appendix D.4.
   315  	if hc.version == VersionTLS13 && typ == recordTypeChangeCipherSpec {
   316  		return payload, typ, nil
   317  	}
   318  
   319  	paddingGood := byte(255)
   320  	paddingLen := 0
   321  
   322  	explicitNonceLen := hc.explicitNonceLen()
   323  
   324  	if hc.cipher != nil {
   325  		switch c := hc.cipher.(type) {
   326  		case cipher.Stream:
   327  			c.XORKeyStream(payload, payload)
   328  		case aead:
   329  			if len(payload) < explicitNonceLen {
   330  				return nil, 0, alertBadRecordMAC
   331  			}
   332  			nonce := payload[:explicitNonceLen]
   333  			if len(nonce) == 0 {
   334  				nonce = hc.seq[:]
   335  			}
   336  			payload = payload[explicitNonceLen:]
   337  
   338  			additionalData := hc.additionalData[:]
   339  			if hc.version == VersionTLS13 {
   340  				additionalData = record[:recordHeaderLen]
   341  			} else {
   342  				copy(additionalData, hc.seq[:])
   343  				copy(additionalData[8:], record[:3])
   344  				n := len(payload) - c.Overhead()
   345  				additionalData[11] = byte(n >> 8)
   346  				additionalData[12] = byte(n)
   347  			}
   348  
   349  			var err error
   350  			plaintext, err = c.Open(payload[:0], nonce, payload, additionalData)
   351  			if err != nil {
   352  				return nil, 0, alertBadRecordMAC
   353  			}
   354  		case cbcMode:
   355  			blockSize := c.BlockSize()
   356  			minPayload := explicitNonceLen + roundUp(hc.mac.Size()+1, blockSize)
   357  			if len(payload)%blockSize != 0 || len(payload) < minPayload {
   358  				return nil, 0, alertBadRecordMAC
   359  			}
   360  
   361  			if explicitNonceLen > 0 {
   362  				c.SetIV(payload[:explicitNonceLen])
   363  				payload = payload[explicitNonceLen:]
   364  			}
   365  			c.CryptBlocks(payload, payload)
   366  
   367  			// In a limited attempt to protect against CBC padding oracles like
   368  			// Lucky13, the data past paddingLen (which is secret) is passed to
   369  			// the MAC function as extra data, to be fed into the HMAC after
   370  			// computing the digest. This makes the MAC roughly constant time as
   371  			// long as the digest computation is constant time and does not
   372  			// affect the subsequent write, modulo cache effects.
   373  			paddingLen, paddingGood = extractPadding(payload)
   374  		default:
   375  			panic("unknown cipher type")
   376  		}
   377  
   378  		if hc.version == VersionTLS13 {
   379  			if typ != recordTypeApplicationData {
   380  				return nil, 0, alertUnexpectedMessage
   381  			}
   382  			if len(plaintext) > maxPlaintext+1 {
   383  				return nil, 0, alertRecordOverflow
   384  			}
   385  			// Remove padding and find the ContentType scanning from the end.
   386  			for i := len(plaintext) - 1; i >= 0; i-- {
   387  				if plaintext[i] != 0 {
   388  					typ = recordType(plaintext[i])
   389  					plaintext = plaintext[:i]
   390  					break
   391  				}
   392  				if i == 0 {
   393  					return nil, 0, alertUnexpectedMessage
   394  				}
   395  			}
   396  		}
   397  	} else {
   398  		plaintext = payload
   399  	}
   400  
   401  	if hc.mac != nil {
   402  		macSize := hc.mac.Size()
   403  		if len(payload) < macSize {
   404  			return nil, 0, alertBadRecordMAC
   405  		}
   406  
   407  		n := len(payload) - macSize - paddingLen
   408  		n = subtle.ConstantTimeSelect(int(uint32(n)>>31), 0, n)	// if n < 0 { n = 0 }
   409  		record[3] = byte(n >> 8)
   410  		record[4] = byte(n)
   411  		remoteMAC := payload[n : n+macSize]
   412  		localMAC := hc.mac.MAC(hc.seq[0:], record[:recordHeaderLen], payload[:n], payload[n+macSize:])
   413  
   414  		// This is equivalent to checking the MACs and paddingGood
   415  		// separately, but in constant-time to prevent distinguishing
   416  		// padding failures from MAC failures. Depending on what value
   417  		// of paddingLen was returned on bad padding, distinguishing
   418  		// bad MAC from bad padding can lead to an attack.
   419  		//
   420  		// See also the logic at the end of extractPadding.
   421  		macAndPaddingGood := subtle.ConstantTimeCompare(localMAC, remoteMAC) & int(paddingGood)
   422  		if macAndPaddingGood != 1 {
   423  			return nil, 0, alertBadRecordMAC
   424  		}
   425  
   426  		plaintext = payload[:n]
   427  	}
   428  
   429  	hc.incSeq()
   430  	return plaintext, typ, nil
   431  }
   432  
   433  // sliceForAppend extends the input slice by n bytes. head is the full extended
   434  // slice, while tail is the appended part. If the original slice has sufficient
   435  // capacity no allocation is performed.
   436  func sliceForAppend(in []byte, n int) (head, tail []byte) {
   437  	if total := len(in) + n; cap(in) >= total {
   438  		head = in[:total]
   439  	} else {
   440  		head = make([]byte, total)
   441  		copy(head, in)
   442  	}
   443  	tail = head[len(in):]
   444  	return
   445  }
   446  
   447  // encrypt encrypts payload, adding the appropriate nonce and/or MAC, and
   448  // appends it to record, which contains the record header.
