github.com/xushiwei/go@v0.0.0-20130601165731-2b9d83f45bc9/src/cmd/fix/testdata/reflect.asn1.go.out (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // The asn1 package implements parsing of DER-encoded ASN.1 data structures,
     6  // as defined in ITU-T Rec X.690.
     7  //
     8  // See also ``A Layman's Guide to a Subset of ASN.1, BER, and DER,''
     9  // http://luca.ntop.org/Teaching/Appunti/asn1.html.
    10  package asn1
    11  
    12  // ASN.1 is a syntax for specifying abstract objects and BER, DER, PER, XER etc
    13  // are different encoding formats for those objects. Here, we'll be dealing
    14  // with DER, the Distinguished Encoding Rules. DER is used in X.509 because
    15  // it's fast to parse and, unlike BER, has a unique encoding for every object.
    16  // When calculating hashes over objects, it's important that the resulting
    17  // bytes be the same at both ends and DER removes this margin of error.
    18  //
    19  // ASN.1 is very complex and this package doesn't attempt to implement
    20  // everything by any means.
    21  
    22  import (
    23  	"fmt"
    24  	"os"
    25  	"reflect"
    26  	"time"
    27  )
    28  
    29  // A StructuralError suggests that the ASN.1 data is valid, but the Go type
    30  // which is receiving it doesn't match.
    31  type StructuralError struct {
    32  	Msg string
    33  }
    34  
    35  func (e StructuralError) String() string { return "ASN.1 structure error: " + e.Msg }
    36  
    37  // A SyntaxError suggests that the ASN.1 data is invalid.
    38  type SyntaxError struct {
    39  	Msg string
    40  }
    41  
    42  func (e SyntaxError) String() string { return "ASN.1 syntax error: " + e.Msg }
    43  
    44  // We start by dealing with each of the primitive types in turn.
    45  
    46  // BOOLEAN
    47  
    48  func parseBool(bytes []byte) (ret bool, err os.Error) {
    49  	if len(bytes) != 1 {
    50  		err = SyntaxError{"invalid boolean"}
    51  		return
    52  	}
    53  
    54  	return bytes[0] != 0, nil
    55  }
    56  
    57  // INTEGER
    58  
    59  // parseInt64 treats the given bytes as a big-endian, signed integer and
    60  // returns the result.
    61  func parseInt64(bytes []byte) (ret int64, err os.Error) {
    62  	if len(bytes) > 8 {
    63  		// We'll overflow an int64 in this case.
    64  		err = StructuralError{"integer too large"}
    65  		return
    66  	}
    67  	for bytesRead := 0; bytesRead < len(bytes); bytesRead++ {
    68  		ret <<= 8
    69  		ret |= int64(bytes[bytesRead])
    70  	}
    71  
    72  	// Shift up and down in order to sign extend the result.
    73  	ret <<= 64 - uint8(len(bytes))*8
    74  	ret >>= 64 - uint8(len(bytes))*8
    75  	return
    76  }
    77  
    78  // parseInt treats the given bytes as a big-endian, signed integer and returns
    79  // the result.
    80  func parseInt(bytes []byte) (int, os.Error) {
    81  	ret64, err := parseInt64(bytes)
    82  	if err != nil {
    83  		return 0, err
    84  	}
    85  	if ret64 != int64(int(ret64)) {
    86  		return 0, StructuralError{"integer too large"}
    87  	}
    88  	return int(ret64), nil
    89  }
    90  
    91  // BIT STRING
    92  
    93  // BitString is the structure to use when you want an ASN.1 BIT STRING type. A
    94  // bit string is padded up to the nearest byte in memory and the number of
    95  // valid bits is recorded. Padding bits will be zero.
    96  type BitString struct {
    97  	Bytes     []byte // bits packed into bytes.
    98  	BitLength int    // length in bits.
    99  }
   100  
   101  // At returns the bit at the given index. If the index is out of range it
   102  // returns false.
