github.com/xushiwei/go@v0.0.0-20130601165731-2b9d83f45bc9/src/pkg/time/time.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package time provides functionality for measuring and displaying time.
     6  //
     7  // The calendrical calculations always assume a Gregorian calendar.
     8  package time
     9  
    10  import "errors"
    11  
    12  // A Time represents an instant in time with nanosecond precision.
    13  //
    14  // Programs using times should typically store and pass them as values,
    15  // not pointers.  That is, time variables and struct fields should be of
    16  // type time.Time, not *time.Time.  A Time value can be used by
    17  // multiple goroutines simultaneously.
    18  //
    19  // Time instants can be compared using the Before, After, and Equal methods.
    20  // The Sub method subtracts two instants, producing a Duration.
    21  // The Add method adds a Time and a Duration, producing a Time.
    22  //
    23  // The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC.
    24  // As this time is unlikely to come up in practice, the IsZero method gives
    25  // a simple way of detecting a time that has not been initialized explicitly.
    26  //
    27  // Each Time has associated with it a Location, consulted when computing the
    28  // presentation form of the time, such as in the Format, Hour, and Year methods.
    29  // The methods Local, UTC, and In return a Time with a specific location.
    30  // Changing the location in this way changes only the presentation; it does not
    31  // change the instant in time being denoted and therefore does not affect the
    32  // computations described in earlier paragraphs.
    33  //
    34  type Time struct {
    35  	// sec gives the number of seconds elapsed since
    36  	// January 1, year 1 00:00:00 UTC.
    37  	sec int64
    38  
    39  	// nsec specifies a non-negative nanosecond
    40  	// offset within the second named by Seconds.
    41  	// It must be in the range [0, 999999999].
    42  	nsec int32
    43  
    44  	// loc specifies the Location that should be used to
    45  	// determine the minute, hour, month, day, and year
    46  	// that correspond to this Time.
    47  	// Only the zero Time has a nil Location.
    48  	// In that case it is interpreted to mean UTC.
    49  	loc *Location
    50  }
    51  
    52  // After reports whether the time instant t is after u.
    53  func (t Time) After(u Time) bool {
    54  	return t.sec > u.sec || t.sec == u.sec && t.nsec > u.nsec
    55  }
    56  
    57  // Before reports whether the time instant t is before u.
    58  func (t Time) Before(u Time) bool {
    59  	return t.sec < u.sec || t.sec == u.sec && t.nsec < u.nsec
    60  }
    61  
    62  // Equal reports whether t and u represent the same time instant.
    63  // Two times can be equal even if they are in different locations.
    64  // For example, 6:00 +0200 CEST and 4:00 UTC are Equal.
    65  // This comparison is different from using t == u, which also compares
    66  // the locations.
    67  func (t Time) Equal(u Time) bool {
    68  	return t.sec == u.sec && t.nsec == u.nsec
    69  }
    70  
    71  // A Month specifies a month of the year (January = 1, ...).
    72  type Month int
    73  
    74  const (
    75  	January Month = 1 + iota
    76  	February
    77  	March
    78  	April
    79  	May
    80  	June
    81  	July
    82  	August
    83  	September
    84  	October
    85  	November
    86  	December
    87  )
    88  
    89  var months = [...]string{
    90  	"January",
    91  	"February",
    92  	"March",
    93  	"April",
    94  	"May",
    95  	"June",
    96  	"July",
    97  	"August",
    98  	"September",
    99  	"October",
   100  	"November",
   101  	"December",
   102  }
   103  
   104  // String returns the English name of the month ("January", "February", ...).
   105  func (m Month) String() string { return months[m-1] }
   106  
   107  // A Weekday specifies a day of the week (Sunday = 0, ...).
   108  type Weekday int
   109  
   110  const (
   111  	Sunday Weekday = iota
   112  	Monday
   113  	Tuesday
   114  	Wednesday
   115  	Thursday
   116  	Friday
   117  	Saturday
   118  )
   119  
   120  var days = [...]string{
   121  	"Sunday",
   122  	"Monday",
   123  	"Tuesday",
   124  	"Wednesday",
   125  	"Thursday",
   126  	"Friday",
   127  	"Saturday",
   128  }
   129  
   130  // String returns the English name of the day ("Sunday", "Monday", ...).
   131  func (d Weekday) String() string { return days[d] }
   132  
   133  // Computations on time.
   134  //
   135  // The zero value for a Time is defined to be
   136  //	January 1, year 1, 00:00:00.000000000 UTC
   137  // which (1) looks like a zero, or as close as you can get in a date
   138  // (1-1-1 00:00:00 UTC), (2) is unlikely enough to arise in practice to
   139  // be a suitable "not set" sentinel, unlike Jan 1 1970, and (3) has a
   140  // non-negative year even in time zones west of UTC, unlike 1-1-0
   141  // 00:00:00 UTC, which would be 12-31-(-1) 19:00:00 in New York.
   142  //
   143  // The zero Time value does not force a specific epoch for the time
   144  // representation.  For example, to use the Unix epoch internally, we
   145  // could define that to distinguish a zero value from Jan 1 1970, that
   146  // time would be represented by sec=-1, nsec=1e9.  However, it does
   147  // suggest a representation, namely using 1-1-1 00:00:00 UTC as the
   148  // epoch, and that's what we do.
   149  //
   150  // The Add and Sub computations are oblivious to the choice of epoch.