   449  func (hc *halfConn) encrypt(record, payload []byte, rand io.Reader) ([]byte, error) {
   450  	if hc.cipher == nil {
   451  		return append(record, payload...), nil
   452  	}
   453  
   454  	var explicitNonce []byte
   455  	if explicitNonceLen := hc.explicitNonceLen(); explicitNonceLen > 0 {
   456  		record, explicitNonce = sliceForAppend(record, explicitNonceLen)
   457  		if _, isCBC := hc.cipher.(cbcMode); !isCBC && explicitNonceLen < 16 {
   458  			// The AES-GCM construction in TLS has an explicit nonce so that the
   459  			// nonce can be random. However, the nonce is only 8 bytes which is
   460  			// too small for a secure, random nonce. Therefore we use the
   461  			// sequence number as the nonce. The 3DES-CBC construction also has
   462  			// an 8 bytes nonce but its nonces must be unpredictable (see RFC
   463  			// 5246, Appendix F.3), forcing us to use randomness. That's not
   464  			// 3DES' biggest problem anyway because the birthday bound on block
   465  			// collision is reached first due to its simlarly small block size
   466  			// (see the Sweet32 attack).
   467  			copy(explicitNonce, hc.seq[:])
   468  		} else {
   469  			if _, err := io.ReadFull(rand, explicitNonce); err != nil {
   470  				return nil, err
   471  			}
   472  		}
   473  	}
   474  
   475  	var mac []byte
   476  	if hc.mac != nil {
   477  		mac = hc.mac.MAC(hc.seq[:], record[:recordHeaderLen], payload, nil)
   478  	}
   479  
   480  	var dst []byte
   481  	switch c := hc.cipher.(type) {
   482  	case cipher.Stream:
   483  		record, dst = sliceForAppend(record, len(payload)+len(mac))
   484  		c.XORKeyStream(dst[:len(payload)], payload)
   485  		c.XORKeyStream(dst[len(payload):], mac)
   486  	case aead:
   487  		nonce := explicitNonce
   488  		if len(nonce) == 0 {
   489  			nonce = hc.seq[:]
   490  		}
   491  
   492  		if hc.version == VersionTLS13 {
   493  			record = append(record, payload...)
   494  
   495  			// Encrypt the actual ContentType and replace the plaintext one.
   496  			record = append(record, record[0])
   497  			record[0] = byte(recordTypeApplicationData)
   498  
   499  			n := len(payload) + 1 + c.Overhead()
   500  			record[3] = byte(n >> 8)
   501  			record[4] = byte(n)
   502  
   503  			record = c.Seal(record[:recordHeaderLen],
   504  				nonce, record[recordHeaderLen:], record[:recordHeaderLen])
   505  		} else {
   506  			copy(hc.additionalData[:], hc.seq[:])
   507  			copy(hc.additionalData[8:], record)
   508  			record = c.Seal(record, nonce, payload, hc.additionalData[:])
   509  		}
   510  	case cbcMode:
   511  		blockSize := c.BlockSize()
   512  		plaintextLen := len(payload) + len(mac)
   513  		paddingLen := blockSize - plaintextLen%blockSize
   514  		record, dst = sliceForAppend(record, plaintextLen+paddingLen)
   515  		copy(dst, payload)
   516  		copy(dst[len(payload):], mac)
   517  		for i := plaintextLen; i < len(dst); i++ {
   518  			dst[i] = byte(paddingLen - 1)
   519  		}
   520  		if len(explicitNonce) > 0 {
   521  			c.SetIV(explicitNonce)
   522  		}
   523  		c.CryptBlocks(dst, dst)
   524  	default:
   525  		panic("unknown cipher type")
   526  	}
   527  
   528  	// Update length to include nonce, MAC and any block padding needed.
   529  	n := len(record) - recordHeaderLen
   530  	record[3] = byte(n >> 8)
   531  	record[4] = byte(n)
   532  	hc.incSeq()
   533  
   534  	return record, nil
   535  }
   536  
   537  // RecordHeaderError is returned when a TLS record header is invalid.
   538  type RecordHeaderError struct {
   539  	// Msg contains a human readable string that describes the error.
   540  	Msg	string
   541  	// RecordHeader contains the five bytes of TLS record header that
   542  	// triggered the error.
   543  	RecordHeader	[5]byte
   544  	// Conn provides the underlying net.Conn in the case that a client
   545  	// sent an initial handshake that didn't look like TLS.
   546  	// It is nil if there's already been a handshake or a TLS alert has
   547  	// been written to the connection.
   548  	Conn	net.Conn
   549  }
   550  
   551  func (e RecordHeaderError) Error() string	{ return "tls: " + e.Msg }
   552  
   553  func (c *Conn) newRecordHeaderError(conn net.Conn, msg string) (err RecordHeaderError) {
   554  	err.Msg = msg
   555  	err.Conn = conn
   556  	copy(err.RecordHeader[:], c.rawInput.Bytes())
   557  	return err
   558  }
   559  
   560  func (c *Conn) readRecord() error {
   561  	return c.readRecordOrCCS(false)
   562  }
   563  
   564  func (c *Conn) readChangeCipherSpec() error {
   565  	return c.readRecordOrCCS(true)
   566  }
   567  
   568  // readRecordOrCCS reads one or more TLS records from the connection and
   569  // updates the record layer state. Some invariants:
   570  //   * c.in must be locked
   571  //   * c.input must be empty
   572  // During the handshake one and only one of the following will happen:
   573  //   - c.hand grows
   574  //   - c.in.changeCipherSpec is called
   575  //   - an error is returned
   576  // After the handshake one and only one of the following will happen:
   577  //   - c.hand grows
   578  //   - c.input is set
   579  //   - an error is returned
   580  func (c *Conn) readRecordOrCCS(expectChangeCipherSpec bool) error {
   581  	if c.in.err != nil {
   582  		return c.in.err
   583  	}
   584  	handshakeComplete := c.handshakeComplete()
   585  
   586  	// This function modifies c.rawInput, which owns the c.input memory.
