github.com/xushiwei/go@v0.0.0-20130601165731-2b9d83f45bc9/src/cmd/fix/testdata/reflect.scan.go.out (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package fmt
     6  
     7  import (
     8  	"bytes"
     9  	"io"
    10  	"math"
    11  	"os"
    12  	"reflect"
    13  	"strconv"
    14  	"strings"
    15  	"unicode"
    16  	"utf8"
    17  )
    18  
    19  // runeUnreader is the interface to something that can unread runes.
    20  // If the object provided to Scan does not satisfy this interface,
    21  // a local buffer will be used to back up the input, but its contents
    22  // will be lost when Scan returns.
    23  type runeUnreader interface {
    24  	UnreadRune() os.Error
    25  }
    26  
    27  // ScanState represents the scanner state passed to custom scanners.
    28  // Scanners may do rune-at-a-time scanning or ask the ScanState
    29  // to discover the next space-delimited token.
    30  type ScanState interface {
    31  	// ReadRune reads the next rune (Unicode code point) from the input.
    32  	// If invoked during Scanln, Fscanln, or Sscanln, ReadRune() will
    33  	// return EOF after returning the first '\n' or when reading beyond
    34  	// the specified width.
    35  	ReadRune() (rune int, size int, err os.Error)
    36  	// UnreadRune causes the next call to ReadRune to return the same rune.
    37  	UnreadRune() os.Error
    38  	// Token skips space in the input if skipSpace is true, then returns the
    39  	// run of Unicode code points c satisfying f(c).  If f is nil,
    40  	// !unicode.IsSpace(c) is used; that is, the token will hold non-space
    41  	// characters.  Newlines are treated as space unless the scan operation
    42  	// is Scanln, Fscanln or Sscanln, in which case a newline is treated as
    43  	// EOF.  The returned slice points to shared data that may be overwritten
    44  	// by the next call to Token, a call to a Scan function using the ScanState
    45  	// as input, or when the calling Scan method returns.
    46  	Token(skipSpace bool, f func(int) bool) (token []byte, err os.Error)
    47  	// Width returns the value of the width option and whether it has been set.
    48  	// The unit is Unicode code points.
    49  	Width() (wid int, ok bool)
    50  	// Because ReadRune is implemented by the interface, Read should never be
    51  	// called by the scanning routines and a valid implementation of
    52  	// ScanState may choose always to return an error from Read.
    53  	Read(buf []byte) (n int, err os.Error)
    54  }
    55  
    56  // Scanner is implemented by any value that has a Scan method, which scans
    57  // the input for the representation of a value and stores the result in the
    58  // receiver, which must be a pointer to be useful.  The Scan method is called
    59  // for any argument to Scan, Scanf, or Scanln that implements it.
    60  type Scanner interface {
    61  	Scan(state ScanState, verb int) os.Error
    62  }
    63  
    64  // Scan scans text read from standard input, storing successive
    65  // space-separated values into successive arguments.  Newlines count
    66  // as space.  It returns the number of items successfully scanned.
    67  // If that is less than the number of arguments, err will report why.
    68  func Scan(a ...interface{}) (n int, err os.Error) {
    69  	return Fscan(os.Stdin, a...)
    70  }
    71  
    72  // Scanln is similar to Scan, but stops scanning at a newline and
    73  // after the final item there must be a newline or EOF.
    74  func Scanln(a ...interface{}) (n int, err os.Error) {
    75  	return Fscanln(os.Stdin, a...)
    76  }
    77  
    78  // Scanf scans text read from standard input, storing successive
    79  // space-separated values into successive arguments as determined by
    80  // the format.  It returns the number of items successfully scanned.
    81  func Scanf(format string, a ...interface{}) (n int, err os.Error) {
    82  	return Fscanf(os.Stdin, format, a...)
    83  }
    84  
    85  // Sscan scans the argument string, storing successive space-separated
    86  // values into successive arguments.  Newlines count as space.  It
    87  // returns the number of items successfully scanned.  If that is less
    88  // than the number of arguments, err will report why.
    89  func Sscan(str string, a ...interface{}) (n int, err os.Error) {
    90  	return Fscan(strings.NewReader(str), a...)
    91  }
    92  
    93  // Sscanln is similar to Sscan, but stops scanning at a newline and
    94  // after the final item there must be a newline or EOF.
    95  func Sscanln(str string, a ...interface{}) (n int, err os.Error) {
    96  	return Fscanln(strings.NewReader(str), a...)
    97  }
    98  
    99  // Sscanf scans the argument string, storing successive space-separated
   100  // values into successive arguments as determined by the format.  It
   101  // returns the number of items successfully parsed.
   102  func Sscanf(str string, format string, a ...interface{}) (n int, err os.Error) {
   103  	return Fscanf(strings.NewReader(str), format, a...)
   104  }
   105  
   106  // Fscan scans text read from r, storing successive space-separated
   107  // values into successive arguments.  Newlines count as space.  It
   108  // returns the number of items successfully scanned.  If that is less
   109  // than the number of arguments, err will report why.
