github.com/xushiwei/go@v0.0.0-20130601165731-2b9d83f45bc9/src/pkg/encoding/asn1/asn1.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package asn1 implements parsing of DER-encoded ASN.1 data structures,
     6  // as defined in ITU-T Rec X.690.
     7  //
     8  // See also ``A Layman's Guide to a Subset of ASN.1, BER, and DER,''
     9  // http://luca.ntop.org/Teaching/Appunti/asn1.html.
    10  package asn1
    11  
    12  // ASN.1 is a syntax for specifying abstract objects and BER, DER, PER, XER etc
    13  // are different encoding formats for those objects. Here, we'll be dealing
    14  // with DER, the Distinguished Encoding Rules. DER is used in X.509 because
    15  // it's fast to parse and, unlike BER, has a unique encoding for every object.
    16  // When calculating hashes over objects, it's important that the resulting
    17  // bytes be the same at both ends and DER removes this margin of error.
    18  //
    19  // ASN.1 is very complex and this package doesn't attempt to implement
    20  // everything by any means.
    21  
    22  import (
    23  	"fmt"
    24  	"math/big"
    25  	"reflect"
    26  	"time"
    27  )
    28  
    29  // A StructuralError suggests that the ASN.1 data is valid, but the Go type
    30  // which is receiving it doesn't match.
    31  type StructuralError struct {
    32  	Msg string
    33  }
    34  
    35  func (e StructuralError) Error() string { return "ASN.1 structure error: " + e.Msg }
    36  
    37  // A SyntaxError suggests that the ASN.1 data is invalid.
    38  type SyntaxError struct {
    39  	Msg string
    40  }
    41  
    42  func (e SyntaxError) Error() string { return "ASN.1 syntax error: " + e.Msg }
    43  
    44  // We start by dealing with each of the primitive types in turn.
    45  
    46  // BOOLEAN
    47  
    48  func parseBool(bytes []byte) (ret bool, err error) {
    49  	if len(bytes) != 1 {
    50  		err = SyntaxError{"invalid boolean"}
    51  		return
    52  	}
    53  
    54  	return bytes[0] != 0, nil
    55  }
    56  
    57  // INTEGER
    58  
    59  // parseInt64 treats the given bytes as a big-endian, signed integer and
    60  // returns the result.
    61  func parseInt64(bytes []byte) (ret int64, err error) {
    62  	if len(bytes) > 8 {
    63  		// We'll overflow an int64 in this case.
    64  		err = StructuralError{"integer too large"}
    65  		return
    66  	}
    67  	for bytesRead := 0; bytesRead < len(bytes); bytesRead++ {
    68  		ret <<= 8
    69  		ret |= int64(bytes[bytesRead])
    70  	}
    71  
    72  	// Shift up and down in order to sign extend the result.
    73  	ret <<= 64 - uint8(len(bytes))*8
    74  	ret >>= 64 - uint8(len(bytes))*8
    75  	return
    76  }
    77  
    78  // parseInt treats the given bytes as a big-endian, signed integer and returns
    79  // the result.
    80  func parseInt32(bytes []byte) (int32, error) {
    81  	ret64, err := parseInt64(bytes)
    82  	if err != nil {
    83  		return 0, err
    84  	}
    85  	if ret64 != int64(int32(ret64)) {
    86  		return 0, StructuralError{"integer too large"}
    87  	}
    88  	return int32(ret64), nil
    89  }
    90  
    91  var bigOne = big.NewInt(1)
    92  
    93  // parseBigInt treats the given bytes as a big-endian, signed integer and returns
    94  // the result.
    95  func parseBigInt(bytes []byte) *big.Int {
    96  	ret := new(big.Int)
    97  	if len(bytes) > 0 && bytes[0]&0x80 == 0x80 {
    98  		// This is a negative number.
    99  		notBytes := make([]byte, len(bytes))
   100  		for i := range notBytes {
   101  			notBytes[i] = ^bytes[i]
   102  		}
   103  		ret.SetBytes(notBytes)
   104  		ret.Add(ret, bigOne)
   105  		ret.Neg(ret)
   106  		return ret
   107  	}
   108  	ret.SetBytes(bytes)
   109  	return ret
   110  }
   111  
   112  // BIT STRING
   113  
   114  // BitString is the structure to use when you want an ASN.1 BIT STRING type. A
   115  // bit string is padded up to the nearest byte in memory and the number of
   116  // valid bits is recorded. Padding bits will be zero.
