github.com/xushiwei/go@v0.0.0-20130601165731-2b9d83f45bc9/src/pkg/encoding/gob/encode.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gob 6 7 import ( 8 "bytes" 9 "math" 10 "reflect" 11 "unsafe" 12 ) 13 14 const uint64Size = int(unsafe.Sizeof(uint64(0))) 15 16 // encoderState is the global execution state of an instance of the encoder. 17 // Field numbers are delta encoded and always increase. The field 18 // number is initialized to -1 so 0 comes out as delta(1). A delta of 19 // 0 terminates the structure. 20 type encoderState struct { 21 enc *Encoder 22 b *bytes.Buffer 23 sendZero bool // encoding an array element or map key/value pair; send zero values 24 fieldnum int // the last field number written. 25 buf [1 + uint64Size]byte // buffer used by the encoder; here to avoid allocation. 26 next *encoderState // for free list 27 } 28 29 func (enc *Encoder) newEncoderState(b *bytes.Buffer) *encoderState { 30 e := enc.freeList 31 if e == nil { 32 e = new(encoderState) 33 e.enc = enc 34 } else { 35 enc.freeList = e.next 36 } 37 e.sendZero = false 38 e.fieldnum = 0 39 e.b = b 40 return e 41 } 42 43 func (enc *Encoder) freeEncoderState(e *encoderState) { 44 e.next = enc.freeList 45 enc.freeList = e 46 } 47 48 // Unsigned integers have a two-state encoding. If the number is less 49 // than 128 (0 through 0x7F), its value is written directly. 50 // Otherwise the value is written in big-endian byte order preceded 51 // by the byte length, negated. 52 53 // encodeUint writes an encoded unsigned integer to state.b. 54 func (state *encoderState) encodeUint(x uint64) { 55 if x <= 0x7F { 56 err := state.b.WriteByte(uint8(x)) 57 if err != nil { 58 error_(err) 59 } 60 return 61 } 62 i := uint64Size 63 for x > 0 { 64 state.buf[i] = uint8(x) 65 x >>= 8 66 i-- 67 } 68 state.buf[i] = uint8(i - uint64Size) // = loop count, negated 69 _, err := state.b.Write(state.buf[i : uint64Size+1]) 70 if err != nil { 71 error_(err) 72 } 73 } 74 75 // encodeInt writes an encoded signed integer to state.w. 76 // The low bit of the encoding says whether to bit complement the (other bits of the) 77 // uint to recover the int. 78 func (state *encoderState) encodeInt(i int64) { 79 var x uint64 80 if i < 0 { 81 x = uint64(^i<<1) | 1 82 } else { 83 x = uint64(i << 1) 84 } 85 state.encodeUint(uint64(x)) 86 } 87 88 // encOp is the signature of an encoding operator for a given type. 89 type encOp func(i *encInstr, state *encoderState, p unsafe.Pointer) 90 91 // The 'instructions' of the encoding machine 92 type encInstr struct { 93 op encOp 94 field int // field number 95 indir int // how many pointer indirections to reach the value in the struct 96 offset uintptr // offset in the structure of the field to encode 97 } 98 99 // update emits a field number and updates the state to record its value for delta encoding. 100 // If the instruction pointer is nil, it does nothing 101 func (state *encoderState) update(instr *encInstr) { 102 if instr != nil { 103 state.encodeUint(uint64(instr.field - state.fieldnum)) 104 state.fieldnum = instr.field 105 } 106 } 107 108 // Each encoder for a composite is responsible for handling any 109 // indirections associated with the elements of the data structure. 110 // If any pointer so reached is nil, no bytes are written. If the 111 // data item is zero, no bytes are written. Single values - ints, 112 // strings etc. - are indirected before calling their encoders. 