   110  func Fscan(r io.Reader, a ...interface{}) (n int, err os.Error) {
   111  	s, old := newScanState(r, true, false)
   112  	n, err = s.doScan(a)
   113  	s.free(old)
   114  	return
   115  }
   116  
   117  // Fscanln is similar to Fscan, but stops scanning at a newline and
   118  // after the final item there must be a newline or EOF.
   119  func Fscanln(r io.Reader, a ...interface{}) (n int, err os.Error) {
   120  	s, old := newScanState(r, false, true)
   121  	n, err = s.doScan(a)
   122  	s.free(old)
   123  	return
   124  }
   125  
   126  // Fscanf scans text read from r, storing successive space-separated
   127  // values into successive arguments as determined by the format.  It
   128  // returns the number of items successfully parsed.
   129  func Fscanf(r io.Reader, format string, a ...interface{}) (n int, err os.Error) {
   130  	s, old := newScanState(r, false, false)
   131  	n, err = s.doScanf(format, a)
   132  	s.free(old)
   133  	return
   134  }
   135  
   136  // scanError represents an error generated by the scanning software.
   137  // It's used as a unique signature to identify such errors when recovering.
   138  type scanError struct {
   139  	err os.Error
   140  }
   141  
   142  const eof = -1
   143  
   144  // ss is the internal implementation of ScanState.
   145  type ss struct {
   146  	rr       io.RuneReader // where to read input
   147  	buf      bytes.Buffer  // token accumulator
   148  	peekRune int           // one-rune lookahead
   149  	prevRune int           // last rune returned by ReadRune
   150  	count    int           // runes consumed so far.
   151  	atEOF    bool          // already read EOF
   152  	ssave
   153  }
   154  
   155  // ssave holds the parts of ss that need to be
   156  // saved and restored on recursive scans.
   157  type ssave struct {
   158  	validSave  bool // is or was a part of an actual ss.
   159  	nlIsEnd    bool // whether newline terminates scan
   160  	nlIsSpace  bool // whether newline counts as white space
   161  	fieldLimit int  // max value of ss.count for this field; fieldLimit <= limit
   162  	limit      int  // max value of ss.count.
   163  	maxWid     int  // width of this field.
   164  }
   165  
   166  // The Read method is only in ScanState so that ScanState
   167  // satisfies io.Reader. It will never be called when used as
   168  // intended, so there is no need to make it actually work.
   169  func (s *ss) Read(buf []byte) (n int, err os.Error) {
   170  	return 0, os.NewError("ScanState's Read should not be called. Use ReadRune")
   171  }
   172  
   173  func (s *ss) ReadRune() (rune int, size int, err os.Error) {
   174  	if s.peekRune >= 0 {
   175  		s.count++
   176  		rune = s.peekRune
   177  		size = utf8.RuneLen(rune)
   178  		s.prevRune = rune
   179  		s.peekRune = -1
   180  		return
   181  	}
   182  	if s.atEOF || s.nlIsEnd && s.prevRune == '\n' || s.count >= s.fieldLimit {
   183  		err = os.EOF
   184  		return
   185  	}
   186  
   187  	rune, size, err = s.rr.ReadRune()
   188  	if err == nil {
   189  		s.count++
   190  		s.prevRune = rune
   191  	} else if err == os.EOF {
   192  		s.atEOF = true
   193  	}
   194  	return
   195  }
   196  
   197  func (s *ss) Width() (wid int, ok bool) {
   198  	if s.maxWid == hugeWid {
   199  		return 0, false
   200  	}
   201  	return s.maxWid, true
   202  }
   203  
   204  // The public method returns an error; this private one panics.
   205  // If getRune reaches EOF, the return value is EOF (-1).
   206  func (s *ss) getRune() (rune int) {
   207  	rune, _, err := s.ReadRune()
   208  	if err != nil {
   209  		if err == os.EOF {
   210  			return eof
   211  		}
   212  		s.error(err)
   213  	}
   214  	return
   215  }
   216  
   217  // mustReadRune turns os.EOF into a panic(io.ErrUnexpectedEOF).
   218  // It is called in cases such as string scanning where an EOF is a
   219  // syntax error.
   220  func (s *ss) mustReadRune() (rune int) {
   221  	rune = s.getRune()
   222  	if rune == eof {
   223  		s.error(io.ErrUnexpectedEOF)
   224  	}
   225  	return
   226  }
   227  
   228  func (s *ss) UnreadRune() os.Error {
   229  	if u, ok := s.rr.(runeUnreader); ok {
   230  		u.UnreadRune()
   231  	} else {
   232  		s.peekRune = s.prevRune
   233  	}
   234  	s.count--
   235  	return nil
   236  }
   237  
   238  func (s *ss) error(err os.Error) {
   239  	panic(scanError{err})
   240  }
   241  
   242  func (s *ss) errorString(err string) {
   243  	panic(scanError{os.NewError(err)})
   244  }
   245  
   246  func (s *ss) Token(skipSpace bool, f func(int) bool) (tok []byte, err os.Error) {
   247  	defer func() {
   248  		if e := recover(); e != nil {
   249  			if se, ok := e.(scanError); ok {
   250  				err = se.err
   251  			} else {
   252  				panic(e)
   253  			}
   254  		}
   255  	}()
   256  	if f == nil {
   257  		f = notSpace
   258  	}
   259  	s.buf.Reset()
   260  	tok = s.token(skipSpace, f)
   261  	return
   262  }
   263  
   264  // notSpace is the default scanning function used in Token.