   587  	if c.input.Len() != 0 {
   588  		return c.in.setErrorLocked(errors.New("tls: internal error: attempted to read record with pending application data"))
   589  	}
   590  	c.input.Reset(nil)
   591  
   592  	// Read header, payload.
   593  	if err := c.readFromUntil(c.conn, recordHeaderLen); err != nil {
   594  		// RFC 8446, Section 6.1 suggests that EOF without an alertCloseNotify
   595  		// is an error, but popular web sites seem to do this, so we accept it
   596  		// if and only if at the record boundary.
   597  		if err == io.ErrUnexpectedEOF && c.rawInput.Len() == 0 {
   598  			err = io.EOF
   599  		}
   600  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   601  			c.in.setErrorLocked(err)
   602  		}
   603  		return err
   604  	}
   605  	hdr := c.rawInput.Bytes()[:recordHeaderLen]
   606  	typ := recordType(hdr[0])
   607  
   608  	// No valid TLS record has a type of 0x80, however SSLv2 handshakes
   609  	// start with a uint16 length where the MSB is set and the first record
   610  	// is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
   611  	// an SSLv2 client.
   612  	if !handshakeComplete && typ == 0x80 {
   613  		c.sendAlert(alertProtocolVersion)
   614  		return c.in.setErrorLocked(c.newRecordHeaderError(nil, "unsupported SSLv2 handshake received"))
   615  	}
   616  
   617  	vers := uint16(hdr[1])<<8 | uint16(hdr[2])
   618  	n := int(hdr[3])<<8 | int(hdr[4])
   619  	if c.haveVers && c.vers != VersionTLS13 && vers != c.vers {
   620  		c.sendAlert(alertProtocolVersion)
   621  		msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, c.vers)
   622  		return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg))
   623  	}
   624  	if !c.haveVers {
   625  		// First message, be extra suspicious: this might not be a TLS
   626  		// client. Bail out before reading a full 'body', if possible.
   627  		// The current max version is 3.3 so if the version is >= 16.0,
   628  		// it's probably not real.
   629  		if (typ != recordTypeAlert && typ != recordTypeHandshake) || vers >= 0x1000 {
   630  			return c.in.setErrorLocked(c.newRecordHeaderError(c.conn, "first record does not look like a TLS handshake"))
   631  		}
   632  	}
   633  	if c.vers == VersionTLS13 && n > maxCiphertextTLS13 || n > maxCiphertext {
   634  		c.sendAlert(alertRecordOverflow)
   635  		msg := fmt.Sprintf("oversized record received with length %d", n)
   636  		return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg))
   637  	}
   638  	if err := c.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
   639  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   640  			c.in.setErrorLocked(err)
   641  		}
   642  		return err
   643  	}
   644  
   645  	// Process message.
   646  	record := c.rawInput.Next(recordHeaderLen + n)
   647  	data, typ, err := c.in.decrypt(record)
   648  	if err != nil {
   649  		return c.in.setErrorLocked(c.sendAlert(err.(alert)))
   650  	}
   651  	if len(data) > maxPlaintext {
   652  		return c.in.setErrorLocked(c.sendAlert(alertRecordOverflow))
   653  	}
   654  
   655  	// Application Data messages are always protected.
   656  	if c.in.cipher == nil && typ == recordTypeApplicationData {
   657  		return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   658  	}
   659  
   660  	if typ != recordTypeAlert && typ != recordTypeChangeCipherSpec && len(data) > 0 {
   661  		// This is a state-advancing message: reset the retry count.
   662  		c.retryCount = 0
   663  	}
   664  
   665  	// Handshake messages MUST NOT be interleaved with other record types in TLS 1.3.
   666  	if c.vers == VersionTLS13 && typ != recordTypeHandshake && c.hand.Len() > 0 {
   667  		return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   668  	}
   669  
   670  	switch typ {
   671  	default:
   672  		return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   673  
   674  	case recordTypeAlert:
   675  		if len(data) != 2 {
   676  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   677  		}
   678  		if alert(data[1]) == alertCloseNotify {
   679  			return c.in.setErrorLocked(io.EOF)
   680  		}
   681  		if c.vers == VersionTLS13 {
   682  			return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
   683  		}
   684  		switch data[0] {
   685  		case alertLevelWarning:
   686  			// Drop the record on the floor and retry.
   687  			return c.retryReadRecord(expectChangeCipherSpec)
   688  		case alertLevelError:
   689  			return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
   690  		default:
   691  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   692  		}
   693  
   694  	case recordTypeChangeCipherSpec:
   695  		if len(data) != 1 || data[0] != 1 {
   696  			return c.in.setErrorLocked(c.sendAlert(alertDecodeError))
   697  		}
   698  		// Handshake messages are not allowed to fragment across the CCS.
   699  		if c.hand.Len() > 0 {
   700  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   701  		}
   702  		// In TLS 1.3, change_cipher_spec records are ignored until the
   703  		// Finished. See RFC 8446, Appendix D.4. Note that according to Section
   704  		// 5, a server can send a ChangeCipherSpec before its ServerHello, when
   705  		// c.vers is still unset. That's not useful though and suspicious if the
   706  		// server then selects a lower protocol version, so don't allow that.
