github.com/yanyiwu/go@v0.0.0-20150106053140-03d6637dbb7f/src/math/big/arith.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file provides Go implementations of elementary multi-precision
     6  // arithmetic operations on word vectors. Needed for platforms without
     7  // assembly implementations of these routines.
     8  
     9  package big
    10  
    11  // A Word represents a single digit of a multi-precision unsigned integer.
    12  type Word uintptr
    13  
    14  const (
    15  	// Compute the size _S of a Word in bytes.
    16  	_m    = ^Word(0)
    17  	_logS = _m>>8&1 + _m>>16&1 + _m>>32&1
    18  	_S    = 1 << _logS
    19  
    20  	_W = _S << 3 // word size in bits
    21  	_B = 1 << _W // digit base
    22  	_M = _B - 1  // digit mask
    23  
    24  	_W2 = _W / 2   // half word size in bits
    25  	_B2 = 1 << _W2 // half digit base
    26  	_M2 = _B2 - 1  // half digit mask
    27  )
    28  
    29  // ----------------------------------------------------------------------------
    30  // Elementary operations on words
    31  //
    32  // These operations are used by the vector operations below.
    33  
    34  // z1<<_W + z0 = x+y+c, with c == 0 or 1
    35  func addWW_g(x, y, c Word) (z1, z0 Word) {
    36  	yc := y + c
    37  	z0 = x + yc
    38  	if z0 < x || yc < y {
    39  		z1 = 1
    40  	}
    41  	return
    42  }
    43  
    44  // z1<<_W + z0 = x-y-c, with c == 0 or 1
    45  func subWW_g(x, y, c Word) (z1, z0 Word) {
    46  	yc := y + c
    47  	z0 = x - yc
    48  	if z0 > x || yc < y {
    49  		z1 = 1
    50  	}
    51  	return
    52  }
    53  
    54  // z1<<_W + z0 = x*y
    55  // Adapted from Warren, Hacker's Delight, p. 132.
    56  func mulWW_g(x, y Word) (z1, z0 Word) {
    57  	x0 := x & _M2
    58  	x1 := x >> _W2
    59  	y0 := y & _M2
    60  	y1 := y >> _W2
    61  	w0 := x0 * y0
    62  	t := x1*y0 + w0>>_W2
    63  	w1 := t & _M2
    64  	w2 := t >> _W2
    65  	w1 += x0 * y1
    66  	z1 = x1*y1 + w2 + w1>>_W2
    67  	z0 = x * y
    68  	return
    69  }
    70  
    71  // z1<<_W + z0 = x*y + c
    72  func mulAddWWW_g(x, y, c Word) (z1, z0 Word) {
    73  	z1, zz0 := mulWW(x, y)
    74  	if z0 = zz0 + c; z0 < zz0 {
    75  		z1++
    76  	}
    77  	return
    78  }
    79  
    80  // Length of x in bits.
    81  func bitLen_g(x Word) (n int) {
    82  	for ; x >= 0x8000; x >>= 16 {
    83  		n += 16
    84  	}
    85  	if x >= 0x80 {
    86  		x >>= 8
    87  		n += 8
    88  	}
    89  	if x >= 0x8 {
    90  		x >>= 4
    91  		n += 4
    92  	}
    93  	if x >= 0x2 {
    94  		x >>= 2
    95  		n += 2
    96  	}
    97  	if x >= 0x1 {
    98  		n++
    99  	}
   100  	return
   101  }
   102  
   103  // log2 computes the integer binary logarithm of x.
   104  // The result is the integer n for which 2^n <= x < 2^(n+1).
   105  // If x == 0, the result is -1.
   106  func log2(x Word) int {
   107  	return bitLen(x) - 1
   108  }
   109  
   110  // Number of leading zeros in x.
   111  func leadingZeros(x Word) uint {
   112  	return uint(_W - bitLen(x))
   113  }
   114  
   115  // q = (u1<<_W + u0 - r)/y
   116  // Adapted from Warren, Hacker's Delight, p. 152.
