github.com/xxRanger/go-ethereum@v1.8.23/common/mclock/simclock.go (about) 1 // Copyright 2018 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package mclock 18 19 import ( 20 "sync" 21 "time" 22 ) 23 24 // Simulated implements a virtual Clock for reproducible time-sensitive tests. It 25 // simulates a scheduler on a virtual timescale where actual processing takes zero time. 26 // 27 // The virtual clock doesn't advance on its own, call Run to advance it and execute timers. 28 // Since there is no way to influence the Go scheduler, testing timeout behaviour involving 29 // goroutines needs special care. A good way to test such timeouts is as follows: First 30 // perform the action that is supposed to time out. Ensure that the timer you want to test 31 // is created. Then run the clock until after the timeout. Finally observe the effect of 32 // the timeout using a channel or semaphore. 33 type Simulated struct { 34 now AbsTime 35 scheduled []event 36 mu sync.RWMutex 37 cond *sync.Cond 38 } 39 40 type event struct { 41 do func() 42 at AbsTime 43 } 44 45 // Run moves the clock by the given duration, executing all timers before that duration. 46 func (s *Simulated) Run(d time.Duration) { 47 s.mu.Lock() 48 defer s.mu.Unlock() 49 s.init() 50 51 end := s.now + AbsTime(d) 52 for len(s.scheduled) > 0 { 53 ev := s.scheduled[0] 54 if ev.at > end { 55 break 56 } 57 s.now = ev.at 58 ev.do() 59 s.scheduled = s.scheduled[1:] 60 } 61 s.now = end 62 } 63 64 func (s *Simulated) ActiveTimers() int { 65 s.mu.RLock() 66 defer s.mu.RUnlock() 67 68 return len(s.scheduled) 69 } 70 71 func (s *Simulated) WaitForTimers(n int) { 72 s.mu.Lock() 73 defer s.mu.Unlock() 74 s.init() 75 76 for len(s.scheduled) < n { 77 s.cond.Wait() 78 } 79 } 80 81 // Now implements Clock. 82 func (s *Simulated) Now() AbsTime { 83 s.mu.RLock() 84 defer s.mu.RUnlock() 85 86 return s.now 87 } 88 89 // Sleep implements Clock. 90 func (s *Simulated) Sleep(d time.Duration) { 91 <-s.After(d) 92 } 93 94 // After implements Clock. 95 func (s *Simulated) After(d time.Duration) <-chan time.Time { 96 after := make(chan time.Time, 1) 97 s.insert(d, func() { 98 after <- (time.Time{}).Add(time.Duration(s.now)) 99 }) 100 return after 101 } 102 103 func (s *Simulated) insert(d time.Duration, do func()) { 104 s.mu.Lock() 105 defer s.mu.Unlock() 106 s.init() 107 108 at := s.now + AbsTime(d) 109 l, h := 0, len(s.scheduled) 110 ll := h 111 for l != h { 112 m := (l + h) / 2 113 if at < s.scheduled[m].at { 114 h = m 115 } else { 116 l = m + 1 117 } 118 } 119 s.scheduled = append(s.scheduled, event{}) 120 copy(s.scheduled[l+1:], s.scheduled[l:ll]) 121 s.scheduled[l] = event{do: do, at: at} 122 s.cond.Broadcast() 123 } 124 125 func (s *Simulated) init() { 126 if s.cond == nil { 127 s.cond = sync.NewCond(&s.mu) 128 } 129 }