github.com/xushiwei/go@v0.0.0-20130601165731-2b9d83f45bc9/src/pkg/image/jpeg/reader.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package jpeg implements a JPEG image decoder and encoder.
     6  //
     7  // JPEG is defined in ITU-T T.81: http://www.w3.org/Graphics/JPEG/itu-t81.pdf.
     8  package jpeg
     9  
    10  import (
    11  	"bufio"
    12  	"image"
    13  	"image/color"
    14  	"io"
    15  )
    16  
    17  // TODO(nigeltao): fix up the doc comment style so that sentences start with
    18  // the name of the type or function that they annotate.
    19  
    20  // A FormatError reports that the input is not a valid JPEG.
    21  type FormatError string
    22  
    23  func (e FormatError) Error() string { return "invalid JPEG format: " + string(e) }
    24  
    25  // An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature.
    26  type UnsupportedError string
    27  
    28  func (e UnsupportedError) Error() string { return "unsupported JPEG feature: " + string(e) }
    29  
    30  // Component specification, specified in section B.2.2.
    31  type component struct {
    32  	h  int   // Horizontal sampling factor.
    33  	v  int   // Vertical sampling factor.
    34  	c  uint8 // Component identifier.
    35  	tq uint8 // Quantization table destination selector.
    36  }
    37  
    38  const (
    39  	dcTable = 0
    40  	acTable = 1
    41  	maxTc   = 1
    42  	maxTh   = 3
    43  	maxTq   = 3
    44  
    45  	// A grayscale JPEG image has only a Y component.
    46  	nGrayComponent = 1
    47  	// A color JPEG image has Y, Cb and Cr components.
    48  	nColorComponent = 3
    49  
    50  	// We only support 4:4:4, 4:4:0, 4:2:2 and 4:2:0 downsampling, and therefore the
    51  	// number of luma samples per chroma sample is at most 2 in the horizontal
    52  	// and 2 in the vertical direction.
    53  	maxH = 2
    54  	maxV = 2
    55  )
    56  
    57  const (
    58  	soiMarker   = 0xd8 // Start Of Image.
    59  	eoiMarker   = 0xd9 // End Of Image.
    60  	sof0Marker  = 0xc0 // Start Of Frame (Baseline).
    61  	sof2Marker  = 0xc2 // Start Of Frame (Progressive).
    62  	dhtMarker   = 0xc4 // Define Huffman Table.
    63  	dqtMarker   = 0xdb // Define Quantization Table.
    64  	sosMarker   = 0xda // Start Of Scan.
    65  	driMarker   = 0xdd // Define Restart Interval.
    66  	rst0Marker  = 0xd0 // ReSTart (0).
    67  	rst7Marker  = 0xd7 // ReSTart (7).
    68  	app0Marker  = 0xe0 // APPlication specific (0).
    69  	app15Marker = 0xef // APPlication specific (15).
    70  	comMarker   = 0xfe // COMment.
    71  )
    72  
    73  // unzig maps from the zig-zag ordering to the natural ordering. For example,
    74  // unzig[3] is the column and row of the fourth element in zig-zag order. The
    75  // value is 16, which means first column (16%8 == 0) and third row (16/8 == 2).
    76  var unzig = [blockSize]int{
    77  	0, 1, 8, 16, 9, 2, 3, 10,
    78  	17, 24, 32, 25, 18, 11, 4, 5,
    79  	12, 19, 26, 33, 40, 48, 41, 34,
    80  	27, 20, 13, 6, 7, 14, 21, 28,
    81  	35, 42, 49, 56, 57, 50, 43, 36,
    82  	29, 22, 15, 23, 30, 37, 44, 51,
    83  	58, 59, 52, 45, 38, 31, 39, 46,
    84  	53, 60, 61, 54, 47, 55, 62, 63,
    85  }
    86  
    87  // If the passed in io.Reader does not also have ReadByte, then Decode will introduce its own buffering.