   117  type BitString struct {
   118  	Bytes     []byte // bits packed into bytes.
   119  	BitLength int    // length in bits.
   120  }
   121  
   122  // At returns the bit at the given index. If the index is out of range it
   123  // returns false.
   124  func (b BitString) At(i int) int {
   125  	if i < 0 || i >= b.BitLength {
   126  		return 0
   127  	}
   128  	x := i / 8
   129  	y := 7 - uint(i%8)
   130  	return int(b.Bytes[x]>>y) & 1
   131  }
   132  
   133  // RightAlign returns a slice where the padding bits are at the beginning. The
   134  // slice may share memory with the BitString.
   135  func (b BitString) RightAlign() []byte {
   136  	shift := uint(8 - (b.BitLength % 8))
   137  	if shift == 8 || len(b.Bytes) == 0 {
   138  		return b.Bytes
   139  	}
   140  
   141  	a := make([]byte, len(b.Bytes))
   142  	a[0] = b.Bytes[0] >> shift
   143  	for i := 1; i < len(b.Bytes); i++ {
   144  		a[i] = b.Bytes[i-1] << (8 - shift)
   145  		a[i] |= b.Bytes[i] >> shift
   146  	}
   147  
   148  	return a
   149  }
   150  
   151  // parseBitString parses an ASN.1 bit string from the given byte slice and returns it.
   152  func parseBitString(bytes []byte) (ret BitString, err error) {
   153  	if len(bytes) == 0 {
   154  		err = SyntaxError{"zero length BIT STRING"}
   155  		return
   156  	}
   157  	paddingBits := int(bytes[0])
   158  	if paddingBits > 7 ||
   159  		len(bytes) == 1 && paddingBits > 0 ||
   160  		bytes[len(bytes)-1]&((1<<bytes[0])-1) != 0 {
   161  		err = SyntaxError{"invalid padding bits in BIT STRING"}
   162  		return
   163  	}
   164  	ret.BitLength = (len(bytes)-1)*8 - paddingBits
   165  	ret.Bytes = bytes[1:]
   166  	return
   167  }
   168  
   169  // OBJECT IDENTIFIER
   170  
   171  // An ObjectIdentifier represents an ASN.1 OBJECT IDENTIFIER.
   172  type ObjectIdentifier []int
   173  
   174  // Equal returns true iff oi and other represent the same identifier.
   175  func (oi ObjectIdentifier) Equal(other ObjectIdentifier) bool {
   176  	if len(oi) != len(other) {
   177  		return false
   178  	}
   179  	for i := 0; i < len(oi); i++ {
   180  		if oi[i] != other[i] {
   181  			return false
   182  		}
   183  	}
   184  
   185  	return true
   186  }
   187  
   188  // parseObjectIdentifier parses an OBJECT IDENTIFIER from the given bytes and
   189  // returns it. An object identifier is a sequence of variable length integers
   190  // that are assigned in a hierarchy.
   191  func parseObjectIdentifier(bytes []byte) (s []int, err error) {
   192  	if len(bytes) == 0 {
   193  		err = SyntaxError{"zero length OBJECT IDENTIFIER"}
   194  		return
   195  	}
   196  
   197  	// In the worst case, we get two elements from the first byte (which is
   198  	// encoded differently) and then every varint is a single byte long.
   199  	s = make([]int, len(bytes)+1)
   200  
   201  	// The first byte is 40*value1 + value2:
   202  	s[0] = int(bytes[0]) / 40
   203  	s[1] = int(bytes[0]) % 40
   204  	i := 2
   205  	for offset := 1; offset < len(bytes); i++ {
   206  		var v int
   207  		v, offset, err = parseBase128Int(bytes, offset)
   208  		if err != nil {
   209  			return
   210  		}
   211  		s[i] = v
   212  	}
   213  	s = s[0:i]
   214  	return
   215  }
   216  
   217  // ENUMERATED
   218  
   219  // An Enumerated is represented as a plain int.