   707  		if c.vers == VersionTLS13 {
   708  			return c.retryReadRecord(expectChangeCipherSpec)
   709  		}
   710  		if !expectChangeCipherSpec {
   711  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   712  		}
   713  		if err := c.in.changeCipherSpec(); err != nil {
   714  			return c.in.setErrorLocked(c.sendAlert(err.(alert)))
   715  		}
   716  
   717  	case recordTypeApplicationData:
   718  		if !handshakeComplete || expectChangeCipherSpec {
   719  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   720  		}
   721  		// Some OpenSSL servers send empty records in order to randomize the
   722  		// CBC IV. Ignore a limited number of empty records.
   723  		if len(data) == 0 {
   724  			return c.retryReadRecord(expectChangeCipherSpec)
   725  		}
   726  		// Note that data is owned by c.rawInput, following the Next call above,
   727  		// to avoid copying the plaintext. This is safe because c.rawInput is
   728  		// not read from or written to until c.input is drained.
   729  		c.input.Reset(data)
   730  
   731  	case recordTypeHandshake:
   732  		if len(data) == 0 || expectChangeCipherSpec {
   733  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   734  		}
   735  		c.hand.Write(data)
   736  	}
   737  
   738  	return nil
   739  }
   740  
   741  // retryReadRecord recurses into readRecordOrCCS to drop a non-advancing record, like
   742  // a warning alert, empty application_data, or a change_cipher_spec in TLS 1.3.
   743  func (c *Conn) retryReadRecord(expectChangeCipherSpec bool) error {
   744  	c.retryCount++
   745  	if c.retryCount > maxUselessRecords {
   746  		c.sendAlert(alertUnexpectedMessage)
   747  		return c.in.setErrorLocked(errors.New("tls: too many ignored records"))
   748  	}
   749  	return c.readRecordOrCCS(expectChangeCipherSpec)
   750  }
   751  
   752  // atLeastReader reads from R, stopping with EOF once at least N bytes have been
   753  // read. It is different from an io.LimitedReader in that it doesn't cut short
   754  // the last Read call, and in that it considers an early EOF an error.
   755  type atLeastReader struct {
   756  	R	io.Reader
   757  	N	int64
   758  }
   759  
   760  func (r *atLeastReader) Read(p []byte) (int, error) {
   761  	if r.N <= 0 {
   762  		return 0, io.EOF
   763  	}
   764  	n, err := r.R.Read(p)
   765  	r.N -= int64(n)	// won't underflow unless len(p) >= n > 9223372036854775809
   766  	if r.N > 0 && err == io.EOF {
   767  		return n, io.ErrUnexpectedEOF
   768  	}
   769  	if r.N <= 0 && err == nil {
   770  		return n, io.EOF
   771  	}
   772  	return n, err
   773  }
   774  
   775  // readFromUntil reads from r into c.rawInput until c.rawInput contains
   776  // at least n bytes or else returns an error.
   777  func (c *Conn) readFromUntil(r io.Reader, n int) error {
   778  	if c.rawInput.Len() >= n {
   779  		return nil
   780  	}
   781  	needs := n - c.rawInput.Len()
   782  	// There might be extra input waiting on the wire. Make a best effort
   783  	// attempt to fetch it so that it can be used in (*Conn).Read to
   784  	// "predict" closeNotify alerts.
   785  	c.rawInput.Grow(needs + bytes.MinRead)
   786  	_, err := c.rawInput.ReadFrom(&atLeastReader{r, int64(needs)})
   787  	return err
   788  }
   789  
   790  // sendAlert sends a TLS alert message.
   791  func (c *Conn) sendAlertLocked(err alert) error {
   792  	switch err {
   793  	case alertNoRenegotiation, alertCloseNotify:
   794  		c.tmp[0] = alertLevelWarning
   795  	default:
   796  		c.tmp[0] = alertLevelError
   797  	}
   798  	c.tmp[1] = byte(err)
   799  
   800  	_, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2])
   801  	if err == alertCloseNotify {
   802  		// closeNotify is a special case in that it isn't an error.
   803  		return writeErr
   804  	}
   805  
   806  	return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
   807  }
   808  
   809  // sendAlert sends a TLS alert message.
   810  func (c *Conn) sendAlert(err alert) error {
   811  	c.out.Lock()
   812  	defer c.out.Unlock()
   813  	return c.sendAlertLocked(err)
   814  }
   815  
   816  const (
   817  	// tcpMSSEstimate is a conservative estimate of the TCP maximum segment
   818  	// size (MSS). A constant is used, rather than querying the kernel for
   819  	// the actual MSS, to avoid complexity. The value here is the IPv6
   820  	// minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40
   821  	// bytes) and a TCP header with timestamps (32 bytes).
   822  	tcpMSSEstimate	= 1208
   823  
   824  	// recordSizeBoostThreshold is the number of bytes of application data
   825  	// sent after which the TLS record size will be increased to the
   826  	// maximum.
   827  	recordSizeBoostThreshold	= 128 * 1024
   828  )
   829  
   830  // maxPayloadSizeForWrite returns the maximum TLS payload size to use for the
   831  // next application data record. There is the following trade-off:
   832  //
   833  //   - For latency-sensitive applications, such as web browsing, each TLS
   834  //     record should fit in one TCP segment.
   835  //   - For throughput-sensitive applications, such as large file transfers,
   836  //     larger TLS records better amortize framing and encryption overheads.
   837  //
   838  // A simple heuristic that works well in practice is to use small records for
   839  // the first 1MB of data, then use larger records for subsequent data, and
   840  // reset back to smaller records after the connection becomes idle. See "High
   841  // Performance Web Networking", Chapter 4, or:
   842  // https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/
   843  //
   844  // In the interests of simplicity and determinism, this code does not attempt
   845  // to reset the record size once the connection is idle, however.
