github.com/xingly-cn/shorturl-go@v0.0.0-20220110130535-e21de4659f74/pkg/mod/golang.org/x/sys@v0.0.0-20200323222414-85ca7c5b95cd/unix/syscall_linux.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Linux system calls.
     6  // This file is compiled as ordinary Go code,
     7  // but it is also input to mksyscall,
     8  // which parses the //sys lines and generates system call stubs.
     9  // Note that sometimes we use a lowercase //sys name and
    10  // wrap it in our own nicer implementation.
    11  
    12  package unix
    13  
    14  import (
    15  	"encoding/binary"
    16  	"runtime"
    17  	"syscall"
    18  	"unsafe"
    19  )
    20  
    21  /*
    22   * Wrapped
    23   */
    24  
    25  func Access(path string, mode uint32) (err error) {
    26  	return Faccessat(AT_FDCWD, path, mode, 0)
    27  }
    28  
    29  func Chmod(path string, mode uint32) (err error) {
    30  	return Fchmodat(AT_FDCWD, path, mode, 0)
    31  }
    32  
    33  func Chown(path string, uid int, gid int) (err error) {
    34  	return Fchownat(AT_FDCWD, path, uid, gid, 0)
    35  }
    36  
    37  func Creat(path string, mode uint32) (fd int, err error) {
    38  	return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
    39  }
    40  
    41  //sys	FanotifyInit(flags uint, event_f_flags uint) (fd int, err error)
    42  //sys	fanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname *byte) (err error)
    43  
    44  func FanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname string) (err error) {
    45  	if pathname == "" {
    46  		return fanotifyMark(fd, flags, mask, dirFd, nil)
    47  	}
    48  	p, err := BytePtrFromString(pathname)
    49  	if err != nil {
    50  		return err
    51  	}
    52  	return fanotifyMark(fd, flags, mask, dirFd, p)
    53  }
    54  
    55  //sys	fchmodat(dirfd int, path string, mode uint32) (err error)
    56  
    57  func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
    58  	// Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
    59  	// and check the flags. Otherwise the mode would be applied to the symlink
    60  	// destination which is not what the user expects.
    61  	if flags&^AT_SYMLINK_NOFOLLOW != 0 {
    62  		return EINVAL
    63  	} else if flags&AT_SYMLINK_NOFOLLOW != 0 {
    64  		return EOPNOTSUPP
    65  	}
    66  	return fchmodat(dirfd, path, mode)
    67  }
    68  
    69  //sys	ioctl(fd int, req uint, arg uintptr) (err error)
    70  
    71  // ioctl itself should not be exposed directly, but additional get/set
    72  // functions for specific types are permissible.
    73  
    74  // IoctlRetInt performs an ioctl operation specified by req on a device
    75  // associated with opened file descriptor fd, and returns a non-negative
    76  // integer that is returned by the ioctl syscall.
    77  func IoctlRetInt(fd int, req uint) (int, error) {
    78  	ret, _, err := Syscall(SYS_IOCTL, uintptr(fd), uintptr(req), 0)
    79  	if err != 0 {
    80  		return 0, err
    81  	}
    82  	return int(ret), nil
    83  }
    84  
    85  // IoctlSetPointerInt performs an ioctl operation which sets an
    86  // integer value on fd, using the specified request number. The ioctl
    87  // argument is called with a pointer to the integer value, rather than
    88  // passing the integer value directly.
    89  func IoctlSetPointerInt(fd int, req uint, value int) error {
    90  	v := int32(value)
    91  	return ioctl(fd, req, uintptr(unsafe.Pointer(&v)))
    92  }
    93  
    94  func IoctlSetRTCTime(fd int, value *RTCTime) error {
    95  	err := ioctl(fd, RTC_SET_TIME, uintptr(unsafe.Pointer(value)))
    96  	runtime.KeepAlive(value)
    97  	return err
    98  }
    99  
   100  func IoctlGetUint32(fd int, req uint) (uint32, error) {
   101  	var value uint32
   102  	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
   103  	return value, err
   104  }
   105  
   106  func IoctlGetRTCTime(fd int) (*RTCTime, error) {
   107  	var value RTCTime
   108  	err := ioctl(fd, RTC_RD_TIME, uintptr(unsafe.Pointer(&value)))
   109  	return &value, err
   110  }
   111  
   112  //sys	Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
   113  
   114  func Link(oldpath string, newpath string) (err error) {
   115  	return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
   116  }
   117  
   118  func Mkdir(path string, mode uint32) (err error) {
   119  	return Mkdirat(AT_FDCWD, path, mode)
   120  }
   121  
   122  func Mknod(path string, mode uint32, dev int) (err error) {
   123  	return Mknodat(AT_FDCWD, path, mode, dev)
   124  }
   125  
   126  func Open(path string, mode int, perm uint32) (fd int, err error) {
   127  	return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
   128  }
   129  
   130  //sys	openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
   131  
   132  func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
   133  	return openat(dirfd, path, flags|O_LARGEFILE, mode)
   134  }
   135  
   136  //sys	ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
   137  
   138  func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
   139  	if len(fds) == 0 {
   140  		return ppoll(nil, 0, timeout, sigmask)
   141  	}
   142  	return ppoll(&fds[0], len(fds), timeout, sigmask)
   143  }
   144  
   145  //sys	Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
   146  
   147  func Readlink(path string, buf []byte) (n int, err error) {
   148  	return Readlinkat(AT_FDCWD, path, buf)
   149  }
   150  
   151  func Rename(oldpath string, newpath string) (err error) {
   152  	return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
   153  }
   154  
   155  func Rmdir(path string) error {
   156  	return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
   157  }
   158  
   159  //sys	Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
   160  
   161  func Symlink(oldpath string, newpath string) (err error) {
   162  	return Symlinkat(oldpath, AT_FDCWD, newpath)
   163  }
   164  
   165  func Unlink(path string) error {
   166  	return Unlinkat(AT_FDCWD, path, 0)
   167  }
   168  
   169  //sys	Unlinkat(dirfd int, path string, flags int) (err error)
   170  
   171  func Utimes(path string, tv []Timeval) error {
   172  	if tv == nil {
   173  		err := utimensat(AT_FDCWD, path, nil, 0)
   174  		if err != ENOSYS {
   175  			return err
   176  		}
   177  		return utimes(path, nil)
   178  	}
   179  	if len(tv) != 2 {
   180  		return EINVAL
   181  	}
   182  	var ts [2]Timespec
   183  	ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
   184  	ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
   185  	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
   186  	if err != ENOSYS {
   187  		return err
   188  	}
   189  	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
   190  }
   191  
   192  //sys	utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
   193  
   194  func UtimesNano(path string, ts []Timespec) error {
   195  	if ts == nil {
   196  		err := utimensat(AT_FDCWD, path, nil, 0)
   197  		if err != ENOSYS {
   198  			return err
   199  		}
   200  		return utimes(path, nil)
   201  	}
   202  	if len(ts) != 2 {
   203  		return EINVAL
   204  	}
   205  	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
   206  	if err != ENOSYS {
   207  		return err
   208  	}
   209  	// If the utimensat syscall isn't available (utimensat was added to Linux
   210  	// in 2.6.22, Released, 8 July 2007) then fall back to utimes
   211  	var tv [2]Timeval
   212  	for i := 0; i < 2; i++ {
   213  		tv[i] = NsecToTimeval(TimespecToNsec(ts[i]))
   214  	}
   215  	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
   216  }
   217  
   218  func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
   219  	if ts == nil {
   220  		return utimensat(dirfd, path, nil, flags)
   221  	}
   222  	if len(ts) != 2 {
   223  		return EINVAL
   224  	}
   225  	return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
   226  }
   227  
   228  func Futimesat(dirfd int, path string, tv []Timeval) error {
   229  	if tv == nil {
   230  		return futimesat(dirfd, path, nil)
   231  	}
   232  	if len(tv) != 2 {
   233  		return EINVAL
   234  	}
   235  	return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
   236  }
   237  
   238  func Futimes(fd int, tv []Timeval) (err error) {
   239  	// Believe it or not, this is the best we can do on Linux
   240  	// (and is what glibc does).
   241  	return Utimes("/proc/self/fd/"+itoa(fd), tv)
   242  }
   243  
   244  const ImplementsGetwd = true
   245  
   246  //sys	Getcwd(buf []byte) (n int, err error)
   247  
   248  func Getwd() (wd string, err error) {
   249  	var buf [PathMax]byte
   250  	n, err := Getcwd(buf[0:])
   251  	if err != nil {
   252  		return "", err
   253  	}
   254  	// Getcwd returns the number of bytes written to buf, including the NUL.
   255  	if n < 1 || n > len(buf) || buf[n-1] != 0 {
   256  		return "", EINVAL
   257  	}
   258  	return string(buf[0 : n-1]), nil
   259  }
   260  
   261  func Getgroups() (gids []int, err error) {
   262  	n, err := getgroups(0, nil)
   263  	if err != nil {
   264  		return nil, err
   265  	}
   266  	if n == 0 {
   267  		return nil, nil
   268  	}
   269  
   270  	// Sanity check group count. Max is 1<<16 on Linux.
   271  	if n < 0 || n > 1<<20 {
   272  		return nil, EINVAL
   273  	}
   274  
   275  	a := make([]_Gid_t, n)
   276  	n, err = getgroups(n, &a[0])
   277  	if err != nil {
   278  		return nil, err
   279  	}
   280  	gids = make([]int, n)
   281  	for i, v := range a[0:n] {
   282  		gids[i] = int(v)
   283  	}
   284  	return
   285  }
   286  
   287  func Setgroups(gids []int) (err error) {
   288  	if len(gids) == 0 {
   289  		return setgroups(0, nil)
   290  	}
   291  
   292  	a := make([]_Gid_t, len(gids))
   293  	for i, v := range gids {
   294  		a[i] = _Gid_t(v)
   295  	}
   296  	return setgroups(len(a), &a[0])
   297  }
   298  
   299  type WaitStatus uint32
   300  
   301  // Wait status is 7 bits at bottom, either 0 (exited),
   302  // 0x7F (stopped), or a signal number that caused an exit.
   303  // The 0x80 bit is whether there was a core dump.
   304  // An extra number (exit code, signal causing a stop)
   305  // is in the high bits. At least that's the idea.
   306  // There are various irregularities. For example, the
   307  // "continued" status is 0xFFFF, distinguishing itself
   308  // from stopped via the core dump bit.