   220  type Enumerated int
   221  
   222  // FLAG
   223  
   224  // A Flag accepts any data and is set to true if present.
   225  type Flag bool
   226  
   227  // parseBase128Int parses a base-128 encoded int from the given offset in the
   228  // given byte slice. It returns the value and the new offset.
   229  func parseBase128Int(bytes []byte, initOffset int) (ret, offset int, err error) {
   230  	offset = initOffset
   231  	for shifted := 0; offset < len(bytes); shifted++ {
   232  		if shifted > 4 {
   233  			err = StructuralError{"base 128 integer too large"}
   234  			return
   235  		}
   236  		ret <<= 7
   237  		b := bytes[offset]
   238  		ret |= int(b & 0x7f)
   239  		offset++
   240  		if b&0x80 == 0 {
   241  			return
   242  		}
   243  	}
   244  	err = SyntaxError{"truncated base 128 integer"}
   245  	return
   246  }
   247  
   248  // UTCTime
   249  
   250  func parseUTCTime(bytes []byte) (ret time.Time, err error) {
   251  	s := string(bytes)
   252  	ret, err = time.Parse("0601021504Z0700", s)
   253  	if err != nil {
   254  		ret, err = time.Parse("060102150405Z0700", s)
   255  	}
   256  	if err == nil && ret.Year() >= 2050 {
   257  		// UTCTime only encodes times prior to 2050. See https://tools.ietf.org/html/rfc5280#section-4.1.2.5.1
   258  		ret = ret.AddDate(-100, 0, 0)
   259  	}
   260  
   261  	return
   262  }
   263  
   264  // parseGeneralizedTime parses the GeneralizedTime from the given byte slice
   265  // and returns the resulting time.
   266  func parseGeneralizedTime(bytes []byte) (ret time.Time, err error) {
   267  	return time.Parse("20060102150405Z0700", string(bytes))
   268  }
   269  
   270  // PrintableString
   271  
   272  // parsePrintableString parses a ASN.1 PrintableString from the given byte
   273  // array and returns it.
   274  func parsePrintableString(bytes []byte) (ret string, err error) {
   275  	for _, b := range bytes {
   276  		if !isPrintable(b) {
   277  			err = SyntaxError{"PrintableString contains invalid character"}
   278  			return
   279  		}
   280  	}
   281  	ret = string(bytes)
   282  	return
   283  }
   284  
   285  // isPrintable returns true iff the given b is in the ASN.1 PrintableString set.
   286  func isPrintable(b byte) bool {
   287  	return 'a' <= b && b <= 'z' ||
   288  		'A' <= b && b <= 'Z' ||
   289  		'0' <= b && b <= '9' ||
   290  		'\'' <= b && b <= ')' ||
   291  		'+' <= b && b <= '/' ||
   292  		b == ' ' ||
   293  		b == ':' ||
   294  		b == '=' ||
   295  		b == '?' ||
   296  		// This is technically not allowed in a PrintableString.
   297  		// However, x509 certificates with wildcard strings don't
   298  		// always use the correct string type so we permit it.
   299  		b == '*'
   300  }
   301  
   302  // IA5String
   303  
   304  // parseIA5String parses a ASN.1 IA5String (ASCII string) from the given
   305  // byte slice and returns it.
   306  func parseIA5String(bytes []byte) (ret string, err error) {
   307  	for _, b := range bytes {
   308  		if b >= 0x80 {
   309  			err = SyntaxError{"IA5String contains invalid character"}
   310  			return
   311  		}
   312  	}
   313  	ret = string(bytes)
   314  	return
   315  }
   316  
   317  // T61String
   318  
   319  // parseT61String parses a ASN.1 T61String (8-bit clean string) from the given
   320  // byte slice and returns it.
   321  func parseT61String(bytes []byte) (ret string, err error) {
   322  	return string(bytes), nil
   323  }
   324  
   325  // UTF8String
   326  
   327  // parseUTF8String parses a ASN.1 UTF8String (raw UTF-8) from the given byte
   328  // array and returns it.
