github.com/xushiwei/go@v0.0.0-20130601165731-2b9d83f45bc9/src/pkg/encoding/gob/decode.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gob
     6  
     7  // TODO(rsc): When garbage collector changes, revisit
     8  // the allocations in this file that use unsafe.Pointer.
     9  
    10  import (
    11  	"bytes"
    12  	"errors"
    13  	"io"
    14  	"math"
    15  	"reflect"
    16  	"unsafe"
    17  )
    18  
    19  var (
    20  	errBadUint = errors.New("gob: encoded unsigned integer out of range")
    21  	errBadType = errors.New("gob: unknown type id or corrupted data")
    22  	errRange   = errors.New("gob: bad data: field numbers out of bounds")
    23  )
    24  
    25  // decoderState is the execution state of an instance of the decoder. A new state
    26  // is created for nested objects.
    27  type decoderState struct {
    28  	dec *Decoder
    29  	// The buffer is stored with an extra indirection because it may be replaced
    30  	// if we load a type during decode (when reading an interface value).
    31  	b        *bytes.Buffer
    32  	fieldnum int // the last field number read.
    33  	buf      []byte
    34  	next     *decoderState // for free list
    35  }
    36  
    37  // We pass the bytes.Buffer separately for easier testing of the infrastructure
    38  // without requiring a full Decoder.
    39  func (dec *Decoder) newDecoderState(buf *bytes.Buffer) *decoderState {
    40  	d := dec.freeList
    41  	if d == nil {
    42  		d = new(decoderState)
    43  		d.dec = dec
    44  		d.buf = make([]byte, uint64Size)
    45  	} else {
    46  		dec.freeList = d.next
    47  	}
    48  	d.b = buf
    49  	return d
    50  }
    51  
    52  func (dec *Decoder) freeDecoderState(d *decoderState) {
    53  	d.next = dec.freeList
    54  	dec.freeList = d
    55  }
    56  
    57  func overflow(name string) error {
    58  	return errors.New(`value for "` + name + `" out of range`)
    59  }
    60  
    61  // decodeUintReader reads an encoded unsigned integer from an io.Reader.
    62  // Used only by the Decoder to read the message length.
    63  func decodeUintReader(r io.Reader, buf []byte) (x uint64, width int, err error) {
    64  	width = 1
    65  	n, err := io.ReadFull(r, buf[0:width])
    66  	if n == 0 {
    67  		return
    68  	}
    69  	b := buf[0]
    70  	if b <= 0x7f {
    71  		return uint64(b), width, nil
    72  	}
    73  	n = -int(int8(b))
    74  	if n > uint64Size {
    75  		err = errBadUint
    76  		return
    77  	}
    78  	width, err = io.ReadFull(r, buf[0:n])
    79  	if err != nil {
    80  		if err == io.EOF {
    81  			err = io.ErrUnexpectedEOF
    82  		}
    83  		return
    84  	}
    85  	// Could check that the high byte is zero but it's not worth it.
    86  	for _, b := range buf[0:width] {
    87  		x = x<<8 | uint64(b)
    88  	}
    89  	width++ // +1 for length byte
    90  	return
    91  }
    92  
    93  // decodeUint reads an encoded unsigned integer from state.r.
    94  // Does not check for overflow.
    95  func (state *decoderState) decodeUint() (x uint64) {
    96  	b, err := state.b.ReadByte()
    97  	if err != nil {
    98  		error_(err)
    99  	}
   100  	if b <= 0x7f {
   101  		return uint64(b)
   102  	}
   103  	n := -int(int8(b))
   104  	if n > uint64Size {
   105  		error_(errBadUint)
   106  	}
   107  	width, err := state.b.Read(state.buf[0:n])
   108  	if err != nil {
   109  		error_(err)
   110  	}
   111  	// Don't need to check error; it's safe to loop regardless.
   112  	// Could check that the high byte is zero but it's not worth it.
   113  	for _, b := range state.buf[0:width] {
   114  		x = x<<8 | uint64(b)
   115  	}
   116  	return x
   117  }
   118  
   119  // decodeInt reads an encoded signed integer from state.r.
   120  // Does not check for overflow.
   121  func (state *decoderState) decodeInt() int64 {
   122  	x := state.decodeUint()
   123  	if x&1 != 0 {
   124  		return ^int64(x >> 1)
   125  	}
   126  	return int64(x >> 1)
   127  }
   128  
   129  // decOp is the signature of a decoding operator for a given type.
   130  type decOp func(i *decInstr, state *decoderState, p unsafe.Pointer)
   131  
   132  // The 'instructions' of the decoding machine
   133  type decInstr struct {
   134  	op     decOp
   135  	field  int     // field number of the wire type
   136  	indir  int     // how many pointer indirections to reach the value in the struct
   137  	offset uintptr // offset in the structure of the field to encode
   138  	ovfl   error   // error message for overflow/underflow (for arrays, of the elements)
   139  }
   140  
   141  // Since the encoder writes no zeros, if we arrive at a decoder we have
   142  // a value to extract and store.  The field number has already been read
   143  // (it's how we knew to call this decoder).
   144  // Each decoder is responsible for handling any indirections associated
   145  // with the data structure.  If any pointer so reached is nil, allocation must
   146  // be done.
   147  
   148  // Walk the pointer hierarchy, allocating if we find a nil.  Stop one before the end.
   149  func decIndirect(p unsafe.Pointer, indir int) unsafe.Pointer {
   150  	for ; indir > 1; indir-- {
   151  		if *(*unsafe.Pointer)(p) == nil {
   152  			// Allocation required
   153  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(unsafe.Pointer))
   154  		}
   155  		p = *(*unsafe.Pointer)(p)
   156  	}
   157  	return p
   158  }
   159  
   160  // ignoreUint discards a uint value with no destination.
   161  func ignoreUint(i *decInstr, state *decoderState, p unsafe.Pointer) {
   162  	state.decodeUint()
   163  }
   164  
   165  // ignoreTwoUints discards a uint value with no destination. It's used to skip
   166  // complex values.
   167  func ignoreTwoUints(i *decInstr, state *decoderState, p unsafe.Pointer) {
   168  	state.decodeUint()
   169  	state.decodeUint()
   170  }
   171  
   172  // decBool decodes a uint and stores it as a boolean through p.
   173  func decBool(i *decInstr, state *decoderState, p unsafe.Pointer) {
   174  	if i.indir > 0 {
   175  		if *(*unsafe.Pointer)(p) == nil {
   176  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(bool))
   177  		}
   178  		p = *(*unsafe.Pointer)(p)
   179  	}
   180  	*(*bool)(p) = state.decodeUint() != 0
   181  }
   182  
   183  // decInt8 decodes an integer and stores it as an int8 through p.
   184  func decInt8(i *decInstr, state *decoderState, p unsafe.Pointer) {
   185  	if i.indir > 0 {
   186  		if *(*unsafe.Pointer)(p) == nil {
   187  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(int8))
   188  		}
   189  		p = *(*unsafe.Pointer)(p)
   190  	}
   191  	v := state.decodeInt()
   192  	if v < math.MinInt8 || math.MaxInt8 < v {
   193  		error_(i.ovfl)
   194  	} else {
   195  		*(*int8)(p) = int8(v)
   196  	}
   197  }
   198  
   199  // decUint8 decodes an unsigned integer and stores it as a uint8 through p.