   265  func notSpace(r int) bool {
   266  	return !unicode.IsSpace(r)
   267  }
   268  
   269  // readRune is a structure to enable reading UTF-8 encoded code points
   270  // from an io.Reader.  It is used if the Reader given to the scanner does
   271  // not already implement io.RuneReader.
   272  type readRune struct {
   273  	reader  io.Reader
   274  	buf     [utf8.UTFMax]byte // used only inside ReadRune
   275  	pending int               // number of bytes in pendBuf; only >0 for bad UTF-8
   276  	pendBuf [utf8.UTFMax]byte // bytes left over
   277  }
   278  
   279  // readByte returns the next byte from the input, which may be
   280  // left over from a previous read if the UTF-8 was ill-formed.
   281  func (r *readRune) readByte() (b byte, err os.Error) {
   282  	if r.pending > 0 {
   283  		b = r.pendBuf[0]
   284  		copy(r.pendBuf[0:], r.pendBuf[1:])
   285  		r.pending--
   286  		return
   287  	}
   288  	_, err = r.reader.Read(r.pendBuf[0:1])
   289  	return r.pendBuf[0], err
   290  }
   291  
   292  // unread saves the bytes for the next read.
   293  func (r *readRune) unread(buf []byte) {
   294  	copy(r.pendBuf[r.pending:], buf)
   295  	r.pending += len(buf)
   296  }
   297  
   298  // ReadRune returns the next UTF-8 encoded code point from the
   299  // io.Reader inside r.
   300  func (r *readRune) ReadRune() (rune int, size int, err os.Error) {
   301  	r.buf[0], err = r.readByte()
   302  	if err != nil {
   303  		return 0, 0, err
   304  	}
   305  	if r.buf[0] < utf8.RuneSelf { // fast check for common ASCII case
   306  		rune = int(r.buf[0])
   307  		return
   308  	}
   309  	var n int
   310  	for n = 1; !utf8.FullRune(r.buf[0:n]); n++ {
   311  		r.buf[n], err = r.readByte()
   312  		if err != nil {
   313  			if err == os.EOF {
   314  				err = nil
   315  				break
   316  			}
   317  			return
   318  		}
   319  	}
   320  	rune, size = utf8.DecodeRune(r.buf[0:n])
   321  	if size < n { // an error
   322  		r.unread(r.buf[size:n])
   323  	}
   324  	return
   325  }
   326  
   327  var ssFree = newCache(func() interface{} { return new(ss) })
   328  
   329  // Allocate a new ss struct or grab a cached one.
   330  func newScanState(r io.Reader, nlIsSpace, nlIsEnd bool) (s *ss, old ssave) {
   331  	// If the reader is a *ss, then we've got a recursive
   332  	// call to Scan, so re-use the scan state.
   333  	s, ok := r.(*ss)
   334  	if ok {
   335  		old = s.ssave
   336  		s.limit = s.fieldLimit
   337  		s.nlIsEnd = nlIsEnd || s.nlIsEnd
   338  		s.nlIsSpace = nlIsSpace
   339  		return
   340  	}
   341  
   342  	s = ssFree.get().(*ss)
   343  	if rr, ok := r.(io.RuneReader); ok {
   344  		s.rr = rr
   345  	} else {
   346  		s.rr = &readRune{reader: r}
   347  	}
   348  	s.nlIsSpace = nlIsSpace
   349  	s.nlIsEnd = nlIsEnd
   350  	s.prevRune = -1
   351  	s.peekRune = -1
   352  	s.atEOF = false
   353  	s.limit = hugeWid
   354  	s.fieldLimit = hugeWid
   355  	s.maxWid = hugeWid
   356  	s.validSave = true
   357  	return
   358  }
   359  
   360  // Save used ss structs in ssFree; avoid an allocation per invocation.
   361  func (s *ss) free(old ssave) {
   362  	// If it was used recursively, just restore the old state.
   363  	if old.validSave {
   364  		s.ssave = old
   365  		return
   366  	}
   367  	// Don't hold on to ss structs with large buffers.
   368  	if cap(s.buf.Bytes()) > 1024 {
   369  		return
   370  	}
   371  	s.buf.Reset()
   372  	s.rr = nil
   373  	ssFree.put(s)
   374  }
   375  
   376  // skipSpace skips spaces and maybe newlines.
   377  func (s *ss) skipSpace(stopAtNewline bool) {
   378  	for {
   379  		rune := s.getRune()
   380  		if rune == eof {
   381  			return
   382  		}
   383  		if rune == '\n' {
   384  			if stopAtNewline {
   385  				break
   386  			}
   387  			if s.nlIsSpace {
   388  				continue
   389  			}
   390  			s.errorString("unexpected newline")
   391  			return
   392  		}
   393  		if !unicode.IsSpace(rune) {
   394  			s.UnreadRune()
   395  			break
   396  		}
   397  	}
   398  }
   399  
   400  // token returns the next space-delimited string from the input.  It
   401  // skips white space.  For Scanln, it stops at newlines.  For Scan,
   402  // newlines are treated as spaces.