   103  func (b BitString) At(i int) int {
   104  	if i < 0 || i >= b.BitLength {
   105  		return 0
   106  	}
   107  	x := i / 8
   108  	y := 7 - uint(i%8)
   109  	return int(b.Bytes[x]>>y) & 1
   110  }
   111  
   112  // RightAlign returns a slice where the padding bits are at the beginning. The
   113  // slice may share memory with the BitString.
   114  func (b BitString) RightAlign() []byte {
   115  	shift := uint(8 - (b.BitLength % 8))
   116  	if shift == 8 || len(b.Bytes) == 0 {
   117  		return b.Bytes
   118  	}
   119  
   120  	a := make([]byte, len(b.Bytes))
   121  	a[0] = b.Bytes[0] >> shift
   122  	for i := 1; i < len(b.Bytes); i++ {
   123  		a[i] = b.Bytes[i-1] << (8 - shift)
   124  		a[i] |= b.Bytes[i] >> shift
   125  	}
   126  
   127  	return a
   128  }
   129  
   130  // parseBitString parses an ASN.1 bit string from the given byte array and returns it.
   131  func parseBitString(bytes []byte) (ret BitString, err os.Error) {
   132  	if len(bytes) == 0 {
   133  		err = SyntaxError{"zero length BIT STRING"}
   134  		return
   135  	}
   136  	paddingBits := int(bytes[0])
   137  	if paddingBits > 7 ||
   138  		len(bytes) == 1 && paddingBits > 0 ||
   139  		bytes[len(bytes)-1]&((1<<bytes[0])-1) != 0 {
   140  		err = SyntaxError{"invalid padding bits in BIT STRING"}
   141  		return
   142  	}
   143  	ret.BitLength = (len(bytes)-1)*8 - paddingBits
   144  	ret.Bytes = bytes[1:]
   145  	return
   146  }
   147  
   148  // OBJECT IDENTIFIER
   149  
   150  // An ObjectIdentifier represents an ASN.1 OBJECT IDENTIFIER.
   151  type ObjectIdentifier []int
   152  
   153  // Equal returns true iff oi and other represent the same identifier.
   154  func (oi ObjectIdentifier) Equal(other ObjectIdentifier) bool {
   155  	if len(oi) != len(other) {
   156  		return false
   157  	}
   158  	for i := 0; i < len(oi); i++ {
   159  		if oi[i] != other[i] {
   160  			return false
   161  		}
   162  	}
   163  
   164  	return true
   165  }
   166  
   167  // parseObjectIdentifier parses an OBJECT IDENTIFER from the given bytes and
   168  // returns it. An object identifer is a sequence of variable length integers
   169  // that are assigned in a hierarachy.
   170  func parseObjectIdentifier(bytes []byte) (s []int, err os.Error) {
   171  	if len(bytes) == 0 {
   172  		err = SyntaxError{"zero length OBJECT IDENTIFIER"}
   173  		return
   174  	}
   175  
   176  	// In the worst case, we get two elements from the first byte (which is
   177  	// encoded differently) and then every varint is a single byte long.
   178  	s = make([]int, len(bytes)+1)
   179  
   180  	// The first byte is 40*value1 + value2:
   181  	s[0] = int(bytes[0]) / 40
   182  	s[1] = int(bytes[0]) % 40
   183  	i := 2
   184  	for offset := 1; offset < len(bytes); i++ {
   185  		var v int
   186  		v, offset, err = parseBase128Int(bytes, offset)
   187  		if err != nil {
   188  			return
   189  		}
   190  		s[i] = v
   191  	}
   192  	s = s[0:i]
   193  	return
   194  }
   195  
   196  // ENUMERATED
   197  
   198  // An Enumerated is represented as a plain int.
   199  type Enumerated int
   200  
   201  // FLAG
   202  
   203  // A Flag accepts any data and is set to true if present.
   204  type Flag bool
   205  
   206  // parseBase128Int parses a base-128 encoded int from the given offset in the
   207  // given byte array. It returns the value and the new offset.