   846  func (c *Conn) maxPayloadSizeForWrite(typ recordType) int {
   847  	if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData {
   848  		return maxPlaintext
   849  	}
   850  
   851  	if c.bytesSent >= recordSizeBoostThreshold {
   852  		return maxPlaintext
   853  	}
   854  
   855  	// Subtract TLS overheads to get the maximum payload size.
   856  	payloadBytes := tcpMSSEstimate - recordHeaderLen - c.out.explicitNonceLen()
   857  	if c.out.cipher != nil {
   858  		switch ciph := c.out.cipher.(type) {
   859  		case cipher.Stream:
   860  			payloadBytes -= c.out.mac.Size()
   861  		case cipher.AEAD:
   862  			payloadBytes -= ciph.Overhead()
   863  		case cbcMode:
   864  			blockSize := ciph.BlockSize()
   865  			// The payload must fit in a multiple of blockSize, with
   866  			// room for at least one padding byte.
   867  			payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1
   868  			// The MAC is appended before padding so affects the
   869  			// payload size directly.
   870  			payloadBytes -= c.out.mac.Size()
   871  		default:
   872  			panic("unknown cipher type")
   873  		}
   874  	}
   875  	if c.vers == VersionTLS13 {
   876  		payloadBytes--	// encrypted ContentType
   877  	}
   878  
   879  	// Allow packet growth in arithmetic progression up to max.
   880  	pkt := c.packetsSent
   881  	c.packetsSent++
   882  	if pkt > 1000 {
   883  		return maxPlaintext	// avoid overflow in multiply below
   884  	}
   885  
   886  	n := payloadBytes * int(pkt+1)
   887  	if n > maxPlaintext {
   888  		n = maxPlaintext
   889  	}
   890  	return n
   891  }
   892  
   893  func (c *Conn) write(data []byte) (int, error) {
   894  	if c.buffering {
   895  		c.sendBuf = append(c.sendBuf, data...)
   896  		return len(data), nil
   897  	}
   898  
   899  	n, err := c.conn.Write(data)
   900  	c.bytesSent += int64(n)
   901  	return n, err
   902  }
   903  
   904  func (c *Conn) flush() (int, error) {
   905  	if len(c.sendBuf) == 0 {
   906  		return 0, nil
   907  	}
   908  
   909  	n, err := c.conn.Write(c.sendBuf)
   910  	c.bytesSent += int64(n)
   911  	c.sendBuf = nil
   912  	c.buffering = false
   913  	return n, err
   914  }
   915  
   916  // writeRecordLocked writes a TLS record with the given type and payload to the
   917  // connection and updates the record layer state.
   918  func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) {
   919  	var n int
   920  	for len(data) > 0 {
   921  		m := len(data)
   922  		if maxPayload := c.maxPayloadSizeForWrite(typ); m > maxPayload {
   923  			m = maxPayload
   924  		}
   925  
   926  		_, c.outBuf = sliceForAppend(c.outBuf[:0], recordHeaderLen)
   927  		c.outBuf[0] = byte(typ)
   928  		vers := c.vers
   929  		if vers == 0 {
   930  			// Some TLS servers fail if the record version is
   931  			// greater than TLS 1.0 for the initial ClientHello.
   932  			vers = VersionTLS10
   933  		} else if vers == VersionTLS13 {
   934  			// TLS 1.3 froze the record layer version to 1.2.
   935  			// See RFC 8446, Section 5.1.
   936  			vers = VersionTLS12
   937  		}
   938  		c.outBuf[1] = byte(vers >> 8)
   939  		c.outBuf[2] = byte(vers)
   940  		c.outBuf[3] = byte(m >> 8)
   941  		c.outBuf[4] = byte(m)
   942  
   943  		var err error
   944  		c.outBuf, err = c.out.encrypt(c.outBuf, data[:m], c.config.rand())
   945  		if err != nil {
   946  			return n, err
   947  		}
   948  		if _, err := c.write(c.outBuf); err != nil {
   949  			return n, err
   950  		}
   951  		n += m
   952  		data = data[m:]
   953  	}
   954  
   955  	if typ == recordTypeChangeCipherSpec && c.vers != VersionTLS13 {
   956  		if err := c.out.changeCipherSpec(); err != nil {
   957  			return n, c.sendAlertLocked(err.(alert))
   958  		}
   959  	}
   960  
   961  	return n, nil
   962  }
   963  
   964  // writeRecord writes a TLS record with the given type and payload to the
   965  // connection and updates the record layer state.
   966  func (c *Conn) writeRecord(typ recordType, data []byte) (int, error) {
   967  	c.out.Lock()
   968  	defer c.out.Unlock()
   969  
   970  	return c.writeRecordLocked(typ, data)
   971  }
   972  
   973  // readHandshake reads the next handshake message from
   974  // the record layer.