   151  //
   152  // The presentation computations - year, month, minute, and so on - all
   153  // rely heavily on division and modulus by positive constants.  For
   154  // calendrical calculations we want these divisions to round down, even
   155  // for negative values, so that the remainder is always positive, but
   156  // Go's division (like most hardware division instructions) rounds to
   157  // zero.  We can still do those computations and then adjust the result
   158  // for a negative numerator, but it's annoying to write the adjustment
   159  // over and over.  Instead, we can change to a different epoch so long
   160  // ago that all the times we care about will be positive, and then round
   161  // to zero and round down coincide.  These presentation routines already
   162  // have to add the zone offset, so adding the translation to the
   163  // alternate epoch is cheap.  For example, having a non-negative time t
   164  // means that we can write
   165  //
   166  //	sec = t % 60
   167  //
   168  // instead of
   169  //
   170  //	sec = t % 60
   171  //	if sec < 0 {
   172  //		sec += 60
   173  //	}
   174  //
   175  // everywhere.
   176  //
   177  // The calendar runs on an exact 400 year cycle: a 400-year calendar
   178  // printed for 1970-2469 will apply as well to 2470-2869.  Even the days
   179  // of the week match up.  It simplifies the computations to choose the
   180  // cycle boundaries so that the exceptional years are always delayed as
   181  // long as possible.  That means choosing a year equal to 1 mod 400, so
   182  // that the first leap year is the 4th year, the first missed leap year
   183  // is the 100th year, and the missed missed leap year is the 400th year.
   184  // So we'd prefer instead to print a calendar for 2001-2400 and reuse it
   185  // for 2401-2800.
   186  //
   187  // Finally, it's convenient if the delta between the Unix epoch and
   188  // long-ago epoch is representable by an int64 constant.
   189  //
   190  // These three considerations—choose an epoch as early as possible, that
   191  // uses a year equal to 1 mod 400, and that is no more than 2⁶³ seconds
   192  // earlier than 1970—bring us to the year -292277022399.  We refer to
   193  // this year as the absolute zero year, and to times measured as a uint64
   194  // seconds since this year as absolute times.
   195  //
   196  // Times measured as an int64 seconds since the year 1—the representation
   197  // used for Time's sec field—are called internal times.
   198  //
   199  // Times measured as an int64 seconds since the year 1970 are called Unix
   200  // times.
   201  //
   202  // It is tempting to just use the year 1 as the absolute epoch, defining
   203  // that the routines are only valid for years >= 1.  However, the
   204  // routines would then be invalid when displaying the epoch in time zones
   205  // west of UTC, since it is year 0.  It doesn't seem tenable to say that
   206  // printing the zero time correctly isn't supported in half the time
   207  // zones.  By comparison, it's reasonable to mishandle some times in
   208  // the year -292277022399.
   209  //
   210  // All this is opaque to clients of the API and can be changed if a
   211  // better implementation presents itself.
   212  
   213  const (
   214  	// The unsigned zero year for internal calculations.
   215  	// Must be 1 mod 400, and times before it will not compute correctly,
   216  	// but otherwise can be changed at will.
   217  	absoluteZeroYear = -292277022399
   218  
   219  	// The year of the zero Time.
   220  	// Assumed by the unixToInternal computation below.
   221  	internalYear = 1
   222  
   223  	// The year of the zero Unix time.
   224  	unixYear = 1970
   225  
   226  	// Offsets to convert between internal and absolute or Unix times.
   227  	absoluteToInternal int64 = (absoluteZeroYear - internalYear) * 365.2425 * secondsPerDay
   228  	internalToAbsolute       = -absoluteToInternal
   229  
   230  	unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay
   231  	internalToUnix int64 = -unixToInternal
   232  )
   233  
   234  // IsZero reports whether t represents the zero time instant,
   235  // January 1, year 1, 00:00:00 UTC.
   236  func (t Time) IsZero() bool {
   237  	return t.sec == 0 && t.nsec == 0
   238  }
   239  
   240  // abs returns the time t as an absolute time, adjusted by the zone offset.
   241  // It is called when computing a presentation property like Month or Hour.
   242  func (t Time) abs() uint64 {
   243  	l := t.loc
   244  	// Avoid function calls when possible.
   245  	if l == nil || l == &localLoc {
   246  		l = l.get()
   247  	}
   248  	sec := t.sec + internalToUnix
   249  	if l != &utcLoc {
   250  		if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
   251  			sec += int64(l.cacheZone.offset)
   252  		} else {
   253  			_, offset, _, _, _ := l.lookup(sec)
   254  			sec += int64(offset)
   255  		}
   256  	}
   257  	return uint64(sec + (unixToInternal + internalToAbsolute))
   258  }
   259  
   260  // locabs is a combination of the Zone and abs methods,
   261  // extracting both return values from a single zone lookup.
   262  func (t Time) locabs() (name string, offset int, abs uint64) {
   263  	l := t.loc
   264  	if l == nil || l == &localLoc {
   265  		l = l.get()
   266  	}
   267  	// Avoid function call if we hit the local time cache.
   268  	sec := t.sec + internalToUnix
   269  	if l != &utcLoc {
   270  		if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
   271  			name = l.cacheZone.name
   272  			offset = l.cacheZone.offset
   273  		} else {
   274  			name, offset, _, _, _ = l.lookup(sec)
   275  		}
   276  		sec += int64(offset)
   277  	} else {
   278  		name = "UTC"
   279  	}
   280  	abs = uint64(sec + (unixToInternal + internalToAbsolute))
   281  	return
   282  }
   283  
   284  // Date returns the year, month, and day in which t occurs.
