github.com/yanyiwu/go@v0.0.0-20150106053140-03d6637dbb7f/src/reflect/value.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package reflect
     6  
     7  import (
     8  	"math"
     9  	"runtime"
    10  	"unsafe"
    11  )
    12  
    13  const ptrSize = unsafe.Sizeof((*byte)(nil))
    14  const cannotSet = "cannot set value obtained from unexported struct field"
    15  
    16  // Value is the reflection interface to a Go value.
    17  //
    18  // Not all methods apply to all kinds of values.  Restrictions,
    19  // if any, are noted in the documentation for each method.
    20  // Use the Kind method to find out the kind of value before
    21  // calling kind-specific methods.  Calling a method
    22  // inappropriate to the kind of type causes a run time panic.
    23  //
    24  // The zero Value represents no value.
    25  // Its IsValid method returns false, its Kind method returns Invalid,
    26  // its String method returns "<invalid Value>", and all other methods panic.
    27  // Most functions and methods never return an invalid value.
    28  // If one does, its documentation states the conditions explicitly.
    29  //
    30  // A Value can be used concurrently by multiple goroutines provided that
    31  // the underlying Go value can be used concurrently for the equivalent
    32  // direct operations.
    33  //
    34  // Using == on two Values does not compare the underlying values
    35  // they represent, but rather the contents of the Value structs.
    36  // To compare two Values, compare the results of the Interface method.
    37  type Value struct {
    38  	// typ holds the type of the value represented by a Value.
    39  	typ *rtype
    40  
    41  	// Pointer-valued data or, if flagIndir is set, pointer to data.
    42  	// Valid when either flagIndir is set or typ.pointers() is true.
    43  	ptr unsafe.Pointer
    44  
    45  	// flag holds metadata about the value.
    46  	// The lowest bits are flag bits:
    47  	//	- flagRO: obtained via unexported field, so read-only
    48  	//	- flagIndir: val holds a pointer to the data
    49  	//	- flagAddr: v.CanAddr is true (implies flagIndir)
    50  	//	- flagMethod: v is a method value.
    51  	// The next five bits give the Kind of the value.
    52  	// This repeats typ.Kind() except for method values.
    53  	// The remaining 23+ bits give a method number for method values.
    54  	// If flag.kind() != Func, code can assume that flagMethod is unset.
    55  	// If ifaceIndir(typ), code can assume that flagIndir is set.
    56  	flag
    57  
    58  	// A method value represents a curried method invocation
    59  	// like r.Read for some receiver r.  The typ+val+flag bits describe
    60  	// the receiver r, but the flag's Kind bits say Func (methods are
    61  	// functions), and the top bits of the flag give the method number
    62  	// in r's type's method table.
    63  }
    64  
    65  type flag uintptr
    66  
    67  const (
    68  	flagKindWidth        = 5 // there are 27 kinds
    69  	flagKindMask    flag = 1<<flagKindWidth - 1
    70  	flagRO          flag = 1 << 5
    71  	flagIndir       flag = 1 << 6
    72  	flagAddr        flag = 1 << 7
    73  	flagMethod      flag = 1 << 8
    74  	flagMethodShift      = 9
    75  )
    76  
    77  func (f flag) kind() Kind {
    78  	return Kind(f & flagKindMask)
    79  }
    80  
    81  // pointer returns the underlying pointer represented by v.
    82  // v.Kind() must be Ptr, Map, Chan, Func, or UnsafePointer
    83  func (v Value) pointer() unsafe.Pointer {
    84  	if v.typ.size != ptrSize || !v.typ.pointers() {
    85  		panic("can't call pointer on a non-pointer Value")
    86  	}
    87  	if v.flag&flagIndir != 0 {
    88  		return *(*unsafe.Pointer)(v.ptr)
    89  	}
    90  	return v.ptr
    91  }
    92  
    93  // packEface converts v to the empty interface.
    94  func packEface(v Value) interface{} {
    95  	t := v.typ
    96  	var i interface{}
    97  	e := (*emptyInterface)(unsafe.Pointer(&i))
    98  	// First, fill in the data portion of the interface.
    99  	switch {
   100  	case ifaceIndir(t):
   101  		if v.flag&flagIndir == 0 {
   102  			panic("bad indir")
   103  		}
   104  		// Value is indirect, and so is the interface we're making.
   105  		ptr := v.ptr
   106  		if v.flag&flagAddr != 0 {
   107  			// TODO: pass safe boolean from valueInterface so
   108  			// we don't need to copy if safe==true?
   109  			c := unsafe_New(t)
   110  			typedmemmove(t, c, ptr)
   111  			ptr = c
   112  		}
   113  		e.word = ptr
   114  	case v.flag&flagIndir != 0:
   115  		// Value is indirect, but interface is direct.  We need
   116  		// to load the data at v.ptr into the interface data word.
   117  		e.word = *(*unsafe.Pointer)(v.ptr)
   118  	default:
   119  		// Value is direct, and so is the interface.
   120  		e.word = v.ptr
   121  	}
   122  	// Now, fill in the type portion.  We're very careful here not
   123  	// to have any operation between the e.word and e.typ assignments
   124  	// that would let the garbage collector observe the partially-built
   125  	// interface value.
   126  	e.typ = t
   127  	return i
   128  }
   129  
   130  // unpackEface converts the empty interface i to a Value.
   131  func unpackEface(i interface{}) Value {
   132  	e := (*emptyInterface)(unsafe.Pointer(&i))
   133  	// NOTE: don't read e.word until we know whether it is really a pointer or not.
   134  	t := e.typ
   135  	if t == nil {
   136  		return Value{}
   137  	}
   138  	f := flag(t.Kind())
   139  	if ifaceIndir(t) {
   140  		f |= flagIndir
   141  	}
   142  	return Value{t, unsafe.Pointer(e.word), f}
   143  }
   144  
   145  // A ValueError occurs when a Value method is invoked on
   146  // a Value that does not support it.  Such cases are documented
   147  // in the description of each method.
   148  type ValueError struct {
   149  	Method string
   150  	Kind   Kind
   151  }
   152  
   153  func (e *ValueError) Error() string {
   154  	if e.Kind == 0 {
   155  		return "reflect: call of " + e.Method + " on zero Value"
   156  	}
   157  	return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
   158  }
   159  
   160  // methodName returns the name of the calling method,
   161  // assumed to be two stack frames above.
   162  func methodName() string {
   163  	pc, _, _, _ := runtime.Caller(2)
   164  	f := runtime.FuncForPC(pc)
   165  	if f == nil {
   166  		return "unknown method"
   167  	}
   168  	return f.Name()
   169  }
   170  
   171  // emptyInterface is the header for an interface{} value.
   172  type emptyInterface struct {
   173  	typ  *rtype
   174  	word unsafe.Pointer
   175  }
   176  
   177  // nonEmptyInterface is the header for a interface value with methods.
   178  type nonEmptyInterface struct {
   179  	// see ../runtime/iface.c:/Itab
   180  	itab *struct {
   181  		ityp   *rtype // static interface type
   182  		typ    *rtype // dynamic concrete type
   183  		link   unsafe.Pointer
   184  		bad    int32
   185  		unused int32
   186  		fun    [100000]unsafe.Pointer // method table
   187  	}
   188  	word unsafe.Pointer
   189  }
   190  
   191  // mustBe panics if f's kind is not expected.
   192  // Making this a method on flag instead of on Value
   193  // (and embedding flag in Value) means that we can write
   194  // the very clear v.mustBe(Bool) and have it compile into
   195  // v.flag.mustBe(Bool), which will only bother to copy the
   196  // single important word for the receiver.
   197  func (f flag) mustBe(expected Kind) {
   198  	if f.kind() != expected {
   199  		panic(&ValueError{methodName(), f.kind()})
   200  	}
   201  }
   202  
   203  // mustBeExported panics if f records that the value was obtained using
   204  // an unexported field.
   205  func (f flag) mustBeExported() {
   206  	if f == 0 {
   207  		panic(&ValueError{methodName(), 0})
   208  	}
   209  	if f&flagRO != 0 {
   210  		panic("reflect: " + methodName() + " using value obtained using unexported field")
   211  	}
   212  }
   213  
   214  // mustBeAssignable panics if f records that the value is not assignable,
   215  // which is to say that either it was obtained using an unexported field
   216  // or it is not addressable.
   217  func (f flag) mustBeAssignable() {
   218  	if f == 0 {
   219  		panic(&ValueError{methodName(), Invalid})
   220  	}
   221  	// Assignable if addressable and not read-only.
