github.com/xushiwei/go@v0.0.0-20130601165731-2b9d83f45bc9/src/pkg/sort/sort.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package sort provides primitives for sorting slices and user-defined
     6  // collections.
     7  package sort
     8  
     9  // A type, typically a collection, that satisfies sort.Interface can be
    10  // sorted by the routines in this package.  The methods require that the
    11  // elements of the collection be enumerated by an integer index.
    12  type Interface interface {
    13  	// Len is the number of elements in the collection.
    14  	Len() int
    15  	// Less returns whether the element with index i should sort
    16  	// before the element with index j.
    17  	Less(i, j int) bool
    18  	// Swap swaps the elements with indexes i and j.
    19  	Swap(i, j int)
    20  }
    21  
    22  func min(a, b int) int {
    23  	if a < b {
    24  		return a
    25  	}
    26  	return b
    27  }
    28  
    29  // Insertion sort
    30  func insertionSort(data Interface, a, b int) {
    31  	for i := a + 1; i < b; i++ {
    32  		for j := i; j > a && data.Less(j, j-1); j-- {
    33  			data.Swap(j, j-1)
    34  		}
    35  	}
    36  }
    37  
    38  // siftDown implements the heap property on data[lo, hi).
    39  // first is an offset into the array where the root of the heap lies.
    40  func siftDown(data Interface, lo, hi, first int) {
    41  	root := lo
    42  	for {
    43  		child := 2*root + 1
    44  		if child >= hi {
    45  			break
    46  		}
    47  		if child+1 < hi && data.Less(first+child, first+child+1) {
    48  			child++
    49  		}
    50  		if !data.Less(first+root, first+child) {
    51  			return
    52  		}
    53  		data.Swap(first+root, first+child)
    54  		root = child
    55  	}
    56  }
    57  
    58  func heapSort(data Interface, a, b int) {
    59  	first := a
    60  	lo := 0
    61  	hi := b - a
    62  
    63  	// Build heap with greatest element at top.
    64  	for i := (hi - 1) / 2; i >= 0; i-- {
    65  		siftDown(data, i, hi, first)
    66  	}
    67  
    68  	// Pop elements, largest first, into end of data.
    69  	for i := hi - 1; i >= 0; i-- {
    70  		data.Swap(first, first+i)
    71  		siftDown(data, lo, i, first)
    72  	}
    73  }
    74  
    75  // Quicksort, following Bentley and McIlroy,
    76  // ``Engineering a Sort Function,'' SP&E November 1993.
    77  
    78  // medianOfThree moves the median of the three values data[a], data[b], data[c] into data[a].
    79  func medianOfThree(data Interface, a, b, c int) {
    80  	m0 := b
    81  	m1 := a
    82  	m2 := c
    83  	// bubble sort on 3 elements
    84  	if data.Less(m1, m0) {
    85  		data.Swap(m1, m0)
    86  	}
    87  	if data.Less(m2, m1) {
    88  		data.Swap(m2, m1)
    89  	}
    90  	if data.Less(m1, m0) {
    91  		data.Swap(m1, m0)
    92  	}
    93  	// now data[m0] <= data[m1] <= data[m2]
    94  }
    95  
    96  func swapRange(data Interface, a, b, n int) {
    97  	for i := 0; i < n; i++ {
    98  		data.Swap(a+i, b+i)
    99  	}
   100  }
   101  
   102  func doPivot(data Interface, lo, hi int) (midlo, midhi int) {
   103  	m := lo + (hi-lo)/2 // Written like this to avoid integer overflow.
   104  	if hi-lo > 40 {
   105  		// Tukey's ``Ninther,'' median of three medians of three.
   106  		s := (hi - lo) / 8
   107  		medianOfThree(data, lo, lo+s, lo+2*s)
   108  		medianOfThree(data, m, m-s, m+s)
   109  		medianOfThree(data, hi-1, hi-1-s, hi-1-2*s)
   110  	}
   111  	medianOfThree(data, lo, m, hi-1)
   112  
   113  	// Invariants are:
   114  	//	data[lo] = pivot (set up by ChoosePivot)
   115  	//	data[lo <= i < a] = pivot
   116  	//	data[a <= i < b] < pivot
   117  	//	data[b <= i < c] is unexamined
   118  	//	data[c <= i < d] > pivot
   119  	//	data[d <= i < hi] = pivot
   120  	//
   121  	// Once b meets c, can swap the "= pivot" sections
   122  	// into the middle of the slice.
   123  	pivot := lo
   124  	a, b, c, d := lo+1, lo+1, hi, hi
   125  	for {
   126  		for b < c {
   127  			if data.Less(b, pivot) { // data[b] < pivot
   128  				b++
   129  			} else if !data.Less(pivot, b) { // data[b] = pivot
   130  				data.Swap(a, b)
   131  				a++
   132  				b++
   133  			} else {
   134  				break
   135  			}
   136  		}
   137  		for b < c {
   138  			if data.Less(pivot, c-1) { // data[c-1] > pivot
   139  				c--
   140  			} else if !data.Less(c-1, pivot) { // data[c-1] = pivot
   141  				data.Swap(c-1, d-1)
   142  				c--
   143  				d--
   144  			} else {
   145  				break
   146  			}
   147  		}
   148  		if b >= c {
   149  			break
   150  		}
   151  		// data[b] > pivot; data[c-1] < pivot
   152  		data.Swap(b, c-1)
   153  		b++
   154  		c--
   155  	}
   156  
   157  	n := min(b-a, a-lo)
   158  	swapRange(data, lo, b-n, n)
   159  
   160  	n = min(hi-d, d-c)
   161  	swapRange(data, c, hi-n, n)
   162  
   163  	return lo + b - a, hi - (d - c)
   164  }
   165  
   166  func quickSort(data Interface, a, b, maxDepth int) {
   167  	for b-a > 7 {
   168  		if maxDepth == 0 {
   169  			heapSort(data, a, b)
   170  			return
   171  		}
   172  		maxDepth--
   173  		mlo, mhi := doPivot(data, a, b)
   174  		// Avoiding recursion on the larger subproblem guarantees
   175  		// a stack depth of at most lg(b-a).