   285  func (t Time) Date() (year int, month Month, day int) {
   286  	year, month, day, _ = t.date(true)
   287  	return
   288  }
   289  
   290  // Year returns the year in which t occurs.
   291  func (t Time) Year() int {
   292  	year, _, _, _ := t.date(false)
   293  	return year
   294  }
   295  
   296  // Month returns the month of the year specified by t.
   297  func (t Time) Month() Month {
   298  	_, month, _, _ := t.date(true)
   299  	return month
   300  }
   301  
   302  // Day returns the day of the month specified by t.
   303  func (t Time) Day() int {
   304  	_, _, day, _ := t.date(true)
   305  	return day
   306  }
   307  
   308  // Weekday returns the day of the week specified by t.
   309  func (t Time) Weekday() Weekday {
   310  	return absWeekday(t.abs())
   311  }
   312  
   313  // absWeekday is like Weekday but operates on an absolute time.
   314  func absWeekday(abs uint64) Weekday {
   315  	// January 1 of the absolute year, like January 1 of 2001, was a Monday.
   316  	sec := (abs + uint64(Monday)*secondsPerDay) % secondsPerWeek
   317  	return Weekday(int(sec) / secondsPerDay)
   318  }
   319  
   320  // ISOWeek returns the ISO 8601 year and week number in which t occurs.
   321  // Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to
   322  // week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1
   323  // of year n+1.
   324  func (t Time) ISOWeek() (year, week int) {
   325  	year, month, day, yday := t.date(true)
   326  	wday := int(t.Weekday()+6) % 7 // weekday but Monday = 0.
   327  	const (
   328  		Mon int = iota
   329  		Tue
   330  		Wed
   331  		Thu
   332  		Fri
   333  		Sat
   334  		Sun
   335  	)
   336  
   337  	// Calculate week as number of Mondays in year up to
   338  	// and including today, plus 1 because the first week is week 0.
   339  	// Putting the + 1 inside the numerator as a + 7 keeps the
   340  	// numerator from being negative, which would cause it to
   341  	// round incorrectly.
   342  	week = (yday - wday + 7) / 7
   343  
   344  	// The week number is now correct under the assumption
   345  	// that the first Monday of the year is in week 1.
   346  	// If Jan 1 is a Tuesday, Wednesday, or Thursday, the first Monday
   347  	// is actually in week 2.
   348  	jan1wday := (wday - yday + 7*53) % 7
   349  	if Tue <= jan1wday && jan1wday <= Thu {
   350  		week++
   351  	}
   352  
   353  	// If the week number is still 0, we're in early January but in
   354  	// the last week of last year.
   355  	if week == 0 {
   356  		year--
   357  		week = 52
   358  		// A year has 53 weeks when Jan 1 or Dec 31 is a Thursday,
   359  		// meaning Jan 1 of the next year is a Friday
   360  		// or it was a leap year and Jan 1 of the next year is a Saturday.
   361  		if jan1wday == Fri || (jan1wday == Sat && isLeap(year)) {
   362  			week++
   363  		}
   364  	}
   365  
   366  	// December 29 to 31 are in week 1 of next year if
   367  	// they are after the last Thursday of the year and
   368  	// December 31 is a Monday, Tuesday, or Wednesday.
   369  	if month == December && day >= 29 && wday < Thu {
   370  		if dec31wday := (wday + 31 - day) % 7; Mon <= dec31wday && dec31wday <= Wed {
   371  			year++
   372  			week = 1
   373  		}
   374  	}
   375  
   376  	return
   377  }
   378  
   379  // Clock returns the hour, minute, and second within the day specified by t.
   380  func (t Time) Clock() (hour, min, sec int) {
   381  	return absClock(t.abs())
   382  }
   383  
   384  // absClock is like clock but operates on an absolute time.
   385  func absClock(abs uint64) (hour, min, sec int) {
   386  	sec = int(abs % secondsPerDay)
   387  	hour = sec / secondsPerHour
   388  	sec -= hour * secondsPerHour
   389  	min = sec / secondsPerMinute
   390  	sec -= min * secondsPerMinute
   391  	return
   392  }
   393  
   394  // Hour returns the hour within the day specified by t, in the range [0, 23].
   395  func (t Time) Hour() int {
   396  	return int(t.abs()%secondsPerDay) / secondsPerHour
   397  }
   398  
   399  // Minute returns the minute offset within the hour specified by t, in the range [0, 59].
   400  func (t Time) Minute() int {
   401  	return int(t.abs()%secondsPerHour) / secondsPerMinute
   402  }
   403  
   404  // Second returns the second offset within the minute specified by t, in the range [0, 59].
   405  func (t Time) Second() int {
   406  	return int(t.abs() % secondsPerMinute)
   407  }
   408  
   409  // Nanosecond returns the nanosecond offset within the second specified by t,
   410  // in the range [0, 999999999].
   411  func (t Time) Nanosecond() int {
   412  	return int(t.nsec)
   413  }
   414  
   415  // YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years,
   416  // and [1,366] in leap years.
   417  func (t Time) YearDay() int {
   418  	_, _, _, yday := t.date(false)
   419  	return yday + 1
   420  }
   421  
   422  // A Duration represents the elapsed time between two instants
   423  // as an int64 nanosecond count.  The representation limits the
   424  // largest representable duration to approximately 290 years.
