github.com/yanyiwu/go@v0.0.0-20150106053140-03d6637dbb7f/src/net/http/server.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // HTTP server.  See RFC 2616.
     6  
     7  package http
     8  
     9  import (
    10  	"bufio"
    11  	"crypto/tls"
    12  	"errors"
    13  	"fmt"
    14  	"io"
    15  	"io/ioutil"
    16  	"log"
    17  	"net"
    18  	"net/textproto"
    19  	"net/url"
    20  	"os"
    21  	"path"
    22  	"runtime"
    23  	"strconv"
    24  	"strings"
    25  	"sync"
    26  	"sync/atomic"
    27  	"time"
    28  )
    29  
    30  // Errors introduced by the HTTP server.
    31  var (
    32  	ErrWriteAfterFlush = errors.New("Conn.Write called after Flush")
    33  	ErrBodyNotAllowed  = errors.New("http: request method or response status code does not allow body")
    34  	ErrHijacked        = errors.New("Conn has been hijacked")
    35  	ErrContentLength   = errors.New("Conn.Write wrote more than the declared Content-Length")
    36  )
    37  
    38  // Objects implementing the Handler interface can be
    39  // registered to serve a particular path or subtree
    40  // in the HTTP server.
    41  //
    42  // ServeHTTP should write reply headers and data to the ResponseWriter
    43  // and then return.  Returning signals that the request is finished
    44  // and that the HTTP server can move on to the next request on
    45  // the connection.
    46  //
    47  // If ServeHTTP panics, the server (the caller of ServeHTTP) assumes
    48  // that the effect of the panic was isolated to the active request.
    49  // It recovers the panic, logs a stack trace to the server error log,
    50  // and hangs up the connection.
    51  //
    52  type Handler interface {
    53  	ServeHTTP(ResponseWriter, *Request)
    54  }
    55  
    56  // A ResponseWriter interface is used by an HTTP handler to
    57  // construct an HTTP response.
    58  type ResponseWriter interface {
    59  	// Header returns the header map that will be sent by
    60  	// WriteHeader. Changing the header after a call to
    61  	// WriteHeader (or Write) has no effect unless the modified
    62  	// headers were declared as trailers by setting the
    63  	// "Trailer" header before the call to WriteHeader.
    64  	Header() Header
    65  
    66  	// Write writes the data to the connection as part of an HTTP reply.
    67  	// If WriteHeader has not yet been called, Write calls WriteHeader(http.StatusOK)
    68  	// before writing the data.  If the Header does not contain a
    69  	// Content-Type line, Write adds a Content-Type set to the result of passing
    70  	// the initial 512 bytes of written data to DetectContentType.
    71  	Write([]byte) (int, error)
    72  
    73  	// WriteHeader sends an HTTP response header with status code.
    74  	// If WriteHeader is not called explicitly, the first call to Write
    75  	// will trigger an implicit WriteHeader(http.StatusOK).
    76  	// Thus explicit calls to WriteHeader are mainly used to
    77  	// send error codes.
    78  	WriteHeader(int)
    79  }
    80  
    81  // The Flusher interface is implemented by ResponseWriters that allow
    82  // an HTTP handler to flush buffered data to the client.
    83  //
    84  // Note that even for ResponseWriters that support Flush,
    85  // if the client is connected through an HTTP proxy,
    86  // the buffered data may not reach the client until the response
    87  // completes.
    88  type Flusher interface {
    89  	// Flush sends any buffered data to the client.
    90  	Flush()
    91  }
    92  
    93  // The Hijacker interface is implemented by ResponseWriters that allow
    94  // an HTTP handler to take over the connection.
    95  type Hijacker interface {
    96  	// Hijack lets the caller take over the connection.
    97  	// After a call to Hijack(), the HTTP server library
    98  	// will not do anything else with the connection.
    99  	// It becomes the caller's responsibility to manage
   100  	// and close the connection.
   101  	Hijack() (net.Conn, *bufio.ReadWriter, error)
   102  }
   103  
   104  // The CloseNotifier interface is implemented by ResponseWriters which
   105  // allow detecting when the underlying connection has gone away.
   106  //
   107  // This mechanism can be used to cancel long operations on the server
   108  // if the client has disconnected before the response is ready.
   109  type CloseNotifier interface {
   110  	// CloseNotify returns a channel that receives a single value
   111  	// when the client connection has gone away.
   112  	CloseNotify() <-chan bool
   113  }
   114  
   115  // A conn represents the server side of an HTTP connection.
   116  type conn struct {
   117  	remoteAddr string               // network address of remote side
   118  	server     *Server              // the Server on which the connection arrived
   119  	rwc        net.Conn             // i/o connection
   120  	w          io.Writer            // checkConnErrorWriter's copy of wrc, not zeroed on Hijack
   121  	werr       error                // any errors writing to w
   122  	sr         liveSwitchReader     // where the LimitReader reads from; usually the rwc
   123  	lr         *io.LimitedReader    // io.LimitReader(sr)
   124  	buf        *bufio.ReadWriter    // buffered(lr,rwc), reading from bufio->limitReader->sr->rwc
   125  	tlsState   *tls.ConnectionState // or nil when not using TLS
   126  
   127  	mu           sync.Mutex // guards the following
   128  	clientGone   bool       // if client has disconnected mid-request
   129  	closeNotifyc chan bool  // made lazily
   130  	hijackedv    bool       // connection has been hijacked by handler
   131  }
   132  
   133  func (c *conn) hijacked() bool {
   134  	c.mu.Lock()
   135  	defer c.mu.Unlock()
   136  	return c.hijackedv
   137  }
   138  
   139  func (c *conn) hijack() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
   140  	c.mu.Lock()
   141  	defer c.mu.Unlock()
   142  	if c.hijackedv {
   143  		return nil, nil, ErrHijacked
   144  	}
   145  	if c.closeNotifyc != nil {
   146  		return nil, nil, errors.New("http: Hijack is incompatible with use of CloseNotifier")
   147  	}
   148  	c.hijackedv = true
   149  	rwc = c.rwc
   150  	buf = c.buf
   151  	c.rwc = nil
   152  	c.buf = nil
   153  	c.setState(rwc, StateHijacked)
   154  	return
   155  }
   156  
   157  func (c *conn) closeNotify() <-chan bool {
   158  	c.mu.Lock()
   159  	defer c.mu.Unlock()
   160  	if c.closeNotifyc == nil {
   161  		c.closeNotifyc = make(chan bool, 1)
   162  		if c.hijackedv {
   163  			// to obey the function signature, even though
   164  			// it'll never receive a value.
   165  			return c.closeNotifyc
   166  		}
   167  		pr, pw := io.Pipe()
   168  
   169  		readSource := c.sr.r
   170  		c.sr.Lock()
   171  		c.sr.r = pr
   172  		c.sr.Unlock()
   173  		go func() {
   174  			_, err := io.Copy(pw, readSource)
   175  			if err == nil {
   176  				err = io.EOF
   177  			}
   178  			pw.CloseWithError(err)
   179  			c.noteClientGone()
   180  		}()
   181  	}
   182  	return c.closeNotifyc
   183  }
   184  
   185  func (c *conn) noteClientGone() {
   186  	c.mu.Lock()
   187  	defer c.mu.Unlock()
   188  	if c.closeNotifyc != nil && !c.clientGone {
   189  		c.closeNotifyc <- true
   190  	}
   191  	c.clientGone = true
   192  }
   193  
   194  // A switchReader can have its Reader changed at runtime.
   195  // It's not safe for concurrent Reads and switches.
   196  type switchReader struct {
   197  	io.Reader
   198  }
   199  
   200  // A switchWriter can have its Writer changed at runtime.
   201  // It's not safe for concurrent Writes and switches.
   202  type switchWriter struct {
   203  	io.Writer
   204  }
   205  
   206  // A liveSwitchReader is a switchReader that's safe for concurrent
   207  // reads and switches, if its mutex is held.
   208  type liveSwitchReader struct {
   209  	sync.Mutex
   210  	r io.Reader
   211  }
   212  
   213  func (sr *liveSwitchReader) Read(p []byte) (n int, err error) {
   214  	sr.Lock()
   215  	r := sr.r
   216  	sr.Unlock()
   217  	return r.Read(p)
   218  }
   219  
   220  // This should be >= 512 bytes for DetectContentType,
   221  // but otherwise it's somewhat arbitrary.
   222  const bufferBeforeChunkingSize = 2048
   223  
   224  // chunkWriter writes to a response's conn buffer, and is the writer
   225  // wrapped by the response.bufw buffered writer.
   226  //
   227  // chunkWriter also is responsible for finalizing the Header, including
   228  // conditionally setting the Content-Type and setting a Content-Length
   229  // in cases where the handler's final output is smaller than the buffer
   230  // size. It also conditionally adds chunk headers, when in chunking mode.
   231  //
   232  // See the comment above (*response).Write for the entire write flow.
   233  type chunkWriter struct {
   234  	res *response
   235  
   236  	// header is either nil or a deep clone of res.handlerHeader
   237  	// at the time of res.WriteHeader, if res.WriteHeader is
   238  	// called and extra buffering is being done to calculate
   239  	// Content-Type and/or Content-Length.
   240  	header Header
   241  
   242  	// wroteHeader tells whether the header's been written to "the
   243  	// wire" (or rather: w.conn.buf). this is unlike
   244  	// (*response).wroteHeader, which tells only whether it was
   245  	// logically written.
   246  	wroteHeader bool
   247  
   248  	// set by the writeHeader method:
   249  	chunking bool // using chunked transfer encoding for reply body
   250  }
   251  
   252  var (
   253  	crlf       = []byte("\r\n")
   254  	colonSpace = []byte(": ")
   255  )
   256  
   257  func (cw *chunkWriter) Write(p []byte) (n int, err error) {
   258  	if !cw.wroteHeader {
   259  		cw.writeHeader(p)
   260  	}
   261  	if cw.res.req.Method == "HEAD" {
   262  		// Eat writes.
   263  		return len(p), nil
   264  	}
   265  	if cw.chunking {
   266  		_, err = fmt.Fprintf(cw.res.conn.buf, "%x\r\n", len(p))
   267  		if err != nil {
   268  			cw.res.conn.rwc.Close()
   269  			return
   270  		}
   271  	}
   272  	n, err = cw.res.conn.buf.Write(p)
   273  	if cw.chunking && err == nil {
   274  		_, err = cw.res.conn.buf.Write(crlf)
   275  	}
   276  	if err != nil {
   277  		cw.res.conn.rwc.Close()
   278  	}
   279  	return
   280  }
   281  
   282  func (cw *chunkWriter) flush() {
   283  	if !cw.wroteHeader {
   284  		cw.writeHeader(nil)
   285  	}
   286  	cw.res.conn.buf.Flush()
   287  }
   288  
   289  func (cw *chunkWriter) close() {
   290  	if !cw.wroteHeader {
   291  		cw.writeHeader(nil)
   292  	}
   293  	if cw.chunking {
   294  		bw := cw.res.conn.buf // conn's bufio writer
   295  		// zero chunk to mark EOF
   296  		bw.WriteString("0\r\n")
   297  		if len(cw.res.trailers) > 0 {
   298  			trailers := make(Header)
   299  			for _, h := range cw.res.trailers {
   300  				if vv := cw.res.handlerHeader[h]; len(vv) > 0 {
   301  					trailers[h] = vv
   302  				}
   303  			}
   304  			trailers.Write(bw) // the writer handles noting errors
   305  		}
   306  		// final blank line after the trailers (whether
   307  		// present or not)
   308  		bw.WriteString("\r\n")
   309  	}
   310  }
   311  
   312  // A response represents the server side of an HTTP response.