   200  func decUint8(i *decInstr, state *decoderState, p unsafe.Pointer) {
   201  	if i.indir > 0 {
   202  		if *(*unsafe.Pointer)(p) == nil {
   203  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint8))
   204  		}
   205  		p = *(*unsafe.Pointer)(p)
   206  	}
   207  	v := state.decodeUint()
   208  	if math.MaxUint8 < v {
   209  		error_(i.ovfl)
   210  	} else {
   211  		*(*uint8)(p) = uint8(v)
   212  	}
   213  }
   214  
   215  // decInt16 decodes an integer and stores it as an int16 through p.
   216  func decInt16(i *decInstr, state *decoderState, p unsafe.Pointer) {
   217  	if i.indir > 0 {
   218  		if *(*unsafe.Pointer)(p) == nil {
   219  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(int16))
   220  		}
   221  		p = *(*unsafe.Pointer)(p)
   222  	}
   223  	v := state.decodeInt()
   224  	if v < math.MinInt16 || math.MaxInt16 < v {
   225  		error_(i.ovfl)
   226  	} else {
   227  		*(*int16)(p) = int16(v)
   228  	}
   229  }
   230  
   231  // decUint16 decodes an unsigned integer and stores it as a uint16 through p.
   232  func decUint16(i *decInstr, state *decoderState, p unsafe.Pointer) {
   233  	if i.indir > 0 {
   234  		if *(*unsafe.Pointer)(p) == nil {
   235  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint16))
   236  		}
   237  		p = *(*unsafe.Pointer)(p)
   238  	}
   239  	v := state.decodeUint()
   240  	if math.MaxUint16 < v {
   241  		error_(i.ovfl)
   242  	} else {
   243  		*(*uint16)(p) = uint16(v)
   244  	}
   245  }
   246  
   247  // decInt32 decodes an integer and stores it as an int32 through p.
   248  func decInt32(i *decInstr, state *decoderState, p unsafe.Pointer) {
   249  	if i.indir > 0 {
   250  		if *(*unsafe.Pointer)(p) == nil {
   251  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(int32))
   252  		}
   253  		p = *(*unsafe.Pointer)(p)
   254  	}
   255  	v := state.decodeInt()
   256  	if v < math.MinInt32 || math.MaxInt32 < v {
   257  		error_(i.ovfl)
   258  	} else {
   259  		*(*int32)(p) = int32(v)
   260  	}
   261  }
   262  
   263  // decUint32 decodes an unsigned integer and stores it as a uint32 through p.
   264  func decUint32(i *decInstr, state *decoderState, p unsafe.Pointer) {
   265  	if i.indir > 0 {
   266  		if *(*unsafe.Pointer)(p) == nil {
   267  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint32))
   268  		}
   269  		p = *(*unsafe.Pointer)(p)
   270  	}
   271  	v := state.decodeUint()
   272  	if math.MaxUint32 < v {
   273  		error_(i.ovfl)
   274  	} else {
   275  		*(*uint32)(p) = uint32(v)
   276  	}
   277  }
   278  
   279  // decInt64 decodes an integer and stores it as an int64 through p.
   280  func decInt64(i *decInstr, state *decoderState, p unsafe.Pointer) {
   281  	if i.indir > 0 {
   282  		if *(*unsafe.Pointer)(p) == nil {
   283  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(int64))
   284  		}
   285  		p = *(*unsafe.Pointer)(p)
   286  	}
   287  	*(*int64)(p) = int64(state.decodeInt())
   288  }
   289  
   290  // decUint64 decodes an unsigned integer and stores it as a uint64 through p.
   291  func decUint64(i *decInstr, state *decoderState, p unsafe.Pointer) {
   292  	if i.indir > 0 {
   293  		if *(*unsafe.Pointer)(p) == nil {
   294  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(uint64))
   295  		}
   296  		p = *(*unsafe.Pointer)(p)
   297  	}
   298  	*(*uint64)(p) = uint64(state.decodeUint())
   299  }
   300  
   301  // Floating-point numbers are transmitted as uint64s holding the bits
   302  // of the underlying representation.  They are sent byte-reversed, with
   303  // the exponent end coming out first, so integer floating point numbers
   304  // (for example) transmit more compactly.  This routine does the
   305  // unswizzling.
   306  func floatFromBits(u uint64) float64 {
   307  	var v uint64
   308  	for i := 0; i < 8; i++ {
   309  		v <<= 8
   310  		v |= u & 0xFF
   311  		u >>= 8
   312  	}
   313  	return math.Float64frombits(v)
   314  }
   315  
   316  // storeFloat32 decodes an unsigned integer, treats it as a 32-bit floating-point
   317  // number, and stores it through p. It's a helper function for float32 and complex64.
   318  func storeFloat32(i *decInstr, state *decoderState, p unsafe.Pointer) {
   319  	v := floatFromBits(state.decodeUint())
   320  	av := v
   321  	if av < 0 {
   322  		av = -av
   323  	}
   324  	// +Inf is OK in both 32- and 64-bit floats.  Underflow is always OK.
   325  	if math.MaxFloat32 < av && av <= math.MaxFloat64 {
   326  		error_(i.ovfl)
   327  	} else {
   328  		*(*float32)(p) = float32(v)
   329  	}
   330  }
   331  
   332  // decFloat32 decodes an unsigned integer, treats it as a 32-bit floating-point
   333  // number, and stores it through p.
   334  func decFloat32(i *decInstr, state *decoderState, p unsafe.Pointer) {
   335  	if i.indir > 0 {
   336  		if *(*unsafe.Pointer)(p) == nil {
   337  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(float32))
   338  		}
   339  		p = *(*unsafe.Pointer)(p)
   340  	}
   341  	storeFloat32(i, state, p)
   342  }
   343  
   344  // decFloat64 decodes an unsigned integer, treats it as a 64-bit floating-point
   345  // number, and stores it through p.
   346  func decFloat64(i *decInstr, state *decoderState, p unsafe.Pointer) {
   347  	if i.indir > 0 {
   348  		if *(*unsafe.Pointer)(p) == nil {
   349  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(float64))
   350  		}
   351  		p = *(*unsafe.Pointer)(p)
   352  	}
   353  	*(*float64)(p) = floatFromBits(uint64(state.decodeUint()))
   354  }
   355  
   356  // decComplex64 decodes a pair of unsigned integers, treats them as a
   357  // pair of floating point numbers, and stores them as a complex64 through p.
   358  // The real part comes first.
   359  func decComplex64(i *decInstr, state *decoderState, p unsafe.Pointer) {
   360  	if i.indir > 0 {
   361  		if *(*unsafe.Pointer)(p) == nil {
   362  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(complex64))
   363  		}
   364  		p = *(*unsafe.Pointer)(p)
   365  	}
   366  	storeFloat32(i, state, p)
   367  	storeFloat32(i, state, unsafe.Pointer(uintptr(p)+unsafe.Sizeof(float32(0))))
   368  }
   369  
   370  // decComplex128 decodes a pair of unsigned integers, treats them as a
   371  // pair of floating point numbers, and stores them as a complex128 through p.
