github.com/xushiwei/go@v0.0.0-20130601165731-2b9d83f45bc9/src/pkg/crypto/rsa/rsa.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package rsa implements RSA encryption as specified in PKCS#1.
     6  package rsa
     7  
     8  // TODO(agl): Add support for PSS padding.
     9  
    10  import (
    11  	"crypto/rand"
    12  	"crypto/subtle"
    13  	"errors"
    14  	"hash"
    15  	"io"
    16  	"math/big"
    17  )
    18  
    19  var bigZero = big.NewInt(0)
    20  var bigOne = big.NewInt(1)
    21  
    22  // A PublicKey represents the public part of an RSA key.
    23  type PublicKey struct {
    24  	N *big.Int // modulus
    25  	E int      // public exponent
    26  }
    27  
    28  var (
    29  	errPublicModulus       = errors.New("crypto/rsa: missing public modulus")
    30  	errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small")
    31  	errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large")
    32  )
    33  
    34  // checkPub sanity checks the public key before we use it.
    35  // We require pub.E to fit into a 32-bit integer so that we
    36  // do not have different behavior depending on whether
    37  // int is 32 or 64 bits. See also
    38  // http://www.imperialviolet.org/2012/03/16/rsae.html.
    39  func checkPub(pub *PublicKey) error {
    40  	if pub.N == nil {
    41  		return errPublicModulus
    42  	}
    43  	if pub.E < 2 {
    44  		return errPublicExponentSmall
    45  	}
    46  	if pub.E > 1<<31-1 {
    47  		return errPublicExponentLarge
    48  	}
    49  	return nil
    50  }
    51  
    52  // A PrivateKey represents an RSA key
    53  type PrivateKey struct {
    54  	PublicKey            // public part.
    55  	D         *big.Int   // private exponent
    56  	Primes    []*big.Int // prime factors of N, has >= 2 elements.
    57  
    58  	// Precomputed contains precomputed values that speed up private
    59  	// operations, if available.
    60  	Precomputed PrecomputedValues
    61  }
    62  
    63  type PrecomputedValues struct {
    64  	Dp, Dq *big.Int // D mod (P-1) (or mod Q-1)
    65  	Qinv   *big.Int // Q^-1 mod Q
    66  
    67  	// CRTValues is used for the 3rd and subsequent primes. Due to a
    68  	// historical accident, the CRT for the first two primes is handled
    69  	// differently in PKCS#1 and interoperability is sufficiently
    70  	// important that we mirror this.
    71  	CRTValues []CRTValue
    72  }
    73  
    74  // CRTValue contains the precomputed chinese remainder theorem values.
    75  type CRTValue struct {
    76  	Exp   *big.Int // D mod (prime-1).
    77  	Coeff *big.Int // R·Coeff ≡ 1 mod Prime.
    78  	R     *big.Int // product of primes prior to this (inc p and q).
    79  }
    80  
    81  // Validate performs basic sanity checks on the key.
    82  // It returns nil if the key is valid, or else an error describing a problem.
    83  func (priv *PrivateKey) Validate() error {
    84  	if err := checkPub(&priv.PublicKey); err != nil {
    85  		return err
    86  	}
    87  
    88  	// Check that the prime factors are actually prime. Note that this is
    89  	// just a sanity check. Since the random witnesses chosen by
    90  	// ProbablyPrime are deterministic, given the candidate number, it's
    91  	// easy for an attack to generate composites that pass this test.
    92  	for _, prime := range priv.Primes {
    93  		if !prime.ProbablyPrime(20) {
    94  			return errors.New("crypto/rsa: prime factor is composite")
    95  		}
    96  	}
    97  
    98  	// Check that Πprimes == n.
    99  	modulus := new(big.Int).Set(bigOne)
   100  	for _, prime := range priv.Primes {
   101  		modulus.Mul(modulus, prime)
   102  	}
   103  	if modulus.Cmp(priv.N) != 0 {
   104  		return errors.New("crypto/rsa: invalid modulus")
   105  	}
   106  
   107  	// Check that de ≡ 1 mod p-1, for each prime.