   313  type response struct {
   314  	conn          *conn
   315  	req           *Request // request for this response
   316  	wroteHeader   bool     // reply header has been (logically) written
   317  	wroteContinue bool     // 100 Continue response was written
   318  
   319  	w  *bufio.Writer // buffers output in chunks to chunkWriter
   320  	cw chunkWriter
   321  	sw *switchWriter // of the bufio.Writer, for return to putBufioWriter
   322  
   323  	// handlerHeader is the Header that Handlers get access to,
   324  	// which may be retained and mutated even after WriteHeader.
   325  	// handlerHeader is copied into cw.header at WriteHeader
   326  	// time, and privately mutated thereafter.
   327  	handlerHeader Header
   328  	calledHeader  bool // handler accessed handlerHeader via Header
   329  
   330  	written       int64 // number of bytes written in body
   331  	contentLength int64 // explicitly-declared Content-Length; or -1
   332  	status        int   // status code passed to WriteHeader
   333  
   334  	// close connection after this reply.  set on request and
   335  	// updated after response from handler if there's a
   336  	// "Connection: keep-alive" response header and a
   337  	// Content-Length.
   338  	closeAfterReply bool
   339  
   340  	// requestBodyLimitHit is set by requestTooLarge when
   341  	// maxBytesReader hits its max size. It is checked in
   342  	// WriteHeader, to make sure we don't consume the
   343  	// remaining request body to try to advance to the next HTTP
   344  	// request. Instead, when this is set, we stop reading
   345  	// subsequent requests on this connection and stop reading
   346  	// input from it.
   347  	requestBodyLimitHit bool
   348  
   349  	// trailers are the headers to be sent after the handler
   350  	// finishes writing the body.  This field is initialized from
   351  	// the Trailer response header when the response header is
   352  	// written.
   353  	trailers []string
   354  
   355  	handlerDone bool // set true when the handler exits
   356  
   357  	// Buffers for Date and Content-Length
   358  	dateBuf [len(TimeFormat)]byte
   359  	clenBuf [10]byte
   360  }
   361  
   362  // declareTrailer is called for each Trailer header when the
   363  // response header is written. It notes that a header will need to be
   364  // written in the trailers at the end of the response.
   365  func (w *response) declareTrailer(k string) {
   366  	k = CanonicalHeaderKey(k)
   367  	switch k {
   368  	case "Transfer-Encoding", "Content-Length", "Trailer":
   369  		// Forbidden by RFC 2616 14.40.
   370  		return
   371  	}
   372  	w.trailers = append(w.trailers, k)
   373  }
   374  
   375  // requestTooLarge is called by maxBytesReader when too much input has
   376  // been read from the client.
   377  func (w *response) requestTooLarge() {
   378  	w.closeAfterReply = true
   379  	w.requestBodyLimitHit = true
   380  	if !w.wroteHeader {
   381  		w.Header().Set("Connection", "close")
   382  	}
   383  }
   384  
   385  // needsSniff reports whether a Content-Type still needs to be sniffed.
   386  func (w *response) needsSniff() bool {
   387  	_, haveType := w.handlerHeader["Content-Type"]
   388  	return !w.cw.wroteHeader && !haveType && w.written < sniffLen
   389  }
   390  
   391  // writerOnly hides an io.Writer value's optional ReadFrom method
   392  // from io.Copy.
   393  type writerOnly struct {
   394  	io.Writer
   395  }
   396  
   397  func srcIsRegularFile(src io.Reader) (isRegular bool, err error) {
   398  	switch v := src.(type) {
   399  	case *os.File:
   400  		fi, err := v.Stat()
   401  		if err != nil {
   402  			return false, err
   403  		}
   404  		return fi.Mode().IsRegular(), nil
   405  	case *io.LimitedReader:
   406  		return srcIsRegularFile(v.R)
   407  	default:
   408  		return
   409  	}
   410  }
   411  
   412  // ReadFrom is here to optimize copying from an *os.File regular file
   413  // to a *net.TCPConn with sendfile.
   414  func (w *response) ReadFrom(src io.Reader) (n int64, err error) {
   415  	// Our underlying w.conn.rwc is usually a *TCPConn (with its
   416  	// own ReadFrom method). If not, or if our src isn't a regular
   417  	// file, just fall back to the normal copy method.
   418  	rf, ok := w.conn.rwc.(io.ReaderFrom)
   419  	regFile, err := srcIsRegularFile(src)
   420  	if err != nil {
   421  		return 0, err
   422  	}
   423  	if !ok || !regFile {
   424  		return io.Copy(writerOnly{w}, src)
   425  	}
   426  
   427  	// sendfile path:
   428  
   429  	if !w.wroteHeader {
   430  		w.WriteHeader(StatusOK)
   431  	}
   432  
   433  	if w.needsSniff() {
   434  		n0, err := io.Copy(writerOnly{w}, io.LimitReader(src, sniffLen))
   435  		n += n0
   436  		if err != nil {
   437  			return n, err
   438  		}
   439  	}
   440  
   441  	w.w.Flush()  // get rid of any previous writes
   442  	w.cw.flush() // make sure Header is written; flush data to rwc
   443  
   444  	// Now that cw has been flushed, its chunking field is guaranteed initialized.
   445  	if !w.cw.chunking && w.bodyAllowed() {
   446  		n0, err := rf.ReadFrom(src)
   447  		n += n0
   448  		w.written += n0
   449  		return n, err
   450  	}
   451  
   452  	n0, err := io.Copy(writerOnly{w}, src)
   453  	n += n0
   454  	return n, err
   455  }
   456  
   457  // noLimit is an effective infinite upper bound for io.LimitedReader
   458  const noLimit int64 = (1 << 63) - 1
   459  
   460  // debugServerConnections controls whether all server connections are wrapped
   461  // with a verbose logging wrapper.
   462  const debugServerConnections = false
   463  
   464  // Create new connection from rwc.
   465  func (srv *Server) newConn(rwc net.Conn) (c *conn, err error) {
   466  	c = new(conn)
   467  	c.remoteAddr = rwc.RemoteAddr().String()
   468  	c.server = srv
   469  	c.rwc = rwc
   470  	c.w = rwc
   471  	if debugServerConnections {
   472  		c.rwc = newLoggingConn("server", c.rwc)
   473  	}
   474  	c.sr = liveSwitchReader{r: c.rwc}
   475  	c.lr = io.LimitReader(&c.sr, noLimit).(*io.LimitedReader)
   476  	br := newBufioReader(c.lr)
   477  	bw := newBufioWriterSize(checkConnErrorWriter{c}, 4<<10)
   478  	c.buf = bufio.NewReadWriter(br, bw)
   479  	return c, nil
   480  }
   481  
   482  var (
   483  	bufioReaderPool   sync.Pool
   484  	bufioWriter2kPool sync.Pool
   485  	bufioWriter4kPool sync.Pool
   486  )
   487  
   488  func bufioWriterPool(size int) *sync.Pool {
   489  	switch size {
   490  	case 2 << 10:
   491  		return &bufioWriter2kPool
   492  	case 4 << 10:
   493  		return &bufioWriter4kPool
   494  	}
   495  	return nil
   496  }
   497  
   498  func newBufioReader(r io.Reader) *bufio.Reader {
   499  	if v := bufioReaderPool.Get(); v != nil {
   500  		br := v.(*bufio.Reader)
   501  		br.Reset(r)
   502  		return br
   503  	}
   504  	return bufio.NewReader(r)
   505  }
   506  
   507  func putBufioReader(br *bufio.Reader) {
   508  	br.Reset(nil)
   509  	bufioReaderPool.Put(br)
   510  }
   511  
   512  func newBufioWriterSize(w io.Writer, size int) *bufio.Writer {
   513  	pool := bufioWriterPool(size)
   514  	if pool != nil {
   515  		if v := pool.Get(); v != nil {
   516  			bw := v.(*bufio.Writer)
   517  			bw.Reset(w)
   518  			return bw
   519  		}
   520  	}
   521  	return bufio.NewWriterSize(w, size)
   522  }
   523  
   524  func putBufioWriter(bw *bufio.Writer) {
   525  	bw.Reset(nil)
   526  	if pool := bufioWriterPool(bw.Available()); pool != nil {
   527  		pool.Put(bw)
   528  	}
   529  }
   530  
   531  // DefaultMaxHeaderBytes is the maximum permitted size of the headers
   532  // in an HTTP request.
   533  // This can be overridden by setting Server.MaxHeaderBytes.
   534  const DefaultMaxHeaderBytes = 1 << 20 // 1 MB
   535  
   536  func (srv *Server) maxHeaderBytes() int {
   537  	if srv.MaxHeaderBytes > 0 {
   538  		return srv.MaxHeaderBytes
   539  	}
   540  	return DefaultMaxHeaderBytes
   541  }
   542  
   543  func (srv *Server) initialLimitedReaderSize() int64 {
   544  	return int64(srv.maxHeaderBytes()) + 4096 // bufio slop
   545  }
   546  
   547  // wrapper around io.ReaderCloser which on first read, sends an
   548  // HTTP/1.1 100 Continue header
   549  type expectContinueReader struct {
   550  	resp       *response
   551  	readCloser io.ReadCloser
   552  	closed     bool
   553  }
   554  
   555  func (ecr *expectContinueReader) Read(p []byte) (n int, err error) {
   556  	if ecr.closed {
   557  		return 0, ErrBodyReadAfterClose
   558  	}
   559  	if !ecr.resp.wroteContinue && !ecr.resp.conn.hijacked() {
   560  		ecr.resp.wroteContinue = true
   561  		ecr.resp.conn.buf.WriteString("HTTP/1.1 100 Continue\r\n\r\n")
   562  		ecr.resp.conn.buf.Flush()
   563  	}
   564  	return ecr.readCloser.Read(p)
   565  }
   566  
   567  func (ecr *expectContinueReader) Close() error {
   568  	ecr.closed = true
   569  	return ecr.readCloser.Close()
   570  }
   571  
   572  // TimeFormat is the time format to use with
   573  // time.Parse and time.Time.Format when parsing
   574  // or generating times in HTTP headers.