   208  func parseBase128Int(bytes []byte, initOffset int) (ret, offset int, err os.Error) {
   209  	offset = initOffset
   210  	for shifted := 0; offset < len(bytes); shifted++ {
   211  		if shifted > 4 {
   212  			err = StructuralError{"base 128 integer too large"}
   213  			return
   214  		}
   215  		ret <<= 7
   216  		b := bytes[offset]
   217  		ret |= int(b & 0x7f)
   218  		offset++
   219  		if b&0x80 == 0 {
   220  			return
   221  		}
   222  	}
   223  	err = SyntaxError{"truncated base 128 integer"}
   224  	return
   225  }
   226  
   227  // UTCTime
   228  
   229  func parseUTCTime(bytes []byte) (ret *time.Time, err os.Error) {
   230  	s := string(bytes)
   231  	ret, err = time.Parse("0601021504Z0700", s)
   232  	if err == nil {
   233  		return
   234  	}
   235  	ret, err = time.Parse("060102150405Z0700", s)
   236  	return
   237  }
   238  
   239  // parseGeneralizedTime parses the GeneralizedTime from the given byte array
   240  // and returns the resulting time.
   241  func parseGeneralizedTime(bytes []byte) (ret *time.Time, err os.Error) {
   242  	return time.Parse("20060102150405Z0700", string(bytes))
   243  }
   244  
   245  // PrintableString
   246  
   247  // parsePrintableString parses a ASN.1 PrintableString from the given byte
   248  // array and returns it.
   249  func parsePrintableString(bytes []byte) (ret string, err os.Error) {
   250  	for _, b := range bytes {
   251  		if !isPrintable(b) {
   252  			err = SyntaxError{"PrintableString contains invalid character"}
   253  			return
   254  		}
   255  	}
   256  	ret = string(bytes)
   257  	return
   258  }
   259  
   260  // isPrintable returns true iff the given b is in the ASN.1 PrintableString set.
   261  func isPrintable(b byte) bool {
   262  	return 'a' <= b && b <= 'z' ||
   263  		'A' <= b && b <= 'Z' ||
   264  		'0' <= b && b <= '9' ||
   265  		'\'' <= b && b <= ')' ||
   266  		'+' <= b && b <= '/' ||
   267  		b == ' ' ||
   268  		b == ':' ||
   269  		b == '=' ||
   270  		b == '?' ||
   271  		// This is techincally not allowed in a PrintableString.
   272  		// However, x509 certificates with wildcard strings don't
   273  		// always use the correct string type so we permit it.
   274  		b == '*'
   275  }
   276  
   277  // IA5String
   278  
   279  // parseIA5String parses a ASN.1 IA5String (ASCII string) from the given
   280  // byte array and returns it.
   281  func parseIA5String(bytes []byte) (ret string, err os.Error) {
   282  	for _, b := range bytes {
   283  		if b >= 0x80 {
   284  			err = SyntaxError{"IA5String contains invalid character"}
   285  			return
   286  		}
   287  	}
   288  	ret = string(bytes)
   289  	return
   290  }
   291  
   292  // T61String
   293  
   294  // parseT61String parses a ASN.1 T61String (8-bit clean string) from the given
   295  // byte array and returns it.
   296  func parseT61String(bytes []byte) (ret string, err os.Error) {
   297  	return string(bytes), nil
   298  }
   299  
   300  // A RawValue represents an undecoded ASN.1 object.
   301  type RawValue struct {
   302  	Class, Tag int
   303  	IsCompound bool
   304  	Bytes      []byte
   305  	FullBytes  []byte // includes the tag and length
   306  }
   307  
   308  // RawContent is used to signal that the undecoded, DER data needs to be
   309  // preserved for a struct. To use it, the first field of the struct must have
   310  // this type. It's an error for any of the other fields to have this type.