   117  func divWW_g(u1, u0, v Word) (q, r Word) {
   118  	if u1 >= v {
   119  		return 1<<_W - 1, 1<<_W - 1
   120  	}
   121  
   122  	s := leadingZeros(v)
   123  	v <<= s
   124  
   125  	vn1 := v >> _W2
   126  	vn0 := v & _M2
   127  	un32 := u1<<s | u0>>(_W-s)
   128  	un10 := u0 << s
   129  	un1 := un10 >> _W2
   130  	un0 := un10 & _M2
   131  	q1 := un32 / vn1
   132  	rhat := un32 - q1*vn1
   133  
   134  	for q1 >= _B2 || q1*vn0 > _B2*rhat+un1 {
   135  		q1--
   136  		rhat += vn1
   137  		if rhat >= _B2 {
   138  			break
   139  		}
   140  	}
   141  
   142  	un21 := un32*_B2 + un1 - q1*v
   143  	q0 := un21 / vn1
   144  	rhat = un21 - q0*vn1
   145  
   146  	for q0 >= _B2 || q0*vn0 > _B2*rhat+un0 {
   147  		q0--
   148  		rhat += vn1
   149  		if rhat >= _B2 {
   150  			break
   151  		}
   152  	}
   153  
   154  	return q1*_B2 + q0, (un21*_B2 + un0 - q0*v) >> s
   155  }
   156  
   157  func addVV_g(z, x, y []Word) (c Word) {
   158  	for i := range z {
   159  		c, z[i] = addWW_g(x[i], y[i], c)
   160  	}
   161  	return
   162  }
   163  
   164  func subVV_g(z, x, y []Word) (c Word) {
   165  	for i := range z {
   166  		c, z[i] = subWW_g(x[i], y[i], c)
   167  	}
   168  	return
   169  }
   170  
   171  func addVW_g(z, x []Word, y Word) (c Word) {
   172  	c = y
   173  	for i := range z {
   174  		c, z[i] = addWW_g(x[i], c, 0)
   175  	}
   176  	return
   177  }
   178  
   179  func subVW_g(z, x []Word, y Word) (c Word) {
   180  	c = y
   181  	for i := range z {
   182  		c, z[i] = subWW_g(x[i], c, 0)
   183  	}
   184  	return
   185  }
   186  
   187  func shlVU_g(z, x []Word, s uint) (c Word) {
   188  	if n := len(z); n > 0 {
   189  		ŝ := _W - s
   190  		w1 := x[n-1]
   191  		c = w1 >> ŝ
   192  		for i := n - 1; i > 0; i-- {
   193  			w := w1
   194  			w1 = x[i-1]
   195  			z[i] = w<<s | w1>>ŝ
   196  		}
   197  		z[0] = w1 << s
   198  	}
   199  	return
   200  }
   201  
   202  func shrVU_g(z, x []Word, s uint) (c Word) {
   203  	if n := len(z); n > 0 {
   204  		ŝ := _W - s
   205  		w1 := x[0]
   206  		c = w1 << ŝ
   207  		for i := 0; i < n-1; i++ {
   208  			w := w1
   209  			w1 = x[i+1]
   210  			z[i] = w>>s | w1<<ŝ
   211  		}
   212  		z[n-1] = w1 >> s
   213  	}
   214  	return
   215  }
   216  
   217  func mulAddVWW_g(z, x []Word, y, r Word) (c Word) {
   218  	c = r
   219  	for i := range z {
   220  		c, z[i] = mulAddWWW_g(x[i], y, c)
   221  	}
   222  	return
   223  }
   224  
   225  func addMulVVW_g(z, x []Word, y Word) (c Word) {
   226  	for i := range z {
   227  		z1, z0 := mulAddWWW_g(x[i], y, z[i])
   228  		c, z[i] = addWW_g(z0, c, 0)
   229  		c += z1
   230  	}
   231  	return
   232  }
   233  
   234  func divWVW_g(z []Word, xn Word, x []Word, y Word) (r Word) {
   235  	r = xn
   236  	for i := len(z) - 1; i >= 0; i-- {
   237  		z[i], r = divWW_g(r, x[i], y)
   238  	}
   239  	return
   240  }