github.com/xyproto/u-root@v6.0.1-0.20200302025726-5528e0c77a3c+incompatible/pkg/bzimage/bzimage.go (about)

     1  // Copyright 2015-2018 the u-root Authors. All rights reserved
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // package bzImage implements encoding.UnmarshalBinary for bzImage files.
     6  // The bzImage struct contains all the information about the file and can
     7  // be used to create a new bzImage.
     8  package bzimage
     9  
    10  // xz --check=crc32 $BCJ --lzma2=$LZMA2OPTS,dict=32MiB
    11  import (
    12  	"bytes"
    13  	"debug/elf"
    14  	"encoding/binary"
    15  	"fmt"
    16  	"io"
    17  	"io/ioutil"
    18  	"os/exec"
    19  	"reflect"
    20  	"strings"
    21  
    22  	"github.com/u-root/u-root/pkg/cpio"
    23  )
    24  
    25  var (
    26  	xzmagic = [...]byte{0xFD, 0x37, 0x7A, 0x58, 0x5A, 0x00}
    27  	// String of unknown meaning.
    28  	// The build script has this value:
    29  	//initRAMFStag = [4]byte{0250, 0362, 0156, 0x01}
    30  	// The resultant bzd has this value:
    31  	initRAMFStag = [4]byte{0xf8, 0x85, 0x21, 0x01}
    32  	Debug        = func(string, ...interface{}) {}
    33  )
    34  
    35  // UnmarshalBinary implements the encoding.BinaryUnmarshaler interface.
    36  // For now, it hardwires the KernelBase to 0x100000.
    37  // bzImages were created by a process of evilution, and they are wondrous to behold.
    38  // bzImages are almost impossible to modify. They form a sandwich with
    39  // the compressed kernel code in the middle. It's actually a BLT:
    40  // MBR and bootparams first 512 bytes
    41  //    the MBR includes 0xc0 bytes of boot code which is vestigial.
    42  // Then there is "preamble" code which is the kernel decompressor; then the
    43  // xz compressed kernel; then a library of sorts after the kernel which is called
    44  // by the early uncompressed kernel code. This is all linked together and forms
    45  // an essentially indivisible whole -- which we wish to divisible.
    46  // Hence the groveling around for the xz header that you see here, and hence the checks
    47  // to ensure that the kernel layout ends up largely the same before and after.
    48  // That said, if you keep layout unchanged, you can modify the uncompressed kernel.
    49  // For example, when you first build a kernel, you can:
    50  // dd if=/dev/urandom of=x bs=1048576 count=8
    51  // echo x | cpio -o > x.cpio
    52  // and use that as an initrd, it's more or less an 8 MiB block you can replace
    53  // as needed. Just make sure nothing grows. And make sure the initramfs is in
    54  // the same place. Ah, joy.
    55  func (b *BzImage) UnmarshalBinary(d []byte) error {
    56  	Debug("Processing %d byte image", len(d))
    57  	r := bytes.NewBuffer(d)
    58  	if err := binary.Read(r, binary.LittleEndian, &b.Header); err != nil {
    59  		return err
    60  	}
    61  	Debug("Header was %d bytes", len(d)-r.Len())
    62  	Debug("magic %x switch %v", b.Header.HeaderMagic, b.Header.RealModeSwitch)
    63  	if b.Header.HeaderMagic != HeaderMagic {
    64  		return fmt.Errorf("not a bzImage: magic should be %02x, and is %02x", HeaderMagic, b.Header.HeaderMagic)
    65  	}
    66  	Debug("RamDisk image %x size %x", b.Header.RamDiskImage, b.Header.RamDiskSize)
    67  	Debug("StartSys %x", b.Header.StartSys)
    68  	Debug("Boot type: %s(%x)", LoaderType[boottype(b.Header.TypeOfLoader)], b.Header.TypeOfLoader)
    69  	Debug("SetupSects %d", b.Header.SetupSects)
    70  
    71  	off := len(d) - r.Len()
    72  	b.KernelOffset = (uintptr(b.Header.SetupSects) + 1) * 512
    73  	bclen := int(b.KernelOffset) - off
    74  	Debug("Kernel offset is %d bytes, low1mcode is %d bytes", b.KernelOffset, bclen)
    75  	b.BootCode = make([]byte, bclen)
    76  	if _, err := r.Read(b.BootCode); err != nil {
    77  		return err
    78  	}
    79  	Debug("%d bytes of BootCode", len(b.BootCode))
    80  
    81  	Debug("Remaining length is %d bytes, PayloadSize %d", r.Len(), b.Header.PayloadSize)
    82  	x := bytes.Index(r.Bytes(), xzmagic[:])
    83  	if x == -1 {
    84  		return fmt.Errorf("can't find xz header")
    85  	}
    86  	Debug("xz is at %d", x)
    87  	b.HeadCode = make([]byte, x)
    88  	if _, err := r.Read(b.HeadCode); err != nil {
    89  		return fmt.Errorf("can't read HeadCode: %v", err)
    90  	}
    91  	// Now size up the kernel code. Is it just PayloadSize?