   309  
   310  const (
   311  	mask    = 0x7F
   312  	core    = 0x80
   313  	exited  = 0x00
   314  	stopped = 0x7F
   315  	shift   = 8
   316  )
   317  
   318  func (w WaitStatus) Exited() bool { return w&mask == exited }
   319  
   320  func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
   321  
   322  func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
   323  
   324  func (w WaitStatus) Continued() bool { return w == 0xFFFF }
   325  
   326  func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
   327  
   328  func (w WaitStatus) ExitStatus() int {
   329  	if !w.Exited() {
   330  		return -1
   331  	}
   332  	return int(w>>shift) & 0xFF
   333  }
   334  
   335  func (w WaitStatus) Signal() syscall.Signal {
   336  	if !w.Signaled() {
   337  		return -1
   338  	}
   339  	return syscall.Signal(w & mask)
   340  }
   341  
   342  func (w WaitStatus) StopSignal() syscall.Signal {
   343  	if !w.Stopped() {
   344  		return -1
   345  	}
   346  	return syscall.Signal(w>>shift) & 0xFF
   347  }
   348  
   349  func (w WaitStatus) TrapCause() int {
   350  	if w.StopSignal() != SIGTRAP {
   351  		return -1
   352  	}
   353  	return int(w>>shift) >> 8
   354  }
   355  
   356  //sys	wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
   357  
   358  func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
   359  	var status _C_int
   360  	wpid, err = wait4(pid, &status, options, rusage)
   361  	if wstatus != nil {
   362  		*wstatus = WaitStatus(status)
   363  	}
   364  	return
   365  }
   366  
   367  func Mkfifo(path string, mode uint32) error {
   368  	return Mknod(path, mode|S_IFIFO, 0)
   369  }
   370  
   371  func Mkfifoat(dirfd int, path string, mode uint32) error {
   372  	return Mknodat(dirfd, path, mode|S_IFIFO, 0)
   373  }
   374  
   375  func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
   376  	if sa.Port < 0 || sa.Port > 0xFFFF {
   377  		return nil, 0, EINVAL
   378  	}
   379  	sa.raw.Family = AF_INET
   380  	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
   381  	p[0] = byte(sa.Port >> 8)
   382  	p[1] = byte(sa.Port)
   383  	for i := 0; i < len(sa.Addr); i++ {
   384  		sa.raw.Addr[i] = sa.Addr[i]
   385  	}
   386  	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
   387  }
   388  
   389  func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
   390  	if sa.Port < 0 || sa.Port > 0xFFFF {
   391  		return nil, 0, EINVAL
   392  	}
   393  	sa.raw.Family = AF_INET6
   394  	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
   395  	p[0] = byte(sa.Port >> 8)
   396  	p[1] = byte(sa.Port)
   397  	sa.raw.Scope_id = sa.ZoneId
   398  	for i := 0; i < len(sa.Addr); i++ {
   399  		sa.raw.Addr[i] = sa.Addr[i]
   400  	}
   401  	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
   402  }
   403  
   404  func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
   405  	name := sa.Name
   406  	n := len(name)
   407  	if n >= len(sa.raw.Path) {
   408  		return nil, 0, EINVAL
   409  	}
   410  	sa.raw.Family = AF_UNIX
   411  	for i := 0; i < n; i++ {
   412  		sa.raw.Path[i] = int8(name[i])
   413  	}
   414  	// length is family (uint16), name, NUL.
   415  	sl := _Socklen(2)
   416  	if n > 0 {
   417  		sl += _Socklen(n) + 1
   418  	}
   419  	if sa.raw.Path[0] == '@' {
   420  		sa.raw.Path[0] = 0
   421  		// Don't count trailing NUL for abstract address.
   422  		sl--
   423  	}
   424  
   425  	return unsafe.Pointer(&sa.raw), sl, nil
   426  }
   427  
   428  // SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
   429  type SockaddrLinklayer struct {
   430  	Protocol uint16
   431  	Ifindex  int
   432  	Hatype   uint16
   433  	Pkttype  uint8
   434  	Halen    uint8
   435  	Addr     [8]byte
   436  	raw      RawSockaddrLinklayer
   437  }
   438  
   439  func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
   440  	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
   441  		return nil, 0, EINVAL
   442  	}
   443  	sa.raw.Family = AF_PACKET
   444  	sa.raw.Protocol = sa.Protocol
   445  	sa.raw.Ifindex = int32(sa.Ifindex)
   446  	sa.raw.Hatype = sa.Hatype
   447  	sa.raw.Pkttype = sa.Pkttype
   448  	sa.raw.Halen = sa.Halen
   449  	for i := 0; i < len(sa.Addr); i++ {
   450  		sa.raw.Addr[i] = sa.Addr[i]
   451  	}
   452  	return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
   453  }
   454  
   455  // SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
   456  type SockaddrNetlink struct {
   457  	Family uint16
   458  	Pad    uint16
   459  	Pid    uint32
   460  	Groups uint32
   461  	raw    RawSockaddrNetlink
   462  }
   463  
   464  func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
   465  	sa.raw.Family = AF_NETLINK
   466  	sa.raw.Pad = sa.Pad
   467  	sa.raw.Pid = sa.Pid
   468  	sa.raw.Groups = sa.Groups
   469  	return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
   470  }
   471  
   472  // SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
   473  // using the HCI protocol.
   474  type SockaddrHCI struct {
   475  	Dev     uint16
   476  	Channel uint16
   477  	raw     RawSockaddrHCI
   478  }
   479  
   480  func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
   481  	sa.raw.Family = AF_BLUETOOTH
   482  	sa.raw.Dev = sa.Dev
   483  	sa.raw.Channel = sa.Channel
   484  	return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
   485  }
   486  
   487  // SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
   488  // using the L2CAP protocol.
   489  type SockaddrL2 struct {
   490  	PSM      uint16
   491  	CID      uint16
   492  	Addr     [6]uint8
   493  	AddrType uint8
   494  	raw      RawSockaddrL2
   495  }
   496  
   497  func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
   498  	sa.raw.Family = AF_BLUETOOTH
   499  	psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
   500  	psm[0] = byte(sa.PSM)
   501  	psm[1] = byte(sa.PSM >> 8)
   502  	for i := 0; i < len(sa.Addr); i++ {
   503  		sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
   504  	}
   505  	cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
   506  	cid[0] = byte(sa.CID)
   507  	cid[1] = byte(sa.CID >> 8)
   508  	sa.raw.Bdaddr_type = sa.AddrType
   509  	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
   510  }
   511  
   512  // SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
   513  // using the RFCOMM protocol.
   514  //
   515  // Server example:
   516  //
   517  //      fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
   518  //      _ = unix.Bind(fd, &unix.SockaddrRFCOMM{
   519  //      	Channel: 1,
   520  //      	Addr:    [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
   521  //      })
   522  //      _ = Listen(fd, 1)
   523  //      nfd, sa, _ := Accept(fd)
   524  //      fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
   525  //      Read(nfd, buf)
   526  //
   527  // Client example:
   528  //
   529  //      fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
   530  //      _ = Connect(fd, &SockaddrRFCOMM{
   531  //      	Channel: 1,
   532  //      	Addr:    [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
   533  //      })
   534  //      Write(fd, []byte(`hello`))
   535  type SockaddrRFCOMM struct {
   536  	// Addr represents a bluetooth address, byte ordering is little-endian.
   537  	Addr [6]uint8
   538  
   539  	// Channel is a designated bluetooth channel, only 1-30 are available for use.
   540  	// Since Linux 2.6.7 and further zero value is the first available channel.
   541  	Channel uint8
   542  
   543  	raw RawSockaddrRFCOMM
   544  }
   545  
   546  func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) {
   547  	sa.raw.Family = AF_BLUETOOTH
   548  	sa.raw.Channel = sa.Channel
   549  	sa.raw.Bdaddr = sa.Addr
   550  	return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil
   551  }
   552  
   553  // SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
   554  // The RxID and TxID fields are used for transport protocol addressing in
   555  // (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
   556  // zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
   557  //
   558  // The SockaddrCAN struct must be bound to the socket file descriptor
   559  // using Bind before the CAN socket can be used.
   560  //
   561  //      // Read one raw CAN frame
   562  //      fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
   563  //      addr := &SockaddrCAN{Ifindex: index}
   564  //      Bind(fd, addr)
   565  //      frame := make([]byte, 16)
   566  //      Read(fd, frame)
   567  //
   568  // The full SocketCAN documentation can be found in the linux kernel
   569  // archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
   570  type SockaddrCAN struct {
   571  	Ifindex int
   572  	RxID    uint32
   573  	TxID    uint32
   574  	raw     RawSockaddrCAN
   575  }
   576  
   577  func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
   578  	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
   579  		return nil, 0, EINVAL
   580  	}
   581  	sa.raw.Family = AF_CAN
   582  	sa.raw.Ifindex = int32(sa.Ifindex)
   583  	rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
   584  	for i := 0; i < 4; i++ {
   585  		sa.raw.Addr[i] = rx[i]
   586  	}
   587  	tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
   588  	for i := 0; i < 4; i++ {
   589  		sa.raw.Addr[i+4] = tx[i]
   590  	}
   591  	return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
   592  }
   593  
   594  // SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
   595  // SockaddrALG enables userspace access to the Linux kernel's cryptography
   596  // subsystem. The Type and Name fields specify which type of hash or cipher
   597  // should be used with a given socket.
   598  //
   599  // To create a file descriptor that provides access to a hash or cipher, both
   600  // Bind and Accept must be used. Once the setup process is complete, input
   601  // data can be written to the socket, processed by the kernel, and then read
   602  // back as hash output or ciphertext.
   603  //
   604  // Here is an example of using an AF_ALG socket with SHA1 hashing.
   605  // The initial socket setup process is as follows:
   606  //
   607  //      // Open a socket to perform SHA1 hashing.
   608  //      fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
   609  //      addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
   610  //      unix.Bind(fd, addr)
   611  //      // Note: unix.Accept does not work at this time; must invoke accept()
   612  //      // manually using unix.Syscall.
   613  //      hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
   614  //
   615  // Once a file descriptor has been returned from Accept, it may be used to
   616  // perform SHA1 hashing. The descriptor is not safe for concurrent use, but
   617  // may be re-used repeatedly with subsequent Write and Read operations.