   222  	if f&flagRO != 0 {
   223  		panic("reflect: " + methodName() + " using value obtained using unexported field")
   224  	}
   225  	if f&flagAddr == 0 {
   226  		panic("reflect: " + methodName() + " using unaddressable value")
   227  	}
   228  }
   229  
   230  // Addr returns a pointer value representing the address of v.
   231  // It panics if CanAddr() returns false.
   232  // Addr is typically used to obtain a pointer to a struct field
   233  // or slice element in order to call a method that requires a
   234  // pointer receiver.
   235  func (v Value) Addr() Value {
   236  	if v.flag&flagAddr == 0 {
   237  		panic("reflect.Value.Addr of unaddressable value")
   238  	}
   239  	return Value{v.typ.ptrTo(), v.ptr, (v.flag & flagRO) | flag(Ptr)}
   240  }
   241  
   242  // Bool returns v's underlying value.
   243  // It panics if v's kind is not Bool.
   244  func (v Value) Bool() bool {
   245  	v.mustBe(Bool)
   246  	return *(*bool)(v.ptr)
   247  }
   248  
   249  // Bytes returns v's underlying value.
   250  // It panics if v's underlying value is not a slice of bytes.
   251  func (v Value) Bytes() []byte {
   252  	v.mustBe(Slice)
   253  	if v.typ.Elem().Kind() != Uint8 {
   254  		panic("reflect.Value.Bytes of non-byte slice")
   255  	}
   256  	// Slice is always bigger than a word; assume flagIndir.
   257  	return *(*[]byte)(v.ptr)
   258  }
   259  
   260  // runes returns v's underlying value.
   261  // It panics if v's underlying value is not a slice of runes (int32s).
   262  func (v Value) runes() []rune {
   263  	v.mustBe(Slice)
   264  	if v.typ.Elem().Kind() != Int32 {
   265  		panic("reflect.Value.Bytes of non-rune slice")
   266  	}
   267  	// Slice is always bigger than a word; assume flagIndir.
   268  	return *(*[]rune)(v.ptr)
   269  }
   270  
   271  // CanAddr returns true if the value's address can be obtained with Addr.
   272  // Such values are called addressable.  A value is addressable if it is
   273  // an element of a slice, an element of an addressable array,
   274  // a field of an addressable struct, or the result of dereferencing a pointer.
   275  // If CanAddr returns false, calling Addr will panic.
   276  func (v Value) CanAddr() bool {
   277  	return v.flag&flagAddr != 0
   278  }
   279  
   280  // CanSet returns true if the value of v can be changed.
   281  // A Value can be changed only if it is addressable and was not
   282  // obtained by the use of unexported struct fields.
   283  // If CanSet returns false, calling Set or any type-specific
   284  // setter (e.g., SetBool, SetInt64) will panic.
   285  func (v Value) CanSet() bool {
   286  	return v.flag&(flagAddr|flagRO) == flagAddr
   287  }
   288  
   289  // Call calls the function v with the input arguments in.
   290  // For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]).
   291  // Call panics if v's Kind is not Func.
   292  // It returns the output results as Values.
   293  // As in Go, each input argument must be assignable to the
   294  // type of the function's corresponding input parameter.
   295  // If v is a variadic function, Call creates the variadic slice parameter
   296  // itself, copying in the corresponding values.
   297  func (v Value) Call(in []Value) []Value {
   298  	v.mustBe(Func)
   299  	v.mustBeExported()
   300  	return v.call("Call", in)
   301  }
   302  
   303  // CallSlice calls the variadic function v with the input arguments in,
   304  // assigning the slice in[len(in)-1] to v's final variadic argument.
   305  // For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]...).
   306  // Call panics if v's Kind is not Func or if v is not variadic.
   307  // It returns the output results as Values.
   308  // As in Go, each input argument must be assignable to the
   309  // type of the function's corresponding input parameter.
   310  func (v Value) CallSlice(in []Value) []Value {
   311  	v.mustBe(Func)
   312  	v.mustBeExported()
   313  	return v.call("CallSlice", in)
   314  }
   315  
   316  var callGC bool // for testing; see TestCallMethodJump
   317  
   318  func (v Value) call(op string, in []Value) []Value {
   319  	// Get function pointer, type.
   320  	t := v.typ
   321  	var (
   322  		fn       unsafe.Pointer
   323  		rcvr     Value
   324  		rcvrtype *rtype
   325  	)
   326  	if v.flag&flagMethod != 0 {
   327  		rcvr = v
   328  		rcvrtype, t, fn = methodReceiver(op, v, int(v.flag)>>flagMethodShift)
   329  	} else if v.flag&flagIndir != 0 {
   330  		fn = *(*unsafe.Pointer)(v.ptr)
   331  	} else {
   332  		fn = v.ptr
   333  	}
   334  
   335  	if fn == nil {
   336  		panic("reflect.Value.Call: call of nil function")
   337  	}
   338  
   339  	isSlice := op == "CallSlice"
   340  	n := t.NumIn()
   341  	if isSlice {
   342  		if !t.IsVariadic() {
   343  			panic("reflect: CallSlice of non-variadic function")
   344  		}
   345  		if len(in) < n {
   346  			panic("reflect: CallSlice with too few input arguments")
   347  		}
   348  		if len(in) > n {
   349  			panic("reflect: CallSlice with too many input arguments")
   350  		}
   351  	} else {
   352  		if t.IsVariadic() {
   353  			n--
   354  		}
   355  		if len(in) < n {
   356  			panic("reflect: Call with too few input arguments")
   357  		}
   358  		if !t.IsVariadic() && len(in) > n {
   359  			panic("reflect: Call with too many input arguments")
   360  		}
   361  	}
   362  	for _, x := range in {
   363  		if x.Kind() == Invalid {
   364  			panic("reflect: " + op + " using zero Value argument")
   365  		}
   366  	}
   367  	for i := 0; i < n; i++ {
   368  		if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(targ) {
   369  			panic("reflect: " + op + " using " + xt.String() + " as type " + targ.String())
   370  		}
   371  	}
   372  	if !isSlice && t.IsVariadic() {
   373  		// prepare slice for remaining values
   374  		m := len(in) - n
   375  		slice := MakeSlice(t.In(n), m, m)
   376  		elem := t.In(n).Elem()
   377  		for i := 0; i < m; i++ {
   378  			x := in[n+i]
   379  			if xt := x.Type(); !xt.AssignableTo(elem) {
   380  				panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + op)
   381  			}
   382  			slice.Index(i).Set(x)
   383  		}
   384  		origIn := in
   385  		in = make([]Value, n+1)
   386  		copy(in[:n], origIn)
   387  		in[n] = slice
   388  	}
   389  
   390  	nin := len(in)
   391  	if nin != t.NumIn() {
   392  		panic("reflect.Value.Call: wrong argument count")
   393  	}
   394  	nout := t.NumOut()
   395  
   396  	// Compute frame type, allocate a chunk of memory for frame
   397  	frametype, _, retOffset, _ := funcLayout(t, rcvrtype)
   398  	args := unsafe_New(frametype)
   399  	off := uintptr(0)
   400  
   401  	// Copy inputs into args.
   402  	if rcvrtype != nil {
   403  		storeRcvr(rcvr, args)
   404  		off = ptrSize
   405  	}
   406  	for i, v := range in {
   407  		v.mustBeExported()
   408  		targ := t.In(i).(*rtype)
   409  		a := uintptr(targ.align)
   410  		off = (off + a - 1) &^ (a - 1)
   411  		n := targ.size
   412  		addr := unsafe.Pointer(uintptr(args) + off)
   413  		v = v.assignTo("reflect.Value.Call", targ, addr)
   414  		if v.flag&flagIndir != 0 {
   415  			typedmemmove(targ, addr, v.ptr)
   416  		} else {
   417  			*(*unsafe.Pointer)(addr) = v.ptr
   418  		}
   419  		off += n
   420  	}
   421  
   422  	// Call.
   423  	call(frametype, fn, args, uint32(frametype.size), uint32(retOffset))
   424  
   425  	// For testing; see TestCallMethodJump.
   426  	if callGC {
   427  		runtime.GC()
   428  	}
   429  
   430  	// Copy return values out of args.