   108  	// This implies that e is coprime to each p-1 as e has a multiplicative
   109  	// inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) =
   110  	// exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1
   111  	// mod p. Thus a^de ≡ a mod n for all a coprime to n, as required.
   112  	congruence := new(big.Int)
   113  	de := new(big.Int).SetInt64(int64(priv.E))
   114  	de.Mul(de, priv.D)
   115  	for _, prime := range priv.Primes {
   116  		pminus1 := new(big.Int).Sub(prime, bigOne)
   117  		congruence.Mod(de, pminus1)
   118  		if congruence.Cmp(bigOne) != 0 {
   119  			return errors.New("crypto/rsa: invalid exponents")
   120  		}
   121  	}
   122  	return nil
   123  }
   124  
   125  // GenerateKey generates an RSA keypair of the given bit size.
   126  func GenerateKey(random io.Reader, bits int) (priv *PrivateKey, err error) {
   127  	return GenerateMultiPrimeKey(random, 2, bits)
   128  }
   129  
   130  // GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit
   131  // size, as suggested in [1]. Although the public keys are compatible
   132  // (actually, indistinguishable) from the 2-prime case, the private keys are
   133  // not. Thus it may not be possible to export multi-prime private keys in
   134  // certain formats or to subsequently import them into other code.
   135  //
   136  // Table 1 in [2] suggests maximum numbers of primes for a given size.
   137  //
   138  // [1] US patent 4405829 (1972, expired)
   139  // [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
   140  func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (priv *PrivateKey, err error) {
   141  	priv = new(PrivateKey)
   142  	priv.E = 65537
   143  
   144  	if nprimes < 2 {
   145  		return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2")
   146  	}
   147  
   148  	primes := make([]*big.Int, nprimes)
   149  
   150  NextSetOfPrimes:
   151  	for {
   152  		todo := bits
   153  		// crypto/rand should set the top two bits in each prime.
   154  		// Thus each prime has the form
   155  		//   p_i = 2^bitlen(p_i) × 0.11... (in base 2).
   156  		// And the product is:
   157  		//   P = 2^todo × α
   158  		// where α is the product of nprimes numbers of the form 0.11...
   159  		//
   160  		// If α < 1/2 (which can happen for nprimes > 2), we need to
   161  		// shift todo to compensate for lost bits: the mean value of 0.11...
   162  		// is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2
   163  		// will give good results.
   164  		if nprimes >= 7 {
   165  			todo += (nprimes - 2) / 5
   166  		}
   167  		for i := 0; i < nprimes; i++ {
   168  			primes[i], err = rand.Prime(random, todo/(nprimes-i))
   169  			if err != nil {
   170  				return nil, err
   171  			}
   172  			todo -= primes[i].BitLen()
   173  		}
   174  
   175  		// Make sure that primes is pairwise unequal.
   176  		for i, prime := range primes {
   177  			for j := 0; j < i; j++ {
   178  				if prime.Cmp(primes[j]) == 0 {
   179  					continue NextSetOfPrimes
   180  				}
   181  			}
   182  		}
   183  
   184  		n := new(big.Int).Set(bigOne)
   185  		totient := new(big.Int).Set(bigOne)
   186  		pminus1 := new(big.Int)
   187  		for _, prime := range primes {
   188  			n.Mul(n, prime)
   189  			pminus1.Sub(prime, bigOne)
   190  			totient.Mul(totient, pminus1)
   191  		}
   192  		if n.BitLen() != bits {
   193  			// This should never happen for nprimes == 2 because
   194  			// crypto/rand should set the top two bits in each prime.
   195  			// For nprimes > 2 we hope it does not happen often.