   975  func (c *Conn) readHandshake() (interface{}, error) {
   976  	for c.hand.Len() < 4 {
   977  		if err := c.readRecord(); err != nil {
   978  			return nil, err
   979  		}
   980  	}
   981  
   982  	data := c.hand.Bytes()
   983  	n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
   984  	if n > maxHandshake {
   985  		c.sendAlertLocked(alertInternalError)
   986  		return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake))
   987  	}
   988  	for c.hand.Len() < 4+n {
   989  		if err := c.readRecord(); err != nil {
   990  			return nil, err
   991  		}
   992  	}
   993  	data = c.hand.Next(4 + n)
   994  	var m handshakeMessage
   995  	switch data[0] {
   996  	case typeHelloRequest:
   997  		m = new(helloRequestMsg)
   998  	case typeClientHello:
   999  		m = new(clientHelloMsg)
  1000  	case typeServerHello:
  1001  		m = new(serverHelloMsg)
  1002  	case typeNewSessionTicket:
  1003  		if c.vers == VersionTLS13 {
  1004  			m = new(newSessionTicketMsgTLS13)
  1005  		} else {
  1006  			m = new(newSessionTicketMsg)
  1007  		}
  1008  	case typeCertificate:
  1009  		if c.vers == VersionTLS13 {
  1010  			m = new(certificateMsgTLS13)
  1011  		} else {
  1012  			m = new(certificateMsg)
  1013  		}
  1014  	case typeCertificateRequest:
  1015  		if c.vers == VersionTLS13 {
  1016  			m = new(certificateRequestMsgTLS13)
  1017  		} else {
  1018  			m = &certificateRequestMsg{
  1019  				hasSignatureAlgorithm: c.vers >= VersionTLS12,
  1020  			}
  1021  		}
  1022  	case typeCertificateStatus:
  1023  		m = new(certificateStatusMsg)
  1024  	case typeServerKeyExchange:
  1025  		m = new(serverKeyExchangeMsg)
  1026  	case typeServerHelloDone:
  1027  		m = new(serverHelloDoneMsg)
  1028  	case typeClientKeyExchange:
  1029  		m = new(clientKeyExchangeMsg)
  1030  	case typeCertificateVerify:
  1031  		m = &certificateVerifyMsg{
  1032  			hasSignatureAlgorithm: c.vers >= VersionTLS12,
  1033  		}
  1034  	case typeFinished:
  1035  		m = new(finishedMsg)
  1036  	case typeEncryptedExtensions:
  1037  		m = new(encryptedExtensionsMsg)
  1038  	case typeEndOfEarlyData:
  1039  		m = new(endOfEarlyDataMsg)
  1040  	case typeKeyUpdate:
  1041  		m = new(keyUpdateMsg)
  1042  	default:
  1043  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  1044  	}
  1045  
  1046  	// The handshake message unmarshalers
  1047  	// expect to be able to keep references to data,
  1048  	// so pass in a fresh copy that won't be overwritten.
  1049  	data = append([]byte(nil), data...)
  1050  
  1051  	if !m.unmarshal(data) {
  1052  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  1053  	}
  1054  	return m, nil
  1055  }
  1056  
  1057  var (
  1058  	errClosed	= errors.New("tls: use of closed connection")
  1059  	errShutdown	= errors.New("tls: protocol is shutdown")
  1060  )
  1061  
  1062  // Write writes data to the connection.
  1063  func (c *Conn) Write(b []byte) (int, error) {
  1064  	// interlock with Close below
  1065  	for {
  1066  		x := atomic.LoadInt32(&c.activeCall)
  1067  		if x&1 != 0 {
  1068  			return 0, errClosed
  1069  		}
  1070  		if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) {
  1071  			break
  1072  		}
  1073  	}
  1074  	defer atomic.AddInt32(&c.activeCall, -2)
  1075  
  1076  	if err := c.Handshake(); err != nil {
  1077  		return 0, err
  1078  	}
  1079  
  1080  	c.out.Lock()
  1081  	defer c.out.Unlock()
  1082  
  1083  	if err := c.out.err; err != nil {
  1084  		return 0, err
  1085  	}
  1086  
  1087  	if !c.handshakeComplete() {
  1088  		return 0, alertInternalError
  1089  	}
  1090  
  1091  	if c.closeNotifySent {
  1092  		return 0, errShutdown
  1093  	}
  1094  
  1095  	// TLS 1.0 is susceptible to a chosen-plaintext
  1096  	// attack when using block mode ciphers due to predictable IVs.
  1097  	// This can be prevented by splitting each Application Data
  1098  	// record into two records, effectively randomizing the IV.
  1099  	//
  1100  	// https://www.openssl.org/~bodo/tls-cbc.txt
  1101  	// https://bugzilla.mozilla.org/show_bug.cgi?id=665814
  1102  	// https://www.imperialviolet.org/2012/01/15/beastfollowup.html
  1103  
  1104  	var m int
  1105  	if len(b) > 1 && c.vers == VersionTLS10 {
  1106  		if _, ok := c.out.cipher.(cipher.BlockMode); ok {
  1107  			n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1])
  1108  			if err != nil {
  1109  				return n, c.out.setErrorLocked(err)
  1110  			}
  1111  			m, b = 1, b[1:]
  1112  		}
  1113  	}
  1114  
  1115  	n, err := c.writeRecordLocked(recordTypeApplicationData, b)
  1116  	return n + m, c.out.setErrorLocked(err)
  1117  }
  1118  
  1119  // handleRenegotiation processes a HelloRequest handshake message.
  1120  func (c *Conn) handleRenegotiation() error {
  1121  	if c.vers == VersionTLS13 {
  1122  		return errors.New("tls: internal error: unexpected renegotiation")
  1123  	}
  1124  
  1125  	msg, err := c.readHandshake()
  1126  	if err != nil {
  1127  		return err
  1128  	}
  1129  
  1130  	helloReq, ok := msg.(*helloRequestMsg)
  1131  	if !ok {
  1132  		c.sendAlert(alertUnexpectedMessage)
  1133  		return unexpectedMessageError(helloReq, msg)
  1134  	}
  1135  
  1136  	if !c.isClient {
  1137  		return c.sendAlert(alertNoRenegotiation)
  1138  	}
  1139  
  1140  	switch c.config.Renegotiation {
  1141  	case RenegotiateNever:
  1142  		return c.sendAlert(alertNoRenegotiation)
  1143  	case RenegotiateOnceAsClient:
  1144  		if c.handshakes > 1 {
  1145  			return c.sendAlert(alertNoRenegotiation)
  1146  		}
  1147  	case RenegotiateFreelyAsClient:
  1148  		// Ok.