113 // Otherwise, the output (for a scalar) is the field number, as an 114 // encoded integer, followed by the field data in its appropriate 115 // format. 116 117 // encIndirect dereferences p indir times and returns the result. 118 func encIndirect(p unsafe.Pointer, indir int) unsafe.Pointer { 119 for ; indir > 0; indir-- { 120 p = *(*unsafe.Pointer)(p) 121 if p == nil { 122 return unsafe.Pointer(nil) 123 } 124 } 125 return p 126 } 127 128 // encBool encodes the bool with address p as an unsigned 0 or 1. 129 func encBool(i *encInstr, state *encoderState, p unsafe.Pointer) { 130 b := *(*bool)(p) 131 if b || state.sendZero { 132 state.update(i) 133 if b { 134 state.encodeUint(1) 135 } else { 136 state.encodeUint(0) 137 } 138 } 139 } 140 141 // encInt encodes the int with address p. 142 func encInt(i *encInstr, state *encoderState, p unsafe.Pointer) { 143 v := int64(*(*int)(p)) 144 if v != 0 || state.sendZero { 145 state.update(i) 146 state.encodeInt(v) 147 } 148 } 149 150 // encUint encodes the uint with address p. 151 func encUint(i *encInstr, state *encoderState, p unsafe.Pointer) { 152 v := uint64(*(*uint)(p)) 153 if v != 0 || state.sendZero { 154 state.update(i) 155 state.encodeUint(v) 156 } 157 } 158 159 // encInt8 encodes the int8 with address p. 160 func encInt8(i *encInstr, state *encoderState, p unsafe.Pointer) { 161 v := int64(*(*int8)(p)) 162 if v != 0 || state.sendZero { 163 state.update(i) 164 state.encodeInt(v) 165 } 166 } 167 168 // encUint8 encodes the uint8 with address p. 169 func encUint8(i *encInstr, state *encoderState, p unsafe.Pointer) { 170 v := uint64(*(*uint8)(p)) 171 if v != 0 || state.sendZero { 172 state.update(i) 173 state.encodeUint(v) 174 } 175 } 176 177 // encInt16 encodes the int16 with address p. 178 func encInt16(i *encInstr, state *encoderState, p unsafe.Pointer) { 179 v := int64(*(*int16)(p)) 180 if v != 0 || state.sendZero { 181 state.update(i) 182 state.encodeInt(v) 183 } 184 } 185 186 // encUint16 encodes the uint16 with address p. 187 func encUint16(i *encInstr, state *encoderState, p unsafe.Pointer) { 188 v := uint64(*(*uint16)(p)) 189 if v != 0 || state.sendZero { 190 state.update(i) 191 state.encodeUint(v) 192 } 193 } 194 195 // encInt32 encodes the int32 with address p. 196 func encInt32(i *encInstr, state *encoderState, p unsafe.Pointer) { 197 v := int64(*(*int32)(p)) 198 if v != 0 || state.sendZero { 199 state.update(i) 200 state.encodeInt(v) 201 } 202 } 203 204 // encUint encodes the uint32 with address p. 205 func encUint32(i *encInstr, state *encoderState, p unsafe.Pointer) { 206 v := uint64(*(*uint32)(p)) 207 if v != 0 || state.sendZero { 208 state.update(i) 209 state.encodeUint(v) 210 } 211 } 212 213 // encInt64 encodes the int64 with address p. 214 func encInt64(i *encInstr, state *encoderState, p unsafe.Pointer) { 215 v := *(*int64)(p) 216 if v != 0 || state.sendZero { 217 state.update(i) 218 state.encodeInt(v) 219 } 220 } 221 222 // encInt64 encodes the uint64 with address p. 223 func encUint64(i *encInstr, state *encoderState, p unsafe.Pointer) { 224 v := *(*uint64)(p) 225 if v != 0 || state.sendZero { 226 state.update(i) 227 state.encodeUint(v) 228 } 229 } 230 231 // encUintptr encodes the uintptr with address p. 232 func encUintptr(i *encInstr, state *encoderState, p unsafe.Pointer) { 233 v := uint64(*(*uintptr)(p)) 234 if v != 0 || state.sendZero { 235 state.update(i) 236 state.encodeUint(v) 237 } 238 } 239 240 // floatBits returns a uint64 holding the bits of a floating-point number. 