   311  type RawContent []byte
   312  
   313  // Tagging
   314  
   315  // parseTagAndLength parses an ASN.1 tag and length pair from the given offset
   316  // into a byte array. It returns the parsed data and the new offset. SET and
   317  // SET OF (tag 17) are mapped to SEQUENCE and SEQUENCE OF (tag 16) since we
   318  // don't distinguish between ordered and unordered objects in this code.
   319  func parseTagAndLength(bytes []byte, initOffset int) (ret tagAndLength, offset int, err os.Error) {
   320  	offset = initOffset
   321  	b := bytes[offset]
   322  	offset++
   323  	ret.class = int(b >> 6)
   324  	ret.isCompound = b&0x20 == 0x20
   325  	ret.tag = int(b & 0x1f)
   326  
   327  	// If the bottom five bits are set, then the tag number is actually base 128
   328  	// encoded afterwards
   329  	if ret.tag == 0x1f {
   330  		ret.tag, offset, err = parseBase128Int(bytes, offset)
   331  		if err != nil {
   332  			return
   333  		}
   334  	}
   335  	if offset >= len(bytes) {
   336  		err = SyntaxError{"truncated tag or length"}
   337  		return
   338  	}
   339  	b = bytes[offset]
   340  	offset++
   341  	if b&0x80 == 0 {
   342  		// The length is encoded in the bottom 7 bits.
   343  		ret.length = int(b & 0x7f)
   344  	} else {
   345  		// Bottom 7 bits give the number of length bytes to follow.
   346  		numBytes := int(b & 0x7f)
   347  		// We risk overflowing a signed 32-bit number if we accept more than 3 bytes.
   348  		if numBytes > 3 {
   349  			err = StructuralError{"length too large"}
   350  			return
   351  		}
   352  		if numBytes == 0 {
   353  			err = SyntaxError{"indefinite length found (not DER)"}
   354  			return
   355  		}
   356  		ret.length = 0
   357  		for i := 0; i < numBytes; i++ {
   358  			if offset >= len(bytes) {
   359  				err = SyntaxError{"truncated tag or length"}
   360  				return
   361  			}
   362  			b = bytes[offset]
   363  			offset++
   364  			ret.length <<= 8
   365  			ret.length |= int(b)
   366  		}
   367  	}
   368  
   369  	return
   370  }
   371  
   372  // parseSequenceOf is used for SEQUENCE OF and SET OF values. It tries to parse
   373  // a number of ASN.1 values from the given byte array and returns them as a
   374  // slice of Go values of the given type.
   375  func parseSequenceOf(bytes []byte, sliceType reflect.Type, elemType reflect.Type) (ret reflect.Value, err os.Error) {
   376  	expectedTag, compoundType, ok := getUniversalType(elemType)
   377  	if !ok {
   378  		err = StructuralError{"unknown Go type for slice"}
   379  		return
   380  	}
   381  
   382  	// First we iterate over the input and count the number of elements,
   383  	// checking that the types are correct in each case.
   384  	numElements := 0
   385  	for offset := 0; offset < len(bytes); {
   386  		var t tagAndLength
   387  		t, offset, err = parseTagAndLength(bytes, offset)
   388  		if err != nil {
   389  			return
   390  		}
   391  		// We pretend that GENERAL STRINGs are PRINTABLE STRINGs so
   392  		// that a sequence of them can be parsed into a []string.
