github.com/xushiwei/go@v0.0.0-20130601165731-2b9d83f45bc9/src/pkg/container/heap/heap.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package heap provides heap operations for any type that implements 6 // heap.Interface. A heap is a tree with the property that each node is the 7 // minimum-valued node in its subtree. 8 // 9 // A heap is a common way to implement a priority queue. To build a priority 10 // queue, implement the Heap interface with the (negative) priority as the 11 // ordering for the Less method, so Push adds items while Pop removes the 12 // highest-priority item from the queue. The Examples include such an 13 // implementation; the file example_pq_test.go has the complete source. 14 // 15 package heap 16 17 import "sort" 18 19 // Any type that implements heap.Interface may be used as a 20 // min-heap with the following invariants (established after 21 // Init has been called or if the data is empty or sorted): 22 // 23 // !h.Less(j, i) for 0 <= i < h.Len() and j = 2*i+1 or 2*i+2 and j < h.Len() 24 // 25 // Note that Push and Pop in this interface are for package heap's 26 // implementation to call. To add and remove things from the heap, 27 // use heap.Push and heap.Pop. 28 type Interface interface { 29 sort.Interface 30 Push(x interface{}) // add x as element Len() 31 Pop() interface{} // remove and return element Len() - 1. 32 } 33 34 // A heap must be initialized before any of the heap operations 35 // can be used. Init is idempotent with respect to the heap invariants 36 // and may be called whenever the heap invariants may have been invalidated. 37 // Its complexity is O(n) where n = h.Len(). 38 // 39 func Init(h Interface) { 40 // heapify 41 n := h.Len() 42 for i := n/2 - 1; i >= 0; i-- { 43 down(h, i, n) 44 } 45 } 46 47 // Push pushes the element x onto the heap. The complexity is 48 // O(log(n)) where n = h.Len(). 49 // 50 func Push(h Interface, x interface{}) { 51 h.Push(x) 52 up(h, h.Len()-1) 53 } 54 55 // Pop removes the minimum element (according to Less) from the heap 56 // and returns it. The complexity is O(log(n)) where n = h.Len(). 57 // Same as Remove(h, 0). 58 // 59 func Pop(h Interface) interface{} { 60 n := h.Len() - 1 61 h.Swap(0, n) 62 down(h, 0, n) 63 return h.Pop() 64 } 65 66 // Remove removes the element at index i from the heap. 67 // The complexity is O(log(n)) where n = h.Len(). 68 // 69 func Remove(h Interface, i int) interface{} { 70 n := h.Len() - 1 71 if n != i { 72 h.Swap(i, n) 73 down(h, i, n) 74 up(h, i) 75 } 76 return h.Pop() 77 } 78 79 func up(h Interface, j int) { 80 for { 81 i := (j - 1) / 2 // parent 82 if i == j || !h.Less(j, i) { 83 break 84 } 85 h.Swap(i, j) 86 j = i 87 } 88 } 89 90 func down(h Interface, i, n int) { 91 for { 92 j1 := 2*i + 1 93 if j1 >= n || j1 < 0 { // j1 < 0 after int overflow 94 break 95 } 96 j := j1 // left child 97 if j2 := j1 + 1; j2 < n && !h.Less(j1, j2) { 98 j = j2 // = 2*i + 2 // right child 99 } 100 if !h.Less(j, i) { 101 break 102 } 103 h.Swap(i, j) 104 i = j 105 } 106 }