   575  // It is like time.RFC1123 but hard codes GMT as the time zone.
   576  const TimeFormat = "Mon, 02 Jan 2006 15:04:05 GMT"
   577  
   578  // appendTime is a non-allocating version of []byte(t.UTC().Format(TimeFormat))
   579  func appendTime(b []byte, t time.Time) []byte {
   580  	const days = "SunMonTueWedThuFriSat"
   581  	const months = "JanFebMarAprMayJunJulAugSepOctNovDec"
   582  
   583  	t = t.UTC()
   584  	yy, mm, dd := t.Date()
   585  	hh, mn, ss := t.Clock()
   586  	day := days[3*t.Weekday():]
   587  	mon := months[3*(mm-1):]
   588  
   589  	return append(b,
   590  		day[0], day[1], day[2], ',', ' ',
   591  		byte('0'+dd/10), byte('0'+dd%10), ' ',
   592  		mon[0], mon[1], mon[2], ' ',
   593  		byte('0'+yy/1000), byte('0'+(yy/100)%10), byte('0'+(yy/10)%10), byte('0'+yy%10), ' ',
   594  		byte('0'+hh/10), byte('0'+hh%10), ':',
   595  		byte('0'+mn/10), byte('0'+mn%10), ':',
   596  		byte('0'+ss/10), byte('0'+ss%10), ' ',
   597  		'G', 'M', 'T')
   598  }
   599  
   600  var errTooLarge = errors.New("http: request too large")
   601  
   602  // Read next request from connection.
   603  func (c *conn) readRequest() (w *response, err error) {
   604  	if c.hijacked() {
   605  		return nil, ErrHijacked
   606  	}
   607  
   608  	if d := c.server.ReadTimeout; d != 0 {
   609  		c.rwc.SetReadDeadline(time.Now().Add(d))
   610  	}
   611  	if d := c.server.WriteTimeout; d != 0 {
   612  		defer func() {
   613  			c.rwc.SetWriteDeadline(time.Now().Add(d))
   614  		}()
   615  	}
   616  
   617  	c.lr.N = c.server.initialLimitedReaderSize()
   618  	var req *Request
   619  	if req, err = ReadRequest(c.buf.Reader); err != nil {
   620  		if c.lr.N == 0 {
   621  			return nil, errTooLarge
   622  		}
   623  		return nil, err
   624  	}
   625  	c.lr.N = noLimit
   626  
   627  	req.RemoteAddr = c.remoteAddr
   628  	req.TLS = c.tlsState
   629  
   630  	w = &response{
   631  		conn:          c,
   632  		req:           req,
   633  		handlerHeader: make(Header),
   634  		contentLength: -1,
   635  	}
   636  	w.cw.res = w
   637  	w.w = newBufioWriterSize(&w.cw, bufferBeforeChunkingSize)
   638  	return w, nil
   639  }
   640  
   641  func (w *response) Header() Header {
   642  	if w.cw.header == nil && w.wroteHeader && !w.cw.wroteHeader {
   643  		// Accessing the header between logically writing it
   644  		// and physically writing it means we need to allocate
   645  		// a clone to snapshot the logically written state.
   646  		w.cw.header = w.handlerHeader.clone()
   647  	}
   648  	w.calledHeader = true
   649  	return w.handlerHeader
   650  }
   651  
   652  // maxPostHandlerReadBytes is the max number of Request.Body bytes not
   653  // consumed by a handler that the server will read from the client
   654  // in order to keep a connection alive.  If there are more bytes than
   655  // this then the server to be paranoid instead sends a "Connection:
   656  // close" response.
   657  //
   658  // This number is approximately what a typical machine's TCP buffer
   659  // size is anyway.  (if we have the bytes on the machine, we might as
   660  // well read them)
   661  const maxPostHandlerReadBytes = 256 << 10
   662  
   663  func (w *response) WriteHeader(code int) {
   664  	if w.conn.hijacked() {
   665  		w.conn.server.logf("http: response.WriteHeader on hijacked connection")
   666  		return
   667  	}
   668  	if w.wroteHeader {
   669  		w.conn.server.logf("http: multiple response.WriteHeader calls")
   670  		return
   671  	}
   672  	w.wroteHeader = true
   673  	w.status = code
   674  
   675  	if w.calledHeader && w.cw.header == nil {
   676  		w.cw.header = w.handlerHeader.clone()
   677  	}
   678  
   679  	if cl := w.handlerHeader.get("Content-Length"); cl != "" {
   680  		v, err := strconv.ParseInt(cl, 10, 64)
   681  		if err == nil && v >= 0 {
   682  			w.contentLength = v
   683  		} else {
   684  			w.conn.server.logf("http: invalid Content-Length of %q", cl)
   685  			w.handlerHeader.Del("Content-Length")
   686  		}
   687  	}
   688  }
   689  
   690  // extraHeader is the set of headers sometimes added by chunkWriter.writeHeader.
   691  // This type is used to avoid extra allocations from cloning and/or populating
   692  // the response Header map and all its 1-element slices.
   693  type extraHeader struct {
   694  	contentType      string
   695  	connection       string
   696  	transferEncoding string
   697  	date             []byte // written if not nil
   698  	contentLength    []byte // written if not nil
   699  }
   700  
   701  // Sorted the same as extraHeader.Write's loop.
   702  var extraHeaderKeys = [][]byte{
   703  	[]byte("Content-Type"),
   704  	[]byte("Connection"),
   705  	[]byte("Transfer-Encoding"),
   706  }
   707  
   708  var (
   709  	headerContentLength = []byte("Content-Length: ")
   710  	headerDate          = []byte("Date: ")
   711  )
   712  
   713  // Write writes the headers described in h to w.
   714  //
   715  // This method has a value receiver, despite the somewhat large size
   716  // of h, because it prevents an allocation. The escape analysis isn't
   717  // smart enough to realize this function doesn't mutate h.
   718  func (h extraHeader) Write(w *bufio.Writer) {
   719  	if h.date != nil {
   720  		w.Write(headerDate)
   721  		w.Write(h.date)
   722  		w.Write(crlf)
   723  	}
   724  	if h.contentLength != nil {
   725  		w.Write(headerContentLength)
   726  		w.Write(h.contentLength)
   727  		w.Write(crlf)
   728  	}
   729  	for i, v := range []string{h.contentType, h.connection, h.transferEncoding} {
   730  		if v != "" {
   731  			w.Write(extraHeaderKeys[i])
   732  			w.Write(colonSpace)
   733  			w.WriteString(v)
   734  			w.Write(crlf)
   735  		}
   736  	}
   737  }
   738  
   739  // writeHeader finalizes the header sent to the client and writes it
   740  // to cw.res.conn.buf.
   741  //
   742  // p is not written by writeHeader, but is the first chunk of the body
   743  // that will be written.  It is sniffed for a Content-Type if none is
   744  // set explicitly.  It's also used to set the Content-Length, if the
   745  // total body size was small and the handler has already finished
   746  // running.
   747  func (cw *chunkWriter) writeHeader(p []byte) {
   748  	if cw.wroteHeader {
   749  		return
   750  	}
   751  	cw.wroteHeader = true
   752  
   753  	w := cw.res
   754  	keepAlivesEnabled := w.conn.server.doKeepAlives()
   755  	isHEAD := w.req.Method == "HEAD"
   756  
   757  	// header is written out to w.conn.buf below. Depending on the
   758  	// state of the handler, we either own the map or not. If we
   759  	// don't own it, the exclude map is created lazily for
   760  	// WriteSubset to remove headers. The setHeader struct holds
   761  	// headers we need to add.
   762  	header := cw.header
   763  	owned := header != nil
   764  	if !owned {
   765  		header = w.handlerHeader
   766  	}
   767  	var excludeHeader map[string]bool
   768  	delHeader := func(key string) {
   769  		if owned {
   770  			header.Del(key)
   771  			return
   772  		}
   773  		if _, ok := header[key]; !ok {
   774  			return
   775  		}
   776  		if excludeHeader == nil {
   777  			excludeHeader = make(map[string]bool)
   778  		}
   779  		excludeHeader[key] = true
   780  	}
   781  	var setHeader extraHeader
   782  
   783  	trailers := false
   784  	for _, v := range cw.header["Trailer"] {
   785  		trailers = true
   786  		foreachHeaderElement(v, cw.res.declareTrailer)
   787  	}
   788  
   789  	// If the handler is done but never sent a Content-Length
   790  	// response header and this is our first (and last) write, set
   791  	// it, even to zero. This helps HTTP/1.0 clients keep their
   792  	// "keep-alive" connections alive.
   793  	// Exceptions: 304/204/1xx responses never get Content-Length, and if
   794  	// it was a HEAD request, we don't know the difference between
   795  	// 0 actual bytes and 0 bytes because the handler noticed it
   796  	// was a HEAD request and chose not to write anything.  So for
   797  	// HEAD, the handler should either write the Content-Length or
   798  	// write non-zero bytes.  If it's actually 0 bytes and the
   799  	// handler never looked at the Request.Method, we just don't
   800  	// send a Content-Length header.
   801  	if w.handlerDone && !trailers && bodyAllowedForStatus(w.status) && header.get("Content-Length") == "" && (!isHEAD || len(p) > 0) {
   802  		w.contentLength = int64(len(p))
   803  		setHeader.contentLength = strconv.AppendInt(cw.res.clenBuf[:0], int64(len(p)), 10)
   804  	}
   805  
   806  	// If this was an HTTP/1.0 request with keep-alive and we sent a
   807  	// Content-Length back, we can make this a keep-alive response ...
   808  	if w.req.wantsHttp10KeepAlive() && keepAlivesEnabled {
   809  		sentLength := header.get("Content-Length") != ""
   810  		if sentLength && header.get("Connection") == "keep-alive" {
   811  			w.closeAfterReply = false
   812  		}
   813  	}
   814  
   815  	// Check for a explicit (and valid) Content-Length header.
   816  	hasCL := w.contentLength != -1
   817  
   818  	if w.req.wantsHttp10KeepAlive() && (isHEAD || hasCL) {
   819  		_, connectionHeaderSet := header["Connection"]
   820  		if !connectionHeaderSet {
   821  			setHeader.connection = "keep-alive"
   822  		}
   823  	} else if !w.req.ProtoAtLeast(1, 1) || w.req.wantsClose() {
   824  		w.closeAfterReply = true
   825  	}
   826  
   827  	if header.get("Connection") == "close" || !keepAlivesEnabled {
   828  		w.closeAfterReply = true
   829  	}
   830  
   831  	// Per RFC 2616, we should consume the request body before
   832  	// replying, if the handler hasn't already done so.  But we
   833  	// don't want to do an unbounded amount of reading here for
   834  	// DoS reasons, so we only try up to a threshold.
