github.com/xushiwei/go@v0.0.0-20130601165731-2b9d83f45bc9/src/pkg/runtime/slice.c (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 #include "runtime.h" 6 #include "arch_GOARCH.h" 7 #include "type.h" 8 #include "typekind.h" 9 #include "malloc.h" 10 #include "race.h" 11 12 static bool debug = 0; 13 14 static void makeslice1(SliceType*, intgo, intgo, Slice*); 15 static void growslice1(SliceType*, Slice, intgo, Slice *); 16 void runtime·copy(Slice to, Slice fm, uintptr width, intgo ret); 17 18 // see also unsafe·NewArray 19 // makeslice(typ *Type, len, cap int64) (ary []any); 20 void 21 runtime·makeslice(SliceType *t, int64 len, int64 cap, Slice ret) 22 { 23 // NOTE: The len > MaxMem/elemsize check here is not strictly necessary, 24 // but it produces a 'len out of range' error instead of a 'cap out of range' error 25 // when someone does make([]T, bignumber). 'cap out of range' is true too, 26 // but since the cap is only being supplied implicitly, saying len is clearer. 27 // See issue 4085. 28 if(len < 0 || (intgo)len != len || t->elem->size > 0 && len > MaxMem / t->elem->size) 29 runtime·panicstring("makeslice: len out of range"); 30 31 if(cap < len || (intgo)cap != cap || t->elem->size > 0 && cap > MaxMem / t->elem->size) 32 runtime·panicstring("makeslice: cap out of range"); 33 34 makeslice1(t, len, cap, &ret); 35 36 if(debug) { 37 runtime·printf("makeslice(%S, %D, %D); ret=", 38 *t->string, len, cap); 39 runtime·printslice(ret); 40 } 41 } 42 43 // Dummy word to use as base pointer for make([]T, 0). 44 // Since you cannot take the address of such a slice, 45 // you can't tell that they all have the same base pointer. 46 uintptr runtime·zerobase; 47 48 static void 49 makeslice1(SliceType *t, intgo len, intgo cap, Slice *ret) 50 { 51 uintptr size; 52 53 size = cap*t->elem->size; 54 55 ret->len = len; 56 ret->cap = cap; 57 58 if(size == 0) 59 ret->array = (byte*)&runtime·zerobase; 60 else if((t->elem->kind&KindNoPointers)) 61 ret->array = runtime·mallocgc(size, FlagNoPointers, 1, 1); 62 else { 63 ret->array = runtime·mallocgc(size, 0, 1, 1); 64 65 if(UseSpanType) { 66 if(false) { 67 runtime·printf("new slice [%D]%S: %p\n", (int64)cap, *t->elem->string, ret->array); 68 } 69 runtime·settype(ret->array, (uintptr)t->elem | TypeInfo_Array); 70 } 71 } 72 } 73 74 // appendslice(type *Type, x, y, []T) []T 75 #pragma textflag 7 76 void 77 runtime·appendslice(SliceType *t, Slice x, Slice y, Slice ret) 78 { 79 intgo m; 80 uintptr w; 81 void *pc; 82 uint8 *p, *q; 83 84 m = x.len+y.len; 85 w = t->elem->size; 86 87 if(m < x.len) 88 runtime·throw("append: slice overflow"); 89 90 if(m > x.cap) 91 growslice1(t, x, m, &ret); 92 else 93 ret = x; 94 95 if(raceenabled) { 96 // Don't mark read/writes on the newly allocated slice. 97 pc = runtime·getcallerpc(&t); 98 // read x[:len] 99 if(m > x.cap) 100 runtime·racereadrangepc(x.array, x.len*w, w, pc, runtime·appendslice); 101 // read y 102 runtime·racereadrangepc(y.array, y.len*w, w, pc, runtime·appendslice); 103 // write x[len(x):len(x)+len(y)] 104 if(m <= x.cap) 105 runtime·racewriterangepc(ret.array+ret.len*w, y.len*w, w, pc, runtime·appendslice); 106 } 107 108 // A very common case is appending bytes. Small appends can avoid the overhead of memmove. 109 // We can generalize a bit here, and just pick small-sized appends. 110 p = ret.array+ret.len*w; 111 q = y.array; 112 w *= y.len; 113 if(w <= appendCrossover) { 114 if(p <= q || w <= p-q) // No overlap. 115 while(w-- > 0) 116 *p++ = *q++; 117 else { 118 p += w; 119 q += w; 120 while(w-- > 0) 121 *--p = *--q; 122 } 123 } else { 124 runtime·memmove(p, q, w); 125 } 126 ret.len += y.len; 127 FLUSH(&ret); 128 } 129 130 131 // appendstr([]byte, string) []byte 132 #pragma textflag 7 133 void 134 runtime·appendstr(SliceType *t, Slice x, String y, Slice ret) 135 { 136 intgo m; 137 void *pc; 138 uintptr w; 139 uint8 *p, *q; 140 141 m = x.len+y.len; 142 143 if(m < x.len) 144 runtime·throw("append: string overflow"); 145 146 if(m > x.cap) 147 growslice1(t, x, m, &ret); 148 else 149 ret = x; 150 151 if(raceenabled) { 152 // Don't mark read/writes on the newly allocated slice. 