   403  func (s *ss) token(skipSpace bool, f func(int) bool) []byte {
   404  	if skipSpace {
   405  		s.skipSpace(false)
   406  	}
   407  	// read until white space or newline
   408  	for {
   409  		rune := s.getRune()
   410  		if rune == eof {
   411  			break
   412  		}
   413  		if !f(rune) {
   414  			s.UnreadRune()
   415  			break
   416  		}
   417  		s.buf.WriteRune(rune)
   418  	}
   419  	return s.buf.Bytes()
   420  }
   421  
   422  // typeError indicates that the type of the operand did not match the format
   423  func (s *ss) typeError(field interface{}, expected string) {
   424  	s.errorString("expected field of type pointer to " + expected + "; found " + reflect.TypeOf(field).String())
   425  }
   426  
   427  var complexError = os.NewError("syntax error scanning complex number")
   428  var boolError = os.NewError("syntax error scanning boolean")
   429  
   430  // consume reads the next rune in the input and reports whether it is in the ok string.
   431  // If accept is true, it puts the character into the input token.
   432  func (s *ss) consume(ok string, accept bool) bool {
   433  	rune := s.getRune()
   434  	if rune == eof {
   435  		return false
   436  	}
   437  	if strings.IndexRune(ok, rune) >= 0 {
   438  		if accept {
   439  			s.buf.WriteRune(rune)
   440  		}
   441  		return true
   442  	}
   443  	if rune != eof && accept {
   444  		s.UnreadRune()
   445  	}
   446  	return false
   447  }
   448  
   449  // peek reports whether the next character is in the ok string, without consuming it.
   450  func (s *ss) peek(ok string) bool {
   451  	rune := s.getRune()
   452  	if rune != eof {
   453  		s.UnreadRune()
   454  	}
   455  	return strings.IndexRune(ok, rune) >= 0
   456  }
   457  
   458  // accept checks the next rune in the input.  If it's a byte (sic) in the string, it puts it in the
   459  // buffer and returns true. Otherwise it return false.
   460  func (s *ss) accept(ok string) bool {
   461  	return s.consume(ok, true)
   462  }
   463  
   464  // okVerb verifies that the verb is present in the list, setting s.err appropriately if not.
   465  func (s *ss) okVerb(verb int, okVerbs, typ string) bool {
   466  	for _, v := range okVerbs {
   467  		if v == verb {
   468  			return true
   469  		}
   470  	}
   471  	s.errorString("bad verb %" + string(verb) + " for " + typ)
   472  	return false
   473  }
   474  
   475  // scanBool returns the value of the boolean represented by the next token.
   476  func (s *ss) scanBool(verb int) bool {
   477  	if !s.okVerb(verb, "tv", "boolean") {
   478  		return false
   479  	}
   480  	// Syntax-checking a boolean is annoying.  We're not fastidious about case.
   481  	switch s.mustReadRune() {
   482  	case '0':
   483  		return false
   484  	case '1':
   485  		return true
   486  	case 't', 'T':
   487  		if s.accept("rR") && (!s.accept("uU") || !s.accept("eE")) {
   488  			s.error(boolError)
   489  		}
   490  		return true
   491  	case 'f', 'F':
   492  		if s.accept("aL") && (!s.accept("lL") || !s.accept("sS") || !s.accept("eE")) {
   493  			s.error(boolError)
   494  		}
   495  		return false
   496  	}
   497  	return false
   498  }
   499  
   500  // Numerical elements
   501  const (
   502  	binaryDigits      = "01"
   503  	octalDigits       = "01234567"
   504  	decimalDigits     = "0123456789"
   505  	hexadecimalDigits = "0123456789aAbBcCdDeEfF"
   506  	sign              = "+-"
   507  	period            = "."
   508  	exponent          = "eEp"
   509  )
   510  
   511  // getBase returns the numeric base represented by the verb and its digit string.
   512  func (s *ss) getBase(verb int) (base int, digits string) {
   513  	s.okVerb(verb, "bdoUxXv", "integer") // sets s.err
   514  	base = 10
   515  	digits = decimalDigits
   516  	switch verb {
   517  	case 'b':
   518  		base = 2
   519  		digits = binaryDigits
   520  	case 'o':
   521  		base = 8
   522  		digits = octalDigits
   523  	case 'x', 'X', 'U':
   524  		base = 16
   525  		digits = hexadecimalDigits
   526  	}
   527  	return
   528  }
   529  
   530  // scanNumber returns the numerical string with specified digits starting here.
   531  func (s *ss) scanNumber(digits string, haveDigits bool) string {
   532  	if !haveDigits && !s.accept(digits) {
   533  		s.errorString("expected integer")
   534  	}
   535  	for s.accept(digits) {
   536  	}
   537  	return s.buf.String()
   538  }
   539  
   540  // scanRune returns the next rune value in the input.