   835  	if w.req.ContentLength != 0 && !w.closeAfterReply {
   836  		ecr, isExpecter := w.req.Body.(*expectContinueReader)
   837  		if !isExpecter || ecr.resp.wroteContinue {
   838  			n, _ := io.CopyN(ioutil.Discard, w.req.Body, maxPostHandlerReadBytes+1)
   839  			if n >= maxPostHandlerReadBytes {
   840  				w.requestTooLarge()
   841  				delHeader("Connection")
   842  				setHeader.connection = "close"
   843  			} else {
   844  				w.req.Body.Close()
   845  			}
   846  		}
   847  	}
   848  
   849  	code := w.status
   850  	if bodyAllowedForStatus(code) {
   851  		// If no content type, apply sniffing algorithm to body.
   852  		_, haveType := header["Content-Type"]
   853  		if !haveType {
   854  			setHeader.contentType = DetectContentType(p)
   855  		}
   856  	} else {
   857  		for _, k := range suppressedHeaders(code) {
   858  			delHeader(k)
   859  		}
   860  	}
   861  
   862  	if _, ok := header["Date"]; !ok {
   863  		setHeader.date = appendTime(cw.res.dateBuf[:0], time.Now())
   864  	}
   865  
   866  	te := header.get("Transfer-Encoding")
   867  	hasTE := te != ""
   868  	if hasCL && hasTE && te != "identity" {
   869  		// TODO: return an error if WriteHeader gets a return parameter
   870  		// For now just ignore the Content-Length.
   871  		w.conn.server.logf("http: WriteHeader called with both Transfer-Encoding of %q and a Content-Length of %d",
   872  			te, w.contentLength)
   873  		delHeader("Content-Length")
   874  		hasCL = false
   875  	}
   876  
   877  	if w.req.Method == "HEAD" || !bodyAllowedForStatus(code) {
   878  		// do nothing
   879  	} else if code == StatusNoContent {
   880  		delHeader("Transfer-Encoding")
   881  	} else if hasCL {
   882  		delHeader("Transfer-Encoding")
   883  	} else if w.req.ProtoAtLeast(1, 1) {
   884  		// HTTP/1.1 or greater: Transfer-Encoding has been set to identity,  and no
   885  		// content-length has been provided. The connection must be closed after the
   886  		// reply is written, and no chunking is to be done. This is the setup
   887  		// recommended in the Server-Sent Events candidate recommendation 11,
   888  		// section 8.
   889  		if hasTE && te == "identity" {
   890  			cw.chunking = false
   891  			w.closeAfterReply = true
   892  		} else {
   893  			// HTTP/1.1 or greater: use chunked transfer encoding
   894  			// to avoid closing the connection at EOF.
   895  			cw.chunking = true
   896  			setHeader.transferEncoding = "chunked"
   897  		}
   898  	} else {
   899  		// HTTP version < 1.1: cannot do chunked transfer
   900  		// encoding and we don't know the Content-Length so
   901  		// signal EOF by closing connection.
   902  		w.closeAfterReply = true
   903  		delHeader("Transfer-Encoding") // in case already set
   904  	}
   905  
   906  	// Cannot use Content-Length with non-identity Transfer-Encoding.
   907  	if cw.chunking {
   908  		delHeader("Content-Length")
   909  	}
   910  	if !w.req.ProtoAtLeast(1, 0) {
   911  		return
   912  	}
   913  
   914  	if w.closeAfterReply && (!keepAlivesEnabled || !hasToken(cw.header.get("Connection"), "close")) {
   915  		delHeader("Connection")
   916  		if w.req.ProtoAtLeast(1, 1) {
   917  			setHeader.connection = "close"
   918  		}
   919  	}
   920  
   921  	w.conn.buf.WriteString(statusLine(w.req, code))
   922  	cw.header.WriteSubset(w.conn.buf, excludeHeader)
   923  	setHeader.Write(w.conn.buf.Writer)
   924  	w.conn.buf.Write(crlf)
   925  }
   926  
   927  // foreachHeaderElement splits v according to the "#rule" construction
   928  // in RFC 2616 section 2.1 and calls fn for each non-empty element.
   929  func foreachHeaderElement(v string, fn func(string)) {
   930  	v = textproto.TrimString(v)
   931  	if v == "" {
   932  		return
   933  	}
   934  	if !strings.Contains(v, ",") {
   935  		fn(v)
   936  		return
   937  	}
   938  	for _, f := range strings.Split(v, ",") {
   939  		if f = textproto.TrimString(f); f != "" {
   940  			fn(f)
   941  		}
   942  	}
   943  }
   944  
   945  // statusLines is a cache of Status-Line strings, keyed by code (for
   946  // HTTP/1.1) or negative code (for HTTP/1.0). This is faster than a
   947  // map keyed by struct of two fields. This map's max size is bounded
   948  // by 2*len(statusText), two protocol types for each known official
   949  // status code in the statusText map.
   950  var (
   951  	statusMu    sync.RWMutex
   952  	statusLines = make(map[int]string)
   953  )
   954  
   955  // statusLine returns a response Status-Line (RFC 2616 Section 6.1)
   956  // for the given request and response status code.
   957  func statusLine(req *Request, code int) string {
   958  	// Fast path:
   959  	key := code
   960  	proto11 := req.ProtoAtLeast(1, 1)
   961  	if !proto11 {
   962  		key = -key
   963  	}
   964  	statusMu.RLock()
   965  	line, ok := statusLines[key]
   966  	statusMu.RUnlock()
   967  	if ok {
   968  		return line
   969  	}
   970  
   971  	// Slow path:
   972  	proto := "HTTP/1.0"
   973  	if proto11 {
   974  		proto = "HTTP/1.1"
   975  	}
   976  	codestring := strconv.Itoa(code)
   977  	text, ok := statusText[code]
   978  	if !ok {
   979  		text = "status code " + codestring
   980  	}
   981  	line = proto + " " + codestring + " " + text + "\r\n"
   982  	if ok {
   983  		statusMu.Lock()
   984  		defer statusMu.Unlock()
   985  		statusLines[key] = line
   986  	}
   987  	return line
   988  }
   989  
   990  // bodyAllowed returns true if a Write is allowed for this response type.
   991  // It's illegal to call this before the header has been flushed.
   992  func (w *response) bodyAllowed() bool {
   993  	if !w.wroteHeader {
   994  		panic("")
   995  	}
   996  	return bodyAllowedForStatus(w.status)
   997  }
   998  
   999  // The Life Of A Write is like this:
  1000  //
  1001  // Handler starts. No header has been sent. The handler can either
  1002  // write a header, or just start writing.  Writing before sending a header
  1003  // sends an implicitly empty 200 OK header.
  1004  //
  1005  // If the handler didn't declare a Content-Length up front, we either
  1006  // go into chunking mode or, if the handler finishes running before
  1007  // the chunking buffer size, we compute a Content-Length and send that
  1008  // in the header instead.
  1009  //
  1010  // Likewise, if the handler didn't set a Content-Type, we sniff that
  1011  // from the initial chunk of output.
  1012  //
  1013  // The Writers are wired together like:
  1014  //
  1015  // 1. *response (the ResponseWriter) ->
  1016  // 2. (*response).w, a *bufio.Writer of bufferBeforeChunkingSize bytes
  1017  // 3. chunkWriter.Writer (whose writeHeader finalizes Content-Length/Type)
  1018  //    and which writes the chunk headers, if needed.
  1019  // 4. conn.buf, a bufio.Writer of default (4kB) bytes, writing to ->
  1020  // 5. checkConnErrorWriter{c}, which notes any non-nil error on Write
  1021  //    and populates c.werr with it if so. but otherwise writes to:
  1022  // 6. the rwc, the net.Conn.
  1023  //
  1024  // TODO(bradfitz): short-circuit some of the buffering when the
  1025  // initial header contains both a Content-Type and Content-Length.
  1026  // Also short-circuit in (1) when the header's been sent and not in
  1027  // chunking mode, writing directly to (4) instead, if (2) has no
  1028  // buffered data.  More generally, we could short-circuit from (1) to
  1029  // (3) even in chunking mode if the write size from (1) is over some
  1030  // threshold and nothing is in (2).  The answer might be mostly making
  1031  // bufferBeforeChunkingSize smaller and having bufio's fast-paths deal
  1032  // with this instead.
  1033  func (w *response) Write(data []byte) (n int, err error) {
  1034  	return w.write(len(data), data, "")
  1035  }
  1036  
  1037  func (w *response) WriteString(data string) (n int, err error) {
  1038  	return w.write(len(data), nil, data)
  1039  }
  1040  
  1041  // either dataB or dataS is non-zero.
  1042  func (w *response) write(lenData int, dataB []byte, dataS string) (n int, err error) {
  1043  	if w.conn.hijacked() {
  1044  		w.conn.server.logf("http: response.Write on hijacked connection")
  1045  		return 0, ErrHijacked
  1046  	}
  1047  	if !w.wroteHeader {
  1048  		w.WriteHeader(StatusOK)
  1049  	}
  1050  	if lenData == 0 {
  1051  		return 0, nil
  1052  	}
  1053  	if !w.bodyAllowed() {
  1054  		return 0, ErrBodyNotAllowed
  1055  	}
  1056  
  1057  	w.written += int64(lenData) // ignoring errors, for errorKludge
  1058  	if w.contentLength != -1 && w.written > w.contentLength {
  1059  		return 0, ErrContentLength
  1060  	}
  1061  	if dataB != nil {
  1062  		return w.w.Write(dataB)
  1063  	} else {
  1064  		return w.w.WriteString(dataS)
  1065  	}
  1066  }
  1067  
  1068  func (w *response) finishRequest() {
  1069  	w.handlerDone = true
  1070  
  1071  	if !w.wroteHeader {
  1072  		w.WriteHeader(StatusOK)
  1073  	}
  1074  
  1075  	w.w.Flush()
  1076  	putBufioWriter(w.w)
  1077  	w.cw.close()
  1078  	w.conn.buf.Flush()
  1079  
  1080  	// Close the body (regardless of w.closeAfterReply) so we can
  1081  	// re-use its bufio.Reader later safely.
  1082  	w.req.Body.Close()
  1083  
  1084  	if w.req.MultipartForm != nil {
  1085  		w.req.MultipartForm.RemoveAll()
  1086  	}
  1087  
  1088  	if w.req.Method != "HEAD" && w.contentLength != -1 && w.bodyAllowed() && w.contentLength != w.written {
  1089  		// Did not write enough. Avoid getting out of sync.
  1090  		w.closeAfterReply = true
  1091  	}
  1092  
  1093  	// There was some error writing to the underlying connection
  1094  	// during the request, so don't re-use this conn.