   425  type Duration int64
   426  
   427  // Common durations.  There is no definition for units of Day or larger
   428  // to avoid confusion across daylight savings time zone transitions.
   429  //
   430  // To count the number of units in a Duration, divide:
   431  //	second := time.Second
   432  //	fmt.Print(int64(second/time.Millisecond)) // prints 1000
   433  //
   434  // To convert an integer number of units to a Duration, multiply:
   435  //	seconds := 10
   436  //	fmt.Print(time.Duration(seconds)*time.Second) // prints 10s
   437  //
   438  const (
   439  	Nanosecond  Duration = 1
   440  	Microsecond          = 1000 * Nanosecond
   441  	Millisecond          = 1000 * Microsecond
   442  	Second               = 1000 * Millisecond
   443  	Minute               = 60 * Second
   444  	Hour                 = 60 * Minute
   445  )
   446  
   447  // String returns a string representing the duration in the form "72h3m0.5s".
   448  // Leading zero units are omitted.  As a special case, durations less than one
   449  // second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure
   450  // that the leading digit is non-zero.  The zero duration formats as 0,
   451  // with no unit.
   452  func (d Duration) String() string {
   453  	// Largest time is 2540400h10m10.000000000s
   454  	var buf [32]byte
   455  	w := len(buf)
   456  
   457  	u := uint64(d)
   458  	neg := d < 0
   459  	if neg {
   460  		u = -u
   461  	}
   462  
   463  	if u < uint64(Second) {
   464  		// Special case: if duration is smaller than a second,
   465  		// use smaller units, like 1.2ms
   466  		var (
   467  			prec int
   468  			unit byte
   469  		)
   470  		switch {
   471  		case u == 0:
   472  			return "0"
   473  		case u < uint64(Microsecond):
   474  			// print nanoseconds
   475  			prec = 0
   476  			unit = 'n'
   477  		case u < uint64(Millisecond):
   478  			// print microseconds
   479  			prec = 3
   480  			unit = 'u'
   481  		default:
   482  			// print milliseconds
   483  			prec = 6
   484  			unit = 'm'
   485  		}
   486  		w -= 2
   487  		buf[w] = unit
   488  		buf[w+1] = 's'
   489  		w, u = fmtFrac(buf[:w], u, prec)
   490  		w = fmtInt(buf[:w], u)
   491  	} else {
   492  		w--
   493  		buf[w] = 's'
   494  
   495  		w, u = fmtFrac(buf[:w], u, 9)
   496  
   497  		// u is now integer seconds
   498  		w = fmtInt(buf[:w], u%60)
   499  		u /= 60
   500  
   501  		// u is now integer minutes
   502  		if u > 0 {
   503  			w--
   504  			buf[w] = 'm'
   505  			w = fmtInt(buf[:w], u%60)
   506  			u /= 60
   507  
   508  			// u is now integer hours
   509  			// Stop at hours because days can be different lengths.
   510  			if u > 0 {
   511  				w--
   512  				buf[w] = 'h'
   513  				w = fmtInt(buf[:w], u)
   514  			}
   515  		}
   516  	}
   517  
   518  	if neg {
   519  		w--
   520  		buf[w] = '-'
   521  	}
   522  
   523  	return string(buf[w:])
   524  }
   525  
   526  // fmtFrac formats the fraction of v/10**prec (e.g., ".12345") into the
   527  // tail of buf, omitting trailing zeros.  it omits the decimal
   528  // point too when the fraction is 0.  It returns the index where the
   529  // output bytes begin and the value v/10**prec.
   530  func fmtFrac(buf []byte, v uint64, prec int) (nw int, nv uint64) {
   531  	// Omit trailing zeros up to and including decimal point.
   532  	w := len(buf)
   533  	print := false
   534  	for i := 0; i < prec; i++ {
   535  		digit := v % 10
   536  		print = print || digit != 0
   537  		if print {
   538  			w--
   539  			buf[w] = byte(digit) + '0'
   540  		}
   541  		v /= 10
   542  	}
   543  	if print {
   544  		w--
   545  		buf[w] = '.'
   546  	}
   547  	return w, v
   548  }
   549  
   550  // fmtInt formats v into the tail of buf.
   551  // It returns the index where the output begins.
   552  func fmtInt(buf []byte, v uint64) int {
   553  	w := len(buf)
   554  	if v == 0 {
   555  		w--
   556  		buf[w] = '0'
   557  	} else {
   558  		for v > 0 {
   559  			w--
   560  			buf[w] = byte(v%10) + '0'
   561  			v /= 10
   562  		}
   563  	}
   564  	return w
   565  }
   566  
   567  // Nanoseconds returns the duration as an integer nanosecond count.
   568  func (d Duration) Nanoseconds() int64 { return int64(d) }
   569  
   570  // These methods return float64 because the dominant
   571  // use case is for printing a floating point number like 1.5s, and
   572  // a truncation to integer would make them not useful in those cases.
   573  // Splitting the integer and fraction ourselves guarantees that
   574  // converting the returned float64 to an integer rounds the same
   575  // way that a pure integer conversion would have, even in cases
   576  // where, say, float64(d.Nanoseconds())/1e9 would have rounded
   577  // differently.
   578  
   579  // Seconds returns the duration as a floating point number of seconds.
   580  func (d Duration) Seconds() float64 {
   581  	sec := d / Second
   582  	nsec := d % Second
   583  	return float64(sec) + float64(nsec)*1e-9
   584  }
   585  
   586  // Minutes returns the duration as a floating point number of minutes.