241 // Floating-point numbers are transmitted as uint64s holding the bits 242 // of the underlying representation. They are sent byte-reversed, with 243 // the exponent end coming out first, so integer floating point numbers 244 // (for example) transmit more compactly. This routine does the 245 // swizzling. 246 func floatBits(f float64) uint64 { 247 u := math.Float64bits(f) 248 var v uint64 249 for i := 0; i < 8; i++ { 250 v <<= 8 251 v |= u & 0xFF 252 u >>= 8 253 } 254 return v 255 } 256 257 // encFloat32 encodes the float32 with address p. 258 func encFloat32(i *encInstr, state *encoderState, p unsafe.Pointer) { 259 f := *(*float32)(p) 260 if f != 0 || state.sendZero { 261 v := floatBits(float64(f)) 262 state.update(i) 263 state.encodeUint(v) 264 } 265 } 266 267 // encFloat64 encodes the float64 with address p. 268 func encFloat64(i *encInstr, state *encoderState, p unsafe.Pointer) { 269 f := *(*float64)(p) 270 if f != 0 || state.sendZero { 271 state.update(i) 272 v := floatBits(f) 273 state.encodeUint(v) 274 } 275 } 276 277 // encComplex64 encodes the complex64 with address p. 278 // Complex numbers are just a pair of floating-point numbers, real part first. 279 func encComplex64(i *encInstr, state *encoderState, p unsafe.Pointer) { 280 c := *(*complex64)(p) 281 if c != 0+0i || state.sendZero { 282 rpart := floatBits(float64(real(c))) 283 ipart := floatBits(float64(imag(c))) 284 state.update(i) 285 state.encodeUint(rpart) 286 state.encodeUint(ipart) 287 } 288 } 289 290 // encComplex128 encodes the complex128 with address p. 291 func encComplex128(i *encInstr, state *encoderState, p unsafe.Pointer) { 292 c := *(*complex128)(p) 293 if c != 0+0i || state.sendZero { 294 rpart := floatBits(real(c)) 295 ipart := floatBits(imag(c)) 296 state.update(i) 297 state.encodeUint(rpart) 298 state.encodeUint(ipart) 299 } 300 } 301 302 // encUint8Array encodes the byte slice whose header has address p. 303 // Byte arrays are encoded as an unsigned count followed by the raw bytes. 304 func encUint8Array(i *encInstr, state *encoderState, p unsafe.Pointer) { 305 b := *(*[]byte)(p) 306 if len(b) > 0 || state.sendZero { 307 state.update(i) 308 state.encodeUint(uint64(len(b))) 309 state.b.Write(b) 310 } 311 } 312 313 // encString encodes the string whose header has address p. 314 // Strings are encoded as an unsigned count followed by the raw bytes. 315 func encString(i *encInstr, state *encoderState, p unsafe.Pointer) { 316 s := *(*string)(p) 317 if len(s) > 0 || state.sendZero { 318 state.update(i) 319 state.encodeUint(uint64(len(s))) 320 state.b.WriteString(s) 321 } 322 } 323 324 // encStructTerminator encodes the end of an encoded struct 325 // as delta field number of 0. 326 func encStructTerminator(i *encInstr, state *encoderState, p unsafe.Pointer) { 327 state.encodeUint(0) 328 } 329 330 // Execution engine 331 332 // encEngine an array of instructions indexed by field number of the encoding 333 // data, typically a struct. It is executed top to bottom, walking the struct. 334 type encEngine struct { 335 instr []encInstr 336 } 337 338 const singletonField = 0 339 340 // encodeSingle encodes a single top-level non-struct value. 