   372  // The real part comes first.
   373  func decComplex128(i *decInstr, state *decoderState, p unsafe.Pointer) {
   374  	if i.indir > 0 {
   375  		if *(*unsafe.Pointer)(p) == nil {
   376  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(complex128))
   377  		}
   378  		p = *(*unsafe.Pointer)(p)
   379  	}
   380  	real := floatFromBits(uint64(state.decodeUint()))
   381  	imag := floatFromBits(uint64(state.decodeUint()))
   382  	*(*complex128)(p) = complex(real, imag)
   383  }
   384  
   385  // decUint8Slice decodes a byte slice and stores through p a slice header
   386  // describing the data.
   387  // uint8 slices are encoded as an unsigned count followed by the raw bytes.
   388  func decUint8Slice(i *decInstr, state *decoderState, p unsafe.Pointer) {
   389  	if i.indir > 0 {
   390  		if *(*unsafe.Pointer)(p) == nil {
   391  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new([]uint8))
   392  		}
   393  		p = *(*unsafe.Pointer)(p)
   394  	}
   395  	n := state.decodeUint()
   396  	if n > uint64(state.b.Len()) {
   397  		errorf("length of []byte exceeds input size (%d bytes)", n)
   398  	}
   399  	slice := (*[]uint8)(p)
   400  	if uint64(cap(*slice)) < n {
   401  		*slice = make([]uint8, n)
   402  	} else {
   403  		*slice = (*slice)[0:n]
   404  	}
   405  	if _, err := state.b.Read(*slice); err != nil {
   406  		errorf("error decoding []byte: %s", err)
   407  	}
   408  }
   409  
   410  // decString decodes byte array and stores through p a string header
   411  // describing the data.
   412  // Strings are encoded as an unsigned count followed by the raw bytes.
   413  func decString(i *decInstr, state *decoderState, p unsafe.Pointer) {
   414  	if i.indir > 0 {
   415  		if *(*unsafe.Pointer)(p) == nil {
   416  			*(*unsafe.Pointer)(p) = unsafe.Pointer(new(string))
   417  		}
   418  		p = *(*unsafe.Pointer)(p)
   419  	}
   420  	n := state.decodeUint()
   421  	if n > uint64(state.b.Len()) {
   422  		errorf("string length exceeds input size (%d bytes)", n)
   423  	}
   424  	b := make([]byte, n)
   425  	state.b.Read(b)
   426  	// It would be a shame to do the obvious thing here,
   427  	//	*(*string)(p) = string(b)
   428  	// because we've already allocated the storage and this would
   429  	// allocate again and copy.  So we do this ugly hack, which is even
   430  	// even more unsafe than it looks as it depends the memory
   431  	// representation of a string matching the beginning of the memory
   432  	// representation of a byte slice (a byte slice is longer).
   433  	*(*string)(p) = *(*string)(unsafe.Pointer(&b))
   434  }
   435  
   436  // ignoreUint8Array skips over the data for a byte slice value with no destination.
   437  func ignoreUint8Array(i *decInstr, state *decoderState, p unsafe.Pointer) {
   438  	b := make([]byte, state.decodeUint())
   439  	state.b.Read(b)
   440  }
   441  
   442  // Execution engine
   443  
   444  // The encoder engine is an array of instructions indexed by field number of the incoming
   445  // decoder.  It is executed with random access according to field number.
   446  type decEngine struct {
   447  	instr    []decInstr
   448  	numInstr int // the number of active instructions
   449  }
   450  
   451  // allocate makes sure storage is available for an object of underlying type rtyp
   452  // that is indir levels of indirection through p.
   453  func allocate(rtyp reflect.Type, p uintptr, indir int) uintptr {
   454  	if indir == 0 {
   455  		return p
   456  	}
   457  	up := unsafe.Pointer(p)
   458  	if indir > 1 {
   459  		up = decIndirect(up, indir)
   460  	}
   461  	if *(*unsafe.Pointer)(up) == nil {
   462  		// Allocate object.
   463  		*(*unsafe.Pointer)(up) = unsafe.Pointer(reflect.New(rtyp).Pointer())
   464  	}
   465  	return *(*uintptr)(up)
   466  }
   467  
   468  // decodeSingle decodes a top-level value that is not a struct and stores it through p.
   469  // Such values are preceded by a zero, making them have the memory layout of a
   470  // struct field (although with an illegal field number).
   471  func (dec *Decoder) decodeSingle(engine *decEngine, ut *userTypeInfo, basep uintptr) {
   472  	state := dec.newDecoderState(&dec.buf)
   473  	state.fieldnum = singletonField
   474  	delta := int(state.decodeUint())
   475  	if delta != 0 {
   476  		errorf("decode: corrupted data: non-zero delta for singleton")
   477  	}
   478  	instr := &engine.instr[singletonField]
   479  	if instr.indir != ut.indir {
   480  		errorf("internal error: inconsistent indirection instr %d ut %d", instr.indir, ut.indir)
   481  	}
   482  	ptr := unsafe.Pointer(basep) // offset will be zero
   483  	if instr.indir > 1 {
   484  		ptr = decIndirect(ptr, instr.indir)
   485  	}
   486  	instr.op(instr, state, ptr)
   487  	dec.freeDecoderState(state)
   488  }
   489  
   490  // decodeStruct decodes a top-level struct and stores it through p.
   491  // Indir is for the value, not the type.  At the time of the call it may
   492  // differ from ut.indir, which was computed when the engine was built.
   493  // This state cannot arise for decodeSingle, which is called directly
   494  // from the user's value, not from the innards of an engine.
   495  func (dec *Decoder) decodeStruct(engine *decEngine, ut *userTypeInfo, p uintptr, indir int) {
   496  	p = allocate(ut.base, p, indir)
   497  	state := dec.newDecoderState(&dec.buf)
   498  	state.fieldnum = -1
   499  	basep := p
   500  	for state.b.Len() > 0 {
   501  		delta := int(state.decodeUint())
   502  		if delta < 0 {
   503  			errorf("decode: corrupted data: negative delta")
   504  		}
   505  		if delta == 0 { // struct terminator is zero delta fieldnum
   506  			break
   507  		}
   508  		fieldnum := state.fieldnum + delta
   509  		if fieldnum >= len(engine.instr) {
   510  			error_(errRange)
   511  			break
   512  		}
   513  		instr := &engine.instr[fieldnum]
   514  		p := unsafe.Pointer(basep + instr.offset)
   515  		if instr.indir > 1 {
   516  			p = decIndirect(p, instr.indir)
   517  		}
   518  		instr.op(instr, state, p)
   519  		state.fieldnum = fieldnum
   520  	}
   521  	dec.freeDecoderState(state)
   522  }
   523  
   524  // ignoreStruct discards the data for a struct with no destination.