   587  func (d Duration) Minutes() float64 {
   588  	min := d / Minute
   589  	nsec := d % Minute
   590  	return float64(min) + float64(nsec)*(1e-9/60)
   591  }
   592  
   593  // Hours returns the duration as a floating point number of hours.
   594  func (d Duration) Hours() float64 {
   595  	hour := d / Hour
   596  	nsec := d % Hour
   597  	return float64(hour) + float64(nsec)*(1e-9/60/60)
   598  }
   599  
   600  // Add returns the time t+d.
   601  func (t Time) Add(d Duration) Time {
   602  	t.sec += int64(d / 1e9)
   603  	t.nsec += int32(d % 1e9)
   604  	if t.nsec >= 1e9 {
   605  		t.sec++
   606  		t.nsec -= 1e9
   607  	} else if t.nsec < 0 {
   608  		t.sec--
   609  		t.nsec += 1e9
   610  	}
   611  	return t
   612  }
   613  
   614  // Sub returns the duration t-u.
   615  // To compute t-d for a duration d, use t.Add(-d).
   616  func (t Time) Sub(u Time) Duration {
   617  	return Duration(t.sec-u.sec)*Second + Duration(t.nsec-u.nsec)
   618  }
   619  
   620  // Since returns the time elapsed since t.
   621  // It is shorthand for time.Now().Sub(t).
   622  func Since(t Time) Duration {
   623  	return Now().Sub(t)
   624  }
   625  
   626  // AddDate returns the time corresponding to adding the
   627  // given number of years, months, and days to t.
   628  // For example, AddDate(-1, 2, 3) applied to January 1, 2011
   629  // returns March 4, 2010.
   630  //
   631  // AddDate normalizes its result in the same way that Date does,
   632  // so, for example, adding one month to October 31 yields
   633  // December 1, the normalized form for November 31.
   634  func (t Time) AddDate(years int, months int, days int) Time {
   635  	year, month, day := t.Date()
   636  	hour, min, sec := t.Clock()
   637  	return Date(year+years, month+Month(months), day+days, hour, min, sec, int(t.nsec), t.loc)
   638  }
   639  
   640  const (
   641  	secondsPerMinute = 60
   642  	secondsPerHour   = 60 * 60
   643  	secondsPerDay    = 24 * secondsPerHour
   644  	secondsPerWeek   = 7 * secondsPerDay
   645  	daysPer400Years  = 365*400 + 97
   646  	daysPer100Years  = 365*100 + 24
   647  	daysPer4Years    = 365*4 + 1
   648  	days1970To2001   = 31*365 + 8
   649  )
   650  
   651  // date computes the year, day of year, and when full=true,
   652  // the month and day in which t occurs.
   653  func (t Time) date(full bool) (year int, month Month, day int, yday int) {
   654  	return absDate(t.abs(), full)
   655  }
   656  
   657  // absDate is like date but operates on an absolute time.
   658  func absDate(abs uint64, full bool) (year int, month Month, day int, yday int) {
   659  	// Split into time and day.
   660  	d := abs / secondsPerDay
   661  
   662  	// Account for 400 year cycles.
   663  	n := d / daysPer400Years
   664  	y := 400 * n
   665  	d -= daysPer400Years * n
   666  
   667  	// Cut off 100-year cycles.
   668  	// The last cycle has one extra leap year, so on the last day
   669  	// of that year, day / daysPer100Years will be 4 instead of 3.
   670  	// Cut it back down to 3 by subtracting n>>2.
   671  	n = d / daysPer100Years
   672  	n -= n >> 2
   673  	y += 100 * n
   674  	d -= daysPer100Years * n
   675  
   676  	// Cut off 4-year cycles.
   677  	// The last cycle has a missing leap year, which does not
   678  	// affect the computation.
   679  	n = d / daysPer4Years
   680  	y += 4 * n
   681  	d -= daysPer4Years * n
   682  
   683  	// Cut off years within a 4-year cycle.
   684  	// The last year is a leap year, so on the last day of that year,
   685  	// day / 365 will be 4 instead of 3.  Cut it back down to 3
   686  	// by subtracting n>>2.
   687  	n = d / 365
   688  	n -= n >> 2
   689  	y += n
   690  	d -= 365 * n
   691  
   692  	year = int(int64(y) + absoluteZeroYear)
   693  	yday = int(d)
   694  
   695  	if !full {
   696  		return
   697  	}
   698  
   699  	day = yday
   700  	if isLeap(year) {
   701  		// Leap year
   702  		switch {
   703  		case day > 31+29-1:
   704  			// After leap day; pretend it wasn't there.
   705  			day--
   706  		case day == 31+29-1:
   707  			// Leap day.
   708  			month = February
   709  			day = 29
   710  			return
   711  		}
   712  	}
   713  
   714  	// Estimate month on assumption that every month has 31 days.
   715  	// The estimate may be too low by at most one month, so adjust.
   716  	month = Month(day / 31)
   717  	end := int(daysBefore[month+1])
   718  	var begin int
   719  	if day >= end {
   720  		month++
   721  		begin = end
   722  	} else {
   723  		begin = int(daysBefore[month])
   724  	}
   725  
   726  	month++ // because January is 1
   727  	day = day - begin + 1
   728  	return
   729  }
   730  
   731  // daysBefore[m] counts the number of days in a non-leap year
   732  // before month m begins.  There is an entry for m=12, counting
   733  // the number of days before January of next year (365).