   196  			continue NextSetOfPrimes
   197  		}
   198  
   199  		g := new(big.Int)
   200  		priv.D = new(big.Int)
   201  		y := new(big.Int)
   202  		e := big.NewInt(int64(priv.E))
   203  		g.GCD(priv.D, y, e, totient)
   204  
   205  		if g.Cmp(bigOne) == 0 {
   206  			if priv.D.Sign() < 0 {
   207  				priv.D.Add(priv.D, totient)
   208  			}
   209  			priv.Primes = primes
   210  			priv.N = n
   211  
   212  			break
   213  		}
   214  	}
   215  
   216  	priv.Precompute()
   217  	return
   218  }
   219  
   220  // incCounter increments a four byte, big-endian counter.
   221  func incCounter(c *[4]byte) {
   222  	if c[3]++; c[3] != 0 {
   223  		return
   224  	}
   225  	if c[2]++; c[2] != 0 {
   226  		return
   227  	}
   228  	if c[1]++; c[1] != 0 {
   229  		return
   230  	}
   231  	c[0]++
   232  }
   233  
   234  // mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function
   235  // specified in PKCS#1 v2.1.
   236  func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
   237  	var counter [4]byte
   238  	var digest []byte
   239  
   240  	done := 0
   241  	for done < len(out) {
   242  		hash.Write(seed)
   243  		hash.Write(counter[0:4])
   244  		digest = hash.Sum(digest[:0])
   245  		hash.Reset()
   246  
   247  		for i := 0; i < len(digest) && done < len(out); i++ {
   248  			out[done] ^= digest[i]
   249  			done++
   250  		}
   251  		incCounter(&counter)
   252  	}
   253  }
   254  
   255  // ErrMessageTooLong is returned when attempting to encrypt a message which is
   256  // too large for the size of the public key.
   257  var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size")
   258  
   259  func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
   260  	e := big.NewInt(int64(pub.E))
   261  	c.Exp(m, e, pub.N)
   262  	return c
   263  }
   264  
   265  // EncryptOAEP encrypts the given message with RSA-OAEP.
   266  // The message must be no longer than the length of the public modulus less
   267  // twice the hash length plus 2.
   268  func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err error) {
   269  	if err := checkPub(pub); err != nil {
   270  		return nil, err
   271  	}
   272  	hash.Reset()
   273  	k := (pub.N.BitLen() + 7) / 8
   274  	if len(msg) > k-2*hash.Size()-2 {
   275  		err = ErrMessageTooLong
   276  		return
   277  	}
   278  
   279  	hash.Write(label)
   280  	lHash := hash.Sum(nil)
   281  	hash.Reset()
   282  
   283  	em := make([]byte, k)
   284  	seed := em[1 : 1+hash.Size()]
   285  	db := em[1+hash.Size():]
   286  
   287  	copy(db[0:hash.Size()], lHash)
   288  	db[len(db)-len(msg)-1] = 1
   289  	copy(db[len(db)-len(msg):], msg)
   290  
   291  	_, err = io.ReadFull(random, seed)
   292  	if err != nil {
   293  		return
   294  	}
   295  
   296  	mgf1XOR(db, hash, seed)
   297  	mgf1XOR(seed, hash, db)
   298  
   299  	m := new(big.Int)
   300  	m.SetBytes(em)
   301  	c := encrypt(new(big.Int), pub, m)
   302  	out = c.Bytes()
   303  
   304  	if len(out) < k {
   305  		// If the output is too small, we need to left-pad with zeros.
   306  		t := make([]byte, k)
   307  		copy(t[k-len(out):], out)
   308  		out = t
   309  	}
   310  
   311  	return
   312  }
   313  
   314  // ErrDecryption represents a failure to decrypt a message.
   315  // It is deliberately vague to avoid adaptive attacks.
   316  var ErrDecryption = errors.New("crypto/rsa: decryption error")
   317  
   318  // ErrVerification represents a failure to verify a signature.
   319  // It is deliberately vague to avoid adaptive attacks.