   618  //
   619  // When hashing a small byte slice or string, a single Write and Read may
   620  // be used:
   621  //
   622  //      // Assume hashfd is already configured using the setup process.
   623  //      hash := os.NewFile(hashfd, "sha1")
   624  //      // Hash an input string and read the results. Each Write discards
   625  //      // previous hash state. Read always reads the current state.
   626  //      b := make([]byte, 20)
   627  //      for i := 0; i < 2; i++ {
   628  //          io.WriteString(hash, "Hello, world.")
   629  //          hash.Read(b)
   630  //          fmt.Println(hex.EncodeToString(b))
   631  //      }
   632  //      // Output:
   633  //      // 2ae01472317d1935a84797ec1983ae243fc6aa28
   634  //      // 2ae01472317d1935a84797ec1983ae243fc6aa28
   635  //
   636  // For hashing larger byte slices, or byte streams such as those read from
   637  // a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
   638  // the hash digest instead of creating a new one for a given chunk and finalizing it.
   639  //
   640  //      // Assume hashfd and addr are already configured using the setup process.
   641  //      hash := os.NewFile(hashfd, "sha1")
   642  //      // Hash the contents of a file.
   643  //      f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
   644  //      b := make([]byte, 4096)
   645  //      for {
   646  //          n, err := f.Read(b)
   647  //          if err == io.EOF {
   648  //              break
   649  //          }
   650  //          unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
   651  //      }
   652  //      hash.Read(b)
   653  //      fmt.Println(hex.EncodeToString(b))
   654  //      // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
   655  //
   656  // For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
   657  type SockaddrALG struct {
   658  	Type    string
   659  	Name    string
   660  	Feature uint32
   661  	Mask    uint32
   662  	raw     RawSockaddrALG
   663  }
   664  
   665  func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
   666  	// Leave room for NUL byte terminator.
   667  	if len(sa.Type) > 13 {
   668  		return nil, 0, EINVAL
   669  	}
   670  	if len(sa.Name) > 63 {
   671  		return nil, 0, EINVAL
   672  	}
   673  
   674  	sa.raw.Family = AF_ALG
   675  	sa.raw.Feat = sa.Feature
   676  	sa.raw.Mask = sa.Mask
   677  
   678  	typ, err := ByteSliceFromString(sa.Type)
   679  	if err != nil {
   680  		return nil, 0, err
   681  	}
   682  	name, err := ByteSliceFromString(sa.Name)
   683  	if err != nil {
   684  		return nil, 0, err
   685  	}
   686  
   687  	copy(sa.raw.Type[:], typ)
   688  	copy(sa.raw.Name[:], name)
   689  
   690  	return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
   691  }
   692  
   693  // SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
   694  // SockaddrVM provides access to Linux VM sockets: a mechanism that enables
   695  // bidirectional communication between a hypervisor and its guest virtual
   696  // machines.
   697  type SockaddrVM struct {
   698  	// CID and Port specify a context ID and port address for a VM socket.
   699  	// Guests have a unique CID, and hosts may have a well-known CID of:
   700  	//  - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
   701  	//  - VMADDR_CID_HOST: refers to other processes on the host.
   702  	CID  uint32
   703  	Port uint32
   704  	raw  RawSockaddrVM
   705  }
   706  
   707  func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
   708  	sa.raw.Family = AF_VSOCK
   709  	sa.raw.Port = sa.Port
   710  	sa.raw.Cid = sa.CID
   711  
   712  	return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
   713  }
   714  
   715  type SockaddrXDP struct {
   716  	Flags        uint16
   717  	Ifindex      uint32
   718  	QueueID      uint32
   719  	SharedUmemFD uint32
   720  	raw          RawSockaddrXDP
   721  }
   722  
   723  func (sa *SockaddrXDP) sockaddr() (unsafe.Pointer, _Socklen, error) {
   724  	sa.raw.Family = AF_XDP
   725  	sa.raw.Flags = sa.Flags
   726  	sa.raw.Ifindex = sa.Ifindex
   727  	sa.raw.Queue_id = sa.QueueID
   728  	sa.raw.Shared_umem_fd = sa.SharedUmemFD
   729  
   730  	return unsafe.Pointer(&sa.raw), SizeofSockaddrXDP, nil
   731  }
   732  
   733  // This constant mirrors the #define of PX_PROTO_OE in
   734  // linux/if_pppox.h. We're defining this by hand here instead of
   735  // autogenerating through mkerrors.sh because including
   736  // linux/if_pppox.h causes some declaration conflicts with other
   737  // includes (linux/if_pppox.h includes linux/in.h, which conflicts
   738  // with netinet/in.h). Given that we only need a single zero constant
   739  // out of that file, it's cleaner to just define it by hand here.
   740  const px_proto_oe = 0
   741  
   742  type SockaddrPPPoE struct {
   743  	SID    uint16
   744  	Remote []byte
   745  	Dev    string
   746  	raw    RawSockaddrPPPoX
   747  }
   748  
   749  func (sa *SockaddrPPPoE) sockaddr() (unsafe.Pointer, _Socklen, error) {
   750  	if len(sa.Remote) != 6 {
   751  		return nil, 0, EINVAL
   752  	}
   753  	if len(sa.Dev) > IFNAMSIZ-1 {
   754  		return nil, 0, EINVAL
   755  	}
   756  
   757  	*(*uint16)(unsafe.Pointer(&sa.raw[0])) = AF_PPPOX
   758  	// This next field is in host-endian byte order. We can't use the
   759  	// same unsafe pointer cast as above, because this value is not
   760  	// 32-bit aligned and some architectures don't allow unaligned
   761  	// access.
   762  	//
   763  	// However, the value of px_proto_oe is 0, so we can use
   764  	// encoding/binary helpers to write the bytes without worrying
   765  	// about the ordering.
   766  	binary.BigEndian.PutUint32(sa.raw[2:6], px_proto_oe)
   767  	// This field is deliberately big-endian, unlike the previous
   768  	// one. The kernel expects SID to be in network byte order.
   769  	binary.BigEndian.PutUint16(sa.raw[6:8], sa.SID)
   770  	copy(sa.raw[8:14], sa.Remote)
   771  	for i := 14; i < 14+IFNAMSIZ; i++ {
   772  		sa.raw[i] = 0
   773  	}
   774  	copy(sa.raw[14:], sa.Dev)
   775  	return unsafe.Pointer(&sa.raw), SizeofSockaddrPPPoX, nil
   776  }
   777  
   778  // SockaddrTIPC implements the Sockaddr interface for AF_TIPC type sockets.
   779  // For more information on TIPC, see: http://tipc.sourceforge.net/.
   780  type SockaddrTIPC struct {
   781  	// Scope is the publication scopes when binding service/service range.
   782  	// Should be set to TIPC_CLUSTER_SCOPE or TIPC_NODE_SCOPE.
   783  	Scope int
   784  
   785  	// Addr is the type of address used to manipulate a socket. Addr must be
   786  	// one of:
   787  	//  - *TIPCSocketAddr: "id" variant in the C addr union
   788  	//  - *TIPCServiceRange: "nameseq" variant in the C addr union
   789  	//  - *TIPCServiceName: "name" variant in the C addr union
   790  	//
   791  	// If nil, EINVAL will be returned when the structure is used.
   792  	Addr TIPCAddr
   793  
   794  	raw RawSockaddrTIPC
   795  }
   796  
   797  // TIPCAddr is implemented by types that can be used as an address for
   798  // SockaddrTIPC. It is only implemented by *TIPCSocketAddr, *TIPCServiceRange,
   799  // and *TIPCServiceName.
   800  type TIPCAddr interface {
   801  	tipcAddrtype() uint8
   802  	tipcAddr() [12]byte
   803  }
   804  
   805  func (sa *TIPCSocketAddr) tipcAddr() [12]byte {
   806  	var out [12]byte
   807  	copy(out[:], (*(*[unsafe.Sizeof(TIPCSocketAddr{})]byte)(unsafe.Pointer(sa)))[:])
   808  	return out
   809  }
   810  
   811  func (sa *TIPCSocketAddr) tipcAddrtype() uint8 { return TIPC_SOCKET_ADDR }
   812  
   813  func (sa *TIPCServiceRange) tipcAddr() [12]byte {
   814  	var out [12]byte
   815  	copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceRange{})]byte)(unsafe.Pointer(sa)))[:])
   816  	return out
   817  }
   818  
   819  func (sa *TIPCServiceRange) tipcAddrtype() uint8 { return TIPC_SERVICE_RANGE }
   820  
   821  func (sa *TIPCServiceName) tipcAddr() [12]byte {
   822  	var out [12]byte
   823  	copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceName{})]byte)(unsafe.Pointer(sa)))[:])
   824  	return out
   825  }
   826  
   827  func (sa *TIPCServiceName) tipcAddrtype() uint8 { return TIPC_SERVICE_ADDR }
   828  
   829  func (sa *SockaddrTIPC) sockaddr() (unsafe.Pointer, _Socklen, error) {
   830  	if sa.Addr == nil {
   831  		return nil, 0, EINVAL
   832  	}
   833  
   834  	sa.raw.Family = AF_TIPC
   835  	sa.raw.Scope = int8(sa.Scope)
   836  	sa.raw.Addrtype = sa.Addr.tipcAddrtype()
   837  	sa.raw.Addr = sa.Addr.tipcAddr()
   838  
   839  	return unsafe.Pointer(&sa.raw), SizeofSockaddrTIPC, nil
   840  }
   841  
   842  // SockaddrL2TPIP implements the Sockaddr interface for IPPROTO_L2TP/AF_INET sockets.
   843  type SockaddrL2TPIP struct {
   844  	Addr   [4]byte
   845  	ConnId uint32
   846  	raw    RawSockaddrL2TPIP
   847  }
   848  
   849  func (sa *SockaddrL2TPIP) sockaddr() (unsafe.Pointer, _Socklen, error) {
   850  	sa.raw.Family = AF_INET
   851  	sa.raw.Conn_id = sa.ConnId
   852  	for i := 0; i < len(sa.Addr); i++ {
   853  		sa.raw.Addr[i] = sa.Addr[i]
   854  	}
   855  	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP, nil
   856  }
   857  
   858  // SockaddrL2TPIP6 implements the Sockaddr interface for IPPROTO_L2TP/AF_INET6 sockets.