   734  var daysBefore = [...]int32{
   735  	0,
   736  	31,
   737  	31 + 28,
   738  	31 + 28 + 31,
   739  	31 + 28 + 31 + 30,
   740  	31 + 28 + 31 + 30 + 31,
   741  	31 + 28 + 31 + 30 + 31 + 30,
   742  	31 + 28 + 31 + 30 + 31 + 30 + 31,
   743  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
   744  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
   745  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
   746  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
   747  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31,
   748  }
   749  
   750  func daysIn(m Month, year int) int {
   751  	if m == February && isLeap(year) {
   752  		return 29
   753  	}
   754  	return int(daysBefore[m] - daysBefore[m-1])
   755  }
   756  
   757  // Provided by package runtime.
   758  func now() (sec int64, nsec int32)
   759  
   760  // Now returns the current local time.
   761  func Now() Time {
   762  	sec, nsec := now()
   763  	return Time{sec + unixToInternal, nsec, Local}
   764  }
   765  
   766  // UTC returns t with the location set to UTC.
   767  func (t Time) UTC() Time {
   768  	t.loc = UTC
   769  	return t
   770  }
   771  
   772  // Local returns t with the location set to local time.
   773  func (t Time) Local() Time {
   774  	t.loc = Local
   775  	return t
   776  }
   777  
   778  // In returns t with the location information set to loc.
   779  //
   780  // In panics if loc is nil.
   781  func (t Time) In(loc *Location) Time {
   782  	if loc == nil {
   783  		panic("time: missing Location in call to Time.In")
   784  	}
   785  	t.loc = loc
   786  	return t
   787  }
   788  
   789  // Location returns the time zone information associated with t.
   790  func (t Time) Location() *Location {
   791  	l := t.loc
   792  	if l == nil {
   793  		l = UTC
   794  	}
   795  	return l
   796  }
   797  
   798  // Zone computes the time zone in effect at time t, returning the abbreviated
   799  // name of the zone (such as "CET") and its offset in seconds east of UTC.
   800  func (t Time) Zone() (name string, offset int) {
   801  	name, offset, _, _, _ = t.loc.lookup(t.sec + internalToUnix)
   802  	return
   803  }
   804  
   805  // Unix returns t as a Unix time, the number of seconds elapsed
   806  // since January 1, 1970 UTC.
   807  func (t Time) Unix() int64 {
   808  	return t.sec + internalToUnix
   809  }
   810  
   811  // UnixNano returns t as a Unix time, the number of nanoseconds elapsed
   812  // since January 1, 1970 UTC. The result is undefined if the Unix time
   813  // in nanoseconds cannot be represented by an int64. Note that this
   814  // means the result of calling UnixNano on the zero Time is undefined.
   815  func (t Time) UnixNano() int64 {
   816  	return (t.sec+internalToUnix)*1e9 + int64(t.nsec)
   817  }
   818  
   819  const timeGobVersion byte = 1
   820  
   821  // GobEncode implements the gob.GobEncoder interface.
   822  func (t Time) GobEncode() ([]byte, error) {
   823  	var offsetMin int16 // minutes east of UTC. -1 is UTC.
   824  
   825  	if t.Location() == &utcLoc {
   826  		offsetMin = -1
   827  	} else {
   828  		_, offset := t.Zone()
   829  		if offset%60 != 0 {
   830  			return nil, errors.New("Time.GobEncode: zone offset has fractional minute")
   831  		}
   832  		offset /= 60
   833  		if offset < -32768 || offset == -1 || offset > 32767 {
   834  			return nil, errors.New("Time.GobEncode: unexpected zone offset")
   835  		}
   836  		offsetMin = int16(offset)
   837  	}
   838  
   839  	enc := []byte{
   840  		timeGobVersion,    // byte 0 : version
   841  		byte(t.sec >> 56), // bytes 1-8: seconds
   842  		byte(t.sec >> 48),
   843  		byte(t.sec >> 40),
   844  		byte(t.sec >> 32),
   845  		byte(t.sec >> 24),
   846  		byte(t.sec >> 16),
   847  		byte(t.sec >> 8),
   848  		byte(t.sec),
   849  		byte(t.nsec >> 24), // bytes 9-12: nanoseconds
   850  		byte(t.nsec >> 16),
   851  		byte(t.nsec >> 8),
   852  		byte(t.nsec),
   853  		byte(offsetMin >> 8), // bytes 13-14: zone offset in minutes
   854  		byte(offsetMin),
   855  	}
   856  
   857  	return enc, nil
   858  }
   859  
   860  // GobDecode implements the gob.GobDecoder interface.
   861  func (t *Time) GobDecode(buf []byte) error {
   862  	if len(buf) == 0 {
   863  		return errors.New("Time.GobDecode: no data")
   864  	}
   865  
   866  	if buf[0] != timeGobVersion {
   867  		return errors.New("Time.GobDecode: unsupported version")
   868  	}
   869  
   870  	if len(buf) != /*version*/ 1+ /*sec*/ 8+ /*nsec*/ 4+ /*zone offset*/ 2 {
   871  		return errors.New("Time.GobDecode: invalid length")
   872  	}
   873  
   874  	buf = buf[1:]
   875  	t.sec = int64(buf[7]) | int64(buf[6])<<8 | int64(buf[5])<<16 | int64(buf[4])<<24 |
   876  		int64(buf[3])<<32 | int64(buf[2])<<40 | int64(buf[1])<<48 | int64(buf[0])<<56
   877  
   878  	buf = buf[8:]
   879  	t.nsec = int32(buf[3]) | int32(buf[2])<<8 | int32(buf[1])<<16 | int32(buf[0])<<24
   880  
   881  	buf = buf[4:]
   882  	offset := int(int16(buf[1])|int16(buf[0])<<8) * 60
   883  
   884  	if offset == -1*60 {
   885  		t.loc = &utcLoc
   886  	} else if _, localoff, _, _, _ := Local.lookup(t.sec + internalToUnix); offset == localoff {
   887  		t.loc = Local
   888  	} else {
   889  		t.loc = FixedZone("", offset)
   890  	}
   891  
   892  	return nil
   893  }
   894  
   895  // MarshalJSON implements the json.Marshaler interface.
