github.com/yanyiwu/go@v0.0.0-20150106053140-03d6637dbb7f/src/crypto/cipher/gcm.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package cipher
     6  
     7  import (
     8  	"crypto/subtle"
     9  	"errors"
    10  )
    11  
    12  // AEAD is a cipher mode providing authenticated encryption with associated
    13  // data.
    14  type AEAD interface {
    15  	// NonceSize returns the size of the nonce that must be passed to Seal
    16  	// and Open.
    17  	NonceSize() int
    18  
    19  	// Overhead returns the maximum difference between the lengths of a
    20  	// plaintext and ciphertext.
    21  	Overhead() int
    22  
    23  	// Seal encrypts and authenticates plaintext, authenticates the
    24  	// additional data and appends the result to dst, returning the updated
    25  	// slice. The nonce must be NonceSize() bytes long and unique for all
    26  	// time, for a given key.
    27  	//
    28  	// The plaintext and dst may alias exactly or not at all.
    29  	Seal(dst, nonce, plaintext, data []byte) []byte
    30  
    31  	// Open decrypts and authenticates ciphertext, authenticates the
    32  	// additional data and, if successful, appends the resulting plaintext
    33  	// to dst, returning the updated slice. The nonce must be NonceSize()
    34  	// bytes long and both it and the additional data must match the
    35  	// value passed to Seal.
    36  	//
    37  	// The ciphertext and dst may alias exactly or not at all.
    38  	Open(dst, nonce, ciphertext, data []byte) ([]byte, error)
    39  }
    40  
    41  // gcmFieldElement represents a value in GF(2¹²⁸). In order to reflect the GCM
    42  // standard and make getUint64 suitable for marshaling these values, the bits
    43  // are stored backwards. For example:
    44  //   the coefficient of x⁰ can be obtained by v.low >> 63.
    45  //   the coefficient of x⁶³ can be obtained by v.low & 1.
    46  //   the coefficient of x⁶⁴ can be obtained by v.high >> 63.
    47  //   the coefficient of x¹²⁷ can be obtained by v.high & 1.
    48  type gcmFieldElement struct {
    49  	low, high uint64
    50  }
    51  
    52  // gcm represents a Galois Counter Mode with a specific key. See
    53  // http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
    54  type gcm struct {
    55  	cipher Block
    56  	// productTable contains the first sixteen powers of the key, H.
    57  	// However, they are in bit reversed order. See NewGCM.
    58  	productTable [16]gcmFieldElement
    59  }
    60  
    61  // NewGCM returns the given 128-bit, block cipher wrapped in Galois Counter Mode.
    62  func NewGCM(cipher Block) (AEAD, error) {
    63  	if cipher.BlockSize() != gcmBlockSize {
    64  		return nil, errors.New("cipher: NewGCM requires 128-bit block cipher")
    65  	}
    66  
    67  	var key [gcmBlockSize]byte
    68  	cipher.Encrypt(key[:], key[:])
    69  
    70  	g := &gcm{cipher: cipher}
    71  
    72  	// We precompute 16 multiples of |key|. However, when we do lookups
    73  	// into this table we'll be using bits from a field element and
    74  	// therefore the bits will be in the reverse order. So normally one
    75  	// would expect, say, 4*key to be in index 4 of the table but due to
    76  	// this bit ordering it will actually be in index 0010 (base 2) = 2.
    77  	x := gcmFieldElement{
    78  		getUint64(key[:8]),
    79  		getUint64(key[8:]),
    80  	}
    81  	g.productTable[reverseBits(1)] = x
    82  
    83  	for i := 2; i < 16; i += 2 {
    84  		g.productTable[reverseBits(i)] = gcmDouble(&g.productTable[reverseBits(i/2)])
    85  		g.productTable[reverseBits(i+1)] = gcmAdd(&g.productTable[reverseBits(i)], &x)
    86  	}
    87  
    88  	return g, nil
    89  }
    90  
    91  const (
    92  	gcmBlockSize = 16
    93  	gcmTagSize   = 16
    94  	gcmNonceSize = 12
    95  )
    96  
    97  func (*gcm) NonceSize() int {
    98  	return gcmNonceSize
    99  }
   100  
   101  func (*gcm) Overhead() int {
   102  	return gcmTagSize
   103  }
   104  
   105  func (g *gcm) Seal(dst, nonce, plaintext, data []byte) []byte {
   106  	if len(nonce) != gcmNonceSize {
   107  		panic("cipher: incorrect nonce length given to GCM")
   108  	}
   109  
   110  	ret, out := sliceForAppend(dst, len(plaintext)+gcmTagSize)
   111  
   112  	// See GCM spec, section 7.1.