    92  	b.compressed = make([]byte, b.Header.PayloadSize)
    93  	if _, err := r.Read(b.compressed); err != nil {
    94  		return fmt.Errorf("can't read HeadCode: %v", err)
    95  	}
    96  	var err error
    97  	Debug("Uncompress %d bytes", len(b.compressed))
    98  	if b.KernelCode, err = unpack(b.compressed); err != nil {
    99  		return err
   100  	}
   101  	b.TailCode = make([]byte, r.Len())
   102  	if _, err := r.Read(b.TailCode); err != nil {
   103  		return fmt.Errorf("can't read TailCode: %v", err)
   104  	}
   105  	Debug("Kernel at %d, %d bytes", b.KernelOffset, len(b.KernelCode))
   106  	b.KernelBase = uintptr(0x100000)
   107  	if b.Header.RamDiskImage == 0 {
   108  		return nil
   109  	}
   110  	if r.Len() != 0 {
   111  		return fmt.Errorf("%d bytes left over", r.Len())
   112  	}
   113  	return nil
   114  }
   115  
   116  // MarshalBinary implements the encoding.BinaryMarshaler interface.
   117  func (b *BzImage) MarshalBinary() ([]byte, error) {
   118  	// First step, make sure we can compress the kernel.
   119  	dat, err := compress(b.KernelCode, "--lzma2=,dict=32MiB")
   120  	if err != nil {
   121  		return nil, err
   122  	}
   123  	dat = append(dat, initRAMFStag[:]...)
   124  	if len(dat) > len(b.compressed) {
   125  		return nil, fmt.Errorf("marshal: compressed KernelCode too big: was %d, now %d", len(b.compressed), len(dat))
   126  	}
   127  	Debug("b.compressed len %#x dat len %#x pad it out", len(b.compressed), len(dat))
   128  	if len(dat) < len(b.compressed) {
   129  		l := len(dat)
   130  		n := make([]byte, len(b.compressed)-4)
   131  		copy(n, dat[:l-4])
   132  		n = append(n, initRAMFStag[:]...)
   133  		dat = n
   134  	}
   135  
   136  	var w bytes.Buffer
   137  	if err := binary.Write(&w, binary.LittleEndian, &b.Header); err != nil {
   138  		return nil, err
   139  	}
   140  	Debug("Wrote %d bytes of header", w.Len())
   141  	if _, err := w.Write(b.BootCode); err != nil {
   142  		return nil, err
   143  	}
   144  	Debug("Wrote %d bytes of BootCode", w.Len())
   145  	if _, err := w.Write(b.HeadCode); err != nil {
   146  		return nil, err
   147  	}
   148  	Debug("Wrote %d bytes of HeadCode", w.Len())
   149  	if _, err := w.Write(dat); err != nil {
   150  		return nil, err
   151  	}
   152  	Debug("Last bytes %#02x", dat[len(dat)-4:])
   153  	Debug("Last bytes %#o", dat[len(dat)-4:])
   154  	Debug("Last bytes %#d", dat[len(dat)-4:])
   155  	b.compressed = dat
   156  	Debug("Wrote %d bytes of Compressed kernel", w.Len())
   157  	if _, err := w.Write(b.TailCode); err != nil {
   158  		return nil, err
   159  	}
   160  	Debug("Wrote %d bytes of header", w.Len())
   161  	Debug("Finished writing, len is now %d bytes", w.Len())
   162  
   163  	return w.Bytes(), nil
   164  }
   165  
   166  // unpack extracts the header code and data from the kernel part
   167  // of the bzImage. It also uncompresses the kernel.