  1149  	default:
  1150  		c.sendAlert(alertInternalError)
  1151  		return errors.New("tls: unknown Renegotiation value")
  1152  	}
  1153  
  1154  	c.handshakeMutex.Lock()
  1155  	defer c.handshakeMutex.Unlock()
  1156  
  1157  	atomic.StoreUint32(&c.handshakeStatus, 0)
  1158  	if c.handshakeErr = c.clientHandshake(); c.handshakeErr == nil {
  1159  		c.handshakes++
  1160  	}
  1161  	return c.handshakeErr
  1162  }
  1163  
  1164  // handlePostHandshakeMessage processes a handshake message arrived after the
  1165  // handshake is complete. Up to TLS 1.2, it indicates the start of a renegotiation.
  1166  func (c *Conn) handlePostHandshakeMessage() error {
  1167  	if c.vers != VersionTLS13 {
  1168  		return c.handleRenegotiation()
  1169  	}
  1170  
  1171  	msg, err := c.readHandshake()
  1172  	if err != nil {
  1173  		return err
  1174  	}
  1175  
  1176  	c.retryCount++
  1177  	if c.retryCount > maxUselessRecords {
  1178  		c.sendAlert(alertUnexpectedMessage)
  1179  		return c.in.setErrorLocked(errors.New("tls: too many non-advancing records"))
  1180  	}
  1181  
  1182  	switch msg := msg.(type) {
  1183  	case *newSessionTicketMsgTLS13:
  1184  		return c.handleNewSessionTicket(msg)
  1185  	case *keyUpdateMsg:
  1186  		return c.handleKeyUpdate(msg)
  1187  	default:
  1188  		c.sendAlert(alertUnexpectedMessage)
  1189  		return fmt.Errorf("tls: received unexpected handshake message of type %T", msg)
  1190  	}
  1191  }
  1192  
  1193  func (c *Conn) handleKeyUpdate(keyUpdate *keyUpdateMsg) error {
  1194  	cipherSuite := cipherSuiteTLS13ByID(c.cipherSuite)
  1195  	if cipherSuite == nil {
  1196  		return c.in.setErrorLocked(c.sendAlert(alertInternalError))
  1197  	}
  1198  
  1199  	newSecret := cipherSuite.nextTrafficSecret(c.in.trafficSecret)
  1200  	c.in.setTrafficSecret(cipherSuite, newSecret)
  1201  
  1202  	if keyUpdate.updateRequested {
  1203  		c.out.Lock()
  1204  		defer c.out.Unlock()
  1205  
  1206  		msg := &keyUpdateMsg{}
  1207  		_, err := c.writeRecordLocked(recordTypeHandshake, msg.marshal())
  1208  		if err != nil {
  1209  			// Surface the error at the next write.
  1210  			c.out.setErrorLocked(err)
  1211  			return nil
  1212  		}
  1213  
  1214  		newSecret := cipherSuite.nextTrafficSecret(c.out.trafficSecret)
  1215  		c.out.setTrafficSecret(cipherSuite, newSecret)
  1216  	}
  1217  
  1218  	return nil
  1219  }
  1220  
  1221  // Read can be made to time out and return a net.Error with Timeout() == true
  1222  // after a fixed time limit; see SetDeadline and SetReadDeadline.
  1223  func (c *Conn) Read(b []byte) (int, error) {
  1224  	if err := c.Handshake(); err != nil {
  1225  		return 0, err
  1226  	}
  1227  	if len(b) == 0 {
  1228  		// Put this after Handshake, in case people were calling
  1229  		// Read(nil) for the side effect of the Handshake.
  1230  		return 0, nil
  1231  	}
  1232  
  1233  	c.in.Lock()
  1234  	defer c.in.Unlock()
  1235  
  1236  	for c.input.Len() == 0 {
  1237  		if err := c.readRecord(); err != nil {
  1238  			return 0, err
  1239  		}
  1240  		for c.hand.Len() > 0 {
  1241  			if err := c.handlePostHandshakeMessage(); err != nil {
  1242  				return 0, err
  1243  			}
  1244  		}
  1245  	}
  1246  
  1247  	n, _ := c.input.Read(b)
  1248  
  1249  	// If a close-notify alert is waiting, read it so that we can return (n,
  1250  	// EOF) instead of (n, nil), to signal to the HTTP response reading
  1251  	// goroutine that the connection is now closed. This eliminates a race
  1252  	// where the HTTP response reading goroutine would otherwise not observe
  1253  	// the EOF until its next read, by which time a client goroutine might
  1254  	// have already tried to reuse the HTTP connection for a new request.
  1255  	// See https://golang.org/cl/76400046 and https://golang.org/issue/3514
  1256  	if n != 0 && c.input.Len() == 0 && c.rawInput.Len() > 0 &&
  1257  		recordType(c.rawInput.Bytes()[0]) == recordTypeAlert {
  1258  		if err := c.readRecord(); err != nil {
  1259  			return n, err	// will be io.EOF on closeNotify
  1260  		}
  1261  	}
  1262  
  1263  	return n, nil
  1264  }
  1265  
  1266  // Close closes the connection.
  1267  func (c *Conn) Close() error {
  1268  	// Interlock with Conn.Write above.
  1269  	var x int32
  1270  	for {
  1271  		x = atomic.LoadInt32(&c.activeCall)
  1272  		if x&1 != 0 {
  1273  			return errClosed
  1274  		}
  1275  		if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) {
  1276  			break
  1277  		}
  1278  	}
  1279  	if x != 0 {
  1280  		// io.Writer and io.Closer should not be used concurrently.
  1281  		// If Close is called while a Write is currently in-flight,
  1282  		// interpret that as a sign that this Close is really just
  1283  		// being used to break the Write and/or clean up resources and
  1284  		// avoid sending the alertCloseNotify, which may block
  1285  		// waiting on handshakeMutex or the c.out mutex.