   431  	ret := make([]Value, nout)
   432  	off = retOffset
   433  	for i := 0; i < nout; i++ {
   434  		tv := t.Out(i)
   435  		a := uintptr(tv.Align())
   436  		off = (off + a - 1) &^ (a - 1)
   437  		fl := flagIndir | flag(tv.Kind())
   438  		ret[i] = Value{tv.common(), unsafe.Pointer(uintptr(args) + off), fl}
   439  		off += tv.Size()
   440  	}
   441  
   442  	return ret
   443  }
   444  
   445  // callReflect is the call implementation used by a function
   446  // returned by MakeFunc. In many ways it is the opposite of the
   447  // method Value.call above. The method above converts a call using Values
   448  // into a call of a function with a concrete argument frame, while
   449  // callReflect converts a call of a function with a concrete argument
   450  // frame into a call using Values.
   451  // It is in this file so that it can be next to the call method above.
   452  // The remainder of the MakeFunc implementation is in makefunc.go.
   453  //
   454  // NOTE: This function must be marked as a "wrapper" in the generated code,
   455  // so that the linker can make it work correctly for panic and recover.
   456  // The gc compilers know to do that for the name "reflect.callReflect".
   457  func callReflect(ctxt *makeFuncImpl, frame unsafe.Pointer) {
   458  	ftyp := ctxt.typ
   459  	f := ctxt.fn
   460  
   461  	// Copy argument frame into Values.
   462  	ptr := frame
   463  	off := uintptr(0)
   464  	in := make([]Value, 0, len(ftyp.in))
   465  	for _, arg := range ftyp.in {
   466  		typ := arg
   467  		off += -off & uintptr(typ.align-1)
   468  		addr := unsafe.Pointer(uintptr(ptr) + off)
   469  		v := Value{typ, nil, flag(typ.Kind())}
   470  		if ifaceIndir(typ) {
   471  			// value cannot be inlined in interface data.
   472  			// Must make a copy, because f might keep a reference to it,
   473  			// and we cannot let f keep a reference to the stack frame
   474  			// after this function returns, not even a read-only reference.
   475  			v.ptr = unsafe_New(typ)
   476  			typedmemmove(typ, v.ptr, addr)
   477  			v.flag |= flagIndir
   478  		} else {
   479  			v.ptr = *(*unsafe.Pointer)(addr)
   480  		}
   481  		in = append(in, v)
   482  		off += typ.size
   483  	}
   484  
   485  	// Call underlying function.
   486  	out := f(in)
   487  	if len(out) != len(ftyp.out) {
   488  		panic("reflect: wrong return count from function created by MakeFunc")
   489  	}
   490  
   491  	// Copy results back into argument frame.
   492  	if len(ftyp.out) > 0 {
   493  		off += -off & (ptrSize - 1)
   494  		if runtime.GOARCH == "amd64p32" {
   495  			off = align(off, 8)
   496  		}
   497  		for i, arg := range ftyp.out {
   498  			typ := arg
   499  			v := out[i]
   500  			if v.typ != typ {
   501  				panic("reflect: function created by MakeFunc using " + funcName(f) +
   502  					" returned wrong type: have " +
   503  					out[i].typ.String() + " for " + typ.String())
   504  			}
   505  			if v.flag&flagRO != 0 {
   506  				panic("reflect: function created by MakeFunc using " + funcName(f) +
   507  					" returned value obtained from unexported field")
   508  			}
   509  			off += -off & uintptr(typ.align-1)
   510  			addr := unsafe.Pointer(uintptr(ptr) + off)
   511  			if v.flag&flagIndir != 0 {
   512  				typedmemmove(typ, addr, v.ptr)
   513  			} else {
   514  				*(*unsafe.Pointer)(addr) = v.ptr
   515  			}
   516  			off += typ.size
   517  		}
   518  	}
   519  }
   520  
   521  // methodReceiver returns information about the receiver
   522  // described by v. The Value v may or may not have the
   523  // flagMethod bit set, so the kind cached in v.flag should
   524  // not be used.
   525  // The return value rcvrtype gives the method's actual receiver type.
   526  // The return value t gives the method type signature (without the receiver).
   527  // The return value fn is a pointer to the method code.
   528  func methodReceiver(op string, v Value, methodIndex int) (rcvrtype, t *rtype, fn unsafe.Pointer) {
   529  	i := methodIndex
   530  	if v.typ.Kind() == Interface {
   531  		tt := (*interfaceType)(unsafe.Pointer(v.typ))
   532  		if uint(i) >= uint(len(tt.methods)) {
   533  			panic("reflect: internal error: invalid method index")
   534  		}
   535  		m := &tt.methods[i]
   536  		if m.pkgPath != nil {
   537  			panic("reflect: " + op + " of unexported method")
   538  		}
   539  		iface := (*nonEmptyInterface)(v.ptr)
   540  		if iface.itab == nil {
   541  			panic("reflect: " + op + " of method on nil interface value")
   542  		}
   543  		rcvrtype = iface.itab.typ
   544  		fn = unsafe.Pointer(&iface.itab.fun[i])
   545  		t = m.typ
   546  	} else {
   547  		rcvrtype = v.typ
   548  		ut := v.typ.uncommon()
   549  		if ut == nil || uint(i) >= uint(len(ut.methods)) {
   550  			panic("reflect: internal error: invalid method index")
   551  		}
   552  		m := &ut.methods[i]
   553  		if m.pkgPath != nil {
   554  			panic("reflect: " + op + " of unexported method")
   555  		}
   556  		fn = unsafe.Pointer(&m.ifn)
   557  		t = m.mtyp
   558  	}
   559  	return
   560  }
   561  
   562  // v is a method receiver.  Store at p the word which is used to
   563  // encode that receiver at the start of the argument list.
   564  // Reflect uses the "interface" calling convention for
   565  // methods, which always uses one word to record the receiver.
   566  func storeRcvr(v Value, p unsafe.Pointer) {
   567  	t := v.typ
   568  	if t.Kind() == Interface {
   569  		// the interface data word becomes the receiver word
   570  		iface := (*nonEmptyInterface)(v.ptr)
   571  		*(*unsafe.Pointer)(p) = unsafe.Pointer(iface.word)
   572  	} else if v.flag&flagIndir != 0 && !ifaceIndir(t) {
   573  		*(*unsafe.Pointer)(p) = *(*unsafe.Pointer)(v.ptr)
   574  	} else {
   575  		*(*unsafe.Pointer)(p) = v.ptr
   576  	}
   577  }
   578  
   579  // align returns the result of rounding x up to a multiple of n.
   580  // n must be a power of two.
   581  func align(x, n uintptr) uintptr {
   582  	return (x + n - 1) &^ (n - 1)
   583  }
   584  
   585  // callMethod is the call implementation used by a function returned
   586  // by makeMethodValue (used by v.Method(i).Interface()).
   587  // It is a streamlined version of the usual reflect call: the caller has
   588  // already laid out the argument frame for us, so we don't have
   589  // to deal with individual Values for each argument.
   590  // It is in this file so that it can be next to the two similar functions above.
   591  // The remainder of the makeMethodValue implementation is in makefunc.go.
   592  //
   593  // NOTE: This function must be marked as a "wrapper" in the generated code,
   594  // so that the linker can make it work correctly for panic and recover.
   595  // The gc compilers know to do that for the name "reflect.callMethod".
   596  func callMethod(ctxt *methodValue, frame unsafe.Pointer) {
   597  	rcvr := ctxt.rcvr
   598  	rcvrtype, t, fn := methodReceiver("call", rcvr, ctxt.method)
   599  	frametype, argSize, retOffset, _ := funcLayout(t, rcvrtype)
   600  
   601  	// Make a new frame that is one word bigger so we can store the receiver.
   602  	args := unsafe_New(frametype)
   603  
   604  	// Copy in receiver and rest of args.
   605  	storeRcvr(rcvr, args)
   606  	typedmemmovepartial(frametype, unsafe.Pointer(uintptr(args)+ptrSize), frame, ptrSize, argSize-ptrSize)
   607  
   608  	// Call.
   609  	call(frametype, fn, args, uint32(frametype.size), uint32(retOffset))
   610  
   611  	// Copy return values. On amd64p32, the beginning of return values
   612  	// is 64-bit aligned, so the caller's frame layout (which doesn't have
   613  	// a receiver) is different from the layout of the fn call, which has
   614  	// a receiver.
   615  	// Ignore any changes to args and just copy return values.
   616  	callerRetOffset := retOffset - ptrSize
   617  	if runtime.GOARCH == "amd64p32" {
   618  		callerRetOffset = align(argSize-ptrSize, 8)
   619  	}
   620  	typedmemmovepartial(frametype,
   621  		unsafe.Pointer(uintptr(frame)+callerRetOffset),
   622  		unsafe.Pointer(uintptr(args)+retOffset),
   623  		retOffset,
   624  		frametype.size-retOffset)
   625  }
   626  
   627  // funcName returns the name of f, for use in error messages.