   525  func (dec *Decoder) ignoreStruct(engine *decEngine) {
   526  	state := dec.newDecoderState(&dec.buf)
   527  	state.fieldnum = -1
   528  	for state.b.Len() > 0 {
   529  		delta := int(state.decodeUint())
   530  		if delta < 0 {
   531  			errorf("ignore decode: corrupted data: negative delta")
   532  		}
   533  		if delta == 0 { // struct terminator is zero delta fieldnum
   534  			break
   535  		}
   536  		fieldnum := state.fieldnum + delta
   537  		if fieldnum >= len(engine.instr) {
   538  			error_(errRange)
   539  		}
   540  		instr := &engine.instr[fieldnum]
   541  		instr.op(instr, state, unsafe.Pointer(nil))
   542  		state.fieldnum = fieldnum
   543  	}
   544  	dec.freeDecoderState(state)
   545  }
   546  
   547  // ignoreSingle discards the data for a top-level non-struct value with no
   548  // destination. It's used when calling Decode with a nil value.
   549  func (dec *Decoder) ignoreSingle(engine *decEngine) {
   550  	state := dec.newDecoderState(&dec.buf)
   551  	state.fieldnum = singletonField
   552  	delta := int(state.decodeUint())
   553  	if delta != 0 {
   554  		errorf("decode: corrupted data: non-zero delta for singleton")
   555  	}
   556  	instr := &engine.instr[singletonField]
   557  	instr.op(instr, state, unsafe.Pointer(nil))
   558  	dec.freeDecoderState(state)
   559  }
   560  
   561  // decodeArrayHelper does the work for decoding arrays and slices.
   562  func (dec *Decoder) decodeArrayHelper(state *decoderState, p uintptr, elemOp decOp, elemWid uintptr, length, elemIndir int, ovfl error) {
   563  	instr := &decInstr{elemOp, 0, elemIndir, 0, ovfl}
   564  	for i := 0; i < length; i++ {
   565  		if state.b.Len() == 0 {
   566  			errorf("decoding array or slice: length exceeds input size (%d elements)", length)
   567  		}
   568  		up := unsafe.Pointer(p)
   569  		if elemIndir > 1 {
   570  			up = decIndirect(up, elemIndir)
   571  		}
   572  		elemOp(instr, state, up)
   573  		p += uintptr(elemWid)
   574  	}
   575  }
   576  
   577  // decodeArray decodes an array and stores it through p, that is, p points to the zeroth element.
   578  // The length is an unsigned integer preceding the elements.  Even though the length is redundant
   579  // (it's part of the type), it's a useful check and is included in the encoding.
   580  func (dec *Decoder) decodeArray(atyp reflect.Type, state *decoderState, p uintptr, elemOp decOp, elemWid uintptr, length, indir, elemIndir int, ovfl error) {
   581  	if indir > 0 {
   582  		p = allocate(atyp, p, 1) // All but the last level has been allocated by dec.Indirect
   583  	}
   584  	if n := state.decodeUint(); n != uint64(length) {
   585  		errorf("length mismatch in decodeArray")
   586  	}
   587  	dec.decodeArrayHelper(state, p, elemOp, elemWid, length, elemIndir, ovfl)
   588  }
   589  
   590  // decodeIntoValue is a helper for map decoding.  Since maps are decoded using reflection,
   591  // unlike the other items we can't use a pointer directly.
   592  func decodeIntoValue(state *decoderState, op decOp, indir int, v reflect.Value, ovfl error) reflect.Value {
   593  	instr := &decInstr{op, 0, indir, 0, ovfl}
   594  	up := unsafe.Pointer(unsafeAddr(v))
   595  	if indir > 1 {
   596  		up = decIndirect(up, indir)
   597  	}
   598  	op(instr, state, up)
   599  	return v
   600  }
   601  
   602  // decodeMap decodes a map and stores its header through p.
   603  // Maps are encoded as a length followed by key:value pairs.
   604  // Because the internals of maps are not visible to us, we must
   605  // use reflection rather than pointer magic.
   606  func (dec *Decoder) decodeMap(mtyp reflect.Type, state *decoderState, p uintptr, keyOp, elemOp decOp, indir, keyIndir, elemIndir int, ovfl error) {
   607  	if indir > 0 {
   608  		p = allocate(mtyp, p, 1) // All but the last level has been allocated by dec.Indirect
   609  	}
   610  	up := unsafe.Pointer(p)
   611  	if *(*unsafe.Pointer)(up) == nil { // maps are represented as a pointer in the runtime
   612  		// Allocate map.
   613  		*(*unsafe.Pointer)(up) = unsafe.Pointer(reflect.MakeMap(mtyp).Pointer())
   614  	}
   615  	// Maps cannot be accessed by moving addresses around the way
   616  	// that slices etc. can.  We must recover a full reflection value for
   617  	// the iteration.
   618  	v := reflect.NewAt(mtyp, unsafe.Pointer(p)).Elem()
   619  	n := int(state.decodeUint())
   620  	for i := 0; i < n; i++ {
   621  		key := decodeIntoValue(state, keyOp, keyIndir, allocValue(mtyp.Key()), ovfl)
   622  		elem := decodeIntoValue(state, elemOp, elemIndir, allocValue(mtyp.Elem()), ovfl)
   623  		v.SetMapIndex(key, elem)
   624  	}
   625  }
   626  
   627  // ignoreArrayHelper does the work for discarding arrays and slices.
   628  func (dec *Decoder) ignoreArrayHelper(state *decoderState, elemOp decOp, length int) {
   629  	instr := &decInstr{elemOp, 0, 0, 0, errors.New("no error")}
   630  	for i := 0; i < length; i++ {
   631  		elemOp(instr, state, nil)
   632  	}
   633  }
   634  
   635  // ignoreArray discards the data for an array value with no destination.
   636  func (dec *Decoder) ignoreArray(state *decoderState, elemOp decOp, length int) {
   637  	if n := state.decodeUint(); n != uint64(length) {
   638  		errorf("length mismatch in ignoreArray")
   639  	}
   640  	dec.ignoreArrayHelper(state, elemOp, length)
   641  }
   642  
   643  // ignoreMap discards the data for a map value with no destination.
   644  func (dec *Decoder) ignoreMap(state *decoderState, keyOp, elemOp decOp) {
   645  	n := int(state.decodeUint())
   646  	keyInstr := &decInstr{keyOp, 0, 0, 0, errors.New("no error")}
   647  	elemInstr := &decInstr{elemOp, 0, 0, 0, errors.New("no error")}
   648  	for i := 0; i < n; i++ {
   649  		keyOp(keyInstr, state, nil)
   650  		elemOp(elemInstr, state, nil)
   651  	}
   652  }
   653  
   654  // decodeSlice decodes a slice and stores the slice header through p.
   655  // Slices are encoded as an unsigned length followed by the elements.
   656  func (dec *Decoder) decodeSlice(atyp reflect.Type, state *decoderState, p uintptr, elemOp decOp, elemWid uintptr, indir, elemIndir int, ovfl error) {
   657  	nr := state.decodeUint()
   658  	n := int(nr)
   659  	if indir > 0 {
   660  		up := unsafe.Pointer(p)
   661  		if *(*unsafe.Pointer)(up) == nil {
   662  			// Allocate the slice header.
   663  			*(*unsafe.Pointer)(up) = unsafe.Pointer(new([]unsafe.Pointer))
   664  		}
   665  		p = *(*uintptr)(up)
   666  	}
   667  	// Allocate storage for the slice elements, that is, the underlying array,
   668  	// if the existing slice does not have the capacity.
   669  	// Always write a header at p.