  1095  	if w.conn.werr != nil {
  1096  		w.closeAfterReply = true
  1097  	}
  1098  }
  1099  
  1100  func (w *response) Flush() {
  1101  	if !w.wroteHeader {
  1102  		w.WriteHeader(StatusOK)
  1103  	}
  1104  	w.w.Flush()
  1105  	w.cw.flush()
  1106  }
  1107  
  1108  func (c *conn) finalFlush() {
  1109  	if c.buf != nil {
  1110  		c.buf.Flush()
  1111  
  1112  		// Steal the bufio.Reader (~4KB worth of memory) and its associated
  1113  		// reader for a future connection.
  1114  		putBufioReader(c.buf.Reader)
  1115  
  1116  		// Steal the bufio.Writer (~4KB worth of memory) and its associated
  1117  		// writer for a future connection.
  1118  		putBufioWriter(c.buf.Writer)
  1119  
  1120  		c.buf = nil
  1121  	}
  1122  }
  1123  
  1124  // Close the connection.
  1125  func (c *conn) close() {
  1126  	c.finalFlush()
  1127  	if c.rwc != nil {
  1128  		c.rwc.Close()
  1129  		c.rwc = nil
  1130  	}
  1131  }
  1132  
  1133  // rstAvoidanceDelay is the amount of time we sleep after closing the
  1134  // write side of a TCP connection before closing the entire socket.
  1135  // By sleeping, we increase the chances that the client sees our FIN
  1136  // and processes its final data before they process the subsequent RST
  1137  // from closing a connection with known unread data.
  1138  // This RST seems to occur mostly on BSD systems. (And Windows?)
  1139  // This timeout is somewhat arbitrary (~latency around the planet).
  1140  const rstAvoidanceDelay = 500 * time.Millisecond
  1141  
  1142  type closeWriter interface {
  1143  	CloseWrite() error
  1144  }
  1145  
  1146  var _ closeWriter = (*net.TCPConn)(nil)
  1147  
  1148  // closeWrite flushes any outstanding data and sends a FIN packet (if
  1149  // client is connected via TCP), signalling that we're done.  We then
  1150  // pause for a bit, hoping the client processes it before any
  1151  // subsequent RST.
  1152  //
  1153  // See http://golang.org/issue/3595
  1154  func (c *conn) closeWriteAndWait() {
  1155  	c.finalFlush()
  1156  	if tcp, ok := c.rwc.(closeWriter); ok {
  1157  		tcp.CloseWrite()
  1158  	}
  1159  	time.Sleep(rstAvoidanceDelay)
  1160  }
  1161  
  1162  // validNPN reports whether the proto is not a blacklisted Next
  1163  // Protocol Negotiation protocol.  Empty and built-in protocol types
  1164  // are blacklisted and can't be overridden with alternate
  1165  // implementations.
  1166  func validNPN(proto string) bool {
  1167  	switch proto {
  1168  	case "", "http/1.1", "http/1.0":
  1169  		return false
  1170  	}
  1171  	return true
  1172  }
  1173  
  1174  func (c *conn) setState(nc net.Conn, state ConnState) {
  1175  	if hook := c.server.ConnState; hook != nil {
  1176  		hook(nc, state)
  1177  	}
  1178  }
  1179  
  1180  // Serve a new connection.
  1181  func (c *conn) serve() {
  1182  	origConn := c.rwc // copy it before it's set nil on Close or Hijack
  1183  	defer func() {
  1184  		if err := recover(); err != nil {
  1185  			const size = 64 << 10
  1186  			buf := make([]byte, size)
  1187  			buf = buf[:runtime.Stack(buf, false)]
  1188  			c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf)
  1189  		}
  1190  		if !c.hijacked() {
  1191  			c.close()
  1192  			c.setState(origConn, StateClosed)
  1193  		}
  1194  	}()
  1195  
  1196  	if tlsConn, ok := c.rwc.(*tls.Conn); ok {
  1197  		if d := c.server.ReadTimeout; d != 0 {
  1198  			c.rwc.SetReadDeadline(time.Now().Add(d))
  1199  		}
  1200  		if d := c.server.WriteTimeout; d != 0 {
  1201  			c.rwc.SetWriteDeadline(time.Now().Add(d))
  1202  		}
  1203  		if err := tlsConn.Handshake(); err != nil {
  1204  			c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err)
  1205  			return
  1206  		}
  1207  		c.tlsState = new(tls.ConnectionState)
  1208  		*c.tlsState = tlsConn.ConnectionState()
  1209  		if proto := c.tlsState.NegotiatedProtocol; validNPN(proto) {
  1210  			if fn := c.server.TLSNextProto[proto]; fn != nil {
  1211  				h := initNPNRequest{tlsConn, serverHandler{c.server}}
  1212  				fn(c.server, tlsConn, h)
  1213  			}
  1214  			return
  1215  		}
  1216  	}
  1217  
  1218  	for {
  1219  		w, err := c.readRequest()
  1220  		if c.lr.N != c.server.initialLimitedReaderSize() {
  1221  			// If we read any bytes off the wire, we're active.
  1222  			c.setState(c.rwc, StateActive)
  1223  		}
  1224  		if err != nil {
  1225  			if err == errTooLarge {
  1226  				// Their HTTP client may or may not be
  1227  				// able to read this if we're
  1228  				// responding to them and hanging up
  1229  				// while they're still writing their
  1230  				// request.  Undefined behavior.
  1231  				io.WriteString(c.rwc, "HTTP/1.1 413 Request Entity Too Large\r\n\r\n")
  1232  				c.closeWriteAndWait()
  1233  				break
  1234  			} else if err == io.EOF {
  1235  				break // Don't reply
  1236  			} else if neterr, ok := err.(net.Error); ok && neterr.Timeout() {
  1237  				break // Don't reply
  1238  			}
  1239  			io.WriteString(c.rwc, "HTTP/1.1 400 Bad Request\r\n\r\n")
  1240  			break
  1241  		}
  1242  
  1243  		// Expect 100 Continue support
  1244  		req := w.req
  1245  		if req.expectsContinue() {
  1246  			if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 {
  1247  				// Wrap the Body reader with one that replies on the connection
  1248  				req.Body = &expectContinueReader{readCloser: req.Body, resp: w}
  1249  			}
  1250  			req.Header.Del("Expect")
  1251  		} else if req.Header.get("Expect") != "" {
  1252  			w.sendExpectationFailed()
  1253  			break
  1254  		}
  1255  
  1256  		// HTTP cannot have multiple simultaneous active requests.[*]
  1257  		// Until the server replies to this request, it can't read another,
  1258  		// so we might as well run the handler in this goroutine.
  1259  		// [*] Not strictly true: HTTP pipelining.  We could let them all process
  1260  		// in parallel even if their responses need to be serialized.
  1261  		serverHandler{c.server}.ServeHTTP(w, w.req)
  1262  		if c.hijacked() {
  1263  			return
  1264  		}
  1265  		w.finishRequest()
  1266  		if w.closeAfterReply {
  1267  			if w.requestBodyLimitHit {
  1268  				c.closeWriteAndWait()
  1269  			}
  1270  			break
  1271  		}
  1272  		c.setState(c.rwc, StateIdle)
  1273  	}
  1274  }
  1275  
  1276  func (w *response) sendExpectationFailed() {
  1277  	// TODO(bradfitz): let ServeHTTP handlers handle
  1278  	// requests with non-standard expectation[s]? Seems
  1279  	// theoretical at best, and doesn't fit into the
  1280  	// current ServeHTTP model anyway.  We'd need to
  1281  	// make the ResponseWriter an optional
  1282  	// "ExpectReplier" interface or something.
  1283  	//
  1284  	// For now we'll just obey RFC 2616 14.20 which says
  1285  	// "If a server receives a request containing an
  1286  	// Expect field that includes an expectation-
  1287  	// extension that it does not support, it MUST
  1288  	// respond with a 417 (Expectation Failed) status."
  1289  	w.Header().Set("Connection", "close")
  1290  	w.WriteHeader(StatusExpectationFailed)
  1291  	w.finishRequest()
  1292  }
  1293  
  1294  // Hijack implements the Hijacker.Hijack method. Our response is both a ResponseWriter
  1295  // and a Hijacker.
  1296  func (w *response) Hijack() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
  1297  	if w.wroteHeader {
  1298  		w.cw.flush()
  1299  	}
  1300  	// Release the bufioWriter that writes to the chunk writer, it is not
  1301  	// used after a connection has been hijacked.
  1302  	rwc, buf, err = w.conn.hijack()
  1303  	if err == nil {
  1304  		putBufioWriter(w.w)
  1305  		w.w = nil
  1306  	}
  1307  	return rwc, buf, err
  1308  }
  1309  
  1310  func (w *response) CloseNotify() <-chan bool {
  1311  	return w.conn.closeNotify()
  1312  }
  1313  
  1314  // The HandlerFunc type is an adapter to allow the use of
  1315  // ordinary functions as HTTP handlers.  If f is a function
  1316  // with the appropriate signature, HandlerFunc(f) is a
  1317  // Handler object that calls f.
  1318  type HandlerFunc func(ResponseWriter, *Request)
  1319  
  1320  // ServeHTTP calls f(w, r).
  1321  func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
  1322  	f(w, r)
  1323  }
  1324  
  1325  // Helper handlers
  1326  
  1327  // Error replies to the request with the specified error message and HTTP code.
  1328  // The error message should be plain text.
  1329  func Error(w ResponseWriter, error string, code int) {
  1330  	w.Header().Set("Content-Type", "text/plain; charset=utf-8")
  1331  	w.WriteHeader(code)
  1332  	fmt.Fprintln(w, error)
  1333  }
  1334  
  1335  // NotFound replies to the request with an HTTP 404 not found error.
  1336  func NotFound(w ResponseWriter, r *Request) { Error(w, "404 page not found", StatusNotFound) }
  1337  
  1338  // NotFoundHandler returns a simple request handler
  1339  // that replies to each request with a ``404 page not found'' reply.
  1340  func NotFoundHandler() Handler { return HandlerFunc(NotFound) }
  1341  
  1342  // StripPrefix returns a handler that serves HTTP requests
  1343  // by removing the given prefix from the request URL's Path
  1344  // and invoking the handler h. StripPrefix handles a
  1345  // request for a path that doesn't begin with prefix by
  1346  // replying with an HTTP 404 not found error.
  1347  func StripPrefix(prefix string, h Handler) Handler {
  1348  	if prefix == "" {
  1349  		return h
  1350  	}
  1351  	return HandlerFunc(func(w ResponseWriter, r *Request) {
  1352  		if p := strings.TrimPrefix(r.URL.Path, prefix); len(p) < len(r.URL.Path) {
  1353  			r.URL.Path = p
  1354  			h.ServeHTTP(w, r)
  1355  		} else {
  1356  			NotFound(w, r)
  1357  		}
  1358  	})
  1359  }
  1360  
  1361  // Redirect replies to the request with a redirect to url,
  1362  // which may be a path relative to the request path.