   113  	var counter, tagMask [gcmBlockSize]byte
   114  	copy(counter[:], nonce)
   115  	counter[gcmBlockSize-1] = 1
   116  
   117  	g.cipher.Encrypt(tagMask[:], counter[:])
   118  	gcmInc32(&counter)
   119  
   120  	g.counterCrypt(out, plaintext, &counter)
   121  	g.auth(out[len(plaintext):], out[:len(plaintext)], data, &tagMask)
   122  
   123  	return ret
   124  }
   125  
   126  var errOpen = errors.New("cipher: message authentication failed")
   127  
   128  func (g *gcm) Open(dst, nonce, ciphertext, data []byte) ([]byte, error) {
   129  	if len(nonce) != gcmNonceSize {
   130  		panic("cipher: incorrect nonce length given to GCM")
   131  	}
   132  
   133  	if len(ciphertext) < gcmTagSize {
   134  		return nil, errOpen
   135  	}
   136  	tag := ciphertext[len(ciphertext)-gcmTagSize:]
   137  	ciphertext = ciphertext[:len(ciphertext)-gcmTagSize]
   138  
   139  	// See GCM spec, section 7.1.
   140  	var counter, tagMask [gcmBlockSize]byte
   141  	copy(counter[:], nonce)
   142  	counter[gcmBlockSize-1] = 1
   143  
   144  	g.cipher.Encrypt(tagMask[:], counter[:])
   145  	gcmInc32(&counter)
   146  
   147  	var expectedTag [gcmTagSize]byte
   148  	g.auth(expectedTag[:], ciphertext, data, &tagMask)
   149  
   150  	if subtle.ConstantTimeCompare(expectedTag[:], tag) != 1 {
   151  		return nil, errOpen
   152  	}
   153  
   154  	ret, out := sliceForAppend(dst, len(ciphertext))
   155  	g.counterCrypt(out, ciphertext, &counter)
   156  
   157  	return ret, nil
   158  }
   159  
   160  // reverseBits reverses the order of the bits of 4-bit number in i.
   161  func reverseBits(i int) int {
   162  	i = ((i << 2) & 0xc) | ((i >> 2) & 0x3)
   163  	i = ((i << 1) & 0xa) | ((i >> 1) & 0x5)
   164  	return i
   165  }
   166  
   167  // gcmAdd adds two elements of GF(2¹²⁸) and returns the sum.
   168  func gcmAdd(x, y *gcmFieldElement) gcmFieldElement {
   169  	// Addition in a characteristic 2 field is just XOR.
   170  	return gcmFieldElement{x.low ^ y.low, x.high ^ y.high}
   171  }
   172  
   173  // gcmDouble returns the result of doubling an element of GF(2¹²⁸).
   174  func gcmDouble(x *gcmFieldElement) (double gcmFieldElement) {
   175  	msbSet := x.high&1 == 1
   176  
   177  	// Because of the bit-ordering, doubling is actually a right shift.
   178  	double.high = x.high >> 1
   179  	double.high |= x.low << 63
   180  	double.low = x.low >> 1
   181  
   182  	// If the most-significant bit was set before shifting then it,
   183  	// conceptually, becomes a term of x^128. This is greater than the
   184  	// irreducible polynomial so the result has to be reduced. The
   185  	// irreducible polynomial is 1+x+x^2+x^7+x^128. We can subtract that to
   186  	// eliminate the term at x^128 which also means subtracting the other
   187  	// four terms. In characteristic 2 fields, subtraction == addition ==
   188  	// XOR.
   189  	if msbSet {
   190  		double.low ^= 0xe100000000000000
   191  	}
   192  
   193  	return
   194  }
   195  
   196  var gcmReductionTable = []uint16{
   197  	0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0,
   198  	0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0,
   199  }
   200  
   201  // mul sets y to y*H, where H is the GCM key, fixed during NewGCM.
   202  func (g *gcm) mul(y *gcmFieldElement) {
   203  	var z gcmFieldElement
   204  
   205  	for i := 0; i < 2; i++ {
   206  		word := y.high
   207  		if i == 1 {
   208  			word = y.low
   209  		}
   210  
   211  		// Multiplication works by multiplying z by 16 and adding in
   212  		// one of the precomputed multiples of H.
   213  		for j := 0; j < 64; j += 4 {
   214  			msw := z.high & 0xf
   215  			z.high >>= 4
   216  			z.high |= z.low << 60
   217  			z.low >>= 4
   218  			z.low ^= uint64(gcmReductionTable[msw]) << 48
   219  
   220  			// the values in |table| are ordered for
   221  			// little-endian bit positions. See the comment
   222  			// in NewGCM.