   670  	hdrp := (*reflect.SliceHeader)(unsafe.Pointer(p))
   671  	if hdrp.Cap < n {
   672  		hdrp.Data = reflect.MakeSlice(atyp, n, n).Pointer()
   673  		hdrp.Cap = n
   674  	}
   675  	hdrp.Len = n
   676  	dec.decodeArrayHelper(state, hdrp.Data, elemOp, elemWid, n, elemIndir, ovfl)
   677  }
   678  
   679  // ignoreSlice skips over the data for a slice value with no destination.
   680  func (dec *Decoder) ignoreSlice(state *decoderState, elemOp decOp) {
   681  	dec.ignoreArrayHelper(state, elemOp, int(state.decodeUint()))
   682  }
   683  
   684  // setInterfaceValue sets an interface value to a concrete value,
   685  // but first it checks that the assignment will succeed.
   686  func setInterfaceValue(ivalue reflect.Value, value reflect.Value) {
   687  	if !value.Type().AssignableTo(ivalue.Type()) {
   688  		errorf("cannot assign value of type %s to %s", value.Type(), ivalue.Type())
   689  	}
   690  	ivalue.Set(value)
   691  }
   692  
   693  // decodeInterface decodes an interface value and stores it through p.
   694  // Interfaces are encoded as the name of a concrete type followed by a value.
   695  // If the name is empty, the value is nil and no value is sent.
   696  func (dec *Decoder) decodeInterface(ityp reflect.Type, state *decoderState, p uintptr, indir int) {
   697  	// Create a writable interface reflect.Value.  We need one even for the nil case.
   698  	ivalue := allocValue(ityp)
   699  	// Read the name of the concrete type.
   700  	nr := state.decodeUint()
   701  	if nr < 0 || nr > 1<<31 { // zero is permissible for anonymous types
   702  		errorf("invalid type name length %d", nr)
   703  	}
   704  	b := make([]byte, nr)
   705  	state.b.Read(b)
   706  	name := string(b)
   707  	if name == "" {
   708  		// Copy the representation of the nil interface value to the target.
   709  		// This is horribly unsafe and special.
   710  		if indir > 0 {
   711  			p = allocate(ityp, p, 1) // All but the last level has been allocated by dec.Indirect
   712  		}
   713  		*(*[2]uintptr)(unsafe.Pointer(p)) = ivalue.InterfaceData()
   714  		return
   715  	}
   716  	if len(name) > 1024 {
   717  		errorf("name too long (%d bytes): %.20q...", len(name), name)
   718  	}
   719  	// The concrete type must be registered.
   720  	registerLock.RLock()
   721  	typ, ok := nameToConcreteType[name]
   722  	registerLock.RUnlock()
   723  	if !ok {
   724  		errorf("name not registered for interface: %q", name)
   725  	}
   726  	// Read the type id of the concrete value.
   727  	concreteId := dec.decodeTypeSequence(true)
   728  	if concreteId < 0 {
   729  		error_(dec.err)
   730  	}
   731  	// Byte count of value is next; we don't care what it is (it's there
   732  	// in case we want to ignore the value by skipping it completely).
   733  	state.decodeUint()
   734  	// Read the concrete value.
   735  	value := allocValue(typ)
   736  	dec.decodeValue(concreteId, value)
   737  	if dec.err != nil {
   738  		error_(dec.err)
   739  	}
   740  	// Allocate the destination interface value.
   741  	if indir > 0 {
   742  		p = allocate(ityp, p, 1) // All but the last level has been allocated by dec.Indirect
   743  	}
   744  	// Assign the concrete value to the interface.
   745  	// Tread carefully; it might not satisfy the interface.
   746  	setInterfaceValue(ivalue, value)
   747  	// Copy the representation of the interface value to the target.
   748  	// This is horribly unsafe and special.
   749  	*(*[2]uintptr)(unsafe.Pointer(p)) = ivalue.InterfaceData()
   750  }
   751  
   752  // ignoreInterface discards the data for an interface value with no destination.
   753  func (dec *Decoder) ignoreInterface(state *decoderState) {
   754  	// Read the name of the concrete type.
   755  	b := make([]byte, state.decodeUint())
   756  	_, err := state.b.Read(b)
   757  	if err != nil {
   758  		error_(err)
   759  	}
   760  	id := dec.decodeTypeSequence(true)
   761  	if id < 0 {
   762  		error_(dec.err)
   763  	}
   764  	// At this point, the decoder buffer contains a delimited value. Just toss it.
   765  	state.b.Next(int(state.decodeUint()))
   766  }
   767  
   768  // decodeGobDecoder decodes something implementing the GobDecoder interface.
   769  // The data is encoded as a byte slice.
   770  func (dec *Decoder) decodeGobDecoder(state *decoderState, v reflect.Value) {
   771  	// Read the bytes for the value.
   772  	b := make([]byte, state.decodeUint())
   773  	_, err := state.b.Read(b)
   774  	if err != nil {
   775  		error_(err)
   776  	}
   777  	// We know it's a GobDecoder, so just call the method directly.
   778  	err = v.Interface().(GobDecoder).GobDecode(b)
   779  	if err != nil {
   780  		error_(err)
   781  	}
   782  }
   783  
   784  // ignoreGobDecoder discards the data for a GobDecoder value with no destination.
   785  func (dec *Decoder) ignoreGobDecoder(state *decoderState) {
   786  	// Read the bytes for the value.
   787  	b := make([]byte, state.decodeUint())
   788  	_, err := state.b.Read(b)
   789  	if err != nil {
   790  		error_(err)
   791  	}
   792  }
   793  
   794  // Index by Go types.
   795  var decOpTable = [...]decOp{
   796  	reflect.Bool:       decBool,
   797  	reflect.Int8:       decInt8,
   798  	reflect.Int16:      decInt16,
   799  	reflect.Int32:      decInt32,
   800  	reflect.Int64:      decInt64,
   801  	reflect.Uint8:      decUint8,
   802  	reflect.Uint16:     decUint16,
   803  	reflect.Uint32:     decUint32,
   804  	reflect.Uint64:     decUint64,
   805  	reflect.Float32:    decFloat32,
   806  	reflect.Float64:    decFloat64,
   807  	reflect.Complex64:  decComplex64,
   808  	reflect.Complex128: decComplex128,
   809  	reflect.String:     decString,
   810  }
   811  
   812  // Indexed by gob types.  tComplex will be added during type.init().
   813  var decIgnoreOpMap = map[typeId]decOp{
   814  	tBool:    ignoreUint,
   815  	tInt:     ignoreUint,
   816  	tUint:    ignoreUint,
   817  	tFloat:   ignoreUint,
   818  	tBytes:   ignoreUint8Array,
   819  	tString:  ignoreUint8Array,
   820  	tComplex: ignoreTwoUints,
   821  }
   822  
   823  // decOpFor returns the decoding op for the base type under rt and
   824  // the indirection count to reach it.
   825  func (dec *Decoder) decOpFor(wireId typeId, rt reflect.Type, name string, inProgress map[reflect.Type]*decOp) (*decOp, int) {
   826  	ut := userType(rt)
   827  	// If the type implements GobEncoder, we handle it without further processing.
   828  	if ut.isGobDecoder {
   829  		return dec.gobDecodeOpFor(ut)
   830  	}
   831  	// If this type is already in progress, it's a recursive type (e.g. map[string]*T).