   628  func funcName(f func([]Value) []Value) string {
   629  	pc := *(*uintptr)(unsafe.Pointer(&f))
   630  	rf := runtime.FuncForPC(pc)
   631  	if rf != nil {
   632  		return rf.Name()
   633  	}
   634  	return "closure"
   635  }
   636  
   637  // Cap returns v's capacity.
   638  // It panics if v's Kind is not Array, Chan, or Slice.
   639  func (v Value) Cap() int {
   640  	k := v.kind()
   641  	switch k {
   642  	case Array:
   643  		return v.typ.Len()
   644  	case Chan:
   645  		return int(chancap(v.pointer()))
   646  	case Slice:
   647  		// Slice is always bigger than a word; assume flagIndir.
   648  		return (*sliceHeader)(v.ptr).Cap
   649  	}
   650  	panic(&ValueError{"reflect.Value.Cap", v.kind()})
   651  }
   652  
   653  // Close closes the channel v.
   654  // It panics if v's Kind is not Chan.
   655  func (v Value) Close() {
   656  	v.mustBe(Chan)
   657  	v.mustBeExported()
   658  	chanclose(v.pointer())
   659  }
   660  
   661  // Complex returns v's underlying value, as a complex128.
   662  // It panics if v's Kind is not Complex64 or Complex128
   663  func (v Value) Complex() complex128 {
   664  	k := v.kind()
   665  	switch k {
   666  	case Complex64:
   667  		return complex128(*(*complex64)(v.ptr))
   668  	case Complex128:
   669  		return *(*complex128)(v.ptr)
   670  	}
   671  	panic(&ValueError{"reflect.Value.Complex", v.kind()})
   672  }
   673  
   674  // Elem returns the value that the interface v contains
   675  // or that the pointer v points to.
   676  // It panics if v's Kind is not Interface or Ptr.
   677  // It returns the zero Value if v is nil.
   678  func (v Value) Elem() Value {
   679  	k := v.kind()
   680  	switch k {
   681  	case Interface:
   682  		var eface interface{}
   683  		if v.typ.NumMethod() == 0 {
   684  			eface = *(*interface{})(v.ptr)
   685  		} else {
   686  			eface = (interface{})(*(*interface {
   687  				M()
   688  			})(v.ptr))
   689  		}
   690  		x := unpackEface(eface)
   691  		if x.flag != 0 {
   692  			x.flag |= v.flag & flagRO
   693  		}
   694  		return x
   695  	case Ptr:
   696  		ptr := v.ptr
   697  		if v.flag&flagIndir != 0 {
   698  			ptr = *(*unsafe.Pointer)(ptr)
   699  		}
   700  		// The returned value's address is v's value.
   701  		if ptr == nil {
   702  			return Value{}
   703  		}
   704  		tt := (*ptrType)(unsafe.Pointer(v.typ))
   705  		typ := tt.elem
   706  		fl := v.flag&flagRO | flagIndir | flagAddr
   707  		fl |= flag(typ.Kind())
   708  		return Value{typ, ptr, fl}
   709  	}
   710  	panic(&ValueError{"reflect.Value.Elem", v.kind()})
   711  }
   712  
   713  // Field returns the i'th field of the struct v.
   714  // It panics if v's Kind is not Struct or i is out of range.
   715  func (v Value) Field(i int) Value {
   716  	if v.kind() != Struct {
   717  		panic(&ValueError{"reflect.Value.Field", v.kind()})
   718  	}
   719  	tt := (*structType)(unsafe.Pointer(v.typ))
   720  	if uint(i) >= uint(len(tt.fields)) {
   721  		panic("reflect: Field index out of range")
   722  	}
   723  	field := &tt.fields[i]
   724  	typ := field.typ
   725  
   726  	// Inherit permission bits from v.
   727  	fl := v.flag&(flagRO|flagIndir|flagAddr) | flag(typ.Kind())
   728  	// Using an unexported field forces flagRO.
   729  	if field.pkgPath != nil {
   730  		fl |= flagRO
   731  	}
   732  	// Either flagIndir is set and v.ptr points at struct,
   733  	// or flagIndir is not set and v.ptr is the actual struct data.
   734  	// In the former case, we want v.ptr + offset.
   735  	// In the latter case, we must be have field.offset = 0,
   736  	// so v.ptr + field.offset is still okay.
   737  	ptr := unsafe.Pointer(uintptr(v.ptr) + field.offset)
   738  	return Value{typ, ptr, fl}
   739  }
   740  
   741  // FieldByIndex returns the nested field corresponding to index.
   742  // It panics if v's Kind is not struct.
   743  func (v Value) FieldByIndex(index []int) Value {
   744  	if len(index) == 1 {
   745  		return v.Field(index[0])
   746  	}
   747  	v.mustBe(Struct)
   748  	for i, x := range index {
   749  		if i > 0 {
   750  			if v.Kind() == Ptr && v.typ.Elem().Kind() == Struct {
   751  				if v.IsNil() {
   752  					panic("reflect: indirection through nil pointer to embedded struct")
   753  				}
   754  				v = v.Elem()
   755  			}
   756  		}
   757  		v = v.Field(x)
   758  	}
   759  	return v
   760  }
   761  
   762  // FieldByName returns the struct field with the given name.
   763  // It returns the zero Value if no field was found.
   764  // It panics if v's Kind is not struct.
   765  func (v Value) FieldByName(name string) Value {
   766  	v.mustBe(Struct)
   767  	if f, ok := v.typ.FieldByName(name); ok {
   768  		return v.FieldByIndex(f.Index)
   769  	}
   770  	return Value{}
   771  }
   772  
   773  // FieldByNameFunc returns the struct field with a name
   774  // that satisfies the match function.
   775  // It panics if v's Kind is not struct.
   776  // It returns the zero Value if no field was found.
   777  func (v Value) FieldByNameFunc(match func(string) bool) Value {
   778  	if f, ok := v.typ.FieldByNameFunc(match); ok {
   779  		return v.FieldByIndex(f.Index)
   780  	}
   781  	return Value{}
   782  }
   783  
   784  // Float returns v's underlying value, as a float64.
   785  // It panics if v's Kind is not Float32 or Float64
   786  func (v Value) Float() float64 {
   787  	k := v.kind()
   788  	switch k {
   789  	case Float32:
   790  		return float64(*(*float32)(v.ptr))
   791  	case Float64:
   792  		return *(*float64)(v.ptr)
   793  	}
   794  	panic(&ValueError{"reflect.Value.Float", v.kind()})
   795  }
   796  
   797  var uint8Type = TypeOf(uint8(0)).(*rtype)
   798  
   799  // Index returns v's i'th element.
   800  // It panics if v's Kind is not Array, Slice, or String or i is out of range.
   801  func (v Value) Index(i int) Value {
   802  	switch v.kind() {
   803  	case Array:
   804  		tt := (*arrayType)(unsafe.Pointer(v.typ))
   805  		if uint(i) >= uint(tt.len) {
   806  			panic("reflect: array index out of range")
   807  		}
   808  		typ := tt.elem
   809  		offset := uintptr(i) * typ.size
   810  
   811  		// Either flagIndir is set and v.ptr points at array,
   812  		// or flagIndir is not set and v.ptr is the actual array data.
   813  		// In the former case, we want v.ptr + offset.
   814  		// In the latter case, we must be doing Index(0), so offset = 0,
   815  		// so v.ptr + offset is still okay.
   816  		val := unsafe.Pointer(uintptr(v.ptr) + offset)
   817  		fl := v.flag&(flagRO|flagIndir|flagAddr) | flag(typ.Kind()) // bits same as overall array
   818  		return Value{typ, val, fl}
   819  
   820  	case Slice:
   821  		// Element flag same as Elem of Ptr.
   822  		// Addressable, indirect, possibly read-only.
   823  		s := (*sliceHeader)(v.ptr)
   824  		if uint(i) >= uint(s.Len) {
   825  			panic("reflect: slice index out of range")
   826  		}
   827  		tt := (*sliceType)(unsafe.Pointer(v.typ))
   828  		typ := tt.elem
   829  		val := unsafe.Pointer(uintptr(s.Data) + uintptr(i)*typ.size)
   830  		fl := flagAddr | flagIndir | v.flag&flagRO | flag(typ.Kind())
   831  		return Value{typ, val, fl}
   832  
   833  	case String:
   834  		s := (*stringHeader)(v.ptr)
   835  		if uint(i) >= uint(s.Len) {
   836  			panic("reflect: string index out of range")
   837  		}
   838  		p := unsafe.Pointer(uintptr(s.Data) + uintptr(i))
   839  		fl := v.flag&flagRO | flag(Uint8) | flagIndir
   840  		return Value{uint8Type, p, fl}
   841  	}
   842  	panic(&ValueError{"reflect.Value.Index", v.kind()})
   843  }
   844  
   845  // Int returns v's underlying value, as an int64.