153 pc = runtime·getcallerpc(&t); 154 // read x[:len] 155 if(m > x.cap) 156 runtime·racereadrangepc(x.array, x.len, 1, pc, runtime·appendstr); 157 // write x[len(x):len(x)+len(y)] 158 if(m <= x.cap) 159 runtime·racewriterangepc(ret.array+ret.len, y.len, 1, pc, runtime·appendstr); 160 } 161 162 // Small appends can avoid the overhead of memmove. 163 w = y.len; 164 p = ret.array+ret.len; 165 q = y.str; 166 if(w <= appendCrossover) { 167 while(w-- > 0) 168 *p++ = *q++; 169 } else { 170 runtime·memmove(p, q, w); 171 } 172 ret.len += y.len; 173 FLUSH(&ret); 174 } 175 176 177 // growslice(type *Type, x, []T, n int64) []T 178 void 179 runtime·growslice(SliceType *t, Slice old, int64 n, Slice ret) 180 { 181 int64 cap; 182 void *pc; 183 184 if(n < 1) 185 runtime·panicstring("growslice: invalid n"); 186 187 cap = old.cap + n; 188 189 if((intgo)cap != cap || cap < old.cap || (t->elem->size > 0 && cap > MaxMem/t->elem->size)) 190 runtime·panicstring("growslice: cap out of range"); 191 192 if(raceenabled) { 193 pc = runtime·getcallerpc(&t); 194 runtime·racereadrangepc(old.array, old.len*t->elem->size, t->elem->size, pc, runtime·growslice); 195 } 196 197 growslice1(t, old, cap, &ret); 198 199 FLUSH(&ret); 200 201 if(debug) { 202 runtime·printf("growslice(%S,", *t->string); 203 runtime·printslice(old); 204 runtime·printf(", new cap=%D) =", cap); 205 runtime·printslice(ret); 206 } 207 } 208 209 static void 210 growslice1(SliceType *t, Slice x, intgo newcap, Slice *ret) 211 { 212 intgo m; 213 214 m = x.cap; 215 216 // Using newcap directly for m+m < newcap handles 217 // both the case where m == 0 and also the case where 218 // m+m/4 wraps around, in which case the loop 219 // below might never terminate. 220 if(m+m < newcap) 221 m = newcap; 222 else { 223 do { 224 if(x.len < 1024) 225 m += m; 226 else 227 m += m/4; 228 } while(m < newcap); 229 } 230 makeslice1(t, x.len, m, ret); 231 runtime·memmove(ret->array, x.array, ret->len * t->elem->size); 232 } 233 234 // copy(to any, fr any, wid uintptr) int 235 #pragma textflag 7 236 void 237 runtime·copy(Slice to, Slice fm, uintptr width, intgo ret) 238 { 239 void *pc; 240 241 if(fm.len == 0 || to.len == 0 || width == 0) { 242 ret = 0; 243 goto out; 244 } 245 246 ret = fm.len; 247 if(to.len < ret) 248 ret = to.len; 249 250 if(raceenabled) { 251 pc = runtime·getcallerpc(&to); 252 runtime·racewriterangepc(to.array, ret*width, width, pc, runtime·copy); 253 runtime·racereadrangepc(fm.array, ret*width, width, pc, runtime·copy); 254 } 255 256 if(ret == 1 && width == 1) { // common case worth about 2x to do here 257 *to.array = *fm.array; // known to be a byte pointer 258 } else { 259 runtime·memmove(to.array, fm.array, ret*width); 260 } 261 262 out: 263 FLUSH(&ret); 264 265 if(debug) { 266 runtime·prints("main·copy: to="); 267 runtime·printslice(to); 268 runtime·prints("; fm="); 269 runtime·printslice(fm); 270 runtime·prints("; width="); 271 runtime·printint(width); 272 runtime·prints("; ret="); 273 runtime·printint(ret); 274 runtime·prints("\n"); 275 } 276 } 277 278 #pragma textflag 7 279 void 280 runtime·slicestringcopy(Slice to, String fm, intgo ret) 281 { 282 void *pc; 283 284 if(fm.len == 0 || to.len == 0) { 285 ret = 0; 286 goto out; 287 } 288 289 ret = fm.len; 290 if(to.len < ret) 291 ret = to.len; 292 293 if(raceenabled) { 294 pc = runtime·getcallerpc(&to); 295 runtime·racewriterangepc(to.array, ret, 1, pc, runtime·slicestringcopy); 296 } 297 298 runtime·memmove(to.array, fm.str, ret); 299 300 out: 301 FLUSH(&ret); 302 } 303 304 void 305 runtime·printslice(Slice a) 306 { 307 runtime·prints("["); 308 runtime·printint(a.len); 309 runtime·prints("/"); 310 runtime·printint(a.cap); 311 runtime·prints("]"); 312 runtime·printpointer(a.array); 313 }