  1363  func Redirect(w ResponseWriter, r *Request, urlStr string, code int) {
  1364  	if u, err := url.Parse(urlStr); err == nil {
  1365  		// If url was relative, make absolute by
  1366  		// combining with request path.
  1367  		// The browser would probably do this for us,
  1368  		// but doing it ourselves is more reliable.
  1369  
  1370  		// NOTE(rsc): RFC 2616 says that the Location
  1371  		// line must be an absolute URI, like
  1372  		// "http://www.google.com/redirect/",
  1373  		// not a path like "/redirect/".
  1374  		// Unfortunately, we don't know what to
  1375  		// put in the host name section to get the
  1376  		// client to connect to us again, so we can't
  1377  		// know the right absolute URI to send back.
  1378  		// Because of this problem, no one pays attention
  1379  		// to the RFC; they all send back just a new path.
  1380  		// So do we.
  1381  		oldpath := r.URL.Path
  1382  		if oldpath == "" { // should not happen, but avoid a crash if it does
  1383  			oldpath = "/"
  1384  		}
  1385  		if u.Scheme == "" {
  1386  			// no leading http://server
  1387  			if urlStr == "" || urlStr[0] != '/' {
  1388  				// make relative path absolute
  1389  				olddir, _ := path.Split(oldpath)
  1390  				urlStr = olddir + urlStr
  1391  			}
  1392  
  1393  			var query string
  1394  			if i := strings.Index(urlStr, "?"); i != -1 {
  1395  				urlStr, query = urlStr[:i], urlStr[i:]
  1396  			}
  1397  
  1398  			// clean up but preserve trailing slash
  1399  			trailing := strings.HasSuffix(urlStr, "/")
  1400  			urlStr = path.Clean(urlStr)
  1401  			if trailing && !strings.HasSuffix(urlStr, "/") {
  1402  				urlStr += "/"
  1403  			}
  1404  			urlStr += query
  1405  		}
  1406  	}
  1407  
  1408  	w.Header().Set("Location", urlStr)
  1409  	w.WriteHeader(code)
  1410  
  1411  	// RFC2616 recommends that a short note "SHOULD" be included in the
  1412  	// response because older user agents may not understand 301/307.
  1413  	// Shouldn't send the response for POST or HEAD; that leaves GET.
  1414  	if r.Method == "GET" {
  1415  		note := "<a href=\"" + htmlEscape(urlStr) + "\">" + statusText[code] + "</a>.\n"
  1416  		fmt.Fprintln(w, note)
  1417  	}
  1418  }
  1419  
  1420  var htmlReplacer = strings.NewReplacer(
  1421  	"&", "&amp;",
  1422  	"<", "&lt;",
  1423  	">", "&gt;",
  1424  	// "&#34;" is shorter than "&quot;".
  1425  	`"`, "&#34;",
  1426  	// "&#39;" is shorter than "&apos;" and apos was not in HTML until HTML5.
  1427  	"'", "&#39;",
  1428  )
  1429  
  1430  func htmlEscape(s string) string {
  1431  	return htmlReplacer.Replace(s)
  1432  }
  1433  
  1434  // Redirect to a fixed URL
  1435  type redirectHandler struct {
  1436  	url  string
  1437  	code int
  1438  }
  1439  
  1440  func (rh *redirectHandler) ServeHTTP(w ResponseWriter, r *Request) {
  1441  	Redirect(w, r, rh.url, rh.code)
  1442  }
  1443  
  1444  // RedirectHandler returns a request handler that redirects
  1445  // each request it receives to the given url using the given
  1446  // status code.
  1447  func RedirectHandler(url string, code int) Handler {
  1448  	return &redirectHandler{url, code}
  1449  }
  1450  
  1451  // ServeMux is an HTTP request multiplexer.
  1452  // It matches the URL of each incoming request against a list of registered
  1453  // patterns and calls the handler for the pattern that
  1454  // most closely matches the URL.
  1455  //
  1456  // Patterns name fixed, rooted paths, like "/favicon.ico",
  1457  // or rooted subtrees, like "/images/" (note the trailing slash).
  1458  // Longer patterns take precedence over shorter ones, so that
  1459  // if there are handlers registered for both "/images/"
  1460  // and "/images/thumbnails/", the latter handler will be
  1461  // called for paths beginning "/images/thumbnails/" and the
  1462  // former will receive requests for any other paths in the
  1463  // "/images/" subtree.
  1464  //
  1465  // Note that since a pattern ending in a slash names a rooted subtree,
  1466  // the pattern "/" matches all paths not matched by other registered
  1467  // patterns, not just the URL with Path == "/".
  1468  //
  1469  // Patterns may optionally begin with a host name, restricting matches to
  1470  // URLs on that host only.  Host-specific patterns take precedence over
  1471  // general patterns, so that a handler might register for the two patterns
  1472  // "/codesearch" and "codesearch.google.com/" without also taking over
  1473  // requests for "http://www.google.com/".
  1474  //
  1475  // ServeMux also takes care of sanitizing the URL request path,
  1476  // redirecting any request containing . or .. elements to an
  1477  // equivalent .- and ..-free URL.
  1478  type ServeMux struct {
  1479  	mu    sync.RWMutex
  1480  	m     map[string]muxEntry
  1481  	hosts bool // whether any patterns contain hostnames
  1482  }
  1483  
  1484  type muxEntry struct {
  1485  	explicit bool
  1486  	h        Handler
  1487  	pattern  string
  1488  }
  1489  
  1490  // NewServeMux allocates and returns a new ServeMux.
  1491  func NewServeMux() *ServeMux { return &ServeMux{m: make(map[string]muxEntry)} }
  1492  
  1493  // DefaultServeMux is the default ServeMux used by Serve.
  1494  var DefaultServeMux = NewServeMux()
  1495  
  1496  // Does path match pattern?
  1497  func pathMatch(pattern, path string) bool {
  1498  	if len(pattern) == 0 {
  1499  		// should not happen
  1500  		return false
  1501  	}
  1502  	n := len(pattern)
  1503  	if pattern[n-1] != '/' {
  1504  		return pattern == path
  1505  	}
  1506  	return len(path) >= n && path[0:n] == pattern
  1507  }
  1508  
  1509  // Return the canonical path for p, eliminating . and .. elements.
  1510  func cleanPath(p string) string {
  1511  	if p == "" {
  1512  		return "/"
  1513  	}
  1514  	if p[0] != '/' {
  1515  		p = "/" + p
  1516  	}
  1517  	np := path.Clean(p)
  1518  	// path.Clean removes trailing slash except for root;
  1519  	// put the trailing slash back if necessary.
  1520  	if p[len(p)-1] == '/' && np != "/" {
  1521  		np += "/"
  1522  	}
  1523  	return np
  1524  }
  1525  
  1526  // Find a handler on a handler map given a path string
  1527  // Most-specific (longest) pattern wins
  1528  func (mux *ServeMux) match(path string) (h Handler, pattern string) {
  1529  	var n = 0
  1530  	for k, v := range mux.m {
  1531  		if !pathMatch(k, path) {
  1532  			continue
  1533  		}
  1534  		if h == nil || len(k) > n {
  1535  			n = len(k)
  1536  			h = v.h
  1537  			pattern = v.pattern
  1538  		}
  1539  	}
  1540  	return
  1541  }
  1542  
  1543  // Handler returns the handler to use for the given request,
  1544  // consulting r.Method, r.Host, and r.URL.Path. It always returns
  1545  // a non-nil handler. If the path is not in its canonical form, the
  1546  // handler will be an internally-generated handler that redirects
  1547  // to the canonical path.
  1548  //
  1549  // Handler also returns the registered pattern that matches the
  1550  // request or, in the case of internally-generated redirects,
  1551  // the pattern that will match after following the redirect.
  1552  //
  1553  // If there is no registered handler that applies to the request,
  1554  // Handler returns a ``page not found'' handler and an empty pattern.
  1555  func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) {
  1556  	if r.Method != "CONNECT" {
  1557  		if p := cleanPath(r.URL.Path); p != r.URL.Path {
  1558  			_, pattern = mux.handler(r.Host, p)
  1559  			url := *r.URL
  1560  			url.Path = p
  1561  			return RedirectHandler(url.String(), StatusMovedPermanently), pattern
  1562  		}
  1563  	}
  1564  
  1565  	return mux.handler(r.Host, r.URL.Path)
  1566  }
  1567  
  1568  // handler is the main implementation of Handler.
  1569  // The path is known to be in canonical form, except for CONNECT methods.
  1570  func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) {
  1571  	mux.mu.RLock()
  1572  	defer mux.mu.RUnlock()
  1573  
  1574  	// Host-specific pattern takes precedence over generic ones
  1575  	if mux.hosts {
  1576  		h, pattern = mux.match(host + path)
  1577  	}
  1578  	if h == nil {
  1579  		h, pattern = mux.match(path)
  1580  	}
  1581  	if h == nil {
  1582  		h, pattern = NotFoundHandler(), ""
  1583  	}
  1584  	return
  1585  }
  1586  
  1587  // ServeHTTP dispatches the request to the handler whose
  1588  // pattern most closely matches the request URL.
  1589  func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) {
  1590  	if r.RequestURI == "*" {
  1591  		if r.ProtoAtLeast(1, 1) {
  1592  			w.Header().Set("Connection", "close")
  1593  		}
  1594  		w.WriteHeader(StatusBadRequest)
  1595  		return
  1596  	}
  1597  	h, _ := mux.Handler(r)
  1598  	h.ServeHTTP(w, r)
  1599  }
  1600  
  1601  // Handle registers the handler for the given pattern.
  1602  // If a handler already exists for pattern, Handle panics.
  1603  func (mux *ServeMux) Handle(pattern string, handler Handler) {
  1604  	mux.mu.Lock()
  1605  	defer mux.mu.Unlock()
  1606  
  1607  	if pattern == "" {
  1608  		panic("http: invalid pattern " + pattern)
  1609  	}
  1610  	if handler == nil {
  1611  		panic("http: nil handler")
  1612  	}
  1613  	if mux.m[pattern].explicit {
  1614  		panic("http: multiple registrations for " + pattern)
  1615  	}
  1616  
  1617  	mux.m[pattern] = muxEntry{explicit: true, h: handler, pattern: pattern}
  1618  
  1619  	if pattern[0] != '/' {
  1620  		mux.hosts = true
  1621  	}
  1622  
  1623  	// Helpful behavior:
  1624  	// If pattern is /tree/, insert an implicit permanent redirect for /tree.
  1625  	// It can be overridden by an explicit registration.
  1626  	n := len(pattern)
  1627  	if n > 0 && pattern[n-1] == '/' && !mux.m[pattern[0:n-1]].explicit {
  1628  		// If pattern contains a host name, strip it and use remaining
  1629  		// path for redirect.
  1630  		path := pattern
  1631  		if pattern[0] != '/' {
  1632  			// In pattern, at least the last character is a '/', so
  1633  			// strings.Index can't be -1.