   846  // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
   847  func (v Value) Int() int64 {
   848  	k := v.kind()
   849  	p := v.ptr
   850  	switch k {
   851  	case Int:
   852  		return int64(*(*int)(p))
   853  	case Int8:
   854  		return int64(*(*int8)(p))
   855  	case Int16:
   856  		return int64(*(*int16)(p))
   857  	case Int32:
   858  		return int64(*(*int32)(p))
   859  	case Int64:
   860  		return int64(*(*int64)(p))
   861  	}
   862  	panic(&ValueError{"reflect.Value.Int", v.kind()})
   863  }
   864  
   865  // CanInterface returns true if Interface can be used without panicking.
   866  func (v Value) CanInterface() bool {
   867  	if v.flag == 0 {
   868  		panic(&ValueError{"reflect.Value.CanInterface", Invalid})
   869  	}
   870  	return v.flag&flagRO == 0
   871  }
   872  
   873  // Interface returns v's current value as an interface{}.
   874  // It is equivalent to:
   875  //	var i interface{} = (v's underlying value)
   876  // It panics if the Value was obtained by accessing
   877  // unexported struct fields.
   878  func (v Value) Interface() (i interface{}) {
   879  	return valueInterface(v, true)
   880  }
   881  
   882  func valueInterface(v Value, safe bool) interface{} {
   883  	if v.flag == 0 {
   884  		panic(&ValueError{"reflect.Value.Interface", 0})
   885  	}
   886  	if safe && v.flag&flagRO != 0 {
   887  		// Do not allow access to unexported values via Interface,
   888  		// because they might be pointers that should not be
   889  		// writable or methods or function that should not be callable.
   890  		panic("reflect.Value.Interface: cannot return value obtained from unexported field or method")
   891  	}
   892  	if v.flag&flagMethod != 0 {
   893  		v = makeMethodValue("Interface", v)
   894  	}
   895  
   896  	if v.kind() == Interface {
   897  		// Special case: return the element inside the interface.
   898  		// Empty interface has one layout, all interfaces with
   899  		// methods have a second layout.
   900  		if v.NumMethod() == 0 {
   901  			return *(*interface{})(v.ptr)
   902  		}
   903  		return *(*interface {
   904  			M()
   905  		})(v.ptr)
   906  	}
   907  
   908  	// TODO: pass safe to packEface so we don't need to copy if safe==true?
   909  	return packEface(v)
   910  }
   911  
   912  // InterfaceData returns the interface v's value as a uintptr pair.
   913  // It panics if v's Kind is not Interface.
   914  func (v Value) InterfaceData() [2]uintptr {
   915  	// TODO: deprecate this
   916  	v.mustBe(Interface)
   917  	// We treat this as a read operation, so we allow
   918  	// it even for unexported data, because the caller
   919  	// has to import "unsafe" to turn it into something
   920  	// that can be abused.
   921  	// Interface value is always bigger than a word; assume flagIndir.
   922  	return *(*[2]uintptr)(v.ptr)
   923  }
   924  
   925  // IsNil reports whether its argument v is nil. The argument must be
   926  // a chan, func, interface, map, pointer, or slice value; if it is
   927  // not, IsNil panics. Note that IsNil is not always equivalent to a
   928  // regular comparison with nil in Go. For example, if v was created
   929  // by calling ValueOf with an uninitialized interface variable i,
   930  // i==nil will be true but v.IsNil will panic as v will be the zero
   931  // Value.
   932  func (v Value) IsNil() bool {
   933  	k := v.kind()
   934  	switch k {
   935  	case Chan, Func, Map, Ptr:
   936  		if v.flag&flagMethod != 0 {
   937  			return false
   938  		}
   939  		ptr := v.ptr
   940  		if v.flag&flagIndir != 0 {
   941  			ptr = *(*unsafe.Pointer)(ptr)
   942  		}
   943  		return ptr == nil
   944  	case Interface, Slice:
   945  		// Both interface and slice are nil if first word is 0.
   946  		// Both are always bigger than a word; assume flagIndir.
   947  		return *(*unsafe.Pointer)(v.ptr) == nil
   948  	}
   949  	panic(&ValueError{"reflect.Value.IsNil", v.kind()})
   950  }
   951  
   952  // IsValid returns true if v represents a value.
   953  // It returns false if v is the zero Value.
   954  // If IsValid returns false, all other methods except String panic.
   955  // Most functions and methods never return an invalid value.
   956  // If one does, its documentation states the conditions explicitly.
   957  func (v Value) IsValid() bool {
   958  	return v.flag != 0
   959  }
   960  
   961  // Kind returns v's Kind.
   962  // If v is the zero Value (IsValid returns false), Kind returns Invalid.
   963  func (v Value) Kind() Kind {
   964  	return v.kind()
   965  }
   966  
   967  // Len returns v's length.
   968  // It panics if v's Kind is not Array, Chan, Map, Slice, or String.
   969  func (v Value) Len() int {
   970  	k := v.kind()
   971  	switch k {
   972  	case Array:
   973  		tt := (*arrayType)(unsafe.Pointer(v.typ))
   974  		return int(tt.len)
   975  	case Chan:
   976  		return chanlen(v.pointer())
   977  	case Map:
   978  		return maplen(v.pointer())
   979  	case Slice:
   980  		// Slice is bigger than a word; assume flagIndir.
   981  		return (*sliceHeader)(v.ptr).Len
   982  	case String:
   983  		// String is bigger than a word; assume flagIndir.
   984  		return (*stringHeader)(v.ptr).Len
   985  	}
   986  	panic(&ValueError{"reflect.Value.Len", v.kind()})
   987  }
   988  
   989  // MapIndex returns the value associated with key in the map v.
   990  // It panics if v's Kind is not Map.
   991  // It returns the zero Value if key is not found in the map or if v represents a nil map.
   992  // As in Go, the key's value must be assignable to the map's key type.
   993  func (v Value) MapIndex(key Value) Value {
   994  	v.mustBe(Map)
   995  	tt := (*mapType)(unsafe.Pointer(v.typ))
   996  
   997  	// Do not require key to be exported, so that DeepEqual
   998  	// and other programs can use all the keys returned by
   999  	// MapKeys as arguments to MapIndex.  If either the map
  1000  	// or the key is unexported, though, the result will be
  1001  	// considered unexported.  This is consistent with the
  1002  	// behavior for structs, which allow read but not write
  1003  	// of unexported fields.
  1004  	key = key.assignTo("reflect.Value.MapIndex", tt.key, nil)
  1005  
  1006  	var k unsafe.Pointer
  1007  	if key.flag&flagIndir != 0 {
  1008  		k = key.ptr
  1009  	} else {
  1010  		k = unsafe.Pointer(&key.ptr)
  1011  	}
  1012  	e := mapaccess(v.typ, v.pointer(), k)
  1013  	if e == nil {
  1014  		return Value{}
  1015  	}
  1016  	typ := tt.elem
  1017  	fl := (v.flag | key.flag) & flagRO
  1018  	fl |= flag(typ.Kind())
  1019  	if ifaceIndir(typ) {
  1020  		// Copy result so future changes to the map
  1021  		// won't change the underlying value.
  1022  		c := unsafe_New(typ)
  1023  		typedmemmove(typ, c, e)
  1024  		return Value{typ, c, fl | flagIndir}
  1025  	} else {
  1026  		return Value{typ, *(*unsafe.Pointer)(e), fl}
  1027  	}
  1028  }
  1029  
  1030  // MapKeys returns a slice containing all the keys present in the map,
  1031  // in unspecified order.
  1032  // It panics if v's Kind is not Map.
  1033  // It returns an empty slice if v represents a nil map.
  1034  func (v Value) MapKeys() []Value {
  1035  	v.mustBe(Map)
  1036  	tt := (*mapType)(unsafe.Pointer(v.typ))
  1037  	keyType := tt.key
  1038  
  1039  	fl := v.flag&flagRO | flag(keyType.Kind())
  1040  
  1041  	m := v.pointer()
  1042  	mlen := int(0)
  1043  	if m != nil {
  1044  		mlen = maplen(m)
  1045  	}
  1046  	it := mapiterinit(v.typ, m)
  1047  	a := make([]Value, mlen)
  1048  	var i int
  1049  	for i = 0; i < len(a); i++ {
  1050  		key := mapiterkey(it)
  1051  		if key == nil {
  1052  			// Someone deleted an entry from the map since we
  1053  			// called maplen above.  It's a data race, but nothing
  1054  			// we can do about it.