341 func (enc *Encoder) encodeSingle(b *bytes.Buffer, engine *encEngine, basep uintptr) { 342 state := enc.newEncoderState(b) 343 state.fieldnum = singletonField 344 // There is no surrounding struct to frame the transmission, so we must 345 // generate data even if the item is zero. To do this, set sendZero. 346 state.sendZero = true 347 instr := &engine.instr[singletonField] 348 p := unsafe.Pointer(basep) // offset will be zero 349 if instr.indir > 0 { 350 if p = encIndirect(p, instr.indir); p == nil { 351 return 352 } 353 } 354 instr.op(instr, state, p) 355 enc.freeEncoderState(state) 356 } 357 358 // encodeStruct encodes a single struct value. 359 func (enc *Encoder) encodeStruct(b *bytes.Buffer, engine *encEngine, basep uintptr) { 360 state := enc.newEncoderState(b) 361 state.fieldnum = -1 362 for i := 0; i < len(engine.instr); i++ { 363 instr := &engine.instr[i] 364 p := unsafe.Pointer(basep + instr.offset) 365 if instr.indir > 0 { 366 if p = encIndirect(p, instr.indir); p == nil { 367 continue 368 } 369 } 370 instr.op(instr, state, p) 371 } 372 enc.freeEncoderState(state) 373 } 374 375 // encodeArray encodes the array whose 0th element is at p. 376 func (enc *Encoder) encodeArray(b *bytes.Buffer, p uintptr, op encOp, elemWid uintptr, elemIndir int, length int) { 377 state := enc.newEncoderState(b) 378 state.fieldnum = -1 379 state.sendZero = true 380 state.encodeUint(uint64(length)) 381 for i := 0; i < length; i++ { 382 elemp := p 383 up := unsafe.Pointer(elemp) 384 if elemIndir > 0 { 385 if up = encIndirect(up, elemIndir); up == nil { 386 errorf("encodeArray: nil element") 387 } 388 elemp = uintptr(up) 389 } 390 op(nil, state, unsafe.Pointer(elemp)) 391 p += uintptr(elemWid) 392 } 393 enc.freeEncoderState(state) 394 } 395 396 // encodeReflectValue is a helper for maps. It encodes the value v. 397 func encodeReflectValue(state *encoderState, v reflect.Value, op encOp, indir int) { 398 for i := 0; i < indir && v.IsValid(); i++ { 399 v = reflect.Indirect(v) 400 } 401 if !v.IsValid() { 402 errorf("encodeReflectValue: nil element") 403 } 404 op(nil, state, unsafe.Pointer(unsafeAddr(v))) 405 } 406 407 // encodeMap encodes a map as unsigned count followed by key:value pairs. 408 // Because map internals are not exposed, we must use reflection rather than 409 // addresses. 410 func (enc *Encoder) encodeMap(b *bytes.Buffer, mv reflect.Value, keyOp, elemOp encOp, keyIndir, elemIndir int) { 411 state := enc.newEncoderState(b) 412 state.fieldnum = -1 413 state.sendZero = true 414 keys := mv.MapKeys() 415 state.encodeUint(uint64(len(keys))) 416 for _, key := range keys { 417 encodeReflectValue(state, key, keyOp, keyIndir) 418 encodeReflectValue(state, mv.MapIndex(key), elemOp, elemIndir) 419 } 420 enc.freeEncoderState(state) 421 } 422 423 // encodeInterface encodes the interface value iv. 424 // To send an interface, we send a string identifying the concrete type, followed 425 // by the type identifier (which might require defining that type right now), followed 426 // by the concrete value. A nil value gets sent as the empty string for the name, 427 // followed by no value. 428 func (enc *Encoder) encodeInterface(b *bytes.Buffer, iv reflect.Value) { 429 // Gobs can encode nil interface values but not typed interface 430 // values holding nil pointers, since nil pointers point to no value. 