   832  	// Return the pointer to the op we're already building.
   833  	if opPtr := inProgress[rt]; opPtr != nil {
   834  		return opPtr, ut.indir
   835  	}
   836  	typ := ut.base
   837  	indir := ut.indir
   838  	var op decOp
   839  	k := typ.Kind()
   840  	if int(k) < len(decOpTable) {
   841  		op = decOpTable[k]
   842  	}
   843  	if op == nil {
   844  		inProgress[rt] = &op
   845  		// Special cases
   846  		switch t := typ; t.Kind() {
   847  		case reflect.Array:
   848  			name = "element of " + name
   849  			elemId := dec.wireType[wireId].ArrayT.Elem
   850  			elemOp, elemIndir := dec.decOpFor(elemId, t.Elem(), name, inProgress)
   851  			ovfl := overflow(name)
   852  			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
   853  				state.dec.decodeArray(t, state, uintptr(p), *elemOp, t.Elem().Size(), t.Len(), i.indir, elemIndir, ovfl)
   854  			}
   855  
   856  		case reflect.Map:
   857  			keyId := dec.wireType[wireId].MapT.Key
   858  			elemId := dec.wireType[wireId].MapT.Elem
   859  			keyOp, keyIndir := dec.decOpFor(keyId, t.Key(), "key of "+name, inProgress)
   860  			elemOp, elemIndir := dec.decOpFor(elemId, t.Elem(), "element of "+name, inProgress)
   861  			ovfl := overflow(name)
   862  			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
   863  				up := unsafe.Pointer(p)
   864  				state.dec.decodeMap(t, state, uintptr(up), *keyOp, *elemOp, i.indir, keyIndir, elemIndir, ovfl)
   865  			}
   866  
   867  		case reflect.Slice:
   868  			name = "element of " + name
   869  			if t.Elem().Kind() == reflect.Uint8 {
   870  				op = decUint8Slice
   871  				break
   872  			}
   873  			var elemId typeId
   874  			if tt, ok := builtinIdToType[wireId]; ok {
   875  				elemId = tt.(*sliceType).Elem
   876  			} else {
   877  				elemId = dec.wireType[wireId].SliceT.Elem
   878  			}
   879  			elemOp, elemIndir := dec.decOpFor(elemId, t.Elem(), name, inProgress)
   880  			ovfl := overflow(name)
   881  			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
   882  				state.dec.decodeSlice(t, state, uintptr(p), *elemOp, t.Elem().Size(), i.indir, elemIndir, ovfl)
   883  			}
   884  
   885  		case reflect.Struct:
   886  			// Generate a closure that calls out to the engine for the nested type.
   887  			enginePtr, err := dec.getDecEnginePtr(wireId, userType(typ))
   888  			if err != nil {
   889  				error_(err)
   890  			}
   891  			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
   892  				// indirect through enginePtr to delay evaluation for recursive structs.
   893  				dec.decodeStruct(*enginePtr, userType(typ), uintptr(p), i.indir)
   894  			}
   895  		case reflect.Interface:
   896  			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
   897  				state.dec.decodeInterface(t, state, uintptr(p), i.indir)
   898  			}
   899  		}
   900  	}
   901  	if op == nil {
   902  		errorf("decode can't handle type %s", rt)
   903  	}
   904  	return &op, indir
   905  }
   906  
   907  // decIgnoreOpFor returns the decoding op for a field that has no destination.
   908  func (dec *Decoder) decIgnoreOpFor(wireId typeId) decOp {
   909  	op, ok := decIgnoreOpMap[wireId]
   910  	if !ok {
   911  		if wireId == tInterface {
   912  			// Special case because it's a method: the ignored item might
   913  			// define types and we need to record their state in the decoder.
   914  			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
   915  				state.dec.ignoreInterface(state)
   916  			}
   917  			return op
   918  		}
   919  		// Special cases
   920  		wire := dec.wireType[wireId]
   921  		switch {
   922  		case wire == nil:
   923  			errorf("bad data: undefined type %s", wireId.string())
   924  		case wire.ArrayT != nil:
   925  			elemId := wire.ArrayT.Elem
   926  			elemOp := dec.decIgnoreOpFor(elemId)
   927  			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
   928  				state.dec.ignoreArray(state, elemOp, wire.ArrayT.Len)
   929  			}
   930  
   931  		case wire.MapT != nil:
   932  			keyId := dec.wireType[wireId].MapT.Key
   933  			elemId := dec.wireType[wireId].MapT.Elem
   934  			keyOp := dec.decIgnoreOpFor(keyId)
   935  			elemOp := dec.decIgnoreOpFor(elemId)
   936  			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
   937  				state.dec.ignoreMap(state, keyOp, elemOp)
   938  			}
   939  
   940  		case wire.SliceT != nil:
   941  			elemId := wire.SliceT.Elem
   942  			elemOp := dec.decIgnoreOpFor(elemId)
   943  			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
   944  				state.dec.ignoreSlice(state, elemOp)
   945  			}
   946  
   947  		case wire.StructT != nil:
   948  			// Generate a closure that calls out to the engine for the nested type.
   949  			enginePtr, err := dec.getIgnoreEnginePtr(wireId)
   950  			if err != nil {
   951  				error_(err)
   952  			}
   953  			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
   954  				// indirect through enginePtr to delay evaluation for recursive structs
   955  				state.dec.ignoreStruct(*enginePtr)
   956  			}
   957  
   958  		case wire.GobEncoderT != nil:
   959  			op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
   960  				state.dec.ignoreGobDecoder(state)
   961  			}
   962  		}
   963  	}
   964  	if op == nil {
   965  		errorf("bad data: ignore can't handle type %s", wireId.string())
   966  	}
   967  	return op
   968  }
   969  
   970  // gobDecodeOpFor returns the op for a type that is known to implement
   971  // GobDecoder.
   972  func (dec *Decoder) gobDecodeOpFor(ut *userTypeInfo) (*decOp, int) {
   973  	rcvrType := ut.user
   974  	if ut.decIndir == -1 {
   975  		rcvrType = reflect.PtrTo(rcvrType)
   976  	} else if ut.decIndir > 0 {
   977  		for i := int8(0); i < ut.decIndir; i++ {
   978  			rcvrType = rcvrType.Elem()
   979  		}
   980  	}
   981  	var op decOp
   982  	op = func(i *decInstr, state *decoderState, p unsafe.Pointer) {
   983  		// Caller has gotten us to within one indirection of our value.
   984  		if i.indir > 0 {
   985  			if *(*unsafe.Pointer)(p) == nil {
   986  				*(*unsafe.Pointer)(p) = unsafe.Pointer(reflect.New(ut.base).Pointer())
   987  			}
   988  		}
   989  		// Now p is a pointer to the base type.  Do we need to climb out to
   990  		// get to the receiver type?
   991  		var v reflect.Value
   992  		if ut.decIndir == -1 {
   993  			v = reflect.NewAt(rcvrType, unsafe.Pointer(&p)).Elem()
   994  		} else {
   995  			v = reflect.NewAt(rcvrType, p).Elem()
   996  		}
   997  		state.dec.decodeGobDecoder(state, v)
   998  	}
   999  	return &op, int(ut.indir)
  1000  
  1001  }
  1002  
  1003  // compatibleType asks: Are these two gob Types compatible?