   541  func (s *ss) scanRune(bitSize int) int64 {
   542  	rune := int64(s.mustReadRune())
   543  	n := uint(bitSize)
   544  	x := (rune << (64 - n)) >> (64 - n)
   545  	if x != rune {
   546  		s.errorString("overflow on character value " + string(rune))
   547  	}
   548  	return rune
   549  }
   550  
   551  // scanBasePrefix reports whether the integer begins with a 0 or 0x,
   552  // and returns the base, digit string, and whether a zero was found.
   553  // It is called only if the verb is %v.
   554  func (s *ss) scanBasePrefix() (base int, digits string, found bool) {
   555  	if !s.peek("0") {
   556  		return 10, decimalDigits, false
   557  	}
   558  	s.accept("0")
   559  	found = true // We've put a digit into the token buffer.
   560  	// Special cases for '0' && '0x'
   561  	base, digits = 8, octalDigits
   562  	if s.peek("xX") {
   563  		s.consume("xX", false)
   564  		base, digits = 16, hexadecimalDigits
   565  	}
   566  	return
   567  }
   568  
   569  // scanInt returns the value of the integer represented by the next
   570  // token, checking for overflow.  Any error is stored in s.err.
   571  func (s *ss) scanInt(verb int, bitSize int) int64 {
   572  	if verb == 'c' {
   573  		return s.scanRune(bitSize)
   574  	}
   575  	s.skipSpace(false)
   576  	base, digits := s.getBase(verb)
   577  	haveDigits := false
   578  	if verb == 'U' {
   579  		if !s.consume("U", false) || !s.consume("+", false) {
   580  			s.errorString("bad unicode format ")
   581  		}
   582  	} else {
   583  		s.accept(sign) // If there's a sign, it will be left in the token buffer.
   584  		if verb == 'v' {
   585  			base, digits, haveDigits = s.scanBasePrefix()
   586  		}
   587  	}
   588  	tok := s.scanNumber(digits, haveDigits)
   589  	i, err := strconv.Btoi64(tok, base)
   590  	if err != nil {
   591  		s.error(err)
   592  	}
   593  	n := uint(bitSize)
   594  	x := (i << (64 - n)) >> (64 - n)
   595  	if x != i {
   596  		s.errorString("integer overflow on token " + tok)
   597  	}
   598  	return i
   599  }
   600  
   601  // scanUint returns the value of the unsigned integer represented
   602  // by the next token, checking for overflow.  Any error is stored in s.err.
   603  func (s *ss) scanUint(verb int, bitSize int) uint64 {
   604  	if verb == 'c' {
   605  		return uint64(s.scanRune(bitSize))
   606  	}
   607  	s.skipSpace(false)
   608  	base, digits := s.getBase(verb)
   609  	haveDigits := false
   610  	if verb == 'U' {
   611  		if !s.consume("U", false) || !s.consume("+", false) {
   612  			s.errorString("bad unicode format ")
   613  		}
   614  	} else if verb == 'v' {
   615  		base, digits, haveDigits = s.scanBasePrefix()
   616  	}
   617  	tok := s.scanNumber(digits, haveDigits)
   618  	i, err := strconv.Btoui64(tok, base)
   619  	if err != nil {
   620  		s.error(err)
   621  	}
   622  	n := uint(bitSize)
   623  	x := (i << (64 - n)) >> (64 - n)
   624  	if x != i {
   625  		s.errorString("unsigned integer overflow on token " + tok)
   626  	}
   627  	return i
   628  }
   629  
   630  // floatToken returns the floating-point number starting here, no longer than swid
   631  // if the width is specified. It's not rigorous about syntax because it doesn't check that
   632  // we have at least some digits, but Atof will do that.
   633  func (s *ss) floatToken() string {
   634  	s.buf.Reset()
   635  	// NaN?
   636  	if s.accept("nN") && s.accept("aA") && s.accept("nN") {
   637  		return s.buf.String()
   638  	}
   639  	// leading sign?
   640  	s.accept(sign)
   641  	// Inf?
   642  	if s.accept("iI") && s.accept("nN") && s.accept("fF") {
   643  		return s.buf.String()
   644  	}
   645  	// digits?
   646  	for s.accept(decimalDigits) {
   647  	}
   648  	// decimal point?
   649  	if s.accept(period) {
   650  		// fraction?
   651  		for s.accept(decimalDigits) {
   652  		}
   653  	}
   654  	// exponent?
   655  	if s.accept(exponent) {
   656  		// leading sign?
   657  		s.accept(sign)
   658  		// digits?
   659  		for s.accept(decimalDigits) {
   660  		}
   661  	}
   662  	return s.buf.String()
   663  }
   664  
   665  // complexTokens returns the real and imaginary parts of the complex number starting here.
   666  // The number might be parenthesized and has the format (N+Ni) where N is a floating-point
   667  // number and there are no spaces within.
   668  func (s *ss) complexTokens() (real, imag string) {
   669  	// TODO: accept N and Ni independently?
   670  	parens := s.accept("(")
   671  	real = s.floatToken()
   672  	s.buf.Reset()
   673  	// Must now have a sign.