    88  type Reader interface {
    89  	io.Reader
    90  	ReadByte() (c byte, err error)
    91  }
    92  
    93  type decoder struct {
    94  	r             Reader
    95  	b             bits
    96  	width, height int
    97  	img1          *image.Gray
    98  	img3          *image.YCbCr
    99  	ri            int // Restart Interval.
   100  	nComp         int
   101  	progressive   bool
   102  	eobRun        uint16 // End-of-Band run, specified in section G.1.2.2.
   103  	comp          [nColorComponent]component
   104  	progCoeffs    [nColorComponent][]block // Saved state between progressive-mode scans.
   105  	huff          [maxTc + 1][maxTh + 1]huffman
   106  	quant         [maxTq + 1]block // Quantization tables, in zig-zag order.
   107  	tmp           [1024]byte
   108  }
   109  
   110  // Reads and ignores the next n bytes.
   111  func (d *decoder) ignore(n int) error {
   112  	for n > 0 {
   113  		m := len(d.tmp)
   114  		if m > n {
   115  			m = n
   116  		}
   117  		_, err := io.ReadFull(d.r, d.tmp[0:m])
   118  		if err != nil {
   119  			return err
   120  		}
   121  		n -= m
   122  	}
   123  	return nil
   124  }
   125  
   126  // Specified in section B.2.2.
   127  func (d *decoder) processSOF(n int, configOnly bool) error {
   128  	switch n {
   129  	case 6 + 3*nGrayComponent:
   130  		d.nComp = nGrayComponent
   131  	case 6 + 3*nColorComponent:
   132  		d.nComp = nColorComponent
   133  	default:
   134  		return UnsupportedError("SOF has wrong length")
   135  	}
   136  	_, err := io.ReadFull(d.r, d.tmp[:n])
   137  	if err != nil {
   138  		return err
   139  	}
   140  	// We only support 8-bit precision.
   141  	if d.tmp[0] != 8 {
   142  		return UnsupportedError("precision")
   143  	}
   144  	d.height = int(d.tmp[1])<<8 + int(d.tmp[2])
   145  	d.width = int(d.tmp[3])<<8 + int(d.tmp[4])
   146  	if int(d.tmp[5]) != d.nComp {
   147  		return UnsupportedError("SOF has wrong number of image components")
   148  	}
   149  	if configOnly {
   150  		return nil
   151  	}
   152  	for i := 0; i < d.nComp; i++ {
   153  		d.comp[i].c = d.tmp[6+3*i]
   154  		d.comp[i].tq = d.tmp[8+3*i]
   155  		if d.nComp == nGrayComponent {
   156  			// If a JPEG image has only one component, section A.2 says "this data
   157  			// is non-interleaved by definition" and section A.2.2 says "[in this
   158  			// case...] the order of data units within a scan shall be left-to-right
   159  			// and top-to-bottom... regardless of the values of H_1 and V_1". Section
   160  			// 4.8.2 also says "[for non-interleaved data], the MCU is defined to be
   161  			// one data unit". Similarly, section A.1.1 explains that it is the ratio
   162  			// of H_i to max_j(H_j) that matters, and similarly for V. For grayscale
   163  			// images, H_1 is the maximum H_j for all components j, so that ratio is
   164  			// always 1. The component's (h, v) is effectively always (1, 1): even if
   165  			// the nominal (h, v) is (2, 1), a 20x5 image is encoded in three 8x8
   166  			// MCUs, not two 16x8 MCUs.
   167  			d.comp[i].h = 1
   168  			d.comp[i].v = 1
   169  			continue
   170  		}
   171  		hv := d.tmp[7+3*i]
   172  		d.comp[i].h = int(hv >> 4)
   173  		d.comp[i].v = int(hv & 0x0f)
   174  		// For color images, we only support 4:4:4, 4:4:0, 4:2:2 or 4:2:0 chroma
   175  		// downsampling ratios. This implies that the (h, v) values for the Y
   176  		// component are either (1, 1), (1, 2), (2, 1) or (2, 2), and the (h, v)
   177  		// values for the Cr and Cb components must be (1, 1).