  1055  			break
  1056  		}
  1057  		if ifaceIndir(keyType) {
  1058  			// Copy result so future changes to the map
  1059  			// won't change the underlying value.
  1060  			c := unsafe_New(keyType)
  1061  			typedmemmove(keyType, c, key)
  1062  			a[i] = Value{keyType, c, fl | flagIndir}
  1063  		} else {
  1064  			a[i] = Value{keyType, *(*unsafe.Pointer)(key), fl}
  1065  		}
  1066  		mapiternext(it)
  1067  	}
  1068  	return a[:i]
  1069  }
  1070  
  1071  // Method returns a function value corresponding to v's i'th method.
  1072  // The arguments to a Call on the returned function should not include
  1073  // a receiver; the returned function will always use v as the receiver.
  1074  // Method panics if i is out of range or if v is a nil interface value.
  1075  func (v Value) Method(i int) Value {
  1076  	if v.typ == nil {
  1077  		panic(&ValueError{"reflect.Value.Method", Invalid})
  1078  	}
  1079  	if v.flag&flagMethod != 0 || uint(i) >= uint(v.typ.NumMethod()) {
  1080  		panic("reflect: Method index out of range")
  1081  	}
  1082  	if v.typ.Kind() == Interface && v.IsNil() {
  1083  		panic("reflect: Method on nil interface value")
  1084  	}
  1085  	fl := v.flag & (flagRO | flagIndir)
  1086  	fl |= flag(Func)
  1087  	fl |= flag(i)<<flagMethodShift | flagMethod
  1088  	return Value{v.typ, v.ptr, fl}
  1089  }
  1090  
  1091  // NumMethod returns the number of methods in the value's method set.
  1092  func (v Value) NumMethod() int {
  1093  	if v.typ == nil {
  1094  		panic(&ValueError{"reflect.Value.NumMethod", Invalid})
  1095  	}
  1096  	if v.flag&flagMethod != 0 {
  1097  		return 0
  1098  	}
  1099  	return v.typ.NumMethod()
  1100  }
  1101  
  1102  // MethodByName returns a function value corresponding to the method
  1103  // of v with the given name.
  1104  // The arguments to a Call on the returned function should not include
  1105  // a receiver; the returned function will always use v as the receiver.
  1106  // It returns the zero Value if no method was found.
  1107  func (v Value) MethodByName(name string) Value {
  1108  	if v.typ == nil {
  1109  		panic(&ValueError{"reflect.Value.MethodByName", Invalid})
  1110  	}
  1111  	if v.flag&flagMethod != 0 {
  1112  		return Value{}
  1113  	}
  1114  	m, ok := v.typ.MethodByName(name)
  1115  	if !ok {
  1116  		return Value{}
  1117  	}
  1118  	return v.Method(m.Index)
  1119  }
  1120  
  1121  // NumField returns the number of fields in the struct v.
  1122  // It panics if v's Kind is not Struct.
  1123  func (v Value) NumField() int {
  1124  	v.mustBe(Struct)
  1125  	tt := (*structType)(unsafe.Pointer(v.typ))
  1126  	return len(tt.fields)
  1127  }
  1128  
  1129  // OverflowComplex returns true if the complex128 x cannot be represented by v's type.
  1130  // It panics if v's Kind is not Complex64 or Complex128.
  1131  func (v Value) OverflowComplex(x complex128) bool {
  1132  	k := v.kind()
  1133  	switch k {
  1134  	case Complex64:
  1135  		return overflowFloat32(real(x)) || overflowFloat32(imag(x))
  1136  	case Complex128:
  1137  		return false
  1138  	}
  1139  	panic(&ValueError{"reflect.Value.OverflowComplex", v.kind()})
  1140  }
  1141  
  1142  // OverflowFloat returns true if the float64 x cannot be represented by v's type.
  1143  // It panics if v's Kind is not Float32 or Float64.
  1144  func (v Value) OverflowFloat(x float64) bool {
  1145  	k := v.kind()
  1146  	switch k {
  1147  	case Float32:
  1148  		return overflowFloat32(x)
  1149  	case Float64:
  1150  		return false
  1151  	}
  1152  	panic(&ValueError{"reflect.Value.OverflowFloat", v.kind()})
  1153  }
  1154  
  1155  func overflowFloat32(x float64) bool {
  1156  	if x < 0 {
  1157  		x = -x
  1158  	}
  1159  	return math.MaxFloat32 < x && x <= math.MaxFloat64
  1160  }
  1161  
  1162  // OverflowInt returns true if the int64 x cannot be represented by v's type.
  1163  // It panics if v's Kind is not Int, Int8, int16, Int32, or Int64.
  1164  func (v Value) OverflowInt(x int64) bool {
  1165  	k := v.kind()
  1166  	switch k {
  1167  	case Int, Int8, Int16, Int32, Int64:
  1168  		bitSize := v.typ.size * 8
  1169  		trunc := (x << (64 - bitSize)) >> (64 - bitSize)
  1170  		return x != trunc
  1171  	}
  1172  	panic(&ValueError{"reflect.Value.OverflowInt", v.kind()})
  1173  }
  1174  
  1175  // OverflowUint returns true if the uint64 x cannot be represented by v's type.
  1176  // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
  1177  func (v Value) OverflowUint(x uint64) bool {
  1178  	k := v.kind()
  1179  	switch k {
  1180  	case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64:
  1181  		bitSize := v.typ.size * 8
  1182  		trunc := (x << (64 - bitSize)) >> (64 - bitSize)
  1183  		return x != trunc
  1184  	}
  1185  	panic(&ValueError{"reflect.Value.OverflowUint", v.kind()})
  1186  }
  1187  
  1188  // Pointer returns v's value as a uintptr.
  1189  // It returns uintptr instead of unsafe.Pointer so that
  1190  // code using reflect cannot obtain unsafe.Pointers
  1191  // without importing the unsafe package explicitly.
  1192  // It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer.
  1193  //
  1194  // If v's Kind is Func, the returned pointer is an underlying
  1195  // code pointer, but not necessarily enough to identify a
  1196  // single function uniquely. The only guarantee is that the
  1197  // result is zero if and only if v is a nil func Value.
  1198  //
  1199  // If v's Kind is Slice, the returned pointer is to the first
  1200  // element of the slice.  If the slice is nil the returned value
  1201  // is 0.  If the slice is empty but non-nil the return value is non-zero.
  1202  func (v Value) Pointer() uintptr {
  1203  	// TODO: deprecate
  1204  	k := v.kind()
  1205  	switch k {
  1206  	case Chan, Map, Ptr, UnsafePointer:
  1207  		return uintptr(v.pointer())
  1208  	case Func:
  1209  		if v.flag&flagMethod != 0 {
  1210  			// As the doc comment says, the returned pointer is an
  1211  			// underlying code pointer but not necessarily enough to
  1212  			// identify a single function uniquely. All method expressions
  1213  			// created via reflect have the same underlying code pointer,
  1214  			// so their Pointers are equal. The function used here must
  1215  			// match the one used in makeMethodValue.
  1216  			f := methodValueCall
  1217  			return **(**uintptr)(unsafe.Pointer(&f))
  1218  		}
  1219  		p := v.pointer()
  1220  		// Non-nil func value points at data block.
  1221  		// First word of data block is actual code.
  1222  		if p != nil {
  1223  			p = *(*unsafe.Pointer)(p)
  1224  		}
  1225  		return uintptr(p)
  1226  
  1227  	case Slice:
  1228  		return (*SliceHeader)(v.ptr).Data
  1229  	}
  1230  	panic(&ValueError{"reflect.Value.Pointer", v.kind()})
  1231  }
  1232  
  1233  // Recv receives and returns a value from the channel v.
  1234  // It panics if v's Kind is not Chan.
  1235  // The receive blocks until a value is ready.
  1236  // The boolean value ok is true if the value x corresponds to a send
  1237  // on the channel, false if it is a zero value received because the channel is closed.
  1238  func (v Value) Recv() (x Value, ok bool) {
  1239  	v.mustBe(Chan)
  1240  	v.mustBeExported()
  1241  	return v.recv(false)
  1242  }
  1243  
  1244  // internal recv, possibly non-blocking (nb).