  1634  			path = pattern[strings.Index(pattern, "/"):]
  1635  		}
  1636  		mux.m[pattern[0:n-1]] = muxEntry{h: RedirectHandler(path, StatusMovedPermanently), pattern: pattern}
  1637  	}
  1638  }
  1639  
  1640  // HandleFunc registers the handler function for the given pattern.
  1641  func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
  1642  	mux.Handle(pattern, HandlerFunc(handler))
  1643  }
  1644  
  1645  // Handle registers the handler for the given pattern
  1646  // in the DefaultServeMux.
  1647  // The documentation for ServeMux explains how patterns are matched.
  1648  func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) }
  1649  
  1650  // HandleFunc registers the handler function for the given pattern
  1651  // in the DefaultServeMux.
  1652  // The documentation for ServeMux explains how patterns are matched.
  1653  func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
  1654  	DefaultServeMux.HandleFunc(pattern, handler)
  1655  }
  1656  
  1657  // Serve accepts incoming HTTP connections on the listener l,
  1658  // creating a new service goroutine for each.  The service goroutines
  1659  // read requests and then call handler to reply to them.
  1660  // Handler is typically nil, in which case the DefaultServeMux is used.
  1661  func Serve(l net.Listener, handler Handler) error {
  1662  	srv := &Server{Handler: handler}
  1663  	return srv.Serve(l)
  1664  }
  1665  
  1666  // A Server defines parameters for running an HTTP server.
  1667  // The zero value for Server is a valid configuration.
  1668  type Server struct {
  1669  	Addr           string        // TCP address to listen on, ":http" if empty
  1670  	Handler        Handler       // handler to invoke, http.DefaultServeMux if nil
  1671  	ReadTimeout    time.Duration // maximum duration before timing out read of the request
  1672  	WriteTimeout   time.Duration // maximum duration before timing out write of the response
  1673  	MaxHeaderBytes int           // maximum size of request headers, DefaultMaxHeaderBytes if 0
  1674  	TLSConfig      *tls.Config   // optional TLS config, used by ListenAndServeTLS
  1675  
  1676  	// TLSNextProto optionally specifies a function to take over
  1677  	// ownership of the provided TLS connection when an NPN
  1678  	// protocol upgrade has occurred.  The map key is the protocol
  1679  	// name negotiated. The Handler argument should be used to
  1680  	// handle HTTP requests and will initialize the Request's TLS
  1681  	// and RemoteAddr if not already set.  The connection is
  1682  	// automatically closed when the function returns.
  1683  	TLSNextProto map[string]func(*Server, *tls.Conn, Handler)
  1684  
  1685  	// ConnState specifies an optional callback function that is
  1686  	// called when a client connection changes state. See the
  1687  	// ConnState type and associated constants for details.
  1688  	ConnState func(net.Conn, ConnState)
  1689  
  1690  	// ErrorLog specifies an optional logger for errors accepting
  1691  	// connections and unexpected behavior from handlers.
  1692  	// If nil, logging goes to os.Stderr via the log package's
  1693  	// standard logger.
  1694  	ErrorLog *log.Logger
  1695  
  1696  	disableKeepAlives int32 // accessed atomically.
  1697  }
  1698  
  1699  // A ConnState represents the state of a client connection to a server.
  1700  // It's used by the optional Server.ConnState hook.
  1701  type ConnState int
  1702  
  1703  const (
  1704  	// StateNew represents a new connection that is expected to
  1705  	// send a request immediately. Connections begin at this
  1706  	// state and then transition to either StateActive or
  1707  	// StateClosed.
  1708  	StateNew ConnState = iota
  1709  
  1710  	// StateActive represents a connection that has read 1 or more
  1711  	// bytes of a request. The Server.ConnState hook for
  1712  	// StateActive fires before the request has entered a handler
  1713  	// and doesn't fire again until the request has been
  1714  	// handled. After the request is handled, the state
  1715  	// transitions to StateClosed, StateHijacked, or StateIdle.
  1716  	StateActive
  1717  
  1718  	// StateIdle represents a connection that has finished
  1719  	// handling a request and is in the keep-alive state, waiting
  1720  	// for a new request. Connections transition from StateIdle
  1721  	// to either StateActive or StateClosed.
  1722  	StateIdle
  1723  
  1724  	// StateHijacked represents a hijacked connection.
  1725  	// This is a terminal state. It does not transition to StateClosed.
  1726  	StateHijacked
  1727  
  1728  	// StateClosed represents a closed connection.
  1729  	// This is a terminal state. Hijacked connections do not
  1730  	// transition to StateClosed.
  1731  	StateClosed
  1732  )
  1733  
  1734  var stateName = map[ConnState]string{
  1735  	StateNew:      "new",
  1736  	StateActive:   "active",
  1737  	StateIdle:     "idle",
  1738  	StateHijacked: "hijacked",
  1739  	StateClosed:   "closed",
  1740  }
  1741  
  1742  func (c ConnState) String() string {
  1743  	return stateName[c]
  1744  }
  1745  
  1746  // serverHandler delegates to either the server's Handler or
  1747  // DefaultServeMux and also handles "OPTIONS *" requests.
  1748  type serverHandler struct {
  1749  	srv *Server
  1750  }
  1751  
  1752  func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) {
  1753  	handler := sh.srv.Handler
  1754  	if handler == nil {
  1755  		handler = DefaultServeMux
  1756  	}
  1757  	if req.RequestURI == "*" && req.Method == "OPTIONS" {
  1758  		handler = globalOptionsHandler{}
  1759  	}
  1760  	handler.ServeHTTP(rw, req)
  1761  }
  1762  
  1763  // ListenAndServe listens on the TCP network address srv.Addr and then
  1764  // calls Serve to handle requests on incoming connections.  If
  1765  // srv.Addr is blank, ":http" is used.
  1766  func (srv *Server) ListenAndServe() error {
  1767  	addr := srv.Addr
  1768  	if addr == "" {
  1769  		addr = ":http"
  1770  	}
  1771  	ln, err := net.Listen("tcp", addr)
  1772  	if err != nil {
  1773  		return err
  1774  	}
  1775  	return srv.Serve(tcpKeepAliveListener{ln.(*net.TCPListener)})
  1776  }
  1777  
  1778  // Serve accepts incoming connections on the Listener l, creating a
  1779  // new service goroutine for each.  The service goroutines read requests and
  1780  // then call srv.Handler to reply to them.
  1781  func (srv *Server) Serve(l net.Listener) error {
  1782  	defer l.Close()
  1783  	var tempDelay time.Duration // how long to sleep on accept failure
  1784  	for {
  1785  		rw, e := l.Accept()
  1786  		if e != nil {
  1787  			if ne, ok := e.(net.Error); ok && ne.Temporary() {
  1788  				if tempDelay == 0 {
  1789  					tempDelay = 5 * time.Millisecond
  1790  				} else {
  1791  					tempDelay *= 2
  1792  				}
  1793  				if max := 1 * time.Second; tempDelay > max {
  1794  					tempDelay = max
  1795  				}
  1796  				srv.logf("http: Accept error: %v; retrying in %v", e, tempDelay)
  1797  				time.Sleep(tempDelay)
  1798  				continue
  1799  			}
  1800  			return e
  1801  		}
  1802  		tempDelay = 0
  1803  		c, err := srv.newConn(rw)
  1804  		if err != nil {
  1805  			continue
  1806  		}
  1807  		c.setState(c.rwc, StateNew) // before Serve can return
  1808  		go c.serve()
  1809  	}
  1810  }
  1811  
  1812  func (s *Server) doKeepAlives() bool {
  1813  	return atomic.LoadInt32(&s.disableKeepAlives) == 0
  1814  }
  1815  
  1816  // SetKeepAlivesEnabled controls whether HTTP keep-alives are enabled.
  1817  // By default, keep-alives are always enabled. Only very
  1818  // resource-constrained environments or servers in the process of
  1819  // shutting down should disable them.
  1820  func (s *Server) SetKeepAlivesEnabled(v bool) {
  1821  	if v {
  1822  		atomic.StoreInt32(&s.disableKeepAlives, 0)
  1823  	} else {
  1824  		atomic.StoreInt32(&s.disableKeepAlives, 1)
  1825  	}
  1826  }
  1827  
  1828  func (s *Server) logf(format string, args ...interface{}) {
  1829  	if s.ErrorLog != nil {
  1830  		s.ErrorLog.Printf(format, args...)
  1831  	} else {
  1832  		log.Printf(format, args...)
  1833  	}
  1834  }
  1835  
  1836  // ListenAndServe listens on the TCP network address addr
  1837  // and then calls Serve with handler to handle requests
  1838  // on incoming connections.  Handler is typically nil,
  1839  // in which case the DefaultServeMux is used.
  1840  //
  1841  // A trivial example server is:
  1842  //
  1843  //	package main
  1844  //
  1845  //	import (
  1846  //		"io"
  1847  //		"net/http"
  1848  //		"log"
  1849  //	)
  1850  //
  1851  //	// hello world, the web server
  1852  //	func HelloServer(w http.ResponseWriter, req *http.Request) {
  1853  //		io.WriteString(w, "hello, world!\n")
  1854  //	}
  1855  //
  1856  //	func main() {
  1857  //		http.HandleFunc("/hello", HelloServer)
  1858  //		err := http.ListenAndServe(":12345", nil)
  1859  //		if err != nil {
  1860  //			log.Fatal("ListenAndServe: ", err)
  1861  //		}
  1862  //	}
  1863  func ListenAndServe(addr string, handler Handler) error {
  1864  	server := &Server{Addr: addr, Handler: handler}
  1865  	return server.ListenAndServe()
  1866  }
  1867  
  1868  // ListenAndServeTLS acts identically to ListenAndServe, except that it
  1869  // expects HTTPS connections. Additionally, files containing a certificate and
  1870  // matching private key for the server must be provided. If the certificate
  1871  // is signed by a certificate authority, the certFile should be the concatenation
  1872  // of the server's certificate followed by the CA's certificate.
  1873  //
  1874  // A trivial example server is:
  1875  //
  1876  //	import (
  1877  //		"log"
  1878  //		"net/http"
  1879  //	)
  1880  //
  1881  //	func handler(w http.ResponseWriter, req *http.Request) {
  1882  //		w.Header().Set("Content-Type", "text/plain")
  1883  //		w.Write([]byte("This is an example server.\n"))
  1884  //	}
  1885  //
  1886  //	func main() {
  1887  //		http.HandleFunc("/", handler)
  1888  //		log.Printf("About to listen on 10443. Go to https://127.0.0.1:10443/")
  1889  //		err := http.ListenAndServeTLS(":10443", "cert.pem", "key.pem", nil)
  1890  //		if err != nil {
  1891  //			log.Fatal(err)
  1892  //		}
  1893  //	}
  1894  //
  1895  // One can use generate_cert.go in crypto/tls to generate cert.pem and key.pem.