   859  type SockaddrL2TPIP6 struct {
   860  	Addr   [16]byte
   861  	ZoneId uint32
   862  	ConnId uint32
   863  	raw    RawSockaddrL2TPIP6
   864  }
   865  
   866  func (sa *SockaddrL2TPIP6) sockaddr() (unsafe.Pointer, _Socklen, error) {
   867  	sa.raw.Family = AF_INET6
   868  	sa.raw.Conn_id = sa.ConnId
   869  	sa.raw.Scope_id = sa.ZoneId
   870  	for i := 0; i < len(sa.Addr); i++ {
   871  		sa.raw.Addr[i] = sa.Addr[i]
   872  	}
   873  	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP6, nil
   874  }
   875  
   876  func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
   877  	switch rsa.Addr.Family {
   878  	case AF_NETLINK:
   879  		pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
   880  		sa := new(SockaddrNetlink)
   881  		sa.Family = pp.Family
   882  		sa.Pad = pp.Pad
   883  		sa.Pid = pp.Pid
   884  		sa.Groups = pp.Groups
   885  		return sa, nil
   886  
   887  	case AF_PACKET:
   888  		pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
   889  		sa := new(SockaddrLinklayer)
   890  		sa.Protocol = pp.Protocol
   891  		sa.Ifindex = int(pp.Ifindex)
   892  		sa.Hatype = pp.Hatype
   893  		sa.Pkttype = pp.Pkttype
   894  		sa.Halen = pp.Halen
   895  		for i := 0; i < len(sa.Addr); i++ {
   896  			sa.Addr[i] = pp.Addr[i]
   897  		}
   898  		return sa, nil
   899  
   900  	case AF_UNIX:
   901  		pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
   902  		sa := new(SockaddrUnix)
   903  		if pp.Path[0] == 0 {
   904  			// "Abstract" Unix domain socket.
   905  			// Rewrite leading NUL as @ for textual display.
   906  			// (This is the standard convention.)
   907  			// Not friendly to overwrite in place,
   908  			// but the callers below don't care.
   909  			pp.Path[0] = '@'
   910  		}
   911  
   912  		// Assume path ends at NUL.
   913  		// This is not technically the Linux semantics for
   914  		// abstract Unix domain sockets--they are supposed
   915  		// to be uninterpreted fixed-size binary blobs--but
   916  		// everyone uses this convention.
   917  		n := 0
   918  		for n < len(pp.Path) && pp.Path[n] != 0 {
   919  			n++
   920  		}
   921  		bytes := (*[len(pp.Path)]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
   922  		sa.Name = string(bytes)
   923  		return sa, nil
   924  
   925  	case AF_INET:
   926  		proto, err := GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
   927  		if err != nil {
   928  			return nil, err
   929  		}
   930  
   931  		switch proto {
   932  		case IPPROTO_L2TP:
   933  			pp := (*RawSockaddrL2TPIP)(unsafe.Pointer(rsa))
   934  			sa := new(SockaddrL2TPIP)
   935  			sa.ConnId = pp.Conn_id
   936  			for i := 0; i < len(sa.Addr); i++ {
   937  				sa.Addr[i] = pp.Addr[i]
   938  			}
   939  			return sa, nil
   940  		default:
   941  			pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
   942  			sa := new(SockaddrInet4)
   943  			p := (*[2]byte)(unsafe.Pointer(&pp.Port))
   944  			sa.Port = int(p[0])<<8 + int(p[1])
   945  			for i := 0; i < len(sa.Addr); i++ {
   946  				sa.Addr[i] = pp.Addr[i]
   947  			}
   948  			return sa, nil
   949  		}
   950  
   951  	case AF_INET6:
   952  		proto, err := GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
   953  		if err != nil {
   954  			return nil, err
   955  		}
   956  
   957  		switch proto {
   958  		case IPPROTO_L2TP:
   959  			pp := (*RawSockaddrL2TPIP6)(unsafe.Pointer(rsa))
   960  			sa := new(SockaddrL2TPIP6)
   961  			sa.ConnId = pp.Conn_id
   962  			sa.ZoneId = pp.Scope_id
   963  			for i := 0; i < len(sa.Addr); i++ {
   964  				sa.Addr[i] = pp.Addr[i]
   965  			}
   966  			return sa, nil
   967  		default:
   968  			pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
   969  			sa := new(SockaddrInet6)
   970  			p := (*[2]byte)(unsafe.Pointer(&pp.Port))
   971  			sa.Port = int(p[0])<<8 + int(p[1])
   972  			sa.ZoneId = pp.Scope_id
   973  			for i := 0; i < len(sa.Addr); i++ {
   974  				sa.Addr[i] = pp.Addr[i]
   975  			}
   976  			return sa, nil
   977  		}
   978  
   979  	case AF_VSOCK:
   980  		pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
   981  		sa := &SockaddrVM{
   982  			CID:  pp.Cid,
   983  			Port: pp.Port,
   984  		}
   985  		return sa, nil
   986  	case AF_BLUETOOTH:
   987  		proto, err := GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
   988  		if err != nil {
   989  			return nil, err
   990  		}
   991  		// only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
   992  		switch proto {
   993  		case BTPROTO_L2CAP:
   994  			pp := (*RawSockaddrL2)(unsafe.Pointer(rsa))
   995  			sa := &SockaddrL2{
   996  				PSM:      pp.Psm,
   997  				CID:      pp.Cid,
   998  				Addr:     pp.Bdaddr,
   999  				AddrType: pp.Bdaddr_type,
  1000  			}
  1001  			return sa, nil
  1002  		case BTPROTO_RFCOMM:
  1003  			pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa))
  1004  			sa := &SockaddrRFCOMM{
  1005  				Channel: pp.Channel,
  1006  				Addr:    pp.Bdaddr,
  1007  			}
  1008  			return sa, nil
  1009  		}
  1010  	case AF_XDP:
  1011  		pp := (*RawSockaddrXDP)(unsafe.Pointer(rsa))
  1012  		sa := &SockaddrXDP{
  1013  			Flags:        pp.Flags,
  1014  			Ifindex:      pp.Ifindex,
  1015  			QueueID:      pp.Queue_id,
  1016  			SharedUmemFD: pp.Shared_umem_fd,
  1017  		}
  1018  		return sa, nil
  1019  	case AF_PPPOX:
  1020  		pp := (*RawSockaddrPPPoX)(unsafe.Pointer(rsa))
  1021  		if binary.BigEndian.Uint32(pp[2:6]) != px_proto_oe {
  1022  			return nil, EINVAL
  1023  		}
  1024  		sa := &SockaddrPPPoE{
  1025  			SID:    binary.BigEndian.Uint16(pp[6:8]),
  1026  			Remote: pp[8:14],
  1027  		}
  1028  		for i := 14; i < 14+IFNAMSIZ; i++ {
  1029  			if pp[i] == 0 {
  1030  				sa.Dev = string(pp[14:i])
  1031  				break
  1032  			}
  1033  		}
  1034  		return sa, nil
  1035  	case AF_TIPC:
  1036  		pp := (*RawSockaddrTIPC)(unsafe.Pointer(rsa))
  1037  
  1038  		sa := &SockaddrTIPC{
  1039  			Scope: int(pp.Scope),
  1040  		}
  1041  
  1042  		// Determine which union variant is present in pp.Addr by checking
  1043  		// pp.Addrtype.
  1044  		switch pp.Addrtype {
  1045  		case TIPC_SERVICE_RANGE:
  1046  			sa.Addr = (*TIPCServiceRange)(unsafe.Pointer(&pp.Addr))
  1047  		case TIPC_SERVICE_ADDR:
  1048  			sa.Addr = (*TIPCServiceName)(unsafe.Pointer(&pp.Addr))
  1049  		case TIPC_SOCKET_ADDR:
  1050  			sa.Addr = (*TIPCSocketAddr)(unsafe.Pointer(&pp.Addr))
  1051  		default:
  1052  			return nil, EINVAL
  1053  		}
  1054  
  1055  		return sa, nil
  1056  	}
  1057  	return nil, EAFNOSUPPORT
  1058  }
  1059  
  1060  func Accept(fd int) (nfd int, sa Sockaddr, err error) {
  1061  	var rsa RawSockaddrAny
  1062  	var len _Socklen = SizeofSockaddrAny
  1063  	nfd, err = accept(fd, &rsa, &len)
  1064  	if err != nil {
  1065  		return
  1066  	}
  1067  	sa, err = anyToSockaddr(fd, &rsa)
  1068  	if err != nil {
  1069  		Close(nfd)
  1070  		nfd = 0
  1071  	}
  1072  	return
  1073  }
  1074  
  1075  func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
  1076  	var rsa RawSockaddrAny
  1077  	var len _Socklen = SizeofSockaddrAny
  1078  	nfd, err = accept4(fd, &rsa, &len, flags)
  1079  	if err != nil {
  1080  		return
  1081  	}
  1082  	if len > SizeofSockaddrAny {
  1083  		panic("RawSockaddrAny too small")
  1084  	}
  1085  	sa, err = anyToSockaddr(fd, &rsa)
  1086  	if err != nil {
  1087  		Close(nfd)
  1088  		nfd = 0
  1089  	}
  1090  	return
  1091  }
  1092  
  1093  func Getsockname(fd int) (sa Sockaddr, err error) {
  1094  	var rsa RawSockaddrAny
  1095  	var len _Socklen = SizeofSockaddrAny
  1096  	if err = getsockname(fd, &rsa, &len); err != nil {
  1097  		return
  1098  	}
  1099  	return anyToSockaddr(fd, &rsa)
  1100  }
  1101  
  1102  func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
  1103  	var value IPMreqn
  1104  	vallen := _Socklen(SizeofIPMreqn)
  1105  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  1106  	return &value, err
  1107  }
  1108  
  1109  func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
  1110  	var value Ucred
  1111  	vallen := _Socklen(SizeofUcred)
  1112  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  1113  	return &value, err
  1114  }
  1115  
  1116  func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
  1117  	var value TCPInfo
  1118  	vallen := _Socklen(SizeofTCPInfo)
  1119  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  1120  	return &value, err
  1121  }
  1122  
  1123  // GetsockoptString returns the string value of the socket option opt for the
  1124  // socket associated with fd at the given socket level.