   168  // It searches the Kernel []byte for an xz header. Where it begins
   169  // is never certain. We only do relatively newer images, i.e. we only
   170  // look for the xz magic.
   171  func unpack(d []byte) ([]byte, error) {
   172  	Debug("Kernel is %d bytes", len(d))
   173  	Debug("Some kernel data: %#02x %#02x", d[:32], d[len(d)-8:])
   174  	c := exec.Command("xzcat")
   175  	stdout, err := c.StdoutPipe()
   176  	if err != nil {
   177  		return nil, err
   178  	}
   179  	stderr, err := c.StderrPipe()
   180  	if err != nil {
   181  		return nil, err
   182  	}
   183  	c.Stdin = bytes.NewBuffer(d)
   184  	if err := c.Start(); err != nil {
   185  		return nil, err
   186  	}
   187  
   188  	dat, err := ioutil.ReadAll(stdout)
   189  	if err != nil {
   190  		return nil, err
   191  	}
   192  	// fyi, the xz standard and code are shit. A shame.
   193  	// You can enable this if you have a nasty bug from xz.
   194  	// Just be aware that xz ALWAYS errors out even when nothing is wrong.
   195  	if false {
   196  		if e, err := ioutil.ReadAll(stderr); err != nil || len(e) > 0 {
   197  			Debug("xz stderr: '%s', %v", string(e), err)
   198  		}
   199  	}
   200  	Debug("Uncompressed kernel is %d bytes", len(dat))
   201  	return dat, nil
   202  }
   203  
   204  // compress compresses a []byte via xz using the dictOps, collecting it from stdout
   205  func compress(b []byte, dictOps string) ([]byte, error) {
   206  	Debug("b is %d bytes", len(b))
   207  	c := exec.Command("xz", "--check=crc32", "--x86", dictOps, "--stdout")
   208  	stdout, err := c.StdoutPipe()
   209  	if err != nil {
   210  		return nil, err
   211  	}
   212  	c.Stdin = bytes.NewBuffer(b)
   213  	if err := c.Start(); err != nil {
   214  		return nil, err
   215  	}
   216  
   217  	dat, err := ioutil.ReadAll(stdout)
   218  	if err != nil {
   219  		return nil, err
   220  	}
   221  	if err := c.Wait(); err != nil {
   222  		return nil, err
   223  	}
   224  	Debug("Compressed data is %d bytes, starts with %#02x", len(dat), dat[:32])
   225  	Debug("Last 16 bytes: %#02x", dat[len(dat)-16:])
   226  	return dat, nil
   227  }
   228  
   229  // Extract extracts the KernelCode as an ELF.
   230  func (b *BzImage) ELF() (*elf.File, error) {
   231  	e, err := elf.NewFile(bytes.NewReader(b.KernelCode))
   232  	if err != nil {
   233  		return nil, err
   234  	}
   235  	return e, nil
   236  }
   237  
   238  func Equal(a, b []byte) error {
   239  	if len(a) != len(b) {
   240  		return fmt.Errorf("images differ in len: %d bytes and %d bytes", len(a), len(b))
   241  	}
   242  	var ba BzImage
   243  	if err := ba.UnmarshalBinary(a); err != nil {
   244  		return err
   245  	}
   246  	var bb BzImage
   247  	if err := bb.UnmarshalBinary(b); err != nil {
   248  		return err
   249  	}
   250  	if !reflect.DeepEqual(ba.Header, bb.Header) {
   251  		return fmt.Errorf("headers do not match: %s", ba.Header.Diff(&bb.Header))
   252  	}
   253  	// this is overkill, I can't see any way it can happen.
   254  	if len(ba.KernelCode) != len(bb.KernelCode) {
   255  		return fmt.Errorf("kernel lengths differ: %d vs %d bytes", len(ba.KernelCode), len(bb.KernelCode))
   256  	}
   257  	if len(ba.BootCode) != len(bb.BootCode) {
   258  		return fmt.Errorf("boot code lengths differ: %d vs %d bytes", len(ba.KernelCode), len(bb.KernelCode))
   259  	}
   260  
   261  	if !reflect.DeepEqual(ba.BootCode, bb.BootCode) {
   262  		return fmt.Errorf("boot code does not match")
   263  	}
   264  	if !reflect.DeepEqual(ba.KernelCode, bb.KernelCode) {
   265  		return fmt.Errorf("kernels do not match")
   266  	}
   267  	return nil
   268  }
   269  
   270  func (b *BzImage) AddInitRAMFS(name string) error {
   271  	u, err := ioutil.ReadFile(name)
   272  	if err != nil {
   273  		return err
   274  	}
   275  	// Should we ever want to compress the initramfs this is one
   276  	// way to do it.