   896  // Time is formatted as RFC3339.
   897  func (t Time) MarshalJSON() ([]byte, error) {
   898  	if y := t.Year(); y < 0 || y >= 10000 {
   899  		return nil, errors.New("Time.MarshalJSON: year outside of range [0,9999]")
   900  	}
   901  	return []byte(t.Format(`"` + RFC3339Nano + `"`)), nil
   902  }
   903  
   904  // UnmarshalJSON implements the json.Unmarshaler interface.
   905  // Time is expected in RFC3339 format.
   906  func (t *Time) UnmarshalJSON(data []byte) (err error) {
   907  	// Fractional seconds are handled implicitly by Parse.
   908  	*t, err = Parse(`"`+RFC3339+`"`, string(data))
   909  	return
   910  }
   911  
   912  // Unix returns the local Time corresponding to the given Unix time,
   913  // sec seconds and nsec nanoseconds since January 1, 1970 UTC.
   914  // It is valid to pass nsec outside the range [0, 999999999].
   915  func Unix(sec int64, nsec int64) Time {
   916  	if nsec < 0 || nsec >= 1e9 {
   917  		n := nsec / 1e9
   918  		sec += n
   919  		nsec -= n * 1e9
   920  		if nsec < 0 {
   921  			nsec += 1e9
   922  			sec--
   923  		}
   924  	}
   925  	return Time{sec + unixToInternal, int32(nsec), Local}
   926  }
   927  
   928  func isLeap(year int) bool {
   929  	return year%4 == 0 && (year%100 != 0 || year%400 == 0)
   930  }
   931  
   932  // norm returns nhi, nlo such that
   933  //	hi * base + lo == nhi * base + nlo
   934  //	0 <= nlo < base
   935  func norm(hi, lo, base int) (nhi, nlo int) {
   936  	if lo < 0 {
   937  		n := (-lo-1)/base + 1
   938  		hi -= n
   939  		lo += n * base
   940  	}
   941  	if lo >= base {
   942  		n := lo / base
   943  		hi += n
   944  		lo -= n * base
   945  	}
   946  	return hi, lo
   947  }
   948  
   949  // Date returns the Time corresponding to
   950  //	yyyy-mm-dd hh:mm:ss + nsec nanoseconds
   951  // in the appropriate zone for that time in the given location.
   952  //
   953  // The month, day, hour, min, sec, and nsec values may be outside
   954  // their usual ranges and will be normalized during the conversion.
   955  // For example, October 32 converts to November 1.
   956  //
   957  // A daylight savings time transition skips or repeats times.
   958  // For example, in the United States, March 13, 2011 2:15am never occurred,
   959  // while November 6, 2011 1:15am occurred twice.  In such cases, the
   960  // choice of time zone, and therefore the time, is not well-defined.
   961  // Date returns a time that is correct in one of the two zones involved
   962  // in the transition, but it does not guarantee which.
   963  //
   964  // Date panics if loc is nil.
   965  func Date(year int, month Month, day, hour, min, sec, nsec int, loc *Location) Time {
   966  	if loc == nil {
   967  		panic("time: missing Location in call to Date")
   968  	}
   969  
   970  	// Normalize month, overflowing into year.
   971  	m := int(month) - 1
   972  	year, m = norm(year, m, 12)
   973  	month = Month(m) + 1
   974  
   975  	// Normalize nsec, sec, min, hour, overflowing into day.
   976  	sec, nsec = norm(sec, nsec, 1e9)
   977  	min, sec = norm(min, sec, 60)
   978  	hour, min = norm(hour, min, 60)
   979  	day, hour = norm(day, hour, 24)
   980  
   981  	y := uint64(int64(year) - absoluteZeroYear)
   982  
   983  	// Compute days since the absolute epoch.
   984  
   985  	// Add in days from 400-year cycles.
   986  	n := y / 400
   987  	y -= 400 * n
   988  	d := daysPer400Years * n
   989  
   990  	// Add in 100-year cycles.
   991  	n = y / 100
   992  	y -= 100 * n
   993  	d += daysPer100Years * n
   994  
   995  	// Add in 4-year cycles.
   996  	n = y / 4
   997  	y -= 4 * n
   998  	d += daysPer4Years * n
   999  
  1000  	// Add in non-leap years.
  1001  	n = y
  1002  	d += 365 * n
  1003  
  1004  	// Add in days before this month.
  1005  	d += uint64(daysBefore[month-1])
  1006  	if isLeap(year) && month >= March {
  1007  		d++ // February 29
  1008  	}
  1009  
  1010  	// Add in days before today.
  1011  	d += uint64(day - 1)
  1012  
  1013  	// Add in time elapsed today.