   674  	if !s.accept("+-") {
   675  		s.error(complexError)
   676  	}
   677  	// Sign is now in buffer
   678  	imagSign := s.buf.String()
   679  	imag = s.floatToken()
   680  	if !s.accept("i") {
   681  		s.error(complexError)
   682  	}
   683  	if parens && !s.accept(")") {
   684  		s.error(complexError)
   685  	}
   686  	return real, imagSign + imag
   687  }
   688  
   689  // convertFloat converts the string to a float64value.
   690  func (s *ss) convertFloat(str string, n int) float64 {
   691  	if p := strings.Index(str, "p"); p >= 0 {
   692  		// Atof doesn't handle power-of-2 exponents,
   693  		// but they're easy to evaluate.
   694  		f, err := strconv.AtofN(str[:p], n)
   695  		if err != nil {
   696  			// Put full string into error.
   697  			if e, ok := err.(*strconv.NumError); ok {
   698  				e.Num = str
   699  			}
   700  			s.error(err)
   701  		}
   702  		n, err := strconv.Atoi(str[p+1:])
   703  		if err != nil {
   704  			// Put full string into error.
   705  			if e, ok := err.(*strconv.NumError); ok {
   706  				e.Num = str
   707  			}
   708  			s.error(err)
   709  		}
   710  		return math.Ldexp(f, n)
   711  	}
   712  	f, err := strconv.AtofN(str, n)
   713  	if err != nil {
   714  		s.error(err)
   715  	}
   716  	return f
   717  }
   718  
   719  // convertComplex converts the next token to a complex128 value.
   720  // The atof argument is a type-specific reader for the underlying type.
   721  // If we're reading complex64, atof will parse float32s and convert them
   722  // to float64's to avoid reproducing this code for each complex type.
   723  func (s *ss) scanComplex(verb int, n int) complex128 {
   724  	if !s.okVerb(verb, floatVerbs, "complex") {
   725  		return 0
   726  	}
   727  	s.skipSpace(false)
   728  	sreal, simag := s.complexTokens()
   729  	real := s.convertFloat(sreal, n/2)
   730  	imag := s.convertFloat(simag, n/2)
   731  	return complex(real, imag)
   732  }
   733  
   734  // convertString returns the string represented by the next input characters.
   735  // The format of the input is determined by the verb.
   736  func (s *ss) convertString(verb int) (str string) {
   737  	if !s.okVerb(verb, "svqx", "string") {
   738  		return ""
   739  	}
   740  	s.skipSpace(false)
   741  	switch verb {
   742  	case 'q':
   743  		str = s.quotedString()
   744  	case 'x':
   745  		str = s.hexString()
   746  	default:
   747  		str = string(s.token(true, notSpace)) // %s and %v just return the next word
   748  	}
   749  	// Empty strings other than with %q are not OK.
   750  	if len(str) == 0 && verb != 'q' && s.maxWid > 0 {
   751  		s.errorString("Scan: no data for string")
   752  	}
   753  	return
   754  }
   755  
   756  // quotedString returns the double- or back-quoted string represented by the next input characters.
   757  func (s *ss) quotedString() string {
   758  	quote := s.mustReadRune()
   759  	switch quote {
   760  	case '`':
   761  		// Back-quoted: Anything goes until EOF or back quote.
   762  		for {
   763  			rune := s.mustReadRune()
   764  			if rune == quote {
   765  				break
   766  			}
   767  			s.buf.WriteRune(rune)
   768  		}
   769  		return s.buf.String()
   770  	case '"':
   771  		// Double-quoted: Include the quotes and let strconv.Unquote do the backslash escapes.
   772  		s.buf.WriteRune(quote)
   773  		for {
   774  			rune := s.mustReadRune()
   775  			s.buf.WriteRune(rune)
   776  			if rune == '\\' {
   777  				// In a legal backslash escape, no matter how long, only the character
   778  				// immediately after the escape can itself be a backslash or quote.
   779  				// Thus we only need to protect the first character after the backslash.
   780  				rune := s.mustReadRune()
   781  				s.buf.WriteRune(rune)
   782  			} else if rune == '"' {
   783  				break
   784  			}
   785  		}
   786  		result, err := strconv.Unquote(s.buf.String())
   787  		if err != nil {
   788  			s.error(err)
   789  		}
   790  		return result
   791  	default:
   792  		s.errorString("expected quoted string")
   793  	}
   794  	return ""
   795  }
   796  
   797  // hexDigit returns the value of the hexadecimal digit
   798  func (s *ss) hexDigit(digit int) int {
   799  	switch digit {
   800  	case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
   801  		return digit - '0'
   802  	case 'a', 'b', 'c', 'd', 'e', 'f':
   803  		return 10 + digit - 'a'
   804  	case 'A', 'B', 'C', 'D', 'E', 'F':
   805  		return 10 + digit - 'A'
   806  	}
   807  	s.errorString("Scan: illegal hex digit")
   808  	return 0
   809  }
   810  
   811  // hexByte returns the next hex-encoded (two-character) byte from the input.
   812  // There must be either two hexadecimal digits or a space character in the input.