   277  	d := u
   278  	if false {
   279  		d, err = compress(u, "--lzma2=,dict=1MiB")
   280  		if err != nil {
   281  			return err
   282  		}
   283  	}
   284  	s, e, err := b.InitRAMFS()
   285  	if err != nil {
   286  		return err
   287  	}
   288  	l := e - s
   289  
   290  	if len(d) > l {
   291  		return fmt.Errorf("new initramfs is %d bytes, won't fit in %d byte old one", len(d), l)
   292  	}
   293  	// Do this in a stupid way that is easy to read.
   294  	// What's interesting: the kernel decompressor, if I read it right,
   295  	// finds it easier to skip a bunch of leading nulls. So do that.
   296  	n := make([]byte, l)
   297  	Debug("Offset into n is %d\n", len(n)-len(d))
   298  	copy(n[len(n)-len(d):], d)
   299  	Debug("Install %d byte initramfs in %d bytes of kernel code, @ %d:%d", len(d), len(n), s, e)
   300  	copy(b.KernelCode[s:e], n)
   301  	return nil
   302  }
   303  
   304  // MakeLinuxHeader marshals a LinuxHeader into a []byte.
   305  func MakeLinuxHeader(h *LinuxHeader) ([]byte, error) {
   306  	buf := new(bytes.Buffer)
   307  	err := binary.Write(buf, binary.LittleEndian, h)
   308  	return buf.Bytes(), err
   309  }
   310  
   311  // Show stringifies a LinuxHeader into a []string
   312  func (h *LinuxHeader) Show() []string {
   313  	var s []string
   314  
   315  	val := reflect.ValueOf(*h)
   316  	for i := 0; i < val.NumField(); i++ {
   317  		v := val.Field(i)
   318  		k := reflect.ValueOf(v).Kind()
   319  		n := val.Type().Field(i).Name
   320  		switch k {
   321  		case reflect.Slice:
   322  			s = append(s, fmt.Sprintf("%s:%#02x", n, v))
   323  		case reflect.Bool:
   324  			s = append(s, fmt.Sprintf("%s:%v", n, v))
   325  		default:
   326  			s = append(s, fmt.Sprintf("%s:%#02x", n, v))
   327  		}
   328  	}
   329  	return s
   330  }
   331  
   332  // Diff is a convenience function that returns a string showing
   333  // differences between a header and another header.
   334  func (h *LinuxHeader) Diff(i *LinuxHeader) string {
   335  	var s string
   336  	hs := h.Show()
   337  	is := i.Show()
   338  	for i := range hs {
   339  		if hs[i] != is[i] {
   340  			s += fmt.Sprintf("%s != %s", hs[i], is[i])
   341  		}
   342  	}
   343  	return s
   344  }
   345  
   346  // Diff is a convenience function that returns a string showing
   347  // differences between a bzImage and another bzImage
   348  func (b *BzImage) Diff(b2 *BzImage) string {
   349  	s := b.Header.Diff(&b2.Header)
   350  	if len(b.BootCode) != len(b2.BootCode) {
   351  		s = s + fmt.Sprintf("b Bootcode is %d; b2 BootCode is %d", len(b.BootCode), len(b2.BootCode))
   352  	}
   353  	if len(b.HeadCode) != len(b2.HeadCode) {
   354  		s = s + fmt.Sprintf("b Headcode is %d; b2 HeadCode is %d", len(b.HeadCode), len(b2.HeadCode))
   355  	}
   356  	if len(b.KernelCode) != len(b2.KernelCode) {
   357  		s = s + fmt.Sprintf("b Kernelcode is %d; b2 KernelCode is %d", len(b.KernelCode), len(b2.KernelCode))
   358  	}
   359  	if len(b.TailCode) != len(b2.TailCode) {
   360  		s = s + fmt.Sprintf("b Tailcode is %d; b2 TailCode is %d", len(b.TailCode), len(b2.TailCode))
   361  	}
   362  	if b.KernelBase != b2.KernelBase {
   363  		s = s + fmt.Sprintf("b KernelBase is %#x; b2 KernelBase is %#x", b.KernelBase, b2.KernelBase)
   364  	}
   365  	if b.KernelOffset != b2.KernelOffset {
   366  		s = s + fmt.Sprintf("b KernelOffset is %#x; b2 KernelOffset is %#x", b.KernelOffset, b2.KernelOffset)
   367  	}
   368  	return s
   369  }
   370  
   371  // String stringifies a LinuxHeader into comma-separated parts
   372  func (h *LinuxHeader) String() string {
   373  	return strings.Join(h.Show(), ",")
   374  }
   375  
   376  // InitRAMFS returns a []byte from KernelCode which can be used to save or replace
   377  // an existing InitRAMFS. The fun part is that there are no symbols; what we do instead
   378  // is find the programs what are RW and look for the cpio magic in them. If we find it,
   379  // we see if it can be read as a cpio and, if so, if there is a /dev or /init inside.