  1014  	abs := d * secondsPerDay
  1015  	abs += uint64(hour*secondsPerHour + min*secondsPerMinute + sec)
  1016  
  1017  	unix := int64(abs) + (absoluteToInternal + internalToUnix)
  1018  
  1019  	// Look for zone offset for t, so we can adjust to UTC.
  1020  	// The lookup function expects UTC, so we pass t in the
  1021  	// hope that it will not be too close to a zone transition,
  1022  	// and then adjust if it is.
  1023  	_, offset, _, start, end := loc.lookup(unix)
  1024  	if offset != 0 {
  1025  		switch utc := unix - int64(offset); {
  1026  		case utc < start:
  1027  			_, offset, _, _, _ = loc.lookup(start - 1)
  1028  		case utc >= end:
  1029  			_, offset, _, _, _ = loc.lookup(end)
  1030  		}
  1031  		unix -= int64(offset)
  1032  	}
  1033  
  1034  	return Time{unix + unixToInternal, int32(nsec), loc}
  1035  }
  1036  
  1037  // Truncate returns the result of rounding t down to a multiple of d (since the zero time).
  1038  // If d <= 0, Truncate returns t unchanged.
  1039  func (t Time) Truncate(d Duration) Time {
  1040  	if d <= 0 {
  1041  		return t
  1042  	}
  1043  	_, r := div(t, d)
  1044  	return t.Add(-r)
  1045  }
  1046  
  1047  // Round returns the result of rounding t to the nearest multiple of d (since the zero time).
  1048  // The rounding behavior for halfway values is to round up.
  1049  // If d <= 0, Round returns t unchanged.
  1050  func (t Time) Round(d Duration) Time {
  1051  	if d <= 0 {
  1052  		return t
  1053  	}
  1054  	_, r := div(t, d)
  1055  	if r+r < d {
  1056  		return t.Add(-r)
  1057  	}
  1058  	return t.Add(d - r)
  1059  }
  1060  
  1061  // div divides t by d and returns the quotient parity and remainder.
  1062  // We don't use the quotient parity anymore (round half up instead of round to even)
  1063  // but it's still here in case we change our minds.
  1064  func div(t Time, d Duration) (qmod2 int, r Duration) {
  1065  	neg := false
  1066  	if t.sec < 0 {
  1067  		// Operate on absolute value.
  1068  		neg = true
  1069  		t.sec = -t.sec
  1070  		t.nsec = -t.nsec
  1071  		if t.nsec < 0 {
  1072  			t.nsec += 1e9
  1073  			t.sec-- // t.sec >= 1 before the -- so safe
  1074  		}
  1075  	}
  1076  
  1077  	switch {
  1078  	// Special case: 2d divides 1 second.
  1079  	case d < Second && Second%(d+d) == 0:
  1080  		qmod2 = int(t.nsec/int32(d)) & 1
  1081  		r = Duration(t.nsec % int32(d))
  1082  
  1083  	// Special case: d is a multiple of 1 second.
  1084  	case d%Second == 0:
  1085  		d1 := int64(d / Second)
  1086  		qmod2 = int(t.sec/d1) & 1
  1087  		r = Duration(t.sec%d1)*Second + Duration(t.nsec)
  1088  
  1089  	// General case.
  1090  	// This could be faster if more cleverness were applied,
  1091  	// but it's really only here to avoid special case restrictions in the API.
  1092  	// No one will care about these cases.
  1093  	default:
  1094  		// Compute nanoseconds as 128-bit number.
  1095  		sec := uint64(t.sec)
  1096  		tmp := (sec >> 32) * 1e9
  1097  		u1 := tmp >> 32
  1098  		u0 := tmp << 32
  1099  		tmp = uint64(sec&0xFFFFFFFF) * 1e9
  1100  		u0x, u0 := u0, u0+tmp
  1101  		if u0 < u0x {
  1102  			u1++
  1103  		}
  1104  		u0x, u0 = u0, u0+uint64(t.nsec)
  1105  		if u0 < u0x {
  1106  			u1++
  1107  		}
  1108  
  1109  		// Compute remainder by subtracting r<<k for decreasing k.
  1110  		// Quotient parity is whether we subtract on last round.
  1111  		d1 := uint64(d)
  1112  		for d1>>63 != 1 {
  1113  			d1 <<= 1
  1114  		}
  1115  		d0 := uint64(0)
  1116  		for {
  1117  			qmod2 = 0
  1118  			if u1 > d1 || u1 == d1 && u0 >= d0 {
  1119  				// subtract
  1120  				qmod2 = 1
  1121  				u0x, u0 = u0, u0-d0
  1122  				if u0 > u0x {
  1123  					u1--
  1124  				}
  1125  				u1 -= d1
  1126  			}
  1127  			if d1 == 0 && d0 == uint64(d) {
  1128  				break
  1129  			}
  1130  			d0 >>= 1
  1131  			d0 |= (d1 & 1) << 63
  1132  			d1 >>= 1
  1133  		}
  1134  		r = Duration(u0)
  1135  	}
  1136  
  1137  	if neg && r != 0 {
  1138  		// If input was negative and not an exact multiple of d, we computed q, r such that
  1139  		//	q*d + r = -t
  1140  		// But the right answers are given by -(q-1), d-r:
  1141  		//	q*d + r = -t
  1142  		//	-q*d - r = t
  1143  		//	-(q-1)*d + (d - r) = t
  1144  		qmod2 ^= 1
  1145  		r = d - r
  1146  	}
  1147  	return
  1148  }