  1125  func GetsockoptString(fd, level, opt int) (string, error) {
  1126  	buf := make([]byte, 256)
  1127  	vallen := _Socklen(len(buf))
  1128  	err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
  1129  	if err != nil {
  1130  		if err == ERANGE {
  1131  			buf = make([]byte, vallen)
  1132  			err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
  1133  		}
  1134  		if err != nil {
  1135  			return "", err
  1136  		}
  1137  	}
  1138  	return string(buf[:vallen-1]), nil
  1139  }
  1140  
  1141  func GetsockoptTpacketStats(fd, level, opt int) (*TpacketStats, error) {
  1142  	var value TpacketStats
  1143  	vallen := _Socklen(SizeofTpacketStats)
  1144  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  1145  	return &value, err
  1146  }
  1147  
  1148  func GetsockoptTpacketStatsV3(fd, level, opt int) (*TpacketStatsV3, error) {
  1149  	var value TpacketStatsV3
  1150  	vallen := _Socklen(SizeofTpacketStatsV3)
  1151  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
  1152  	return &value, err
  1153  }
  1154  
  1155  func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
  1156  	return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
  1157  }
  1158  
  1159  func SetsockoptPacketMreq(fd, level, opt int, mreq *PacketMreq) error {
  1160  	return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
  1161  }
  1162  
  1163  // SetsockoptSockFprog attaches a classic BPF or an extended BPF program to a
  1164  // socket to filter incoming packets.  See 'man 7 socket' for usage information.
  1165  func SetsockoptSockFprog(fd, level, opt int, fprog *SockFprog) error {
  1166  	return setsockopt(fd, level, opt, unsafe.Pointer(fprog), unsafe.Sizeof(*fprog))
  1167  }
  1168  
  1169  func SetsockoptCanRawFilter(fd, level, opt int, filter []CanFilter) error {
  1170  	var p unsafe.Pointer
  1171  	if len(filter) > 0 {
  1172  		p = unsafe.Pointer(&filter[0])
  1173  	}
  1174  	return setsockopt(fd, level, opt, p, uintptr(len(filter)*SizeofCanFilter))
  1175  }
  1176  
  1177  func SetsockoptTpacketReq(fd, level, opt int, tp *TpacketReq) error {
  1178  	return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
  1179  }
  1180  
  1181  func SetsockoptTpacketReq3(fd, level, opt int, tp *TpacketReq3) error {
  1182  	return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
  1183  }
  1184  
  1185  // Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
  1186  
  1187  // KeyctlInt calls keyctl commands in which each argument is an int.
  1188  // These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
  1189  // KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
  1190  // KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
  1191  // KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
  1192  //sys	KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
  1193  
  1194  // KeyctlBuffer calls keyctl commands in which the third and fourth
  1195  // arguments are a buffer and its length, respectively.
  1196  // These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
  1197  //sys	KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
  1198  
  1199  // KeyctlString calls keyctl commands which return a string.
  1200  // These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
  1201  func KeyctlString(cmd int, id int) (string, error) {
  1202  	// We must loop as the string data may change in between the syscalls.
  1203  	// We could allocate a large buffer here to reduce the chance that the
  1204  	// syscall needs to be called twice; however, this is unnecessary as
  1205  	// the performance loss is negligible.
  1206  	var buffer []byte
  1207  	for {
  1208  		// Try to fill the buffer with data
  1209  		length, err := KeyctlBuffer(cmd, id, buffer, 0)
  1210  		if err != nil {
  1211  			return "", err
  1212  		}
  1213  
  1214  		// Check if the data was written
  1215  		if length <= len(buffer) {
  1216  			// Exclude the null terminator
  1217  			return string(buffer[:length-1]), nil
  1218  		}
  1219  
  1220  		// Make a bigger buffer if needed
  1221  		buffer = make([]byte, length)
  1222  	}
  1223  }
  1224  
  1225  // Keyctl commands with special signatures.
  1226  
  1227  // KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
  1228  // See the full documentation at:
  1229  // http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
  1230  func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
  1231  	createInt := 0
  1232  	if create {
  1233  		createInt = 1
  1234  	}
  1235  	return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
  1236  }
  1237  
  1238  // KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
  1239  // key handle permission mask as described in the "keyctl setperm" section of
  1240  // http://man7.org/linux/man-pages/man1/keyctl.1.html.
  1241  // See the full documentation at:
  1242  // http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
  1243  func KeyctlSetperm(id int, perm uint32) error {
  1244  	_, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
  1245  	return err
  1246  }
  1247  
  1248  //sys	keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
  1249  
  1250  // KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
  1251  // See the full documentation at:
  1252  // http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
  1253  func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
  1254  	return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
  1255  }
  1256  
  1257  //sys	keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
  1258  
  1259  // KeyctlSearch implements the KEYCTL_SEARCH command.
  1260  // See the full documentation at:
  1261  // http://man7.org/linux/man-pages/man3/keyctl_search.3.html
  1262  func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
  1263  	return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
  1264  }
  1265  
  1266  //sys	keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
  1267  
  1268  // KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
  1269  // command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
  1270  // of Iovec (each of which represents a buffer) instead of a single buffer.
  1271  // See the full documentation at:
  1272  // http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
  1273  func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
  1274  	return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
  1275  }
  1276  
  1277  //sys	keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
  1278  
  1279  // KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
  1280  // computes a Diffie-Hellman shared secret based on the provide params. The
  1281  // secret is written to the provided buffer and the returned size is the number
  1282  // of bytes written (returning an error if there is insufficient space in the
  1283  // buffer). If a nil buffer is passed in, this function returns the minimum
  1284  // buffer length needed to store the appropriate data. Note that this differs
  1285  // from KEYCTL_READ's behavior which always returns the requested payload size.
  1286  // See the full documentation at:
  1287  // http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
  1288  func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
  1289  	return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
  1290  }
  1291  
  1292  // KeyctlRestrictKeyring implements the KEYCTL_RESTRICT_KEYRING command. This
  1293  // command limits the set of keys that can be linked to the keyring, regardless
  1294  // of keyring permissions. The command requires the "setattr" permission.
  1295  //
  1296  // When called with an empty keyType the command locks the keyring, preventing
  1297  // any further keys from being linked to the keyring.
  1298  //
  1299  // The "asymmetric" keyType defines restrictions requiring key payloads to be
  1300  // DER encoded X.509 certificates signed by keys in another keyring. Restrictions
  1301  // for "asymmetric" include "builtin_trusted", "builtin_and_secondary_trusted",
  1302  // "key_or_keyring:<key>", and "key_or_keyring:<key>:chain".
  1303  //
  1304  // As of Linux 4.12, only the "asymmetric" keyType defines type-specific
  1305  // restrictions.
  1306  //
  1307  // See the full documentation at:
  1308  // http://man7.org/linux/man-pages/man3/keyctl_restrict_keyring.3.html
  1309  // http://man7.org/linux/man-pages/man2/keyctl.2.html
  1310  func KeyctlRestrictKeyring(ringid int, keyType string, restriction string) error {
  1311  	if keyType == "" {
  1312  		return keyctlRestrictKeyring(KEYCTL_RESTRICT_KEYRING, ringid)
  1313  	}
  1314  	return keyctlRestrictKeyringByType(KEYCTL_RESTRICT_KEYRING, ringid, keyType, restriction)
  1315  }
  1316  
  1317  //sys keyctlRestrictKeyringByType(cmd int, arg2 int, keyType string, restriction string) (err error) = SYS_KEYCTL
  1318  //sys keyctlRestrictKeyring(cmd int, arg2 int) (err error) = SYS_KEYCTL
  1319  
  1320  func Recvmsg(fd int, p, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) {
  1321  	var msg Msghdr
  1322  	var rsa RawSockaddrAny
  1323  	msg.Name = (*byte)(unsafe.Pointer(&rsa))
  1324  	msg.Namelen = uint32(SizeofSockaddrAny)
  1325  	var iov Iovec
  1326  	if len(p) > 0 {
  1327  		iov.Base = &p[0]
  1328  		iov.SetLen(len(p))
  1329  	}
  1330  	var dummy byte
  1331  	if len(oob) > 0 {
  1332  		if len(p) == 0 {
  1333  			var sockType int
  1334  			sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
  1335  			if err != nil {
  1336  				return
  1337  			}
  1338  			// receive at least one normal byte
  1339  			if sockType != SOCK_DGRAM {
  1340  				iov.Base = &dummy
  1341  				iov.SetLen(1)
  1342  			}
  1343  		}
  1344  		msg.Control = &oob[0]
  1345  		msg.SetControllen(len(oob))
  1346  	}
  1347  	msg.Iov = &iov
  1348  	msg.Iovlen = 1
  1349  	if n, err = recvmsg(fd, &msg, flags); err != nil {
  1350  		return
  1351  	}
  1352  	oobn = int(msg.Controllen)
  1353  	recvflags = int(msg.Flags)
  1354  	// source address is only specified if the socket is unconnected
  1355  	if rsa.Addr.Family != AF_UNSPEC {
  1356  		from, err = anyToSockaddr(fd, &rsa)
  1357  	}
  1358  	return
  1359  }
  1360  
  1361  func Sendmsg(fd int, p, oob []byte, to Sockaddr, flags int) (err error) {
  1362  	_, err = SendmsgN(fd, p, oob, to, flags)
  1363  	return
  1364  }
  1365  
  1366  func SendmsgN(fd int, p, oob []byte, to Sockaddr, flags int) (n int, err error) {
  1367  	var ptr unsafe.Pointer
  1368  	var salen _Socklen
  1369  	if to != nil {
  1370  		var err error
  1371  		ptr, salen, err = to.sockaddr()
  1372  		if err != nil {
  1373  			return 0, err
  1374  		}
  1375  	}
  1376  	var msg Msghdr
  1377  	msg.Name = (*byte)(ptr)
  1378  	msg.Namelen = uint32(salen)
  1379  	var iov Iovec
  1380  	if len(p) > 0 {
  1381  		iov.Base = &p[0]
  1382  		iov.SetLen(len(p))
  1383  	}
  1384  	var dummy byte
  1385  	if len(oob) > 0 {
  1386  		if len(p) == 0 {
  1387  			var sockType int
  1388  			sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
  1389  			if err != nil {
  1390  				return 0, err
  1391  			}
  1392  			// send at least one normal byte
  1393  			if sockType != SOCK_DGRAM {
  1394  				iov.Base = &dummy
  1395  				iov.SetLen(1)
  1396  			}
  1397  		}
  1398  		msg.Control = &oob[0]
  1399  		msg.SetControllen(len(oob))
  1400  	}
  1401  	msg.Iov = &iov
  1402  	msg.Iovlen = 1
  1403  	if n, err = sendmsg(fd, &msg, flags); err != nil {
  1404  		return 0, err
  1405  	}
  1406  	if len(oob) > 0 && len(p) == 0 {
  1407  		n = 0
  1408  	}
  1409  	return n, nil
  1410  }
  1411  
  1412  // BindToDevice binds the socket associated with fd to device.