   393  		if t.tag == tagGeneralString {
   394  			t.tag = tagPrintableString
   395  		}
   396  		if t.class != classUniversal || t.isCompound != compoundType || t.tag != expectedTag {
   397  			err = StructuralError{"sequence tag mismatch"}
   398  			return
   399  		}
   400  		if invalidLength(offset, t.length, len(bytes)) {
   401  			err = SyntaxError{"truncated sequence"}
   402  			return
   403  		}
   404  		offset += t.length
   405  		numElements++
   406  	}
   407  	ret = reflect.MakeSlice(sliceType, numElements, numElements)
   408  	params := fieldParameters{}
   409  	offset := 0
   410  	for i := 0; i < numElements; i++ {
   411  		offset, err = parseField(ret.Index(i), bytes, offset, params)
   412  		if err != nil {
   413  			return
   414  		}
   415  	}
   416  	return
   417  }
   418  
   419  var (
   420  	bitStringType        = reflect.TypeOf(BitString{})
   421  	objectIdentifierType = reflect.TypeOf(ObjectIdentifier{})
   422  	enumeratedType       = reflect.TypeOf(Enumerated(0))
   423  	flagType             = reflect.TypeOf(Flag(false))
   424  	timeType             = reflect.TypeOf(&time.Time{})
   425  	rawValueType         = reflect.TypeOf(RawValue{})
   426  	rawContentsType      = reflect.TypeOf(RawContent(nil))
   427  )
   428  
   429  // invalidLength returns true iff offset + length > sliceLength, or if the
   430  // addition would overflow.
   431  func invalidLength(offset, length, sliceLength int) bool {
   432  	return offset+length < offset || offset+length > sliceLength
   433  }
   434  
   435  // parseField is the main parsing function. Given a byte array and an offset
   436  // into the array, it will try to parse a suitable ASN.1 value out and store it
   437  // in the given Value.
   438  func parseField(v reflect.Value, bytes []byte, initOffset int, params fieldParameters) (offset int, err os.Error) {
   439  	offset = initOffset
   440  	fieldType := v.Type()
   441  
   442  	// If we have run out of data, it may be that there are optional elements at the end.
   443  	if offset == len(bytes) {
   444  		if !setDefaultValue(v, params) {
   445  			err = SyntaxError{"sequence truncated"}
   446  		}
   447  		return
   448  	}
   449  
   450  	// Deal with raw values.
   451  	if fieldType == rawValueType {
   452  		var t tagAndLength
   453  		t, offset, err = parseTagAndLength(bytes, offset)
   454  		if err != nil {
   455  			return
   456  		}
   457  		if invalidLength(offset, t.length, len(bytes)) {
   458  			err = SyntaxError{"data truncated"}
   459  			return
   460  		}
   461  		result := RawValue{t.class, t.tag, t.isCompound, bytes[offset : offset+t.length], bytes[initOffset : offset+t.length]}
   462  		offset += t.length
   463  		v.Set(reflect.ValueOf(result))
   464  		return
   465  	}
   466  
   467  	// Deal with the ANY type.
   468  	if ifaceType := fieldType; ifaceType.Kind() == reflect.Interface && ifaceType.NumMethod() == 0 {
   469  		ifaceValue := v
   470  		var t tagAndLength
   471  		t, offset, err = parseTagAndLength(bytes, offset)
   472  		if err != nil {
   473  			return
   474  		}
   475  		if invalidLength(offset, t.length, len(bytes)) {
   476  			err = SyntaxError{"data truncated"}
   477  			return
   478  		}
   479  		var result interface{}
   480  		if !t.isCompound && t.class == classUniversal {
   481  			innerBytes := bytes[offset : offset+t.length]
   482  			switch t.tag {
   483  			case tagPrintableString:
   484  				result, err = parsePrintableString(innerBytes)
   485  			case tagIA5String:
   486  				result, err = parseIA5String(innerBytes)
   487  			case tagT61String:
   488  				result, err = parseT61String(innerBytes)
   489  			case tagInteger:
   490  				result, err = parseInt64(innerBytes)
   491  			case tagBitString:
   492  				result, err = parseBitString(innerBytes)
   493  			case tagOID:
   494  				result, err = parseObjectIdentifier(innerBytes)
   495  			case tagUTCTime:
   496  				result, err = parseUTCTime(innerBytes)
   497  			case tagOctetString:
   498  				result = innerBytes
   499  			default:
   500  				// If we don't know how to handle the type, we just leave Value as nil.