   329  func parseUTF8String(bytes []byte) (ret string, err error) {
   330  	return string(bytes), nil
   331  }
   332  
   333  // A RawValue represents an undecoded ASN.1 object.
   334  type RawValue struct {
   335  	Class, Tag int
   336  	IsCompound bool
   337  	Bytes      []byte
   338  	FullBytes  []byte // includes the tag and length
   339  }
   340  
   341  // RawContent is used to signal that the undecoded, DER data needs to be
   342  // preserved for a struct. To use it, the first field of the struct must have
   343  // this type. It's an error for any of the other fields to have this type.
   344  type RawContent []byte
   345  
   346  // Tagging
   347  
   348  // parseTagAndLength parses an ASN.1 tag and length pair from the given offset
   349  // into a byte slice. It returns the parsed data and the new offset. SET and
   350  // SET OF (tag 17) are mapped to SEQUENCE and SEQUENCE OF (tag 16) since we
   351  // don't distinguish between ordered and unordered objects in this code.
   352  func parseTagAndLength(bytes []byte, initOffset int) (ret tagAndLength, offset int, err error) {
   353  	offset = initOffset
   354  	b := bytes[offset]
   355  	offset++
   356  	ret.class = int(b >> 6)
   357  	ret.isCompound = b&0x20 == 0x20
   358  	ret.tag = int(b & 0x1f)
   359  
   360  	// If the bottom five bits are set, then the tag number is actually base 128
   361  	// encoded afterwards
   362  	if ret.tag == 0x1f {
   363  		ret.tag, offset, err = parseBase128Int(bytes, offset)
   364  		if err != nil {
   365  			return
   366  		}
   367  	}
   368  	if offset >= len(bytes) {
   369  		err = SyntaxError{"truncated tag or length"}
   370  		return
   371  	}
   372  	b = bytes[offset]
   373  	offset++
   374  	if b&0x80 == 0 {
   375  		// The length is encoded in the bottom 7 bits.
   376  		ret.length = int(b & 0x7f)
   377  	} else {
   378  		// Bottom 7 bits give the number of length bytes to follow.
   379  		numBytes := int(b & 0x7f)
   380  		if numBytes == 0 {
   381  			err = SyntaxError{"indefinite length found (not DER)"}
   382  			return
   383  		}
   384  		ret.length = 0
   385  		for i := 0; i < numBytes; i++ {
   386  			if offset >= len(bytes) {
   387  				err = SyntaxError{"truncated tag or length"}
   388  				return
   389  			}
   390  			b = bytes[offset]
   391  			offset++
   392  			if ret.length >= 1<<23 {
   393  				// We can't shift ret.length up without
   394  				// overflowing.
   395  				err = StructuralError{"length too large"}
   396  				return
   397  			}
   398  			ret.length <<= 8
   399  			ret.length |= int(b)
   400  			if ret.length == 0 {
   401  				// DER requires that lengths be minimal.
   402  				err = StructuralError{"superfluous leading zeros in length"}
   403  				return
   404  			}
   405  		}
   406  	}
   407  
   408  	return
   409  }
   410  
   411  // parseSequenceOf is used for SEQUENCE OF and SET OF values. It tries to parse
   412  // a number of ASN.1 values from the given byte slice and returns them as a
   413  // slice of Go values of the given type.
   414  func parseSequenceOf(bytes []byte, sliceType reflect.Type, elemType reflect.Type) (ret reflect.Value, err error) {
   415  	expectedTag, compoundType, ok := getUniversalType(elemType)
   416  	if !ok {
   417  		err = StructuralError{"unknown Go type for slice"}
   418  		return
   419  	}
   420  
   421  	// First we iterate over the input and count the number of elements,
   422  	// checking that the types are correct in each case.
   423  	numElements := 0
   424  	for offset := 0; offset < len(bytes); {
   425  		var t tagAndLength
   426  		t, offset, err = parseTagAndLength(bytes, offset)
   427  		if err != nil {
   428  			return
   429  		}
   430  		// We pretend that GENERAL STRINGs are PRINTABLE STRINGs so
   431  		// that a sequence of them can be parsed into a []string.