  1286  		return c.conn.Close()
  1287  	}
  1288  
  1289  	var alertErr error
  1290  
  1291  	if c.handshakeComplete() {
  1292  		alertErr = c.closeNotify()
  1293  	}
  1294  
  1295  	if err := c.conn.Close(); err != nil {
  1296  		return err
  1297  	}
  1298  	return alertErr
  1299  }
  1300  
  1301  var errEarlyCloseWrite = errors.New("tls: CloseWrite called before handshake complete")
  1302  
  1303  // CloseWrite shuts down the writing side of the connection. It should only be
  1304  // called once the handshake has completed and does not call CloseWrite on the
  1305  // underlying connection. Most callers should just use Close.
  1306  func (c *Conn) CloseWrite() error {
  1307  	if !c.handshakeComplete() {
  1308  		return errEarlyCloseWrite
  1309  	}
  1310  
  1311  	return c.closeNotify()
  1312  }
  1313  
  1314  func (c *Conn) closeNotify() error {
  1315  	c.out.Lock()
  1316  	defer c.out.Unlock()
  1317  
  1318  	if !c.closeNotifySent {
  1319  		c.closeNotifyErr = c.sendAlertLocked(alertCloseNotify)
  1320  		c.closeNotifySent = true
  1321  	}
  1322  	return c.closeNotifyErr
  1323  }
  1324  
  1325  // Handshake runs the client or server handshake
  1326  // protocol if it has not yet been run.
  1327  // Most uses of this package need not call Handshake
  1328  // explicitly: the first Read or Write will call it automatically.
  1329  func (c *Conn) Handshake() error {
  1330  	c.handshakeMutex.Lock()
  1331  	defer c.handshakeMutex.Unlock()
  1332  
  1333  	if err := c.handshakeErr; err != nil {
  1334  		return err
  1335  	}
  1336  	if c.handshakeComplete() {
  1337  		return nil
  1338  	}
  1339  
  1340  	c.in.Lock()
  1341  	defer c.in.Unlock()
  1342  
  1343  	if c.isClient {
  1344  		c.handshakeErr = c.clientHandshake()
  1345  	} else {
  1346  		c.handshakeErr = c.serverHandshake()
  1347  	}
  1348  	if c.handshakeErr == nil {
  1349  		c.handshakes++
  1350  	} else {
  1351  		// If an error occurred during the handshake try to flush the
  1352  		// alert that might be left in the buffer.
  1353  		c.flush()
  1354  	}
  1355  
  1356  	if c.handshakeErr == nil && !c.handshakeComplete() {
  1357  		c.handshakeErr = errors.New("tls: internal error: handshake should have had a result")
  1358  	}
  1359  
  1360  	return c.handshakeErr
  1361  }
  1362  
  1363  // ConnectionState returns basic TLS details about the connection.
  1364  func (c *Conn) ConnectionState() ConnectionState {
  1365  	c.handshakeMutex.Lock()
  1366  	defer c.handshakeMutex.Unlock()
  1367  
  1368  	var state ConnectionState
  1369  	state.HandshakeComplete = c.handshakeComplete()
  1370  	state.ServerName = c.serverName
  1371  
  1372  	if state.HandshakeComplete {
  1373  		state.Version = c.vers
  1374  		state.NegotiatedProtocol = c.clientProtocol
  1375  		state.DidResume = c.didResume
  1376  		state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
  1377  		state.CipherSuite = c.cipherSuite
  1378  		state.PeerCertificates = c.peerCertificates
  1379  		state.VerifiedChains = c.verifiedChains
  1380  		state.SignedCertificateTimestamps = c.scts
  1381  		state.OCSPResponse = c.ocspResponse
  1382  		if !c.didResume && c.vers != VersionTLS13 {
  1383  			if c.clientFinishedIsFirst {
  1384  				state.TLSUnique = c.clientFinished[:]
  1385  			} else {
  1386  				state.TLSUnique = c.serverFinished[:]
  1387  			}
  1388  		}
  1389  		if c.config.Renegotiation != RenegotiateNever {
  1390  			state.ekm = noExportedKeyingMaterial
  1391  		} else {
  1392  			state.ekm = c.ekm
  1393  		}
  1394  	}
  1395  
  1396  	return state
  1397  }
  1398  
  1399  // OCSPResponse returns the stapled OCSP response from the TLS server, if
  1400  // any. (Only valid for client connections.)
  1401  func (c *Conn) OCSPResponse() []byte {
  1402  	c.handshakeMutex.Lock()
  1403  	defer c.handshakeMutex.Unlock()
  1404  
  1405  	return c.ocspResponse
  1406  }
  1407  
  1408  // VerifyHostname checks that the peer certificate chain is valid for
  1409  // connecting to host. If so, it returns nil; if not, it returns an error
  1410  // describing the problem.
  1411  func (c *Conn) VerifyHostname(host string) error {
  1412  	c.handshakeMutex.Lock()
  1413  	defer c.handshakeMutex.Unlock()
  1414  	if !c.isClient {
  1415  		return errors.New("tls: VerifyHostname called on TLS server connection")
  1416  	}
  1417  	if !c.handshakeComplete() {
  1418  		return errors.New("tls: handshake has not yet been performed")
  1419  	}
  1420  	if len(c.verifiedChains) == 0 {
  1421  		return errors.New("tls: handshake did not verify certificate chain")
  1422  	}
  1423  	return c.peerCertificates[0].VerifyHostname(host)
  1424  }
  1425  
  1426  func (c *Conn) handshakeComplete() bool {
  1427  	return atomic.LoadUint32(&c.handshakeStatus) == 1
  1428  }