431 elem := iv.Elem() 432 if elem.Kind() == reflect.Ptr && elem.IsNil() { 433 errorf("gob: cannot encode nil pointer of type %s inside interface", iv.Elem().Type()) 434 } 435 state := enc.newEncoderState(b) 436 state.fieldnum = -1 437 state.sendZero = true 438 if iv.IsNil() { 439 state.encodeUint(0) 440 return 441 } 442 443 ut := userType(iv.Elem().Type()) 444 registerLock.RLock() 445 name, ok := concreteTypeToName[ut.base] 446 registerLock.RUnlock() 447 if !ok { 448 errorf("type not registered for interface: %s", ut.base) 449 } 450 // Send the name. 451 state.encodeUint(uint64(len(name))) 452 _, err := state.b.WriteString(name) 453 if err != nil { 454 error_(err) 455 } 456 // Define the type id if necessary. 457 enc.sendTypeDescriptor(enc.writer(), state, ut) 458 // Send the type id. 459 enc.sendTypeId(state, ut) 460 // Encode the value into a new buffer. Any nested type definitions 461 // should be written to b, before the encoded value. 462 enc.pushWriter(b) 463 data := new(bytes.Buffer) 464 data.Write(spaceForLength) 465 enc.encode(data, elem, ut) 466 if enc.err != nil { 467 error_(enc.err) 468 } 469 enc.popWriter() 470 enc.writeMessage(b, data) 471 if enc.err != nil { 472 error_(err) 473 } 474 enc.freeEncoderState(state) 475 } 476 477 // isZero returns whether the value is the zero of its type. 478 func isZero(val reflect.Value) bool { 479 switch val.Kind() { 480 case reflect.Array: 481 for i := 0; i < val.Len(); i++ { 482 if !isZero(val.Index(i)) { 483 return false 484 } 485 } 486 return true 487 case reflect.Map, reflect.Slice, reflect.String: 488 return val.Len() == 0 489 case reflect.Bool: 490 return !val.Bool() 491 case reflect.Complex64, reflect.Complex128: 492 return val.Complex() == 0 493 case reflect.Chan, reflect.Func, reflect.Ptr: 494 return val.IsNil() 495 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 496 return val.Int() == 0 497 case reflect.Float32, reflect.Float64: 498 return val.Float() == 0 499 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 500 return val.Uint() == 0 501 case reflect.Struct: 502 for i := 0; i < val.NumField(); i++ { 503 if !isZero(val.Field(i)) { 504 return false 505 } 506 } 507 return true 508 } 509 panic("unknown type in isZero " + val.Type().String()) 510 } 511 512 // encGobEncoder encodes a value that implements the GobEncoder interface. 513 // The data is sent as a byte array. 514 func (enc *Encoder) encodeGobEncoder(b *bytes.Buffer, v reflect.Value) { 515 // TODO: should we catch panics from the called method? 516 // We know it's a GobEncoder, so just call the method directly. 517 data, err := v.Interface().(GobEncoder).GobEncode() 518 if err != nil { 519 error_(err) 520 } 521 state := enc.newEncoderState(b) 522 state.fieldnum = -1 523 state.encodeUint(uint64(len(data))) 524 state.b.Write(data) 525 enc.freeEncoderState(state) 526 } 527 528 var encOpTable = [...]encOp{ 529 reflect.Bool: encBool, 530 reflect.Int: encInt, 531 reflect.Int8: encInt8, 532 reflect.Int16: encInt16, 533 reflect.Int32: encInt32, 534 reflect.Int64: encInt64, 535 reflect.Uint: encUint, 536 reflect.Uint8: encUint8, 537 reflect.Uint16: encUint16, 538 reflect.Uint32: encUint32, 539 reflect.Uint64: encUint64, 540 reflect.Uintptr: encUintptr, 541 reflect.Float32: encFloat32, 542 reflect.Float64: encFloat64, 543 reflect.Complex64: encComplex64, 544 reflect.Complex128: encComplex128, 545 reflect.String: encString, 546 } 547 548 // encOpFor returns (a pointer to) the encoding op for the base type under rt and 549 // the indirection count to reach it. 550 func (enc *Encoder) encOpFor(rt reflect.Type, inProgress map[reflect.Type]*encOp) (*encOp, int) { 551 ut := userType(rt) 552 // If the type implements GobEncoder, we handle it without further processing. 