   380  // We repeat until we succeed or there's nothing left.
   381  func (b *BzImage) InitRAMFS() (int, int, error) {
   382  	f, err := b.ELF()
   383  	if err != nil {
   384  		return -1, -1, err
   385  	}
   386  	// Find the program header with RWE.
   387  	var dat []byte
   388  	var prog *elf.Prog
   389  	for _, p := range f.Progs {
   390  		if p.Flags&(elf.PF_X|elf.PF_W|elf.PF_R) == elf.PF_X|elf.PF_W|elf.PF_R {
   391  			dat, err = ioutil.ReadAll(p.Open())
   392  			if err != nil {
   393  				return -1, -1, err
   394  			}
   395  			prog = p
   396  			break
   397  		}
   398  	}
   399  	if dat == nil {
   400  		return -1, -1, fmt.Errorf("can't find an RWE prog in kernel")
   401  	}
   402  
   403  	archiver, err := cpio.Format("newc")
   404  	if err != nil {
   405  		return -1, -1, fmt.Errorf("format newc not supported: %v", err)
   406  	}
   407  	var cur int
   408  	for cur < len(dat) {
   409  		x := bytes.Index(dat, []byte("070701"))
   410  		if x == -1 {
   411  			return -1, -1, fmt.Errorf("no newc cpio magic found")
   412  		}
   413  		if err != nil {
   414  			return -1, -1, err
   415  		}
   416  		cur = x
   417  		var r = bytes.NewReader(dat[cur:])
   418  		rr := archiver.Reader(r)
   419  		Debug("r.Len is %v", r.Len())
   420  		var found bool
   421  		var size int
   422  		for {
   423  			rec, err := rr.ReadRecord()
   424  			Debug("Check %v", rec)
   425  			if err == io.EOF {
   426  				break
   427  			}
   428  			if err != nil {
   429  				Debug("error reading records: %v", err)
   430  				break
   431  			}
   432  			switch rec.Name {
   433  			case "init", "dev", "bin", "usr":
   434  				Debug("Found initramfs at %d, %d bytes", cur, len(dat)-r.Len())
   435  				found = true
   436  			}
   437  			size = int(rec.FilePos) + int(rec.FileSize)
   438  		}
   439  		Debug("Size is %d", size)
   440  		// Add the trailer size.
   441  		y := x + size
   442  		if found {
   443  			// The slice consists of the bytes for cur to the length of initramfs.
   444  			// We can derive the initramfs length by knowing how much is left of the reader.
   445  			Debug("Return %d %#x slice %d:%d from %d byte dat", len(dat[x:y]), len(dat[x:y]), cur, y, len(dat))
   446  			x += int(prog.Off)
   447  			y += int(prog.Off)
   448  			// We need to round y up to the end of the record. We have to do this after we
   449  			// add the prog.Off value to it.
   450  			y = (y + 3) &^ 3
   451  			// and add the size of the trailer record.
   452  			y += 120
   453  			y += 4 // and add at least one word of null
   454  			y = (y + 3) &^ 3
   455  			Debug("InitRAMFS: return %d, %d", x, y)
   456  			return x, y, nil
   457  		}
   458  		cur += 6
   459  	}
   460  	return -1, -1, fmt.Errorf("no cpio found")
   461  }