   432  		if t.tag == tagGeneralString {
   433  			t.tag = tagPrintableString
   434  		}
   435  		if t.class != classUniversal || t.isCompound != compoundType || t.tag != expectedTag {
   436  			err = StructuralError{"sequence tag mismatch"}
   437  			return
   438  		}
   439  		if invalidLength(offset, t.length, len(bytes)) {
   440  			err = SyntaxError{"truncated sequence"}
   441  			return
   442  		}
   443  		offset += t.length
   444  		numElements++
   445  	}
   446  	ret = reflect.MakeSlice(sliceType, numElements, numElements)
   447  	params := fieldParameters{}
   448  	offset := 0
   449  	for i := 0; i < numElements; i++ {
   450  		offset, err = parseField(ret.Index(i), bytes, offset, params)
   451  		if err != nil {
   452  			return
   453  		}
   454  	}
   455  	return
   456  }
   457  
   458  var (
   459  	bitStringType        = reflect.TypeOf(BitString{})
   460  	objectIdentifierType = reflect.TypeOf(ObjectIdentifier{})
   461  	enumeratedType       = reflect.TypeOf(Enumerated(0))
   462  	flagType             = reflect.TypeOf(Flag(false))
   463  	timeType             = reflect.TypeOf(time.Time{})
   464  	rawValueType         = reflect.TypeOf(RawValue{})
   465  	rawContentsType      = reflect.TypeOf(RawContent(nil))
   466  	bigIntType           = reflect.TypeOf(new(big.Int))
   467  )
   468  
   469  // invalidLength returns true iff offset + length > sliceLength, or if the
   470  // addition would overflow.
   471  func invalidLength(offset, length, sliceLength int) bool {
   472  	return offset+length < offset || offset+length > sliceLength
   473  }
   474  
   475  // parseField is the main parsing function. Given a byte slice and an offset
   476  // into the array, it will try to parse a suitable ASN.1 value out and store it
   477  // in the given Value.
   478  func parseField(v reflect.Value, bytes []byte, initOffset int, params fieldParameters) (offset int, err error) {
   479  	offset = initOffset
   480  	fieldType := v.Type()
   481  
   482  	// If we have run out of data, it may be that there are optional elements at the end.
   483  	if offset == len(bytes) {
   484  		if !setDefaultValue(v, params) {
   485  			err = SyntaxError{"sequence truncated"}
   486  		}
   487  		return
   488  	}
   489  
   490  	// Deal with raw values.
   491  	if fieldType == rawValueType {
   492  		var t tagAndLength
   493  		t, offset, err = parseTagAndLength(bytes, offset)
   494  		if err != nil {
   495  			return
   496  		}
   497  		if invalidLength(offset, t.length, len(bytes)) {
   498  			err = SyntaxError{"data truncated"}
   499  			return
   500  		}
   501  		result := RawValue{t.class, t.tag, t.isCompound, bytes[offset : offset+t.length], bytes[initOffset : offset+t.length]}
   502  		offset += t.length
   503  		v.Set(reflect.ValueOf(result))
   504  		return
   505  	}
   506  
   507  	// Deal with the ANY type.
   508  	if ifaceType := fieldType; ifaceType.Kind() == reflect.Interface && ifaceType.NumMethod() == 0 {
   509  		var t tagAndLength
   510  		t, offset, err = parseTagAndLength(bytes, offset)
   511  		if err != nil {
   512  			return
   513  		}
   514  		if invalidLength(offset, t.length, len(bytes)) {
   515  			err = SyntaxError{"data truncated"}
   516  			return
   517  		}
   518  		var result interface{}
   519  		if !t.isCompound && t.class == classUniversal {
   520  			innerBytes := bytes[offset : offset+t.length]
   521  			switch t.tag {
   522  			case tagPrintableString:
   523  				result, err = parsePrintableString(innerBytes)
   524  			case tagIA5String:
   525  				result, err = parseIA5String(innerBytes)
   526  			case tagT61String:
   527  				result, err = parseT61String(innerBytes)
   528  			case tagUTF8String:
   529  				result, err = parseUTF8String(innerBytes)
   530  			case tagInteger:
   531  				result, err = parseInt64(innerBytes)
   532  			case tagBitString:
   533  				result, err = parseBitString(innerBytes)
   534  			case tagOID:
   535  				result, err = parseObjectIdentifier(innerBytes)
   536  			case tagUTCTime:
   537  				result, err = parseUTCTime(innerBytes)
   538  			case tagOctetString:
   539  				result = innerBytes
   540  			default:
   541  				// If we don't know how to handle the type, we just leave Value as nil.