   501  			}
   502  		}
   503  		offset += t.length
   504  		if err != nil {
   505  			return
   506  		}
   507  		if result != nil {
   508  			ifaceValue.Set(reflect.ValueOf(result))
   509  		}
   510  		return
   511  	}
   512  	universalTag, compoundType, ok1 := getUniversalType(fieldType)
   513  	if !ok1 {
   514  		err = StructuralError{fmt.Sprintf("unknown Go type: %v", fieldType)}
   515  		return
   516  	}
   517  
   518  	t, offset, err := parseTagAndLength(bytes, offset)
   519  	if err != nil {
   520  		return
   521  	}
   522  	if params.explicit {
   523  		expectedClass := classContextSpecific
   524  		if params.application {
   525  			expectedClass = classApplication
   526  		}
   527  		if t.class == expectedClass && t.tag == *params.tag && (t.length == 0 || t.isCompound) {
   528  			if t.length > 0 {
   529  				t, offset, err = parseTagAndLength(bytes, offset)
   530  				if err != nil {
   531  					return
   532  				}
   533  			} else {
   534  				if fieldType != flagType {
   535  					err = StructuralError{"Zero length explicit tag was not an asn1.Flag"}
   536  					return
   537  				}
   538  
   539  				flagValue := v
   540  				flagValue.SetBool(true)
   541  				return
   542  			}
   543  		} else {
   544  			// The tags didn't match, it might be an optional element.
   545  			ok := setDefaultValue(v, params)
   546  			if ok {
   547  				offset = initOffset
   548  			} else {
   549  				err = StructuralError{"explicitly tagged member didn't match"}
   550  			}
   551  			return
   552  		}
   553  	}
   554  
   555  	// Special case for strings: PrintableString and IA5String both map to
   556  	// the Go type string. getUniversalType returns the tag for
   557  	// PrintableString when it sees a string so, if we see an IA5String on
   558  	// the wire, we change the universal type to match.
   559  	if universalTag == tagPrintableString && t.tag == tagIA5String {
   560  		universalTag = tagIA5String
   561  	}
   562  	// Likewise for GeneralString
   563  	if universalTag == tagPrintableString && t.tag == tagGeneralString {
   564  		universalTag = tagGeneralString
   565  	}
   566  
   567  	// Special case for time: UTCTime and GeneralizedTime both map to the
   568  	// Go type time.Time.
   569  	if universalTag == tagUTCTime && t.tag == tagGeneralizedTime {
   570  		universalTag = tagGeneralizedTime
   571  	}
   572  
   573  	expectedClass := classUniversal
   574  	expectedTag := universalTag
   575  
   576  	if !params.explicit && params.tag != nil {
   577  		expectedClass = classContextSpecific
   578  		expectedTag = *params.tag
   579  	}
   580  
   581  	if !params.explicit && params.application && params.tag != nil {
   582  		expectedClass = classApplication
   583  		expectedTag = *params.tag
   584  	}
   585  
   586  	// We have unwrapped any explicit tagging at this point.
   587  	if t.class != expectedClass || t.tag != expectedTag || t.isCompound != compoundType {
   588  		// Tags don't match. Again, it could be an optional element.
   589  		ok := setDefaultValue(v, params)
   590  		if ok {
   591  			offset = initOffset
   592  		} else {
   593  			err = StructuralError{fmt.Sprintf("tags don't match (%d vs %+v) %+v %s @%d", expectedTag, t, params, fieldType.Name(), offset)}
   594  		}
   595  		return
   596  	}
   597  	if invalidLength(offset, t.length, len(bytes)) {
   598  		err = SyntaxError{"data truncated"}
   599  		return
   600  	}
   601  	innerBytes := bytes[offset : offset+t.length]
   602  	offset += t.length
   603  
   604  	// We deal with the structures defined in this package first.