   223  			t := &g.productTable[word&0xf]
   224  
   225  			z.low ^= t.low
   226  			z.high ^= t.high
   227  			word >>= 4
   228  		}
   229  	}
   230  
   231  	*y = z
   232  }
   233  
   234  // updateBlocks extends y with more polynomial terms from blocks, based on
   235  // Horner's rule. There must be a multiple of gcmBlockSize bytes in blocks.
   236  func (g *gcm) updateBlocks(y *gcmFieldElement, blocks []byte) {
   237  	for len(blocks) > 0 {
   238  		y.low ^= getUint64(blocks)
   239  		y.high ^= getUint64(blocks[8:])
   240  		g.mul(y)
   241  		blocks = blocks[gcmBlockSize:]
   242  	}
   243  }
   244  
   245  // update extends y with more polynomial terms from data. If data is not a
   246  // multiple of gcmBlockSize bytes long then the remainder is zero padded.
   247  func (g *gcm) update(y *gcmFieldElement, data []byte) {
   248  	fullBlocks := (len(data) >> 4) << 4
   249  	g.updateBlocks(y, data[:fullBlocks])
   250  
   251  	if len(data) != fullBlocks {
   252  		var partialBlock [gcmBlockSize]byte
   253  		copy(partialBlock[:], data[fullBlocks:])
   254  		g.updateBlocks(y, partialBlock[:])
   255  	}
   256  }
   257  
   258  // gcmInc32 treats the final four bytes of counterBlock as a big-endian value
   259  // and increments it.
   260  func gcmInc32(counterBlock *[16]byte) {
   261  	for i := gcmBlockSize - 1; i >= gcmBlockSize-4; i-- {
   262  		counterBlock[i]++
   263  		if counterBlock[i] != 0 {
   264  			break
   265  		}
   266  	}
   267  }
   268  
   269  // sliceForAppend takes a slice and a requested number of bytes. It returns a
   270  // slice with the contents of the given slice followed by that many bytes and a
   271  // second slice that aliases into it and contains only the extra bytes. If the
   272  // original slice has sufficient capacity then no allocation is performed.
   273  func sliceForAppend(in []byte, n int) (head, tail []byte) {
   274  	if total := len(in) + n; cap(in) >= total {
   275  		head = in[:total]
   276  	} else {
   277  		head = make([]byte, total)
   278  		copy(head, in)
   279  	}
   280  	tail = head[len(in):]
   281  	return
   282  }
   283  
   284  // counterCrypt crypts in to out using g.cipher in counter mode.
   285  func (g *gcm) counterCrypt(out, in []byte, counter *[gcmBlockSize]byte) {
   286  	var mask [gcmBlockSize]byte
   287  
   288  	for len(in) >= gcmBlockSize {
   289  		g.cipher.Encrypt(mask[:], counter[:])
   290  		gcmInc32(counter)
   291  
   292  		xorWords(out, in, mask[:])
   293  		out = out[gcmBlockSize:]
   294  		in = in[gcmBlockSize:]
   295  	}
   296  
   297  	if len(in) > 0 {
   298  		g.cipher.Encrypt(mask[:], counter[:])
   299  		gcmInc32(counter)
   300  		xorBytes(out, in, mask[:])
   301  	}
   302  }
   303  
   304  // auth calculates GHASH(ciphertext, additionalData), masks the result with
   305  // tagMask and writes the result to out.
   306  func (g *gcm) auth(out, ciphertext, additionalData []byte, tagMask *[gcmTagSize]byte) {
   307  	var y gcmFieldElement
   308  	g.update(&y, additionalData)
   309  	g.update(&y, ciphertext)
   310  
   311  	y.low ^= uint64(len(additionalData)) * 8
   312  	y.high ^= uint64(len(ciphertext)) * 8
   313  
   314  	g.mul(&y)
   315  
   316  	putUint64(out, y.low)
   317  	putUint64(out[8:], y.high)
   318  
   319  	xorWords(out, out, tagMask[:])
   320  }
   321  
   322  func getUint64(data []byte) uint64 {
   323  	r := uint64(data[0])<<56 |
   324  		uint64(data[1])<<48 |
   325  		uint64(data[2])<<40 |
   326  		uint64(data[3])<<32 |
   327  		uint64(data[4])<<24 |
   328  		uint64(data[5])<<16 |
   329  		uint64(data[6])<<8 |
   330  		uint64(data[7])
   331  	return r
   332  }
   333  
   334  func putUint64(out []byte, v uint64) {
   335  	out[0] = byte(v >> 56)
   336  	out[1] = byte(v >> 48)
   337  	out[2] = byte(v >> 40)
   338  	out[3] = byte(v >> 32)
   339  	out[4] = byte(v >> 24)
   340  	out[5] = byte(v >> 16)
   341  	out[6] = byte(v >> 8)
   342  	out[7] = byte(v)
   343  }