   320  var ErrVerification = errors.New("crypto/rsa: verification error")
   321  
   322  // modInverse returns ia, the inverse of a in the multiplicative group of prime
   323  // order n. It requires that a be a member of the group (i.e. less than n).
   324  func modInverse(a, n *big.Int) (ia *big.Int, ok bool) {
   325  	g := new(big.Int)
   326  	x := new(big.Int)
   327  	y := new(big.Int)
   328  	g.GCD(x, y, a, n)
   329  	if g.Cmp(bigOne) != 0 {
   330  		// In this case, a and n aren't coprime and we cannot calculate
   331  		// the inverse. This happens because the values of n are nearly
   332  		// prime (being the product of two primes) rather than truly
   333  		// prime.
   334  		return
   335  	}
   336  
   337  	if x.Cmp(bigOne) < 0 {
   338  		// 0 is not the multiplicative inverse of any element so, if x
   339  		// < 1, then x is negative.
   340  		x.Add(x, n)
   341  	}
   342  
   343  	return x, true
   344  }
   345  
   346  // Precompute performs some calculations that speed up private key operations
   347  // in the future.
   348  func (priv *PrivateKey) Precompute() {
   349  	if priv.Precomputed.Dp != nil {
   350  		return
   351  	}
   352  
   353  	priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne)
   354  	priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp)
   355  
   356  	priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne)
   357  	priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq)
   358  
   359  	priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0])
   360  
   361  	r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
   362  	priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2)
   363  	for i := 2; i < len(priv.Primes); i++ {
   364  		prime := priv.Primes[i]
   365  		values := &priv.Precomputed.CRTValues[i-2]
   366  
   367  		values.Exp = new(big.Int).Sub(prime, bigOne)
   368  		values.Exp.Mod(priv.D, values.Exp)
   369  
   370  		values.R = new(big.Int).Set(r)
   371  		values.Coeff = new(big.Int).ModInverse(r, prime)
   372  
   373  		r.Mul(r, prime)
   374  	}
   375  }
   376  
   377  // decrypt performs an RSA decryption, resulting in a plaintext integer. If a
   378  // random source is given, RSA blinding is used.
   379  func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
   380  	// TODO(agl): can we get away with reusing blinds?
   381  	if c.Cmp(priv.N) > 0 {
   382  		err = ErrDecryption
   383  		return
   384  	}
   385  
   386  	var ir *big.Int
   387  	if random != nil {
   388  		// Blinding enabled. Blinding involves multiplying c by r^e.
   389  		// Then the decryption operation performs (m^e * r^e)^d mod n
   390  		// which equals mr mod n. The factor of r can then be removed
   391  		// by multiplying by the multiplicative inverse of r.
   392  
   393  		var r *big.Int
   394  
   395  		for {
   396  			r, err = rand.Int(random, priv.N)
   397  			if err != nil {
   398  				return
   399  			}
   400  			if r.Cmp(bigZero) == 0 {
   401  				r = bigOne
   402  			}
   403  			var ok bool
   404  			ir, ok = modInverse(r, priv.N)
   405  			if ok {
   406  				break
   407  			}
   408  		}
   409  		bigE := big.NewInt(int64(priv.E))
   410  		rpowe := new(big.Int).Exp(r, bigE, priv.N)
   411  		cCopy := new(big.Int).Set(c)
   412  		cCopy.Mul(cCopy, rpowe)
   413  		cCopy.Mod(cCopy, priv.N)
   414  		c = cCopy
   415  	}
   416  
   417  	if priv.Precomputed.Dp == nil {
   418  		m = new(big.Int).Exp(c, priv.D, priv.N)
   419  	} else {
   420  		// We have the precalculated values needed for the CRT.