  1004  // Answers the question for basic types, arrays, maps and slices, plus
  1005  // GobEncoder/Decoder pairs.
  1006  // Structs are considered ok; fields will be checked later.
  1007  func (dec *Decoder) compatibleType(fr reflect.Type, fw typeId, inProgress map[reflect.Type]typeId) bool {
  1008  	if rhs, ok := inProgress[fr]; ok {
  1009  		return rhs == fw
  1010  	}
  1011  	inProgress[fr] = fw
  1012  	ut := userType(fr)
  1013  	wire, ok := dec.wireType[fw]
  1014  	// If fr is a GobDecoder, the wire type must be GobEncoder.
  1015  	// And if fr is not a GobDecoder, the wire type must not be either.
  1016  	if ut.isGobDecoder != (ok && wire.GobEncoderT != nil) { // the parentheses look odd but are correct.
  1017  		return false
  1018  	}
  1019  	if ut.isGobDecoder { // This test trumps all others.
  1020  		return true
  1021  	}
  1022  	switch t := ut.base; t.Kind() {
  1023  	default:
  1024  		// chan, etc: cannot handle.
  1025  		return false
  1026  	case reflect.Bool:
  1027  		return fw == tBool
  1028  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
  1029  		return fw == tInt
  1030  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
  1031  		return fw == tUint
  1032  	case reflect.Float32, reflect.Float64:
  1033  		return fw == tFloat
  1034  	case reflect.Complex64, reflect.Complex128:
  1035  		return fw == tComplex
  1036  	case reflect.String:
  1037  		return fw == tString
  1038  	case reflect.Interface:
  1039  		return fw == tInterface
  1040  	case reflect.Array:
  1041  		if !ok || wire.ArrayT == nil {
  1042  			return false
  1043  		}
  1044  		array := wire.ArrayT
  1045  		return t.Len() == array.Len && dec.compatibleType(t.Elem(), array.Elem, inProgress)
  1046  	case reflect.Map:
  1047  		if !ok || wire.MapT == nil {
  1048  			return false
  1049  		}
  1050  		MapType := wire.MapT
  1051  		return dec.compatibleType(t.Key(), MapType.Key, inProgress) && dec.compatibleType(t.Elem(), MapType.Elem, inProgress)
  1052  	case reflect.Slice:
  1053  		// Is it an array of bytes?
  1054  		if t.Elem().Kind() == reflect.Uint8 {
  1055  			return fw == tBytes
  1056  		}
  1057  		// Extract and compare element types.
  1058  		var sw *sliceType
  1059  		if tt, ok := builtinIdToType[fw]; ok {
  1060  			sw, _ = tt.(*sliceType)
  1061  		} else if wire != nil {
  1062  			sw = wire.SliceT
  1063  		}
  1064  		elem := userType(t.Elem()).base
  1065  		return sw != nil && dec.compatibleType(elem, sw.Elem, inProgress)
  1066  	case reflect.Struct:
  1067  		return true
  1068  	}
  1069  }
  1070  
  1071  // typeString returns a human-readable description of the type identified by remoteId.
  1072  func (dec *Decoder) typeString(remoteId typeId) string {
  1073  	if t := idToType[remoteId]; t != nil {
  1074  		// globally known type.
  1075  		return t.string()
  1076  	}
  1077  	return dec.wireType[remoteId].string()
  1078  }
  1079  
  1080  // compileSingle compiles the decoder engine for a non-struct top-level value, including
  1081  // GobDecoders.
  1082  func (dec *Decoder) compileSingle(remoteId typeId, ut *userTypeInfo) (engine *decEngine, err error) {
  1083  	rt := ut.user
  1084  	engine = new(decEngine)
  1085  	engine.instr = make([]decInstr, 1) // one item
  1086  	name := rt.String()                // best we can do
  1087  	if !dec.compatibleType(rt, remoteId, make(map[reflect.Type]typeId)) {
  1088  		remoteType := dec.typeString(remoteId)
  1089  		// Common confusing case: local interface type, remote concrete type.
  1090  		if ut.base.Kind() == reflect.Interface && remoteId != tInterface {
  1091  			return nil, errors.New("gob: local interface type " + name + " can only be decoded from remote interface type; received concrete type " + remoteType)
  1092  		}
  1093  		return nil, errors.New("gob: decoding into local type " + name + ", received remote type " + remoteType)
  1094  	}
  1095  	op, indir := dec.decOpFor(remoteId, rt, name, make(map[reflect.Type]*decOp))
  1096  	ovfl := errors.New(`value for "` + name + `" out of range`)
  1097  	engine.instr[singletonField] = decInstr{*op, singletonField, indir, 0, ovfl}
  1098  	engine.numInstr = 1
  1099  	return
  1100  }
  1101  
  1102  // compileIgnoreSingle compiles the decoder engine for a non-struct top-level value that will be discarded.
  1103  func (dec *Decoder) compileIgnoreSingle(remoteId typeId) (engine *decEngine, err error) {
  1104  	engine = new(decEngine)
  1105  	engine.instr = make([]decInstr, 1) // one item
  1106  	op := dec.decIgnoreOpFor(remoteId)
  1107  	ovfl := overflow(dec.typeString(remoteId))
  1108  	engine.instr[0] = decInstr{op, 0, 0, 0, ovfl}
  1109  	engine.numInstr = 1
  1110  	return
  1111  }
  1112  
  1113  // compileDec compiles the decoder engine for a value.  If the value is not a struct,
  1114  // it calls out to compileSingle.
  1115  func (dec *Decoder) compileDec(remoteId typeId, ut *userTypeInfo) (engine *decEngine, err error) {
  1116  	rt := ut.base
  1117  	srt := rt
  1118  	if srt.Kind() != reflect.Struct ||
  1119  		ut.isGobDecoder {
  1120  		return dec.compileSingle(remoteId, ut)
  1121  	}
  1122  	var wireStruct *structType
  1123  	// Builtin types can come from global pool; the rest must be defined by the decoder.
  1124  	// Also we know we're decoding a struct now, so the client must have sent one.
  1125  	if t, ok := builtinIdToType[remoteId]; ok {
  1126  		wireStruct, _ = t.(*structType)
  1127  	} else {
  1128  		wire := dec.wireType[remoteId]
  1129  		if wire == nil {
  1130  			error_(errBadType)
  1131  		}
  1132  		wireStruct = wire.StructT
  1133  	}
  1134  	if wireStruct == nil {
  1135  		errorf("type mismatch in decoder: want struct type %s; got non-struct", rt)
  1136  	}
  1137  	engine = new(decEngine)
  1138  	engine.instr = make([]decInstr, len(wireStruct.Field))
  1139  	seen := make(map[reflect.Type]*decOp)
  1140  	// Loop over the fields of the wire type.
  1141  	for fieldnum := 0; fieldnum < len(wireStruct.Field); fieldnum++ {
  1142  		wireField := wireStruct.Field[fieldnum]
  1143  		if wireField.Name == "" {
  1144  			errorf("empty name for remote field of type %s", wireStruct.Name)
  1145  		}
  1146  		ovfl := overflow(wireField.Name)
  1147  		// Find the field of the local type with the same name.