   178  		if i == 0 {
   179  			if hv != 0x11 && hv != 0x21 && hv != 0x22 && hv != 0x12 {
   180  				return UnsupportedError("luma downsample ratio")
   181  			}
   182  		} else if hv != 0x11 {
   183  			return UnsupportedError("chroma downsample ratio")
   184  		}
   185  	}
   186  	return nil
   187  }
   188  
   189  // Specified in section B.2.4.1.
   190  func (d *decoder) processDQT(n int) error {
   191  	const qtLength = 1 + blockSize
   192  	for ; n >= qtLength; n -= qtLength {
   193  		_, err := io.ReadFull(d.r, d.tmp[0:qtLength])
   194  		if err != nil {
   195  			return err
   196  		}
   197  		pq := d.tmp[0] >> 4
   198  		if pq != 0 {
   199  			return UnsupportedError("bad Pq value")
   200  		}
   201  		tq := d.tmp[0] & 0x0f
   202  		if tq > maxTq {
   203  			return FormatError("bad Tq value")
   204  		}
   205  		for i := range d.quant[tq] {
   206  			d.quant[tq][i] = int32(d.tmp[i+1])
   207  		}
   208  	}
   209  	if n != 0 {
   210  		return FormatError("DQT has wrong length")
   211  	}
   212  	return nil
   213  }
   214  
   215  // Specified in section B.2.4.4.
   216  func (d *decoder) processDRI(n int) error {
   217  	if n != 2 {
   218  		return FormatError("DRI has wrong length")
   219  	}
   220  	_, err := io.ReadFull(d.r, d.tmp[0:2])
   221  	if err != nil {
   222  		return err
   223  	}
   224  	d.ri = int(d.tmp[0])<<8 + int(d.tmp[1])
   225  	return nil
   226  }
   227  
   228  // decode reads a JPEG image from r and returns it as an image.Image.
   229  func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, error) {
   230  	if rr, ok := r.(Reader); ok {
   231  		d.r = rr
   232  	} else {
   233  		d.r = bufio.NewReader(r)
   234  	}
   235  
   236  	// Check for the Start Of Image marker.
   237  	_, err := io.ReadFull(d.r, d.tmp[0:2])
   238  	if err != nil {
   239  		return nil, err
   240  	}
   241  	if d.tmp[0] != 0xff || d.tmp[1] != soiMarker {
   242  		return nil, FormatError("missing SOI marker")
   243  	}
   244  
   245  	// Process the remaining segments until the End Of Image marker.
   246  	for {
   247  		_, err := io.ReadFull(d.r, d.tmp[0:2])
   248  		if err != nil {
   249  			return nil, err
   250  		}
   251  		for d.tmp[0] != 0xff {
   252  			// Strictly speaking, this is a format error. However, libjpeg is
   253  			// liberal in what it accepts. As of version 9, next_marker in
   254  			// jdmarker.c treats this as a warning (JWRN_EXTRANEOUS_DATA) and
   255  			// continues to decode the stream. Even before next_marker sees
   256  			// extraneous data, jpeg_fill_bit_buffer in jdhuff.c reads as many
   257  			// bytes as it can, possibly past the end of a scan's data. It
   258  			// effectively puts back any markers that it overscanned (e.g. an
   259  			// "\xff\xd9" EOI marker), but it does not put back non-marker data,
   260  			// and thus it can silently ignore a small number of extraneous
   261  			// non-marker bytes before next_marker has a chance to see them (and
   262  			// print a warning).
   263  			//
   264  			// We are therefore also liberal in what we accept. Extraneous data
   265  			// is silently ignored.
   266  			//
   267  			// This is similar to, but not exactly the same as, the restart
   268  			// mechanism within a scan (the RST[0-7] markers).
   269  			//
   270  			// Note that extraneous 0xff bytes in e.g. SOS data are escaped as
   271  			// "\xff\x00", and so are detected a little further down below.
   272  			d.tmp[0] = d.tmp[1]
   273  			d.tmp[1], err = d.r.ReadByte()
   274  			if err != nil {
   275  				return nil, err
   276  			}
   277  		}
   278  		marker := d.tmp[1]
   279  		if marker == 0 {
   280  			// Treat "\xff\x00" as extraneous data.