   176  		if mlo-a < b-mhi {
   177  			quickSort(data, a, mlo, maxDepth)
   178  			a = mhi // i.e., quickSort(data, mhi, b)
   179  		} else {
   180  			quickSort(data, mhi, b, maxDepth)
   181  			b = mlo // i.e., quickSort(data, a, mlo)
   182  		}
   183  	}
   184  	if b-a > 1 {
   185  		insertionSort(data, a, b)
   186  	}
   187  }
   188  
   189  // Sort sorts data.
   190  // It makes one call to data.Len to determine n, and O(n*log(n)) calls to
   191  // data.Less and data.Swap. The sort is not guaranteed to be stable.
   192  func Sort(data Interface) {
   193  	// Switch to heapsort if depth of 2*ceil(lg(n+1)) is reached.
   194  	n := data.Len()
   195  	maxDepth := 0
   196  	for i := n; i > 0; i >>= 1 {
   197  		maxDepth++
   198  	}
   199  	maxDepth *= 2
   200  	quickSort(data, 0, n, maxDepth)
   201  }
   202  
   203  type reverse struct {
   204  	// This embedded Interface permits Reverse to use the methods of
   205  	// another Interface implementation.
   206  	Interface
   207  }
   208  
   209  // Less returns the opposite of the embedded implementation's Less method.
   210  func (r reverse) Less(i, j int) bool {
   211  	return r.Interface.Less(j, i)
   212  }
   213  
   214  // Reverse returns the reverse order for data.
   215  func Reverse(data Interface) Interface {
   216  	return &reverse{data}
   217  }
   218  
   219  // IsSorted reports whether data is sorted.
   220  func IsSorted(data Interface) bool {
   221  	n := data.Len()
   222  	for i := n - 1; i > 0; i-- {
   223  		if data.Less(i, i-1) {
   224  			return false
   225  		}
   226  	}
   227  	return true
   228  }
   229  
   230  // Convenience types for common cases
   231  
   232  // IntSlice attaches the methods of Interface to []int, sorting in increasing order.
   233  type IntSlice []int
   234  
   235  func (p IntSlice) Len() int           { return len(p) }
   236  func (p IntSlice) Less(i, j int) bool { return p[i] < p[j] }
   237  func (p IntSlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }
   238  
   239  // Sort is a convenience method.
   240  func (p IntSlice) Sort() { Sort(p) }
   241  
   242  // Float64Slice attaches the methods of Interface to []float64, sorting in increasing order.
   243  type Float64Slice []float64
   244  
   245  func (p Float64Slice) Len() int           { return len(p) }
   246  func (p Float64Slice) Less(i, j int) bool { return p[i] < p[j] || isNaN(p[i]) && !isNaN(p[j]) }
   247  func (p Float64Slice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }
   248  
   249  // isNaN is a copy of math.IsNaN to avoid a dependency on the math package.
   250  func isNaN(f float64) bool {
   251  	return f != f
   252  }
   253  
   254  // Sort is a convenience method.
   255  func (p Float64Slice) Sort() { Sort(p) }
   256  
   257  // StringSlice attaches the methods of Interface to []string, sorting in increasing order.
   258  type StringSlice []string
   259  
   260  func (p StringSlice) Len() int           { return len(p) }
   261  func (p StringSlice) Less(i, j int) bool { return p[i] < p[j] }
   262  func (p StringSlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }
   263  
   264  // Sort is a convenience method.
   265  func (p StringSlice) Sort() { Sort(p) }
   266  
   267  // Convenience wrappers for common cases
   268  
   269  // Ints sorts a slice of ints in increasing order.
   270  func Ints(a []int) { Sort(IntSlice(a)) }
   271  
   272  // Float64s sorts a slice of float64s in increasing order.
   273  func Float64s(a []float64) { Sort(Float64Slice(a)) }
   274  
   275  // Strings sorts a slice of strings in increasing order.
   276  func Strings(a []string) { Sort(StringSlice(a)) }
   277  
   278  // IntsAreSorted tests whether a slice of ints is sorted in increasing order.
   279  func IntsAreSorted(a []int) bool { return IsSorted(IntSlice(a)) }
   280  
   281  // Float64sAreSorted tests whether a slice of float64s is sorted in increasing order.
   282  func Float64sAreSorted(a []float64) bool { return IsSorted(Float64Slice(a)) }
   283  
   284  // StringsAreSorted tests whether a slice of strings is sorted in increasing order.
   285  func StringsAreSorted(a []string) bool { return IsSorted(StringSlice(a)) }