   542  			}
   543  		}
   544  		offset += t.length
   545  		if err != nil {
   546  			return
   547  		}
   548  		if result != nil {
   549  			v.Set(reflect.ValueOf(result))
   550  		}
   551  		return
   552  	}
   553  	universalTag, compoundType, ok1 := getUniversalType(fieldType)
   554  	if !ok1 {
   555  		err = StructuralError{fmt.Sprintf("unknown Go type: %v", fieldType)}
   556  		return
   557  	}
   558  
   559  	t, offset, err := parseTagAndLength(bytes, offset)
   560  	if err != nil {
   561  		return
   562  	}
   563  	if params.explicit {
   564  		expectedClass := classContextSpecific
   565  		if params.application {
   566  			expectedClass = classApplication
   567  		}
   568  		if t.class == expectedClass && t.tag == *params.tag && (t.length == 0 || t.isCompound) {
   569  			if t.length > 0 {
   570  				t, offset, err = parseTagAndLength(bytes, offset)
   571  				if err != nil {
   572  					return
   573  				}
   574  			} else {
   575  				if fieldType != flagType {
   576  					err = StructuralError{"Zero length explicit tag was not an asn1.Flag"}
   577  					return
   578  				}
   579  				v.SetBool(true)
   580  				return
   581  			}
   582  		} else {
   583  			// The tags didn't match, it might be an optional element.
   584  			ok := setDefaultValue(v, params)
   585  			if ok {
   586  				offset = initOffset
   587  			} else {
   588  				err = StructuralError{"explicitly tagged member didn't match"}
   589  			}
   590  			return
   591  		}
   592  	}
   593  
   594  	// Special case for strings: all the ASN.1 string types map to the Go
   595  	// type string. getUniversalType returns the tag for PrintableString
   596  	// when it sees a string, so if we see a different string type on the
   597  	// wire, we change the universal type to match.
   598  	if universalTag == tagPrintableString {
   599  		switch t.tag {
   600  		case tagIA5String, tagGeneralString, tagT61String, tagUTF8String:
   601  			universalTag = t.tag
   602  		}
   603  	}
   604  
   605  	// Special case for time: UTCTime and GeneralizedTime both map to the
   606  	// Go type time.Time.
   607  	if universalTag == tagUTCTime && t.tag == tagGeneralizedTime {
   608  		universalTag = tagGeneralizedTime
   609  	}
   610  
   611  	expectedClass := classUniversal
   612  	expectedTag := universalTag
   613  
   614  	if !params.explicit && params.tag != nil {
   615  		expectedClass = classContextSpecific
   616  		expectedTag = *params.tag
   617  	}
   618  
   619  	if !params.explicit && params.application && params.tag != nil {
   620  		expectedClass = classApplication
   621  		expectedTag = *params.tag
   622  	}
   623  
   624  	// We have unwrapped any explicit tagging at this point.
   625  	if t.class != expectedClass || t.tag != expectedTag || t.isCompound != compoundType {
   626  		// Tags don't match. Again, it could be an optional element.
   627  		ok := setDefaultValue(v, params)
   628  		if ok {
   629  			offset = initOffset
   630  		} else {
   631  			err = StructuralError{fmt.Sprintf("tags don't match (%d vs %+v) %+v %s @%d", expectedTag, t, params, fieldType.Name(), offset)}
   632  		}
   633  		return
   634  	}
   635  	if invalidLength(offset, t.length, len(bytes)) {
   636  		err = SyntaxError{"data truncated"}
   637  		return
   638  	}
   639  	innerBytes := bytes[offset : offset+t.length]
   640  	offset += t.length
   641  
   642  	// We deal with the structures defined in this package first.