   281  			continue
   282  		}
   283  		for marker == 0xff {
   284  			// Section B.1.1.2 says, "Any marker may optionally be preceded by any
   285  			// number of fill bytes, which are bytes assigned code X'FF'".
   286  			marker, err = d.r.ReadByte()
   287  			if err != nil {
   288  				return nil, err
   289  			}
   290  		}
   291  		if marker == eoiMarker { // End Of Image.
   292  			break
   293  		}
   294  		if rst0Marker <= marker && marker <= rst7Marker {
   295  			// Figures B.2 and B.16 of the specification suggest that restart markers should
   296  			// only occur between Entropy Coded Segments and not after the final ECS.
   297  			// However, some encoders may generate incorrect JPEGs with a final restart
   298  			// marker. That restart marker will be seen here instead of inside the processSOS
   299  			// method, and is ignored as a harmless error. Restart markers have no extra data,
   300  			// so we check for this before we read the 16-bit length of the segment.
   301  			continue
   302  		}
   303  
   304  		// Read the 16-bit length of the segment. The value includes the 2 bytes for the
   305  		// length itself, so we subtract 2 to get the number of remaining bytes.
   306  		_, err = io.ReadFull(d.r, d.tmp[0:2])
   307  		if err != nil {
   308  			return nil, err
   309  		}
   310  		n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2
   311  		if n < 0 {
   312  			return nil, FormatError("short segment length")
   313  		}
   314  
   315  		switch {
   316  		case marker == sof0Marker || marker == sof2Marker: // Start Of Frame.
   317  			d.progressive = marker == sof2Marker
   318  			err = d.processSOF(n, configOnly)
   319  			if configOnly {
   320  				return nil, err
   321  			}
   322  		case marker == dhtMarker: // Define Huffman Table.
   323  			err = d.processDHT(n)
   324  		case marker == dqtMarker: // Define Quantization Table.
   325  			err = d.processDQT(n)
   326  		case marker == sosMarker: // Start Of Scan.
   327  			err = d.processSOS(n)
   328  		case marker == driMarker: // Define Restart Interval.
   329  			err = d.processDRI(n)
   330  		case app0Marker <= marker && marker <= app15Marker || marker == comMarker: // APPlication specific, or COMment.
   331  			err = d.ignore(n)
   332  		default:
   333  			err = UnsupportedError("unknown marker")
   334  		}
   335  		if err != nil {
   336  			return nil, err
   337  		}
   338  	}
   339  	if d.img1 != nil {
   340  		return d.img1, nil
   341  	}
   342  	if d.img3 != nil {
   343  		return d.img3, nil
   344  	}
   345  	return nil, FormatError("missing SOS marker")
   346  }
   347  
   348  // Decode reads a JPEG image from r and returns it as an image.Image.
   349  func Decode(r io.Reader) (image.Image, error) {
   350  	var d decoder
   351  	return d.decode(r, false)
   352  }
   353  
   354  // DecodeConfig returns the color model and dimensions of a JPEG image without
   355  // decoding the entire image.
   356  func DecodeConfig(r io.Reader) (image.Config, error) {
   357  	var d decoder
   358  	if _, err := d.decode(r, true); err != nil {
   359  		return image.Config{}, err
   360  	}
   361  	switch d.nComp {
   362  	case nGrayComponent:
   363  		return image.Config{
   364  			ColorModel: color.GrayModel,
   365  			Width:      d.width,
   366  			Height:     d.height,
   367  		}, nil
   368  	case nColorComponent:
   369  		return image.Config{
   370  			ColorModel: color.YCbCrModel,
   371  			Width:      d.width,
   372  			Height:     d.height,
   373  		}, nil
   374  	}
   375  	return image.Config{}, FormatError("missing SOF marker")
   376  }
   377  
   378  func init() {
   379  	image.RegisterFormat("jpeg", "\xff\xd8", Decode, DecodeConfig)
   380  }