  1896  func ListenAndServeTLS(addr string, certFile string, keyFile string, handler Handler) error {
  1897  	server := &Server{Addr: addr, Handler: handler}
  1898  	return server.ListenAndServeTLS(certFile, keyFile)
  1899  }
  1900  
  1901  // ListenAndServeTLS listens on the TCP network address srv.Addr and
  1902  // then calls Serve to handle requests on incoming TLS connections.
  1903  //
  1904  // Filenames containing a certificate and matching private key for
  1905  // the server must be provided. If the certificate is signed by a
  1906  // certificate authority, the certFile should be the concatenation
  1907  // of the server's certificate followed by the CA's certificate.
  1908  //
  1909  // If srv.Addr is blank, ":https" is used.
  1910  func (srv *Server) ListenAndServeTLS(certFile, keyFile string) error {
  1911  	addr := srv.Addr
  1912  	if addr == "" {
  1913  		addr = ":https"
  1914  	}
  1915  	config := &tls.Config{}
  1916  	if srv.TLSConfig != nil {
  1917  		*config = *srv.TLSConfig
  1918  	}
  1919  	if config.NextProtos == nil {
  1920  		config.NextProtos = []string{"http/1.1"}
  1921  	}
  1922  
  1923  	var err error
  1924  	config.Certificates = make([]tls.Certificate, 1)
  1925  	config.Certificates[0], err = tls.LoadX509KeyPair(certFile, keyFile)
  1926  	if err != nil {
  1927  		return err
  1928  	}
  1929  
  1930  	ln, err := net.Listen("tcp", addr)
  1931  	if err != nil {
  1932  		return err
  1933  	}
  1934  
  1935  	tlsListener := tls.NewListener(tcpKeepAliveListener{ln.(*net.TCPListener)}, config)
  1936  	return srv.Serve(tlsListener)
  1937  }
  1938  
  1939  // TimeoutHandler returns a Handler that runs h with the given time limit.
  1940  //
  1941  // The new Handler calls h.ServeHTTP to handle each request, but if a
  1942  // call runs for longer than its time limit, the handler responds with
  1943  // a 503 Service Unavailable error and the given message in its body.
  1944  // (If msg is empty, a suitable default message will be sent.)
  1945  // After such a timeout, writes by h to its ResponseWriter will return
  1946  // ErrHandlerTimeout.
  1947  func TimeoutHandler(h Handler, dt time.Duration, msg string) Handler {
  1948  	f := func() <-chan time.Time {
  1949  		return time.After(dt)
  1950  	}
  1951  	return &timeoutHandler{h, f, msg}
  1952  }
  1953  
  1954  // ErrHandlerTimeout is returned on ResponseWriter Write calls
  1955  // in handlers which have timed out.
  1956  var ErrHandlerTimeout = errors.New("http: Handler timeout")
  1957  
  1958  type timeoutHandler struct {
  1959  	handler Handler
  1960  	timeout func() <-chan time.Time // returns channel producing a timeout
  1961  	body    string
  1962  }
  1963  
  1964  func (h *timeoutHandler) errorBody() string {
  1965  	if h.body != "" {
  1966  		return h.body
  1967  	}
  1968  	return "<html><head><title>Timeout</title></head><body><h1>Timeout</h1></body></html>"
  1969  }
  1970  
  1971  func (h *timeoutHandler) ServeHTTP(w ResponseWriter, r *Request) {
  1972  	done := make(chan bool, 1)
  1973  	tw := &timeoutWriter{w: w}
  1974  	go func() {
  1975  		h.handler.ServeHTTP(tw, r)
  1976  		done <- true
  1977  	}()
  1978  	select {
  1979  	case <-done:
  1980  		return
  1981  	case <-h.timeout():
  1982  		tw.mu.Lock()
  1983  		defer tw.mu.Unlock()
  1984  		if !tw.wroteHeader {
  1985  			tw.w.WriteHeader(StatusServiceUnavailable)
  1986  			tw.w.Write([]byte(h.errorBody()))
  1987  		}
  1988  		tw.timedOut = true
  1989  	}
  1990  }
  1991  
  1992  type timeoutWriter struct {
  1993  	w ResponseWriter
  1994  
  1995  	mu          sync.Mutex
  1996  	timedOut    bool
  1997  	wroteHeader bool
  1998  }
  1999  
  2000  func (tw *timeoutWriter) Header() Header {
  2001  	return tw.w.Header()
  2002  }
  2003  
  2004  func (tw *timeoutWriter) Write(p []byte) (int, error) {
  2005  	tw.mu.Lock()
  2006  	defer tw.mu.Unlock()
  2007  	tw.wroteHeader = true // implicitly at least
  2008  	if tw.timedOut {
  2009  		return 0, ErrHandlerTimeout
  2010  	}
  2011  	return tw.w.Write(p)
  2012  }
  2013  
  2014  func (tw *timeoutWriter) WriteHeader(code int) {
  2015  	tw.mu.Lock()
  2016  	defer tw.mu.Unlock()
  2017  	if tw.timedOut || tw.wroteHeader {
  2018  		return
  2019  	}
  2020  	tw.wroteHeader = true
  2021  	tw.w.WriteHeader(code)
  2022  }
  2023  
  2024  // tcpKeepAliveListener sets TCP keep-alive timeouts on accepted
  2025  // connections. It's used by ListenAndServe and ListenAndServeTLS so
  2026  // dead TCP connections (e.g. closing laptop mid-download) eventually
  2027  // go away.
  2028  type tcpKeepAliveListener struct {
  2029  	*net.TCPListener
  2030  }
  2031  
  2032  func (ln tcpKeepAliveListener) Accept() (c net.Conn, err error) {
  2033  	tc, err := ln.AcceptTCP()
  2034  	if err != nil {
  2035  		return
  2036  	}
  2037  	tc.SetKeepAlive(true)
  2038  	tc.SetKeepAlivePeriod(3 * time.Minute)
  2039  	return tc, nil
  2040  }
  2041  
  2042  // globalOptionsHandler responds to "OPTIONS *" requests.
  2043  type globalOptionsHandler struct{}
  2044  
  2045  func (globalOptionsHandler) ServeHTTP(w ResponseWriter, r *Request) {
  2046  	w.Header().Set("Content-Length", "0")
  2047  	if r.ContentLength != 0 {
  2048  		// Read up to 4KB of OPTIONS body (as mentioned in the
  2049  		// spec as being reserved for future use), but anything
  2050  		// over that is considered a waste of server resources
  2051  		// (or an attack) and we abort and close the connection,
  2052  		// courtesy of MaxBytesReader's EOF behavior.
  2053  		mb := MaxBytesReader(w, r.Body, 4<<10)
  2054  		io.Copy(ioutil.Discard, mb)
  2055  	}
  2056  }
  2057  
  2058  type eofReaderWithWriteTo struct{}
  2059  
  2060  func (eofReaderWithWriteTo) WriteTo(io.Writer) (int64, error) { return 0, nil }
  2061  func (eofReaderWithWriteTo) Read([]byte) (int, error)         { return 0, io.EOF }
  2062  
  2063  // eofReader is a non-nil io.ReadCloser that always returns EOF.
  2064  // It has a WriteTo method so io.Copy won't need a buffer.
  2065  var eofReader = &struct {
  2066  	eofReaderWithWriteTo
  2067  	io.Closer
  2068  }{
  2069  	eofReaderWithWriteTo{},
  2070  	ioutil.NopCloser(nil),
  2071  }
  2072  
  2073  // Verify that an io.Copy from an eofReader won't require a buffer.
  2074  var _ io.WriterTo = eofReader
  2075  
  2076  // initNPNRequest is an HTTP handler that initializes certain
  2077  // uninitialized fields in its *Request. Such partially-initialized
  2078  // Requests come from NPN protocol handlers.
  2079  type initNPNRequest struct {
  2080  	c *tls.Conn
  2081  	h serverHandler
  2082  }
  2083  
  2084  func (h initNPNRequest) ServeHTTP(rw ResponseWriter, req *Request) {
  2085  	if req.TLS == nil {
  2086  		req.TLS = &tls.ConnectionState{}
  2087  		*req.TLS = h.c.ConnectionState()
  2088  	}
  2089  	if req.Body == nil {
  2090  		req.Body = eofReader
  2091  	}
  2092  	if req.RemoteAddr == "" {
  2093  		req.RemoteAddr = h.c.RemoteAddr().String()
  2094  	}
  2095  	h.h.ServeHTTP(rw, req)
  2096  }
  2097  
  2098  // loggingConn is used for debugging.
  2099  type loggingConn struct {
  2100  	name string
  2101  	net.Conn
  2102  }
  2103  
  2104  var (
  2105  	uniqNameMu   sync.Mutex
  2106  	uniqNameNext = make(map[string]int)
  2107  )
  2108  
  2109  func newLoggingConn(baseName string, c net.Conn) net.Conn {
  2110  	uniqNameMu.Lock()
  2111  	defer uniqNameMu.Unlock()
  2112  	uniqNameNext[baseName]++
  2113  	return &loggingConn{
  2114  		name: fmt.Sprintf("%s-%d", baseName, uniqNameNext[baseName]),
  2115  		Conn: c,
  2116  	}
  2117  }
  2118  
  2119  func (c *loggingConn) Write(p []byte) (n int, err error) {
  2120  	log.Printf("%s.Write(%d) = ....", c.name, len(p))
  2121  	n, err = c.Conn.Write(p)
  2122  	log.Printf("%s.Write(%d) = %d, %v", c.name, len(p), n, err)
  2123  	return
  2124  }
  2125  
  2126  func (c *loggingConn) Read(p []byte) (n int, err error) {
  2127  	log.Printf("%s.Read(%d) = ....", c.name, len(p))
  2128  	n, err = c.Conn.Read(p)
  2129  	log.Printf("%s.Read(%d) = %d, %v", c.name, len(p), n, err)
  2130  	return
  2131  }
  2132  
  2133  func (c *loggingConn) Close() (err error) {
  2134  	log.Printf("%s.Close() = ...", c.name)
  2135  	err = c.Conn.Close()
  2136  	log.Printf("%s.Close() = %v", c.name, err)
  2137  	return
  2138  }
  2139  
  2140  // checkConnErrorWriter writes to c.rwc and records any write errors to c.werr.
  2141  // It only contains one field (and a pointer field at that), so it
  2142  // fits in an interface value without an extra allocation.
  2143  type checkConnErrorWriter struct {
  2144  	c *conn
  2145  }
  2146  
  2147  func (w checkConnErrorWriter) Write(p []byte) (n int, err error) {
  2148  	n, err = w.c.w.Write(p) // c.w == c.rwc, except after a hijack, when rwc is nil.
  2149  	if err != nil && w.c.werr == nil {
  2150  		w.c.werr = err
  2151  	}
  2152  	return
  2153  }