  1245  // v is known to be a channel.
  1246  func (v Value) recv(nb bool) (val Value, ok bool) {
  1247  	tt := (*chanType)(unsafe.Pointer(v.typ))
  1248  	if ChanDir(tt.dir)&RecvDir == 0 {
  1249  		panic("reflect: recv on send-only channel")
  1250  	}
  1251  	t := tt.elem
  1252  	val = Value{t, nil, flag(t.Kind())}
  1253  	var p unsafe.Pointer
  1254  	if ifaceIndir(t) {
  1255  		p = unsafe_New(t)
  1256  		val.ptr = p
  1257  		val.flag |= flagIndir
  1258  	} else {
  1259  		p = unsafe.Pointer(&val.ptr)
  1260  	}
  1261  	selected, ok := chanrecv(v.typ, v.pointer(), nb, p)
  1262  	if !selected {
  1263  		val = Value{}
  1264  	}
  1265  	return
  1266  }
  1267  
  1268  // Send sends x on the channel v.
  1269  // It panics if v's kind is not Chan or if x's type is not the same type as v's element type.
  1270  // As in Go, x's value must be assignable to the channel's element type.
  1271  func (v Value) Send(x Value) {
  1272  	v.mustBe(Chan)
  1273  	v.mustBeExported()
  1274  	v.send(x, false)
  1275  }
  1276  
  1277  // internal send, possibly non-blocking.
  1278  // v is known to be a channel.
  1279  func (v Value) send(x Value, nb bool) (selected bool) {
  1280  	tt := (*chanType)(unsafe.Pointer(v.typ))
  1281  	if ChanDir(tt.dir)&SendDir == 0 {
  1282  		panic("reflect: send on recv-only channel")
  1283  	}
  1284  	x.mustBeExported()
  1285  	x = x.assignTo("reflect.Value.Send", tt.elem, nil)
  1286  	var p unsafe.Pointer
  1287  	if x.flag&flagIndir != 0 {
  1288  		p = x.ptr
  1289  	} else {
  1290  		p = unsafe.Pointer(&x.ptr)
  1291  	}
  1292  	return chansend(v.typ, v.pointer(), p, nb)
  1293  }
  1294  
  1295  // Set assigns x to the value v.
  1296  // It panics if CanSet returns false.
  1297  // As in Go, x's value must be assignable to v's type.
  1298  func (v Value) Set(x Value) {
  1299  	v.mustBeAssignable()
  1300  	x.mustBeExported() // do not let unexported x leak
  1301  	var target unsafe.Pointer
  1302  	if v.kind() == Interface {
  1303  		target = v.ptr
  1304  	}
  1305  	x = x.assignTo("reflect.Set", v.typ, target)
  1306  	if x.flag&flagIndir != 0 {
  1307  		typedmemmove(v.typ, v.ptr, x.ptr)
  1308  	} else {
  1309  		*(*unsafe.Pointer)(v.ptr) = x.ptr
  1310  	}
  1311  }
  1312  
  1313  // SetBool sets v's underlying value.
  1314  // It panics if v's Kind is not Bool or if CanSet() is false.
  1315  func (v Value) SetBool(x bool) {
  1316  	v.mustBeAssignable()
  1317  	v.mustBe(Bool)
  1318  	*(*bool)(v.ptr) = x
  1319  }
  1320  
  1321  // SetBytes sets v's underlying value.
  1322  // It panics if v's underlying value is not a slice of bytes.
  1323  func (v Value) SetBytes(x []byte) {
  1324  	v.mustBeAssignable()
  1325  	v.mustBe(Slice)
  1326  	if v.typ.Elem().Kind() != Uint8 {
  1327  		panic("reflect.Value.SetBytes of non-byte slice")
  1328  	}
  1329  	*(*[]byte)(v.ptr) = x
  1330  }
  1331  
  1332  // setRunes sets v's underlying value.
  1333  // It panics if v's underlying value is not a slice of runes (int32s).
  1334  func (v Value) setRunes(x []rune) {
  1335  	v.mustBeAssignable()
  1336  	v.mustBe(Slice)
  1337  	if v.typ.Elem().Kind() != Int32 {
  1338  		panic("reflect.Value.setRunes of non-rune slice")
  1339  	}
  1340  	*(*[]rune)(v.ptr) = x
  1341  }
  1342  
  1343  // SetComplex sets v's underlying value to x.
  1344  // It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.
  1345  func (v Value) SetComplex(x complex128) {
  1346  	v.mustBeAssignable()
  1347  	switch k := v.kind(); k {
  1348  	default:
  1349  		panic(&ValueError{"reflect.Value.SetComplex", v.kind()})
  1350  	case Complex64:
  1351  		*(*complex64)(v.ptr) = complex64(x)
  1352  	case Complex128:
  1353  		*(*complex128)(v.ptr) = x
  1354  	}
  1355  }
  1356  
  1357  // SetFloat sets v's underlying value to x.
  1358  // It panics if v's Kind is not Float32 or Float64, or if CanSet() is false.
  1359  func (v Value) SetFloat(x float64) {
  1360  	v.mustBeAssignable()
  1361  	switch k := v.kind(); k {
  1362  	default:
  1363  		panic(&ValueError{"reflect.Value.SetFloat", v.kind()})
  1364  	case Float32:
  1365  		*(*float32)(v.ptr) = float32(x)
  1366  	case Float64:
  1367  		*(*float64)(v.ptr) = x
  1368  	}
  1369  }
  1370  
  1371  // SetInt sets v's underlying value to x.
  1372  // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false.
  1373  func (v Value) SetInt(x int64) {
  1374  	v.mustBeAssignable()
  1375  	switch k := v.kind(); k {
  1376  	default:
  1377  		panic(&ValueError{"reflect.Value.SetInt", v.kind()})
  1378  	case Int:
  1379  		*(*int)(v.ptr) = int(x)
  1380  	case Int8:
  1381  		*(*int8)(v.ptr) = int8(x)
  1382  	case Int16:
  1383  		*(*int16)(v.ptr) = int16(x)
  1384  	case Int32:
  1385  		*(*int32)(v.ptr) = int32(x)
  1386  	case Int64:
  1387  		*(*int64)(v.ptr) = x
  1388  	}
  1389  }
  1390  
  1391  // SetLen sets v's length to n.
  1392  // It panics if v's Kind is not Slice or if n is negative or
  1393  // greater than the capacity of the slice.
  1394  func (v Value) SetLen(n int) {
  1395  	v.mustBeAssignable()
  1396  	v.mustBe(Slice)
  1397  	s := (*sliceHeader)(v.ptr)
  1398  	if uint(n) > uint(s.Cap) {
  1399  		panic("reflect: slice length out of range in SetLen")
  1400  	}
  1401  	s.Len = n
  1402  }
  1403  
  1404  // SetCap sets v's capacity to n.
  1405  // It panics if v's Kind is not Slice or if n is smaller than the length or
  1406  // greater than the capacity of the slice.
  1407  func (v Value) SetCap(n int) {
  1408  	v.mustBeAssignable()
  1409  	v.mustBe(Slice)
  1410  	s := (*sliceHeader)(v.ptr)
  1411  	if n < int(s.Len) || n > int(s.Cap) {
  1412  		panic("reflect: slice capacity out of range in SetCap")
  1413  	}
  1414  	s.Cap = n
  1415  }
  1416  
  1417  // SetMapIndex sets the value associated with key in the map v to val.
  1418  // It panics if v's Kind is not Map.
  1419  // If val is the zero Value, SetMapIndex deletes the key from the map.
  1420  // Otherwise if v holds a nil map, SetMapIndex will panic.
  1421  // As in Go, key's value must be assignable to the map's key type,
  1422  // and val's value must be assignable to the map's value type.
  1423  func (v Value) SetMapIndex(key, val Value) {
  1424  	v.mustBe(Map)
  1425  	v.mustBeExported()
  1426  	key.mustBeExported()
  1427  	tt := (*mapType)(unsafe.Pointer(v.typ))
  1428  	key = key.assignTo("reflect.Value.SetMapIndex", tt.key, nil)
  1429  	var k unsafe.Pointer
  1430  	if key.flag&flagIndir != 0 {
  1431  		k = key.ptr
  1432  	} else {
  1433  		k = unsafe.Pointer(&key.ptr)
  1434  	}
  1435  	if val.typ == nil {
  1436  		mapdelete(v.typ, v.pointer(), k)
  1437  		return
  1438  	}
  1439  	val.mustBeExported()
  1440  	val = val.assignTo("reflect.Value.SetMapIndex", tt.elem, nil)
  1441  	var e unsafe.Pointer
  1442  	if val.flag&flagIndir != 0 {
  1443  		e = val.ptr
  1444  	} else {
  1445  		e = unsafe.Pointer(&val.ptr)
  1446  	}
  1447  	mapassign(v.typ, v.pointer(), k, e)
  1448  }
  1449  
  1450  // SetUint sets v's underlying value to x.