   643  	switch fieldType {
   644  	case objectIdentifierType:
   645  		newSlice, err1 := parseObjectIdentifier(innerBytes)
   646  		v.Set(reflect.MakeSlice(v.Type(), len(newSlice), len(newSlice)))
   647  		if err1 == nil {
   648  			reflect.Copy(v, reflect.ValueOf(newSlice))
   649  		}
   650  		err = err1
   651  		return
   652  	case bitStringType:
   653  		bs, err1 := parseBitString(innerBytes)
   654  		if err1 == nil {
   655  			v.Set(reflect.ValueOf(bs))
   656  		}
   657  		err = err1
   658  		return
   659  	case timeType:
   660  		var time time.Time
   661  		var err1 error
   662  		if universalTag == tagUTCTime {
   663  			time, err1 = parseUTCTime(innerBytes)
   664  		} else {
   665  			time, err1 = parseGeneralizedTime(innerBytes)
   666  		}
   667  		if err1 == nil {
   668  			v.Set(reflect.ValueOf(time))
   669  		}
   670  		err = err1
   671  		return
   672  	case enumeratedType:
   673  		parsedInt, err1 := parseInt32(innerBytes)
   674  		if err1 == nil {
   675  			v.SetInt(int64(parsedInt))
   676  		}
   677  		err = err1
   678  		return
   679  	case flagType:
   680  		v.SetBool(true)
   681  		return
   682  	case bigIntType:
   683  		parsedInt := parseBigInt(innerBytes)
   684  		v.Set(reflect.ValueOf(parsedInt))
   685  		return
   686  	}
   687  	switch val := v; val.Kind() {
   688  	case reflect.Bool:
   689  		parsedBool, err1 := parseBool(innerBytes)
   690  		if err1 == nil {
   691  			val.SetBool(parsedBool)
   692  		}
   693  		err = err1
   694  		return
   695  	case reflect.Int, reflect.Int32, reflect.Int64:
   696  		if val.Type().Size() == 4 {
   697  			parsedInt, err1 := parseInt32(innerBytes)
   698  			if err1 == nil {
   699  				val.SetInt(int64(parsedInt))
   700  			}
   701  			err = err1
   702  		} else {
   703  			parsedInt, err1 := parseInt64(innerBytes)
   704  			if err1 == nil {
   705  				val.SetInt(parsedInt)
   706  			}
   707  			err = err1
   708  		}
   709  		return
   710  	// TODO(dfc) Add support for the remaining integer types
   711  	case reflect.Struct:
   712  		structType := fieldType
   713  
   714  		if structType.NumField() > 0 &&
   715  			structType.Field(0).Type == rawContentsType {
   716  			bytes := bytes[initOffset:offset]
   717  			val.Field(0).Set(reflect.ValueOf(RawContent(bytes)))
   718  		}
   719  
   720  		innerOffset := 0
   721  		for i := 0; i < structType.NumField(); i++ {
   722  			field := structType.Field(i)
   723  			if i == 0 && field.Type == rawContentsType {
   724  				continue
   725  			}
   726  			innerOffset, err = parseField(val.Field(i), innerBytes, innerOffset, parseFieldParameters(field.Tag.Get("asn1")))
   727  			if err != nil {
   728  				return
   729  			}
   730  		}
   731  		// We allow extra bytes at the end of the SEQUENCE because
   732  		// adding elements to the end has been used in X.509 as the
   733  		// version numbers have increased.
   734  		return
   735  	case reflect.Slice:
   736  		sliceType := fieldType
   737  		if sliceType.Elem().Kind() == reflect.Uint8 {
   738  			val.Set(reflect.MakeSlice(sliceType, len(innerBytes), len(innerBytes)))
   739  			reflect.Copy(val, reflect.ValueOf(innerBytes))
   740  			return
   741  		}
   742  		newSlice, err1 := parseSequenceOf(innerBytes, sliceType, sliceType.Elem())
   743  		if err1 == nil {
   744  			val.Set(newSlice)
   745  		}
   746  		err = err1
   747  		return
   748  	case reflect.String:
   749  		var v string
   750  		switch universalTag {
   751  		case tagPrintableString:
   752  			v, err = parsePrintableString(innerBytes)
   753  		case tagIA5String:
   754  			v, err = parseIA5String(innerBytes)
   755  		case tagT61String:
   756  			v, err = parseT61String(innerBytes)
   757  		case tagUTF8String:
   758  			v, err = parseUTF8String(innerBytes)
   759  		case tagGeneralString:
   760  			// GeneralString is specified in ISO-2022/ECMA-35,
   761  			// A brief review suggests that it includes structures
   762  			// that allow the encoding to change midstring and
   763  			// such. We give up and pass it as an 8-bit string.