  1413  func BindToDevice(fd int, device string) (err error) {
  1414  	return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
  1415  }
  1416  
  1417  //sys	ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
  1418  
  1419  func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
  1420  	// The peek requests are machine-size oriented, so we wrap it
  1421  	// to retrieve arbitrary-length data.
  1422  
  1423  	// The ptrace syscall differs from glibc's ptrace.
  1424  	// Peeks returns the word in *data, not as the return value.
  1425  
  1426  	var buf [SizeofPtr]byte
  1427  
  1428  	// Leading edge. PEEKTEXT/PEEKDATA don't require aligned
  1429  	// access (PEEKUSER warns that it might), but if we don't
  1430  	// align our reads, we might straddle an unmapped page
  1431  	// boundary and not get the bytes leading up to the page
  1432  	// boundary.
  1433  	n := 0
  1434  	if addr%SizeofPtr != 0 {
  1435  		err = ptrace(req, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
  1436  		if err != nil {
  1437  			return 0, err
  1438  		}
  1439  		n += copy(out, buf[addr%SizeofPtr:])
  1440  		out = out[n:]
  1441  	}
  1442  
  1443  	// Remainder.
  1444  	for len(out) > 0 {
  1445  		// We use an internal buffer to guarantee alignment.
  1446  		// It's not documented if this is necessary, but we're paranoid.
  1447  		err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
  1448  		if err != nil {
  1449  			return n, err
  1450  		}
  1451  		copied := copy(out, buf[0:])
  1452  		n += copied
  1453  		out = out[copied:]
  1454  	}
  1455  
  1456  	return n, nil
  1457  }
  1458  
  1459  func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
  1460  	return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
  1461  }
  1462  
  1463  func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
  1464  	return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
  1465  }
  1466  
  1467  func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
  1468  	return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
  1469  }
  1470  
  1471  func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
  1472  	// As for ptracePeek, we need to align our accesses to deal
  1473  	// with the possibility of straddling an invalid page.
  1474  
  1475  	// Leading edge.
  1476  	n := 0
  1477  	if addr%SizeofPtr != 0 {
  1478  		var buf [SizeofPtr]byte
  1479  		err = ptrace(peekReq, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
  1480  		if err != nil {
  1481  			return 0, err
  1482  		}
  1483  		n += copy(buf[addr%SizeofPtr:], data)
  1484  		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
  1485  		err = ptrace(pokeReq, pid, addr-addr%SizeofPtr, word)
  1486  		if err != nil {
  1487  			return 0, err
  1488  		}
  1489  		data = data[n:]
  1490  	}
  1491  
  1492  	// Interior.
  1493  	for len(data) > SizeofPtr {
  1494  		word := *((*uintptr)(unsafe.Pointer(&data[0])))
  1495  		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
  1496  		if err != nil {
  1497  			return n, err
  1498  		}
  1499  		n += SizeofPtr
  1500  		data = data[SizeofPtr:]
  1501  	}
  1502  
  1503  	// Trailing edge.
  1504  	if len(data) > 0 {
  1505  		var buf [SizeofPtr]byte
  1506  		err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
  1507  		if err != nil {
  1508  			return n, err
  1509  		}
  1510  		copy(buf[0:], data)
  1511  		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
  1512  		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
  1513  		if err != nil {
  1514  			return n, err
  1515  		}
  1516  		n += len(data)
  1517  	}
  1518  
  1519  	return n, nil
  1520  }
  1521  
  1522  func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
  1523  	return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
  1524  }
  1525  
  1526  func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
  1527  	return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
  1528  }
  1529  
  1530  func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
  1531  	return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
  1532  }
  1533  
  1534  func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
  1535  	return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
  1536  }
  1537  
  1538  func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
  1539  	return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
  1540  }
  1541  
  1542  func PtraceSetOptions(pid int, options int) (err error) {
  1543  	return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
  1544  }
  1545  
  1546  func PtraceGetEventMsg(pid int) (msg uint, err error) {
  1547  	var data _C_long
  1548  	err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
  1549  	msg = uint(data)
  1550  	return
  1551  }
  1552  
  1553  func PtraceCont(pid int, signal int) (err error) {
  1554  	return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
  1555  }
  1556  
  1557  func PtraceSyscall(pid int, signal int) (err error) {
  1558  	return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
  1559  }
  1560  
  1561  func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
  1562  
  1563  func PtraceInterrupt(pid int) (err error) { return ptrace(PTRACE_INTERRUPT, pid, 0, 0) }
  1564  
  1565  func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
  1566  
  1567  func PtraceSeize(pid int) (err error) { return ptrace(PTRACE_SEIZE, pid, 0, 0) }
  1568  
  1569  func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
  1570  
  1571  //sys	reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
  1572  
  1573  func Reboot(cmd int) (err error) {
  1574  	return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
  1575  }
  1576  
  1577  func direntIno(buf []byte) (uint64, bool) {
  1578  	return readInt(buf, unsafe.Offsetof(Dirent{}.Ino), unsafe.Sizeof(Dirent{}.Ino))
  1579  }
  1580  
  1581  func direntReclen(buf []byte) (uint64, bool) {
  1582  	return readInt(buf, unsafe.Offsetof(Dirent{}.Reclen), unsafe.Sizeof(Dirent{}.Reclen))
  1583  }
  1584  
  1585  func direntNamlen(buf []byte) (uint64, bool) {
  1586  	reclen, ok := direntReclen(buf)
  1587  	if !ok {
  1588  		return 0, false
  1589  	}
  1590  	return reclen - uint64(unsafe.Offsetof(Dirent{}.Name)), true
  1591  }
  1592  
  1593  //sys	mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
  1594  
  1595  func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
  1596  	// Certain file systems get rather angry and EINVAL if you give
  1597  	// them an empty string of data, rather than NULL.
  1598  	if data == "" {
  1599  		return mount(source, target, fstype, flags, nil)
  1600  	}
  1601  	datap, err := BytePtrFromString(data)
  1602  	if err != nil {
  1603  		return err
  1604  	}
  1605  	return mount(source, target, fstype, flags, datap)
  1606  }
  1607  
  1608  func Sendfile(outfd int, infd int, offset *int64, count int) (written int, err error) {
  1609  	if raceenabled {
  1610  		raceReleaseMerge(unsafe.Pointer(&ioSync))
  1611  	}
  1612  	return sendfile(outfd, infd, offset, count)
  1613  }
  1614  
  1615  // Sendto
  1616  // Recvfrom
  1617  // Socketpair
  1618  
  1619  /*
  1620   * Direct access
  1621   */
  1622  //sys	Acct(path string) (err error)
  1623  //sys	AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
  1624  //sys	Adjtimex(buf *Timex) (state int, err error)
  1625  //sysnb	Capget(hdr *CapUserHeader, data *CapUserData) (err error)
  1626  //sysnb	Capset(hdr *CapUserHeader, data *CapUserData) (err error)
  1627  //sys	Chdir(path string) (err error)
  1628  //sys	Chroot(path string) (err error)
  1629  //sys	ClockGetres(clockid int32, res *Timespec) (err error)
  1630  //sys	ClockGettime(clockid int32, time *Timespec) (err error)
  1631  //sys	ClockNanosleep(clockid int32, flags int, request *Timespec, remain *Timespec) (err error)
  1632  //sys	Close(fd int) (err error)
  1633  //sys	CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
  1634  //sys	DeleteModule(name string, flags int) (err error)
  1635  //sys	Dup(oldfd int) (fd int, err error)
  1636  //sys	Dup3(oldfd int, newfd int, flags int) (err error)
  1637  //sysnb	EpollCreate1(flag int) (fd int, err error)
  1638  //sysnb	EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
  1639  //sys	Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
  1640  //sys	Exit(code int) = SYS_EXIT_GROUP
  1641  //sys	Fallocate(fd int, mode uint32, off int64, len int64) (err error)
  1642  //sys	Fchdir(fd int) (err error)
  1643  //sys	Fchmod(fd int, mode uint32) (err error)
  1644  //sys	Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
  1645  //sys	Fdatasync(fd int) (err error)
  1646  //sys	Fgetxattr(fd int, attr string, dest []byte) (sz int, err error)
  1647  //sys	FinitModule(fd int, params string, flags int) (err error)
  1648  //sys	Flistxattr(fd int, dest []byte) (sz int, err error)
  1649  //sys	Flock(fd int, how int) (err error)
  1650  //sys	Fremovexattr(fd int, attr string) (err error)
  1651  //sys	Fsetxattr(fd int, attr string, dest []byte, flags int) (err error)
  1652  //sys	Fsync(fd int) (err error)
  1653  //sys	Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
  1654  //sysnb	Getpgid(pid int) (pgid int, err error)
  1655  
  1656  func Getpgrp() (pid int) {
  1657  	pid, _ = Getpgid(0)
  1658  	return
  1659  }
  1660  
  1661  //sysnb	Getpid() (pid int)
  1662  //sysnb	Getppid() (ppid int)
  1663  //sys	Getpriority(which int, who int) (prio int, err error)
  1664  //sys	Getrandom(buf []byte, flags int) (n int, err error)
  1665  //sysnb	Getrusage(who int, rusage *Rusage) (err error)
  1666  //sysnb	Getsid(pid int) (sid int, err error)
  1667  //sysnb	Gettid() (tid int)
  1668  //sys	Getxattr(path string, attr string, dest []byte) (sz int, err error)
  1669  //sys	InitModule(moduleImage []byte, params string) (err error)
  1670  //sys	InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
  1671  //sysnb	InotifyInit1(flags int) (fd int, err error)
  1672  //sysnb	InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
  1673  //sysnb	Kill(pid int, sig syscall.Signal) (err error)
  1674  //sys	Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
  1675  //sys	Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
  1676  //sys	Listxattr(path string, dest []byte) (sz int, err error)
  1677  //sys	Llistxattr(path string, dest []byte) (sz int, err error)
  1678  //sys	Lremovexattr(path string, attr string) (err error)
  1679  //sys	Lsetxattr(path string, attr string, data []byte, flags int) (err error)
  1680  //sys	MemfdCreate(name string, flags int) (fd int, err error)
  1681  //sys	Mkdirat(dirfd int, path string, mode uint32) (err error)
  1682  //sys	Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
  1683  //sys	Nanosleep(time *Timespec, leftover *Timespec) (err error)
  1684  //sys	PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
  1685  //sys	PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
  1686  //sysnb prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
  1687  //sys   Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
  1688  //sys	Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
  1689  //sys	read(fd int, p []byte) (n int, err error)
  1690  //sys	Removexattr(path string, attr string) (err error)
  1691  //sys	Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error)
  1692  //sys	RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
  1693  //sys	Setdomainname(p []byte) (err error)
  1694  //sys	Sethostname(p []byte) (err error)
  1695  //sysnb	Setpgid(pid int, pgid int) (err error)
  1696  //sysnb	Setsid() (pid int, err error)
  1697  //sysnb	Settimeofday(tv *Timeval) (err error)
  1698  //sys	Setns(fd int, nstype int) (err error)
  1699  
  1700  // PrctlRetInt performs a prctl operation specified by option and further
  1701  // optional arguments arg2 through arg5 depending on option. It returns a
  1702  // non-negative integer that is returned by the prctl syscall.