  1148  		localField, present := srt.FieldByName(wireField.Name)
  1149  		// TODO(r): anonymous names
  1150  		if !present || !isExported(wireField.Name) {
  1151  			op := dec.decIgnoreOpFor(wireField.Id)
  1152  			engine.instr[fieldnum] = decInstr{op, fieldnum, 0, 0, ovfl}
  1153  			continue
  1154  		}
  1155  		if !dec.compatibleType(localField.Type, wireField.Id, make(map[reflect.Type]typeId)) {
  1156  			errorf("wrong type (%s) for received field %s.%s", localField.Type, wireStruct.Name, wireField.Name)
  1157  		}
  1158  		op, indir := dec.decOpFor(wireField.Id, localField.Type, localField.Name, seen)
  1159  		engine.instr[fieldnum] = decInstr{*op, fieldnum, indir, uintptr(localField.Offset), ovfl}
  1160  		engine.numInstr++
  1161  	}
  1162  	return
  1163  }
  1164  
  1165  // getDecEnginePtr returns the engine for the specified type.
  1166  func (dec *Decoder) getDecEnginePtr(remoteId typeId, ut *userTypeInfo) (enginePtr **decEngine, err error) {
  1167  	rt := ut.user
  1168  	decoderMap, ok := dec.decoderCache[rt]
  1169  	if !ok {
  1170  		decoderMap = make(map[typeId]**decEngine)
  1171  		dec.decoderCache[rt] = decoderMap
  1172  	}
  1173  	if enginePtr, ok = decoderMap[remoteId]; !ok {
  1174  		// To handle recursive types, mark this engine as underway before compiling.
  1175  		enginePtr = new(*decEngine)
  1176  		decoderMap[remoteId] = enginePtr
  1177  		*enginePtr, err = dec.compileDec(remoteId, ut)
  1178  		if err != nil {
  1179  			delete(decoderMap, remoteId)
  1180  		}
  1181  	}
  1182  	return
  1183  }
  1184  
  1185  // emptyStruct is the type we compile into when ignoring a struct value.
  1186  type emptyStruct struct{}
  1187  
  1188  var emptyStructType = reflect.TypeOf(emptyStruct{})
  1189  
  1190  // getDecEnginePtr returns the engine for the specified type when the value is to be discarded.
  1191  func (dec *Decoder) getIgnoreEnginePtr(wireId typeId) (enginePtr **decEngine, err error) {
  1192  	var ok bool
  1193  	if enginePtr, ok = dec.ignorerCache[wireId]; !ok {
  1194  		// To handle recursive types, mark this engine as underway before compiling.
  1195  		enginePtr = new(*decEngine)
  1196  		dec.ignorerCache[wireId] = enginePtr
  1197  		wire := dec.wireType[wireId]
  1198  		if wire != nil && wire.StructT != nil {
  1199  			*enginePtr, err = dec.compileDec(wireId, userType(emptyStructType))
  1200  		} else {
  1201  			*enginePtr, err = dec.compileIgnoreSingle(wireId)
  1202  		}
  1203  		if err != nil {
  1204  			delete(dec.ignorerCache, wireId)
  1205  		}
  1206  	}
  1207  	return
  1208  }
  1209  
  1210  // decodeValue decodes the data stream representing a value and stores it in val.
  1211  func (dec *Decoder) decodeValue(wireId typeId, val reflect.Value) {
  1212  	defer catchError(&dec.err)
  1213  	// If the value is nil, it means we should just ignore this item.
  1214  	if !val.IsValid() {
  1215  		dec.decodeIgnoredValue(wireId)
  1216  		return
  1217  	}
  1218  	// Dereference down to the underlying type.
  1219  	ut := userType(val.Type())
  1220  	base := ut.base
  1221  	var enginePtr **decEngine
  1222  	enginePtr, dec.err = dec.getDecEnginePtr(wireId, ut)
  1223  	if dec.err != nil {
  1224  		return
  1225  	}
  1226  	engine := *enginePtr
  1227  	if st := base; st.Kind() == reflect.Struct && !ut.isGobDecoder {
  1228  		if engine.numInstr == 0 && st.NumField() > 0 && len(dec.wireType[wireId].StructT.Field) > 0 {
  1229  			name := base.Name()
  1230  			errorf("type mismatch: no fields matched compiling decoder for %s", name)
  1231  		}
  1232  		dec.decodeStruct(engine, ut, uintptr(unsafeAddr(val)), ut.indir)
  1233  	} else {
  1234  		dec.decodeSingle(engine, ut, uintptr(unsafeAddr(val)))
  1235  	}
  1236  }
  1237  
  1238  // decodeIgnoredValue decodes the data stream representing a value of the specified type and discards it.
  1239  func (dec *Decoder) decodeIgnoredValue(wireId typeId) {
  1240  	var enginePtr **decEngine
  1241  	enginePtr, dec.err = dec.getIgnoreEnginePtr(wireId)
  1242  	if dec.err != nil {
  1243  		return
  1244  	}
  1245  	wire := dec.wireType[wireId]
  1246  	if wire != nil && wire.StructT != nil {
  1247  		dec.ignoreStruct(*enginePtr)
  1248  	} else {
  1249  		dec.ignoreSingle(*enginePtr)
  1250  	}
  1251  }
  1252  
  1253  func init() {
  1254  	var iop, uop decOp
  1255  	switch reflect.TypeOf(int(0)).Bits() {
  1256  	case 32:
  1257  		iop = decInt32
  1258  		uop = decUint32
  1259  	case 64:
  1260  		iop = decInt64
  1261  		uop = decUint64
  1262  	default:
  1263  		panic("gob: unknown size of int/uint")
  1264  	}
  1265  	decOpTable[reflect.Int] = iop
  1266  	decOpTable[reflect.Uint] = uop
  1267  
  1268  	// Finally uintptr
  1269  	switch reflect.TypeOf(uintptr(0)).Bits() {
  1270  	case 32:
  1271  		uop = decUint32
  1272  	case 64:
  1273  		uop = decUint64
  1274  	default:
  1275  		panic("gob: unknown size of uintptr")
  1276  	}
  1277  	decOpTable[reflect.Uintptr] = uop
  1278  }
  1279  
  1280  // Gob assumes it can call UnsafeAddr on any Value
  1281  // in order to get a pointer it can copy data from.
  1282  // Values that have just been created and do not point
  1283  // into existing structs or slices cannot be addressed,
  1284  // so simulate it by returning a pointer to a copy.
  1285  // Each call allocates once.
  1286  func unsafeAddr(v reflect.Value) uintptr {
  1287  	if v.CanAddr() {
  1288  		return v.UnsafeAddr()
  1289  	}
  1290  	x := reflect.New(v.Type()).Elem()
  1291  	x.Set(v)
  1292  	return x.UnsafeAddr()
  1293  }
  1294  
  1295  // Gob depends on being able to take the address
  1296  // of zeroed Values it creates, so use this wrapper instead
  1297  // of the standard reflect.Zero.
  1298  // Each call allocates once.
  1299  func allocValue(t reflect.Type) reflect.Value {
  1300  	return reflect.New(t).Elem()
  1301  }