   605  	switch fieldType {
   606  	case objectIdentifierType:
   607  		newSlice, err1 := parseObjectIdentifier(innerBytes)
   608  		sliceValue := v
   609  		sliceValue.Set(reflect.MakeSlice(sliceValue.Type(), len(newSlice), len(newSlice)))
   610  		if err1 == nil {
   611  			reflect.Copy(sliceValue, reflect.ValueOf(newSlice))
   612  		}
   613  		err = err1
   614  		return
   615  	case bitStringType:
   616  		structValue := v
   617  		bs, err1 := parseBitString(innerBytes)
   618  		if err1 == nil {
   619  			structValue.Set(reflect.ValueOf(bs))
   620  		}
   621  		err = err1
   622  		return
   623  	case timeType:
   624  		ptrValue := v
   625  		var time *time.Time
   626  		var err1 os.Error
   627  		if universalTag == tagUTCTime {
   628  			time, err1 = parseUTCTime(innerBytes)
   629  		} else {
   630  			time, err1 = parseGeneralizedTime(innerBytes)
   631  		}
   632  		if err1 == nil {
   633  			ptrValue.Set(reflect.ValueOf(time))
   634  		}
   635  		err = err1
   636  		return
   637  	case enumeratedType:
   638  		parsedInt, err1 := parseInt(innerBytes)
   639  		enumValue := v
   640  		if err1 == nil {
   641  			enumValue.SetInt(int64(parsedInt))
   642  		}
   643  		err = err1
   644  		return
   645  	case flagType:
   646  		flagValue := v
   647  		flagValue.SetBool(true)
   648  		return
   649  	}
   650  	switch val := v; val.Kind() {
   651  	case reflect.Bool:
   652  		parsedBool, err1 := parseBool(innerBytes)
   653  		if err1 == nil {
   654  			val.SetBool(parsedBool)
   655  		}
   656  		err = err1
   657  		return
   658  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   659  		switch val.Type().Kind() {
   660  		case reflect.Int:
   661  			parsedInt, err1 := parseInt(innerBytes)
   662  			if err1 == nil {
   663  				val.SetInt(int64(parsedInt))
   664  			}
   665  			err = err1
   666  			return
   667  		case reflect.Int64:
   668  			parsedInt, err1 := parseInt64(innerBytes)
   669  			if err1 == nil {
   670  				val.SetInt(parsedInt)
   671  			}
   672  			err = err1
   673  			return
   674  		}
   675  	case reflect.Struct:
   676  		structType := fieldType
   677  
   678  		if structType.NumField() > 0 &&
   679  			structType.Field(0).Type == rawContentsType {
   680  			bytes := bytes[initOffset:offset]
   681  			val.Field(0).Set(reflect.ValueOf(RawContent(bytes)))
   682  		}
   683  
   684  		innerOffset := 0
   685  		for i := 0; i < structType.NumField(); i++ {
   686  			field := structType.Field(i)
   687  			if i == 0 && field.Type == rawContentsType {
   688  				continue
   689  			}
   690  			innerOffset, err = parseField(val.Field(i), innerBytes, innerOffset, parseFieldParameters(field.Tag))
   691  			if err != nil {
   692  				return
   693  			}
   694  		}
   695  		// We allow extra bytes at the end of the SEQUENCE because
   696  		// adding elements to the end has been used in X.509 as the
   697  		// version numbers have increased.
   698  		return
   699  	case reflect.Slice:
   700  		sliceType := fieldType
   701  		if sliceType.Elem().Kind() == reflect.Uint8 {
   702  			val.Set(reflect.MakeSlice(sliceType, len(innerBytes), len(innerBytes)))
   703  			reflect.Copy(val, reflect.ValueOf(innerBytes))
   704  			return
   705  		}
   706  		newSlice, err1 := parseSequenceOf(innerBytes, sliceType, sliceType.Elem())
   707  		if err1 == nil {
   708  			val.Set(newSlice)
   709  		}
   710  		err = err1
   711  		return
   712  	case reflect.String:
   713  		var v string
   714  		switch universalTag {
   715  		case tagPrintableString:
   716  			v, err = parsePrintableString(innerBytes)
   717  		case tagIA5String:
   718  			v, err = parseIA5String(innerBytes)
   719  		case tagT61String:
   720  			v, err = parseT61String(innerBytes)
   721  		case tagGeneralString:
   722  			// GeneralString is specified in ISO-2022/ECMA-35,
   723  			// A brief review suggests that it includes structures
   724  			// that allow the encoding to change midstring and
   725  			// such. We give up and pass it as an 8-bit string.