  1703  func PrctlRetInt(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (int, error) {
  1704  	ret, _, err := Syscall6(SYS_PRCTL, uintptr(option), uintptr(arg2), uintptr(arg3), uintptr(arg4), uintptr(arg5), 0)
  1705  	if err != 0 {
  1706  		return 0, err
  1707  	}
  1708  	return int(ret), nil
  1709  }
  1710  
  1711  // issue 1435.
  1712  // On linux Setuid and Setgid only affects the current thread, not the process.
  1713  // This does not match what most callers expect so we must return an error
  1714  // here rather than letting the caller think that the call succeeded.
  1715  
  1716  func Setuid(uid int) (err error) {
  1717  	return EOPNOTSUPP
  1718  }
  1719  
  1720  func Setgid(uid int) (err error) {
  1721  	return EOPNOTSUPP
  1722  }
  1723  
  1724  // SetfsgidRetGid sets fsgid for current thread and returns previous fsgid set.
  1725  // setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability.
  1726  // If the call fails due to other reasons, current fsgid will be returned.
  1727  func SetfsgidRetGid(gid int) (int, error) {
  1728  	return setfsgid(gid)
  1729  }
  1730  
  1731  // SetfsuidRetUid sets fsuid for current thread and returns previous fsuid set.
  1732  // setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability
  1733  // If the call fails due to other reasons, current fsuid will be returned.
  1734  func SetfsuidRetUid(uid int) (int, error) {
  1735  	return setfsuid(uid)
  1736  }
  1737  
  1738  func Setfsgid(gid int) error {
  1739  	_, err := setfsgid(gid)
  1740  	return err
  1741  }
  1742  
  1743  func Setfsuid(uid int) error {
  1744  	_, err := setfsuid(uid)
  1745  	return err
  1746  }
  1747  
  1748  func Signalfd(fd int, sigmask *Sigset_t, flags int) (newfd int, err error) {
  1749  	return signalfd(fd, sigmask, _C__NSIG/8, flags)
  1750  }
  1751  
  1752  //sys	Setpriority(which int, who int, prio int) (err error)
  1753  //sys	Setxattr(path string, attr string, data []byte, flags int) (err error)
  1754  //sys	signalfd(fd int, sigmask *Sigset_t, maskSize uintptr, flags int) (newfd int, err error) = SYS_SIGNALFD4
  1755  //sys	Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
  1756  //sys	Sync()
  1757  //sys	Syncfs(fd int) (err error)
  1758  //sysnb	Sysinfo(info *Sysinfo_t) (err error)
  1759  //sys	Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
  1760  //sysnb	Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
  1761  //sysnb	Times(tms *Tms) (ticks uintptr, err error)
  1762  //sysnb	Umask(mask int) (oldmask int)
  1763  //sysnb	Uname(buf *Utsname) (err error)
  1764  //sys	Unmount(target string, flags int) (err error) = SYS_UMOUNT2
  1765  //sys	Unshare(flags int) (err error)
  1766  //sys	write(fd int, p []byte) (n int, err error)
  1767  //sys	exitThread(code int) (err error) = SYS_EXIT
  1768  //sys	readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
  1769  //sys	writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
  1770  //sys	readv(fd int, iovs []Iovec) (n int, err error) = SYS_READV
  1771  //sys	writev(fd int, iovs []Iovec) (n int, err error) = SYS_WRITEV
  1772  //sys	preadv(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PREADV
  1773  //sys	pwritev(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PWRITEV
  1774  //sys	preadv2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PREADV2
  1775  //sys	pwritev2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PWRITEV2
  1776  
  1777  func bytes2iovec(bs [][]byte) []Iovec {
  1778  	iovecs := make([]Iovec, len(bs))
  1779  	for i, b := range bs {
  1780  		iovecs[i].SetLen(len(b))
  1781  		if len(b) > 0 {
  1782  			iovecs[i].Base = &b[0]
  1783  		} else {
  1784  			iovecs[i].Base = (*byte)(unsafe.Pointer(&_zero))
  1785  		}
  1786  	}
  1787  	return iovecs
  1788  }
  1789  
  1790  // offs2lohi splits offs into its lower and upper unsigned long. On 64-bit
  1791  // systems, hi will always be 0. On 32-bit systems, offs will be split in half.
  1792  // preadv/pwritev chose this calling convention so they don't need to add a
  1793  // padding-register for alignment on ARM.
  1794  func offs2lohi(offs int64) (lo, hi uintptr) {
  1795  	return uintptr(offs), uintptr(uint64(offs) >> SizeofLong)
  1796  }
  1797  
  1798  func Readv(fd int, iovs [][]byte) (n int, err error) {
  1799  	iovecs := bytes2iovec(iovs)
  1800  	n, err = readv(fd, iovecs)
  1801  	readvRacedetect(iovecs, n, err)
  1802  	return n, err
  1803  }
  1804  
  1805  func Preadv(fd int, iovs [][]byte, offset int64) (n int, err error) {
  1806  	iovecs := bytes2iovec(iovs)
  1807  	lo, hi := offs2lohi(offset)
  1808  	n, err = preadv(fd, iovecs, lo, hi)
  1809  	readvRacedetect(iovecs, n, err)
  1810  	return n, err
  1811  }
  1812  
  1813  func Preadv2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
  1814  	iovecs := bytes2iovec(iovs)
  1815  	lo, hi := offs2lohi(offset)
  1816  	n, err = preadv2(fd, iovecs, lo, hi, flags)
  1817  	readvRacedetect(iovecs, n, err)
  1818  	return n, err
  1819  }
  1820  
  1821  func readvRacedetect(iovecs []Iovec, n int, err error) {
  1822  	if !raceenabled {
  1823  		return
  1824  	}
  1825  	for i := 0; n > 0 && i < len(iovecs); i++ {
  1826  		m := int(iovecs[i].Len)
  1827  		if m > n {
  1828  			m = n
  1829  		}
  1830  		n -= m
  1831  		if m > 0 {
  1832  			raceWriteRange(unsafe.Pointer(iovecs[i].Base), m)
  1833  		}
  1834  	}
  1835  	if err == nil {
  1836  		raceAcquire(unsafe.Pointer(&ioSync))
  1837  	}
  1838  }
  1839  
  1840  func Writev(fd int, iovs [][]byte) (n int, err error) {
  1841  	iovecs := bytes2iovec(iovs)
  1842  	if raceenabled {
  1843  		raceReleaseMerge(unsafe.Pointer(&ioSync))
  1844  	}
  1845  	n, err = writev(fd, iovecs)
  1846  	writevRacedetect(iovecs, n)
  1847  	return n, err
  1848  }
  1849  
  1850  func Pwritev(fd int, iovs [][]byte, offset int64) (n int, err error) {
  1851  	iovecs := bytes2iovec(iovs)
  1852  	if raceenabled {
  1853  		raceReleaseMerge(unsafe.Pointer(&ioSync))
  1854  	}
  1855  	lo, hi := offs2lohi(offset)
  1856  	n, err = pwritev(fd, iovecs, lo, hi)
  1857  	writevRacedetect(iovecs, n)
  1858  	return n, err
  1859  }
  1860  
  1861  func Pwritev2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
  1862  	iovecs := bytes2iovec(iovs)
  1863  	if raceenabled {
  1864  		raceReleaseMerge(unsafe.Pointer(&ioSync))
  1865  	}
  1866  	lo, hi := offs2lohi(offset)
  1867  	n, err = pwritev2(fd, iovecs, lo, hi, flags)
  1868  	writevRacedetect(iovecs, n)
  1869  	return n, err
  1870  }
  1871  
  1872  func writevRacedetect(iovecs []Iovec, n int) {
  1873  	if !raceenabled {
  1874  		return
  1875  	}
  1876  	for i := 0; n > 0 && i < len(iovecs); i++ {
  1877  		m := int(iovecs[i].Len)
  1878  		if m > n {
  1879  			m = n
  1880  		}
  1881  		n -= m
  1882  		if m > 0 {
  1883  			raceReadRange(unsafe.Pointer(iovecs[i].Base), m)
  1884  		}
  1885  	}
  1886  }
  1887  
  1888  // mmap varies by architecture; see syscall_linux_*.go.
  1889  //sys	munmap(addr uintptr, length uintptr) (err error)
  1890  
  1891  var mapper = &mmapper{
  1892  	active: make(map[*byte][]byte),
  1893  	mmap:   mmap,
  1894  	munmap: munmap,
  1895  }
  1896  
  1897  func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
  1898  	return mapper.Mmap(fd, offset, length, prot, flags)
  1899  }
  1900  
  1901  func Munmap(b []byte) (err error) {
  1902  	return mapper.Munmap(b)
  1903  }
  1904  
  1905  //sys	Madvise(b []byte, advice int) (err error)
  1906  //sys	Mprotect(b []byte, prot int) (err error)
  1907  //sys	Mlock(b []byte) (err error)
  1908  //sys	Mlockall(flags int) (err error)
  1909  //sys	Msync(b []byte, flags int) (err error)
  1910  //sys	Munlock(b []byte) (err error)
  1911  //sys	Munlockall() (err error)
  1912  
  1913  // Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
  1914  // using the specified flags.