   421  		m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0])
   422  		m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1])
   423  		m.Sub(m, m2)
   424  		if m.Sign() < 0 {
   425  			m.Add(m, priv.Primes[0])
   426  		}
   427  		m.Mul(m, priv.Precomputed.Qinv)
   428  		m.Mod(m, priv.Primes[0])
   429  		m.Mul(m, priv.Primes[1])
   430  		m.Add(m, m2)
   431  
   432  		for i, values := range priv.Precomputed.CRTValues {
   433  			prime := priv.Primes[2+i]
   434  			m2.Exp(c, values.Exp, prime)
   435  			m2.Sub(m2, m)
   436  			m2.Mul(m2, values.Coeff)
   437  			m2.Mod(m2, prime)
   438  			if m2.Sign() < 0 {
   439  				m2.Add(m2, prime)
   440  			}
   441  			m2.Mul(m2, values.R)
   442  			m.Add(m, m2)
   443  		}
   444  	}
   445  
   446  	if ir != nil {
   447  		// Unblind.
   448  		m.Mul(m, ir)
   449  		m.Mod(m, priv.N)
   450  	}
   451  
   452  	return
   453  }
   454  
   455  // DecryptOAEP decrypts ciphertext using RSA-OAEP.
   456  // If random != nil, DecryptOAEP uses RSA blinding to avoid timing side-channel attacks.
   457  func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err error) {
   458  	if err := checkPub(&priv.PublicKey); err != nil {
   459  		return nil, err
   460  	}
   461  	k := (priv.N.BitLen() + 7) / 8
   462  	if len(ciphertext) > k ||
   463  		k < hash.Size()*2+2 {
   464  		err = ErrDecryption
   465  		return
   466  	}
   467  
   468  	c := new(big.Int).SetBytes(ciphertext)
   469  
   470  	m, err := decrypt(random, priv, c)
   471  	if err != nil {
   472  		return
   473  	}
   474  
   475  	hash.Write(label)
   476  	lHash := hash.Sum(nil)
   477  	hash.Reset()
   478  
   479  	// Converting the plaintext number to bytes will strip any
   480  	// leading zeros so we may have to left pad. We do this unconditionally
   481  	// to avoid leaking timing information. (Although we still probably
   482  	// leak the number of leading zeros. It's not clear that we can do
   483  	// anything about this.)
   484  	em := leftPad(m.Bytes(), k)
   485  
   486  	firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
   487  
   488  	seed := em[1 : hash.Size()+1]
   489  	db := em[hash.Size()+1:]
   490  
   491  	mgf1XOR(seed, hash, db)
   492  	mgf1XOR(db, hash, seed)
   493  
   494  	lHash2 := db[0:hash.Size()]
   495  
   496  	// We have to validate the plaintext in constant time in order to avoid
   497  	// attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal
   498  	// Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1
   499  	// v2.0. In J. Kilian, editor, Advances in Cryptology.
   500  	lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2)
   501  
   502  	// The remainder of the plaintext must be zero or more 0x00, followed
   503  	// by 0x01, followed by the message.
   504  	//   lookingForIndex: 1 iff we are still looking for the 0x01
   505  	//   index: the offset of the first 0x01 byte
   506  	//   invalid: 1 iff we saw a non-zero byte before the 0x01.
   507  	var lookingForIndex, index, invalid int
   508  	lookingForIndex = 1
   509  	rest := db[hash.Size():]
   510  
   511  	for i := 0; i < len(rest); i++ {
   512  		equals0 := subtle.ConstantTimeByteEq(rest[i], 0)
   513  		equals1 := subtle.ConstantTimeByteEq(rest[i], 1)
   514  		index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index)
   515  		lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex)
   516  		invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid)
   517  	}
   518  
   519  	if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 {
   520  		err = ErrDecryption
   521  		return
   522  	}
   523  
   524  	msg = rest[index+1:]
   525  	return
   526  }
   527  
   528  // leftPad returns a new slice of length size. The contents of input are right
   529  // aligned in the new slice.
   530  func leftPad(input []byte, size int) (out []byte) {
   531  	n := len(input)
   532  	if n > size {
   533  		n = size
   534  	}
   535  	out = make([]byte, size)
   536  	copy(out[len(out)-n:], input)
   537  	return
   538  }