   764  			v, err = parseT61String(innerBytes)
   765  		default:
   766  			err = SyntaxError{fmt.Sprintf("internal error: unknown string type %d", universalTag)}
   767  		}
   768  		if err == nil {
   769  			val.SetString(v)
   770  		}
   771  		return
   772  	}
   773  	err = StructuralError{"unsupported: " + v.Type().String()}
   774  	return
   775  }
   776  
   777  // setDefaultValue is used to install a default value, from a tag string, into
   778  // a Value. It is successful is the field was optional, even if a default value
   779  // wasn't provided or it failed to install it into the Value.
   780  func setDefaultValue(v reflect.Value, params fieldParameters) (ok bool) {
   781  	if !params.optional {
   782  		return
   783  	}
   784  	ok = true
   785  	if params.defaultValue == nil {
   786  		return
   787  	}
   788  	switch val := v; val.Kind() {
   789  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   790  		val.SetInt(*params.defaultValue)
   791  	}
   792  	return
   793  }
   794  
   795  // Unmarshal parses the DER-encoded ASN.1 data structure b
   796  // and uses the reflect package to fill in an arbitrary value pointed at by val.
   797  // Because Unmarshal uses the reflect package, the structs
   798  // being written to must use upper case field names.
   799  //
   800  // An ASN.1 INTEGER can be written to an int, int32, int64,
   801  // or *big.Int (from the math/big package).
   802  // If the encoded value does not fit in the Go type,
   803  // Unmarshal returns a parse error.
   804  //
   805  // An ASN.1 BIT STRING can be written to a BitString.
   806  //
   807  // An ASN.1 OCTET STRING can be written to a []byte.
   808  //
   809  // An ASN.1 OBJECT IDENTIFIER can be written to an
   810  // ObjectIdentifier.
   811  //
   812  // An ASN.1 ENUMERATED can be written to an Enumerated.
   813  //
   814  // An ASN.1 UTCTIME or GENERALIZEDTIME can be written to a time.Time.
   815  //
   816  // An ASN.1 PrintableString or IA5String can be written to a string.
   817  //
   818  // Any of the above ASN.1 values can be written to an interface{}.
   819  // The value stored in the interface has the corresponding Go type.
   820  // For integers, that type is int64.
   821  //
   822  // An ASN.1 SEQUENCE OF x or SET OF x can be written
   823  // to a slice if an x can be written to the slice's element type.
   824  //
   825  // An ASN.1 SEQUENCE or SET can be written to a struct
   826  // if each of the elements in the sequence can be
   827  // written to the corresponding element in the struct.
   828  //
   829  // The following tags on struct fields have special meaning to Unmarshal:
   830  //
   831  //	optional		marks the field as ASN.1 OPTIONAL
   832  //	[explicit] tag:x	specifies the ASN.1 tag number; implies ASN.1 CONTEXT SPECIFIC
   833  //	default:x		sets the default value for optional integer fields
   834  //
   835  // If the type of the first field of a structure is RawContent then the raw
   836  // ASN1 contents of the struct will be stored in it.
   837  //
   838  // Other ASN.1 types are not supported; if it encounters them,
   839  // Unmarshal returns a parse error.
   840  func Unmarshal(b []byte, val interface{}) (rest []byte, err error) {
   841  	return UnmarshalWithParams(b, val, "")
   842  }
   843  
   844  // UnmarshalWithParams allows field parameters to be specified for the
   845  // top-level element. The form of the params is the same as the field tags.
   846  func UnmarshalWithParams(b []byte, val interface{}, params string) (rest []byte, err error) {
   847  	v := reflect.ValueOf(val).Elem()
   848  	offset, err := parseField(v, b, 0, parseFieldParameters(params))
   849  	if err != nil {
   850  		return nil, err
   851  	}
   852  	return b[offset:], nil
   853  }