   726  			v, err = parseT61String(innerBytes)
   727  		default:
   728  			err = SyntaxError{fmt.Sprintf("internal error: unknown string type %d", universalTag)}
   729  		}
   730  		if err == nil {
   731  			val.SetString(v)
   732  		}
   733  		return
   734  	}
   735  	err = StructuralError{"unknown Go type"}
   736  	return
   737  }
   738  
   739  // setDefaultValue is used to install a default value, from a tag string, into
   740  // a Value. It is successful is the field was optional, even if a default value
   741  // wasn't provided or it failed to install it into the Value.
   742  func setDefaultValue(v reflect.Value, params fieldParameters) (ok bool) {
   743  	if !params.optional {
   744  		return
   745  	}
   746  	ok = true
   747  	if params.defaultValue == nil {
   748  		return
   749  	}
   750  	switch val := v; val.Kind() {
   751  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   752  		val.SetInt(*params.defaultValue)
   753  	}
   754  	return
   755  }
   756  
   757  // Unmarshal parses the DER-encoded ASN.1 data structure b
   758  // and uses the reflect package to fill in an arbitrary value pointed at by val.
   759  // Because Unmarshal uses the reflect package, the structs
   760  // being written to must use upper case field names.
   761  //
   762  // An ASN.1 INTEGER can be written to an int or int64.
   763  // If the encoded value does not fit in the Go type,
   764  // Unmarshal returns a parse error.
   765  //
   766  // An ASN.1 BIT STRING can be written to a BitString.
   767  //
   768  // An ASN.1 OCTET STRING can be written to a []byte.
   769  //
   770  // An ASN.1 OBJECT IDENTIFIER can be written to an
   771  // ObjectIdentifier.
   772  //
   773  // An ASN.1 ENUMERATED can be written to an Enumerated.
   774  //
   775  // An ASN.1 UTCTIME or GENERALIZEDTIME can be written to a *time.Time.
   776  //
   777  // An ASN.1 PrintableString or IA5String can be written to a string.
   778  //
   779  // Any of the above ASN.1 values can be written to an interface{}.
   780  // The value stored in the interface has the corresponding Go type.
   781  // For integers, that type is int64.
   782  //
   783  // An ASN.1 SEQUENCE OF x or SET OF x can be written
   784  // to a slice if an x can be written to the slice's element type.
   785  //
   786  // An ASN.1 SEQUENCE or SET can be written to a struct
   787  // if each of the elements in the sequence can be
   788  // written to the corresponding element in the struct.
   789  //
   790  // The following tags on struct fields have special meaning to Unmarshal:
   791  //
   792  //	optional		marks the field as ASN.1 OPTIONAL
   793  //	[explicit] tag:x	specifies the ASN.1 tag number; implies ASN.1 CONTEXT SPECIFIC
   794  //	default:x		sets the default value for optional integer fields
   795  //
   796  // If the type of the first field of a structure is RawContent then the raw
   797  // ASN1 contents of the struct will be stored in it.
   798  //
   799  // Other ASN.1 types are not supported; if it encounters them,
   800  // Unmarshal returns a parse error.
   801  func Unmarshal(b []byte, val interface{}) (rest []byte, err os.Error) {
   802  	return UnmarshalWithParams(b, val, "")
   803  }
   804  
   805  // UnmarshalWithParams allows field parameters to be specified for the
   806  // top-level element. The form of the params is the same as the field tags.
   807  func UnmarshalWithParams(b []byte, val interface{}, params string) (rest []byte, err os.Error) {
   808  	v := reflect.ValueOf(val).Elem()
   809  	offset, err := parseField(v, b, 0, parseFieldParameters(params))
   810  	if err != nil {
   811  		return nil, err
   812  	}
   813  	return b[offset:], nil
   814  }