553 if ut.isGobEncoder { 554 return enc.gobEncodeOpFor(ut) 555 } 556 // If this type is already in progress, it's a recursive type (e.g. map[string]*T). 557 // Return the pointer to the op we're already building. 558 if opPtr := inProgress[rt]; opPtr != nil { 559 return opPtr, ut.indir 560 } 561 typ := ut.base 562 indir := ut.indir 563 k := typ.Kind() 564 var op encOp 565 if int(k) < len(encOpTable) { 566 op = encOpTable[k] 567 } 568 if op == nil { 569 inProgress[rt] = &op 570 // Special cases 571 switch t := typ; t.Kind() { 572 case reflect.Slice: 573 if t.Elem().Kind() == reflect.Uint8 { 574 op = encUint8Array 575 break 576 } 577 // Slices have a header; we decode it to find the underlying array. 578 elemOp, indir := enc.encOpFor(t.Elem(), inProgress) 579 op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { 580 slice := (*reflect.SliceHeader)(p) 581 if !state.sendZero && slice.Len == 0 { 582 return 583 } 584 state.update(i) 585 state.enc.encodeArray(state.b, slice.Data, *elemOp, t.Elem().Size(), indir, int(slice.Len)) 586 } 587 case reflect.Array: 588 // True arrays have size in the type. 589 elemOp, indir := enc.encOpFor(t.Elem(), inProgress) 590 op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { 591 state.update(i) 592 state.enc.encodeArray(state.b, uintptr(p), *elemOp, t.Elem().Size(), indir, t.Len()) 593 } 594 case reflect.Map: 595 keyOp, keyIndir := enc.encOpFor(t.Key(), inProgress) 596 elemOp, elemIndir := enc.encOpFor(t.Elem(), inProgress) 597 op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { 598 // Maps cannot be accessed by moving addresses around the way 599 // that slices etc. can. We must recover a full reflection value for 600 // the iteration. 601 v := reflect.NewAt(t, unsafe.Pointer(p)).Elem() 602 mv := reflect.Indirect(v) 603 // We send zero-length (but non-nil) maps because the 604 // receiver might want to use the map. (Maps don't use append.) 605 if !state.sendZero && mv.IsNil() { 606 return 607 } 608 state.update(i) 609 state.enc.encodeMap(state.b, mv, *keyOp, *elemOp, keyIndir, elemIndir) 610 } 611 case reflect.Struct: 612 // Generate a closure that calls out to the engine for the nested type. 613 enc.getEncEngine(userType(typ)) 614 info := mustGetTypeInfo(typ) 615 op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { 616 state.update(i) 617 // indirect through info to delay evaluation for recursive structs 618 state.enc.encodeStruct(state.b, info.encoder, uintptr(p)) 619 } 620 case reflect.Interface: 621 op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { 622 // Interfaces transmit the name and contents of the concrete 623 // value they contain. 624 v := reflect.NewAt(t, unsafe.Pointer(p)).Elem() 625 iv := reflect.Indirect(v) 626 if !state.sendZero && (!iv.IsValid() || iv.IsNil()) { 627 return 628 } 629 state.update(i) 630 state.enc.encodeInterface(state.b, iv) 631 } 632 } 633 } 634 if op == nil { 635 errorf("can't happen: encode type %s", rt) 636 } 637 return &op, indir 638 } 639 640 // gobEncodeOpFor returns the op for a type that is known to implement 641 // GobEncoder. 