   813  func (s *ss) hexByte() (b byte, ok bool) {
   814  	rune1 := s.getRune()
   815  	if rune1 == eof {
   816  		return
   817  	}
   818  	if unicode.IsSpace(rune1) {
   819  		s.UnreadRune()
   820  		return
   821  	}
   822  	rune2 := s.mustReadRune()
   823  	return byte(s.hexDigit(rune1)<<4 | s.hexDigit(rune2)), true
   824  }
   825  
   826  // hexString returns the space-delimited hexpair-encoded string.
   827  func (s *ss) hexString() string {
   828  	for {
   829  		b, ok := s.hexByte()
   830  		if !ok {
   831  			break
   832  		}
   833  		s.buf.WriteByte(b)
   834  	}
   835  	if s.buf.Len() == 0 {
   836  		s.errorString("Scan: no hex data for %x string")
   837  		return ""
   838  	}
   839  	return s.buf.String()
   840  }
   841  
   842  const floatVerbs = "beEfFgGv"
   843  
   844  const hugeWid = 1 << 30
   845  
   846  // scanOne scans a single value, deriving the scanner from the type of the argument.
   847  func (s *ss) scanOne(verb int, field interface{}) {
   848  	s.buf.Reset()
   849  	var err os.Error
   850  	// If the parameter has its own Scan method, use that.
   851  	if v, ok := field.(Scanner); ok {
   852  		err = v.Scan(s, verb)
   853  		if err != nil {
   854  			if err == os.EOF {
   855  				err = io.ErrUnexpectedEOF
   856  			}
   857  			s.error(err)
   858  		}
   859  		return
   860  	}
   861  	switch v := field.(type) {
   862  	case *bool:
   863  		*v = s.scanBool(verb)
   864  	case *complex64:
   865  		*v = complex64(s.scanComplex(verb, 64))
   866  	case *complex128:
   867  		*v = s.scanComplex(verb, 128)
   868  	case *int:
   869  		*v = int(s.scanInt(verb, intBits))
   870  	case *int8:
   871  		*v = int8(s.scanInt(verb, 8))
   872  	case *int16:
   873  		*v = int16(s.scanInt(verb, 16))
   874  	case *int32:
   875  		*v = int32(s.scanInt(verb, 32))
   876  	case *int64:
   877  		*v = s.scanInt(verb, 64)
   878  	case *uint:
   879  		*v = uint(s.scanUint(verb, intBits))
   880  	case *uint8:
   881  		*v = uint8(s.scanUint(verb, 8))
   882  	case *uint16:
   883  		*v = uint16(s.scanUint(verb, 16))
   884  	case *uint32:
   885  		*v = uint32(s.scanUint(verb, 32))
   886  	case *uint64:
   887  		*v = s.scanUint(verb, 64)
   888  	case *uintptr:
   889  		*v = uintptr(s.scanUint(verb, uintptrBits))
   890  	// Floats are tricky because you want to scan in the precision of the result, not
   891  	// scan in high precision and convert, in order to preserve the correct error condition.
   892  	case *float32:
   893  		if s.okVerb(verb, floatVerbs, "float32") {
   894  			s.skipSpace(false)
   895  			*v = float32(s.convertFloat(s.floatToken(), 32))
   896  		}
   897  	case *float64:
   898  		if s.okVerb(verb, floatVerbs, "float64") {
   899  			s.skipSpace(false)
   900  			*v = s.convertFloat(s.floatToken(), 64)
   901  		}
   902  	case *string:
   903  		*v = s.convertString(verb)
   904  	case *[]byte:
   905  		// We scan to string and convert so we get a copy of the data.
   906  		// If we scanned to bytes, the slice would point at the buffer.
   907  		*v = []byte(s.convertString(verb))
   908  	default:
   909  		val := reflect.ValueOf(v)
   910  		ptr := val
   911  		if ptr.Kind() != reflect.Ptr {
   912  			s.errorString("Scan: type not a pointer: " + val.Type().String())
   913  			return
   914  		}
   915  		switch v := ptr.Elem(); v.Kind() {
   916  		case reflect.Bool:
   917  			v.SetBool(s.scanBool(verb))
   918  		case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   919  			v.SetInt(s.scanInt(verb, v.Type().Bits()))
   920  		case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   921  			v.SetUint(s.scanUint(verb, v.Type().Bits()))
   922  		case reflect.String:
   923  			v.SetString(s.convertString(verb))
   924  		case reflect.Slice:
   925  			// For now, can only handle (renamed) []byte.
   926  			typ := v.Type()
   927  			if typ.Elem().Kind() != reflect.Uint8 {
   928  				goto CantHandle
   929  			}
   930  			str := s.convertString(verb)
   931  			v.Set(reflect.MakeSlice(typ, len(str), len(str)))
   932  			for i := 0; i < len(str); i++ {
   933  				v.Index(i).SetUint(uint64(str[i]))
   934  			}
   935  		case reflect.Float32, reflect.Float64:
   936  			s.skipSpace(false)
   937  			v.SetFloat(s.convertFloat(s.floatToken(), v.Type().Bits()))
   938  		case reflect.Complex64, reflect.Complex128:
   939  			v.SetComplex(s.scanComplex(verb, v.Type().Bits()))
   940  		default:
   941  		CantHandle:
   942  			s.errorString("Scan: can't handle type: " + val.Type().String())
   943  		}
   944  	}
   945  }
   946  
   947  // errorHandler turns local panics into error returns.  EOFs are benign.