  1915  func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
  1916  	var p unsafe.Pointer
  1917  	if len(iovs) > 0 {
  1918  		p = unsafe.Pointer(&iovs[0])
  1919  	}
  1920  
  1921  	n, _, errno := Syscall6(SYS_VMSPLICE, uintptr(fd), uintptr(p), uintptr(len(iovs)), uintptr(flags), 0, 0)
  1922  	if errno != 0 {
  1923  		return 0, syscall.Errno(errno)
  1924  	}
  1925  
  1926  	return int(n), nil
  1927  }
  1928  
  1929  //sys	faccessat(dirfd int, path string, mode uint32) (err error)
  1930  
  1931  func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) {
  1932  	if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
  1933  		return EINVAL
  1934  	}
  1935  
  1936  	// The Linux kernel faccessat system call does not take any flags.
  1937  	// The glibc faccessat implements the flags itself; see
  1938  	// https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD
  1939  	// Because people naturally expect syscall.Faccessat to act
  1940  	// like C faccessat, we do the same.
  1941  
  1942  	if flags == 0 {
  1943  		return faccessat(dirfd, path, mode)
  1944  	}
  1945  
  1946  	var st Stat_t
  1947  	if err := Fstatat(dirfd, path, &st, flags&AT_SYMLINK_NOFOLLOW); err != nil {
  1948  		return err
  1949  	}
  1950  
  1951  	mode &= 7
  1952  	if mode == 0 {
  1953  		return nil
  1954  	}
  1955  
  1956  	var uid int
  1957  	if flags&AT_EACCESS != 0 {
  1958  		uid = Geteuid()
  1959  	} else {
  1960  		uid = Getuid()
  1961  	}
  1962  
  1963  	if uid == 0 {
  1964  		if mode&1 == 0 {
  1965  			// Root can read and write any file.
  1966  			return nil
  1967  		}
  1968  		if st.Mode&0111 != 0 {
  1969  			// Root can execute any file that anybody can execute.
  1970  			return nil
  1971  		}
  1972  		return EACCES
  1973  	}
  1974  
  1975  	var fmode uint32
  1976  	if uint32(uid) == st.Uid {
  1977  		fmode = (st.Mode >> 6) & 7
  1978  	} else {
  1979  		var gid int
  1980  		if flags&AT_EACCESS != 0 {
  1981  			gid = Getegid()
  1982  		} else {
  1983  			gid = Getgid()
  1984  		}
  1985  
  1986  		if uint32(gid) == st.Gid {
  1987  			fmode = (st.Mode >> 3) & 7
  1988  		} else {
  1989  			fmode = st.Mode & 7
  1990  		}
  1991  	}
  1992  
  1993  	if fmode&mode == mode {
  1994  		return nil
  1995  	}
  1996  
  1997  	return EACCES
  1998  }
  1999  
  2000  //sys nameToHandleAt(dirFD int, pathname string, fh *fileHandle, mountID *_C_int, flags int) (err error) = SYS_NAME_TO_HANDLE_AT
  2001  //sys openByHandleAt(mountFD int, fh *fileHandle, flags int) (fd int, err error) = SYS_OPEN_BY_HANDLE_AT
  2002  
  2003  // fileHandle is the argument to nameToHandleAt and openByHandleAt. We
  2004  // originally tried to generate it via unix/linux/types.go with "type
  2005  // fileHandle C.struct_file_handle" but that generated empty structs
  2006  // for mips64 and mips64le. Instead, hard code it for now (it's the
  2007  // same everywhere else) until the mips64 generator issue is fixed.
  2008  type fileHandle struct {
  2009  	Bytes uint32
  2010  	Type  int32
  2011  }
  2012  
  2013  // FileHandle represents the C struct file_handle used by
  2014  // name_to_handle_at (see NameToHandleAt) and open_by_handle_at (see
  2015  // OpenByHandleAt).
  2016  type FileHandle struct {
  2017  	*fileHandle
  2018  }
  2019  
  2020  // NewFileHandle constructs a FileHandle.
  2021  func NewFileHandle(handleType int32, handle []byte) FileHandle {
  2022  	const hdrSize = unsafe.Sizeof(fileHandle{})
  2023  	buf := make([]byte, hdrSize+uintptr(len(handle)))
  2024  	copy(buf[hdrSize:], handle)
  2025  	fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
  2026  	fh.Type = handleType
  2027  	fh.Bytes = uint32(len(handle))
  2028  	return FileHandle{fh}
  2029  }
  2030  
  2031  func (fh *FileHandle) Size() int   { return int(fh.fileHandle.Bytes) }
  2032  func (fh *FileHandle) Type() int32 { return fh.fileHandle.Type }
  2033  func (fh *FileHandle) Bytes() []byte {
  2034  	n := fh.Size()
  2035  	if n == 0 {
  2036  		return nil
  2037  	}
  2038  	return (*[1 << 30]byte)(unsafe.Pointer(uintptr(unsafe.Pointer(&fh.fileHandle.Type)) + 4))[:n:n]
  2039  }
  2040  
  2041  // NameToHandleAt wraps the name_to_handle_at system call; it obtains
  2042  // a handle for a path name.
  2043  func NameToHandleAt(dirfd int, path string, flags int) (handle FileHandle, mountID int, err error) {
  2044  	var mid _C_int
  2045  	// Try first with a small buffer, assuming the handle will
  2046  	// only be 32 bytes.
  2047  	size := uint32(32 + unsafe.Sizeof(fileHandle{}))
  2048  	didResize := false
  2049  	for {
  2050  		buf := make([]byte, size)
  2051  		fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
  2052  		fh.Bytes = size - uint32(unsafe.Sizeof(fileHandle{}))
  2053  		err = nameToHandleAt(dirfd, path, fh, &mid, flags)
  2054  		if err == EOVERFLOW {
  2055  			if didResize {
  2056  				// We shouldn't need to resize more than once
  2057  				return
  2058  			}
  2059  			didResize = true
  2060  			size = fh.Bytes + uint32(unsafe.Sizeof(fileHandle{}))
  2061  			continue
  2062  		}
  2063  		if err != nil {
  2064  			return
  2065  		}
  2066  		return FileHandle{fh}, int(mid), nil
  2067  	}
  2068  }
  2069  
  2070  // OpenByHandleAt wraps the open_by_handle_at system call; it opens a
  2071  // file via a handle as previously returned by NameToHandleAt.
  2072  func OpenByHandleAt(mountFD int, handle FileHandle, flags int) (fd int, err error) {
  2073  	return openByHandleAt(mountFD, handle.fileHandle, flags)
  2074  }
  2075  
  2076  // Klogset wraps the sys_syslog system call; it sets console_loglevel to
  2077  // the value specified by arg and passes a dummy pointer to bufp.
  2078  func Klogset(typ int, arg int) (err error) {
  2079  	var p unsafe.Pointer
  2080  	_, _, errno := Syscall(SYS_SYSLOG, uintptr(typ), uintptr(p), uintptr(arg))
  2081  	if errno != 0 {
  2082  		return errnoErr(errno)
  2083  	}
  2084  	return nil
  2085  }
  2086  
  2087  /*
  2088   * Unimplemented
  2089   */
  2090  // AfsSyscall
  2091  // Alarm
  2092  // ArchPrctl
  2093  // Brk
  2094  // ClockNanosleep
  2095  // ClockSettime
  2096  // Clone
  2097  // EpollCtlOld
  2098  // EpollPwait
  2099  // EpollWaitOld
  2100  // Execve
  2101  // Fork
  2102  // Futex
  2103  // GetKernelSyms
  2104  // GetMempolicy
  2105  // GetRobustList
  2106  // GetThreadArea
  2107  // Getitimer
  2108  // Getpmsg
  2109  // IoCancel
  2110  // IoDestroy
  2111  // IoGetevents
  2112  // IoSetup
  2113  // IoSubmit
  2114  // IoprioGet
  2115  // IoprioSet
  2116  // KexecLoad
  2117  // LookupDcookie
  2118  // Mbind
  2119  // MigratePages
  2120  // Mincore
  2121  // ModifyLdt
  2122  // Mount
  2123  // MovePages
  2124  // MqGetsetattr
  2125  // MqNotify
  2126  // MqOpen
  2127  // MqTimedreceive
  2128  // MqTimedsend
  2129  // MqUnlink
  2130  // Mremap
  2131  // Msgctl
  2132  // Msgget
  2133  // Msgrcv
  2134  // Msgsnd
  2135  // Nfsservctl
  2136  // Personality
  2137  // Pselect6
  2138  // Ptrace
  2139  // Putpmsg
  2140  // Quotactl
  2141  // Readahead
  2142  // Readv
  2143  // RemapFilePages
  2144  // RestartSyscall
  2145  // RtSigaction
  2146  // RtSigpending
  2147  // RtSigprocmask
  2148  // RtSigqueueinfo
  2149  // RtSigreturn
  2150  // RtSigsuspend
  2151  // RtSigtimedwait
  2152  // SchedGetPriorityMax
  2153  // SchedGetPriorityMin
  2154  // SchedGetparam
  2155  // SchedGetscheduler
  2156  // SchedRrGetInterval
  2157  // SchedSetparam
  2158  // SchedYield
  2159  // Security
  2160  // Semctl
  2161  // Semget
  2162  // Semop
  2163  // Semtimedop
  2164  // SetMempolicy
  2165  // SetRobustList
  2166  // SetThreadArea
  2167  // SetTidAddress
  2168  // Shmat
  2169  // Shmctl
  2170  // Shmdt
  2171  // Shmget
  2172  // Sigaltstack
  2173  // Swapoff
  2174  // Swapon
  2175  // Sysfs
  2176  // TimerCreate
  2177  // TimerDelete
  2178  // TimerGetoverrun
  2179  // TimerGettime
  2180  // TimerSettime
  2181  // Timerfd
  2182  // Tkill (obsolete)
  2183  // Tuxcall
  2184  // Umount2
  2185  // Uselib
  2186  // Utimensat
  2187  // Vfork
  2188  // Vhangup
  2189  // Vserver
  2190  // Waitid
  2191  // _Sysctl