642 func (enc *Encoder) gobEncodeOpFor(ut *userTypeInfo) (*encOp, int) { 643 rt := ut.user 644 if ut.encIndir == -1 { 645 rt = reflect.PtrTo(rt) 646 } else if ut.encIndir > 0 { 647 for i := int8(0); i < ut.encIndir; i++ { 648 rt = rt.Elem() 649 } 650 } 651 var op encOp 652 op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { 653 var v reflect.Value 654 if ut.encIndir == -1 { 655 // Need to climb up one level to turn value into pointer. 656 v = reflect.NewAt(rt, unsafe.Pointer(&p)).Elem() 657 } else { 658 v = reflect.NewAt(rt, p).Elem() 659 } 660 if !state.sendZero && isZero(v) { 661 return 662 } 663 state.update(i) 664 state.enc.encodeGobEncoder(state.b, v) 665 } 666 return &op, int(ut.encIndir) // encIndir: op will get called with p == address of receiver. 667 } 668 669 // compileEnc returns the engine to compile the type. 670 func (enc *Encoder) compileEnc(ut *userTypeInfo) *encEngine { 671 srt := ut.base 672 engine := new(encEngine) 673 seen := make(map[reflect.Type]*encOp) 674 rt := ut.base 675 if ut.isGobEncoder { 676 rt = ut.user 677 } 678 if !ut.isGobEncoder && 679 srt.Kind() == reflect.Struct { 680 for fieldNum, wireFieldNum := 0, 0; fieldNum < srt.NumField(); fieldNum++ { 681 f := srt.Field(fieldNum) 682 if !isExported(f.Name) { 683 continue 684 } 685 op, indir := enc.encOpFor(f.Type, seen) 686 engine.instr = append(engine.instr, encInstr{*op, wireFieldNum, indir, uintptr(f.Offset)}) 687 wireFieldNum++ 688 } 689 if srt.NumField() > 0 && len(engine.instr) == 0 { 690 errorf("type %s has no exported fields", rt) 691 } 692 engine.instr = append(engine.instr, encInstr{encStructTerminator, 0, 0, 0}) 693 } else { 694 engine.instr = make([]encInstr, 1) 695 op, indir := enc.encOpFor(rt, seen) 696 engine.instr[0] = encInstr{*op, singletonField, indir, 0} // offset is zero 697 } 698 return engine 699 } 700 701 // getEncEngine returns the engine to compile the type. 702 // typeLock must be held (or we're in initialization and guaranteed single-threaded). 703 func (enc *Encoder) getEncEngine(ut *userTypeInfo) *encEngine { 704 info, err1 := getTypeInfo(ut) 705 if err1 != nil { 706 error_(err1) 707 } 708 if info.encoder == nil { 709 // Assign the encEngine now, so recursive types work correctly. But... 710 info.encoder = new(encEngine) 711 // ... if we fail to complete building the engine, don't cache the half-built machine. 712 // Doing this here means we won't cache a type that is itself OK but 713 // that contains a nested type that won't compile. The result is consistent 714 // error behavior when Encode is called multiple times on the top-level type. 715 ok := false 716 defer func() { 717 if !ok { 718 info.encoder = nil 719 } 720 }() 721 info.encoder = enc.compileEnc(ut) 722 ok = true 723 } 724 return info.encoder 725 } 726 727 // lockAndGetEncEngine is a function that locks and compiles. 728 // This lets us hold the lock only while compiling, not when encoding. 729 func (enc *Encoder) lockAndGetEncEngine(ut *userTypeInfo) *encEngine { 730 typeLock.Lock() 731 defer typeLock.Unlock() 732 return enc.getEncEngine(ut) 733 } 734 735 func (enc *Encoder) encode(b *bytes.Buffer, value reflect.Value, ut *userTypeInfo) { 736 defer catchError(&enc.err) 737 engine := enc.lockAndGetEncEngine(ut) 738 indir := ut.indir 739 if ut.isGobEncoder { 740 indir = int(ut.encIndir) 741 } 742 for i := 0; i < indir; i++ { 743 value = reflect.Indirect(value) 744 } 745 if !ut.isGobEncoder && value.Type().Kind() == reflect.Struct { 746 enc.encodeStruct(b, engine, unsafeAddr(value)) 747 } else { 748 enc.encodeSingle(b, engine, unsafeAddr(value)) 749 } 750 }