   948  func errorHandler(errp *os.Error) {
   949  	if e := recover(); e != nil {
   950  		if se, ok := e.(scanError); ok { // catch local error
   951  			if se.err != os.EOF {
   952  				*errp = se.err
   953  			}
   954  		} else {
   955  			panic(e)
   956  		}
   957  	}
   958  }
   959  
   960  // doScan does the real work for scanning without a format string.
   961  func (s *ss) doScan(a []interface{}) (numProcessed int, err os.Error) {
   962  	defer errorHandler(&err)
   963  	for _, field := range a {
   964  		s.scanOne('v', field)
   965  		numProcessed++
   966  	}
   967  	// Check for newline if required.
   968  	if !s.nlIsSpace {
   969  		for {
   970  			rune := s.getRune()
   971  			if rune == '\n' || rune == eof {
   972  				break
   973  			}
   974  			if !unicode.IsSpace(rune) {
   975  				s.errorString("Scan: expected newline")
   976  				break
   977  			}
   978  		}
   979  	}
   980  	return
   981  }
   982  
   983  // advance determines whether the next characters in the input match
   984  // those of the format.  It returns the number of bytes (sic) consumed
   985  // in the format. Newlines included, all runs of space characters in
   986  // either input or format behave as a single space. This routine also
   987  // handles the %% case.  If the return value is zero, either format
   988  // starts with a % (with no following %) or the input is empty.
   989  // If it is negative, the input did not match the string.
   990  func (s *ss) advance(format string) (i int) {
   991  	for i < len(format) {
   992  		fmtc, w := utf8.DecodeRuneInString(format[i:])
   993  		if fmtc == '%' {
   994  			// %% acts like a real percent
   995  			nextc, _ := utf8.DecodeRuneInString(format[i+w:]) // will not match % if string is empty
   996  			if nextc != '%' {
   997  				return
   998  			}
   999  			i += w // skip the first %
  1000  		}
  1001  		sawSpace := false
  1002  		for unicode.IsSpace(fmtc) && i < len(format) {
  1003  			sawSpace = true
  1004  			i += w
  1005  			fmtc, w = utf8.DecodeRuneInString(format[i:])
  1006  		}
  1007  		if sawSpace {
  1008  			// There was space in the format, so there should be space (EOF)
  1009  			// in the input.
  1010  			inputc := s.getRune()
  1011  			if inputc == eof {
  1012  				return
  1013  			}
  1014  			if !unicode.IsSpace(inputc) {
  1015  				// Space in format but not in input: error
  1016  				s.errorString("expected space in input to match format")
  1017  			}
  1018  			s.skipSpace(true)
  1019  			continue
  1020  		}
  1021  		inputc := s.mustReadRune()
  1022  		if fmtc != inputc {
  1023  			s.UnreadRune()
  1024  			return -1
  1025  		}
  1026  		i += w
  1027  	}
  1028  	return
  1029  }
  1030  
  1031  // doScanf does the real work when scanning with a format string.
  1032  //  At the moment, it handles only pointers to basic types.
  1033  func (s *ss) doScanf(format string, a []interface{}) (numProcessed int, err os.Error) {
  1034  	defer errorHandler(&err)
  1035  	end := len(format) - 1
  1036  	// We process one item per non-trivial format
  1037  	for i := 0; i <= end; {
  1038  		w := s.advance(format[i:])
  1039  		if w > 0 {
  1040  			i += w
  1041  			continue
  1042  		}
  1043  		// Either we failed to advance, we have a percent character, or we ran out of input.
  1044  		if format[i] != '%' {
  1045  			// Can't advance format.  Why not?
  1046  			if w < 0 {
  1047  				s.errorString("input does not match format")
  1048  			}
  1049  			// Otherwise at EOF; "too many operands" error handled below
  1050  			break
  1051  		}
  1052  		i++ // % is one byte
  1053  
  1054  		// do we have 20 (width)?
  1055  		var widPresent bool
  1056  		s.maxWid, widPresent, i = parsenum(format, i, end)
  1057  		if !widPresent {
  1058  			s.maxWid = hugeWid
  1059  		}
  1060  		s.fieldLimit = s.limit
  1061  		if f := s.count + s.maxWid; f < s.fieldLimit {
  1062  			s.fieldLimit = f
  1063  		}
  1064  
  1065  		c, w := utf8.DecodeRuneInString(format[i:])
  1066  		i += w
  1067  
  1068  		if numProcessed >= len(a) { // out of operands
  1069  			s.errorString("too few operands for format %" + format[i-w:])
  1070  			break
  1071  		}
  1072  		field := a[numProcessed]
  1073  
  1074  		s.scanOne(c, field)
  1075  		numProcessed++
  1076  		s.fieldLimit = s.limit
  1077  	}
  1078  	if numProcessed < len(a) {
  1079  		s.errorString("too many operands")
  1080  	}
  1081  	return
  1082  }