  1451  // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false.
  1452  func (v Value) SetUint(x uint64) {
  1453  	v.mustBeAssignable()
  1454  	switch k := v.kind(); k {
  1455  	default:
  1456  		panic(&ValueError{"reflect.Value.SetUint", v.kind()})
  1457  	case Uint:
  1458  		*(*uint)(v.ptr) = uint(x)
  1459  	case Uint8:
  1460  		*(*uint8)(v.ptr) = uint8(x)
  1461  	case Uint16:
  1462  		*(*uint16)(v.ptr) = uint16(x)
  1463  	case Uint32:
  1464  		*(*uint32)(v.ptr) = uint32(x)
  1465  	case Uint64:
  1466  		*(*uint64)(v.ptr) = x
  1467  	case Uintptr:
  1468  		*(*uintptr)(v.ptr) = uintptr(x)
  1469  	}
  1470  }
  1471  
  1472  // SetPointer sets the unsafe.Pointer value v to x.
  1473  // It panics if v's Kind is not UnsafePointer.
  1474  func (v Value) SetPointer(x unsafe.Pointer) {
  1475  	v.mustBeAssignable()
  1476  	v.mustBe(UnsafePointer)
  1477  	*(*unsafe.Pointer)(v.ptr) = x
  1478  }
  1479  
  1480  // SetString sets v's underlying value to x.
  1481  // It panics if v's Kind is not String or if CanSet() is false.
  1482  func (v Value) SetString(x string) {
  1483  	v.mustBeAssignable()
  1484  	v.mustBe(String)
  1485  	*(*string)(v.ptr) = x
  1486  }
  1487  
  1488  // Slice returns v[i:j].
  1489  // It panics if v's Kind is not Array, Slice or String, or if v is an unaddressable array,
  1490  // or if the indexes are out of bounds.
  1491  func (v Value) Slice(i, j int) Value {
  1492  	var (
  1493  		cap  int
  1494  		typ  *sliceType
  1495  		base unsafe.Pointer
  1496  	)
  1497  	switch kind := v.kind(); kind {
  1498  	default:
  1499  		panic(&ValueError{"reflect.Value.Slice", v.kind()})
  1500  
  1501  	case Array:
  1502  		if v.flag&flagAddr == 0 {
  1503  			panic("reflect.Value.Slice: slice of unaddressable array")
  1504  		}
  1505  		tt := (*arrayType)(unsafe.Pointer(v.typ))
  1506  		cap = int(tt.len)
  1507  		typ = (*sliceType)(unsafe.Pointer(tt.slice))
  1508  		base = v.ptr
  1509  
  1510  	case Slice:
  1511  		typ = (*sliceType)(unsafe.Pointer(v.typ))
  1512  		s := (*sliceHeader)(v.ptr)
  1513  		base = unsafe.Pointer(s.Data)
  1514  		cap = s.Cap
  1515  
  1516  	case String:
  1517  		s := (*stringHeader)(v.ptr)
  1518  		if i < 0 || j < i || j > s.Len {
  1519  			panic("reflect.Value.Slice: string slice index out of bounds")
  1520  		}
  1521  		t := stringHeader{unsafe.Pointer(uintptr(s.Data) + uintptr(i)), j - i}
  1522  		return Value{v.typ, unsafe.Pointer(&t), v.flag}
  1523  	}
  1524  
  1525  	if i < 0 || j < i || j > cap {
  1526  		panic("reflect.Value.Slice: slice index out of bounds")
  1527  	}
  1528  
  1529  	// Declare slice so that gc can see the base pointer in it.
  1530  	var x []unsafe.Pointer
  1531  
  1532  	// Reinterpret as *sliceHeader to edit.
  1533  	s := (*sliceHeader)(unsafe.Pointer(&x))
  1534  	s.Len = j - i
  1535  	s.Cap = cap - i
  1536  	if cap-i > 0 {
  1537  		s.Data = unsafe.Pointer(uintptr(base) + uintptr(i)*typ.elem.Size())
  1538  	} else {
  1539  		// do not advance pointer, to avoid pointing beyond end of slice
  1540  		s.Data = base
  1541  	}
  1542  
  1543  	fl := v.flag&flagRO | flagIndir | flag(Slice)
  1544  	return Value{typ.common(), unsafe.Pointer(&x), fl}
  1545  }
  1546  
  1547  // Slice3 is the 3-index form of the slice operation: it returns v[i:j:k].
  1548  // It panics if v's Kind is not Array or Slice, or if v is an unaddressable array,
  1549  // or if the indexes are out of bounds.
  1550  func (v Value) Slice3(i, j, k int) Value {
  1551  	var (
  1552  		cap  int
  1553  		typ  *sliceType
  1554  		base unsafe.Pointer
  1555  	)
  1556  	switch kind := v.kind(); kind {
  1557  	default:
  1558  		panic(&ValueError{"reflect.Value.Slice3", v.kind()})
  1559  
  1560  	case Array:
  1561  		if v.flag&flagAddr == 0 {
  1562  			panic("reflect.Value.Slice3: slice of unaddressable array")
  1563  		}
  1564  		tt := (*arrayType)(unsafe.Pointer(v.typ))
  1565  		cap = int(tt.len)
  1566  		typ = (*sliceType)(unsafe.Pointer(tt.slice))
  1567  		base = v.ptr
  1568  
  1569  	case Slice:
  1570  		typ = (*sliceType)(unsafe.Pointer(v.typ))
  1571  		s := (*sliceHeader)(v.ptr)
  1572  		base = s.Data
  1573  		cap = s.Cap
  1574  	}
  1575  
  1576  	if i < 0 || j < i || k < j || k > cap {
  1577  		panic("reflect.Value.Slice3: slice index out of bounds")
  1578  	}
  1579  
  1580  	// Declare slice so that the garbage collector
  1581  	// can see the base pointer in it.
  1582  	var x []unsafe.Pointer
  1583  
  1584  	// Reinterpret as *sliceHeader to edit.
  1585  	s := (*sliceHeader)(unsafe.Pointer(&x))
  1586  	s.Len = j - i
  1587  	s.Cap = k - i
  1588  	if k-i > 0 {
  1589  		s.Data = unsafe.Pointer(uintptr(base) + uintptr(i)*typ.elem.Size())
  1590  	} else {
  1591  		// do not advance pointer, to avoid pointing beyond end of slice
  1592  		s.Data = base
  1593  	}
  1594  
  1595  	fl := v.flag&flagRO | flagIndir | flag(Slice)
  1596  	return Value{typ.common(), unsafe.Pointer(&x), fl}
  1597  }
  1598  
  1599  // String returns the string v's underlying value, as a string.
  1600  // String is a special case because of Go's String method convention.
  1601  // Unlike the other getters, it does not panic if v's Kind is not String.
  1602  // Instead, it returns a string of the form "<T value>" where T is v's type.
  1603  func (v Value) String() string {
  1604  	switch k := v.kind(); k {
  1605  	case Invalid:
  1606  		return "<invalid Value>"
  1607  	case String:
  1608  		return *(*string)(v.ptr)
  1609  	}
  1610  	// If you call String on a reflect.Value of other type, it's better to
  1611  	// print something than to panic. Useful in debugging.
  1612  	return "<" + v.Type().String() + " Value>"
  1613  }
  1614  
  1615  // TryRecv attempts to receive a value from the channel v but will not block.
  1616  // It panics if v's Kind is not Chan.
  1617  // If the receive delivers a value, x is the transferred value and ok is true.
  1618  // If the receive cannot finish without blocking, x is the zero Value and ok is false.
  1619  // If the channel is closed, x is the zero value for the channel's element type and ok is false.
  1620  func (v Value) TryRecv() (x Value, ok bool) {
  1621  	v.mustBe(Chan)
  1622  	v.mustBeExported()
  1623  	return v.recv(true)
  1624  }
  1625  
  1626  // TrySend attempts to send x on the channel v but will not block.
  1627  // It panics if v's Kind is not Chan.
  1628  // It returns true if the value was sent, false otherwise.
  1629  // As in Go, x's value must be assignable to the channel's element type.
  1630  func (v Value) TrySend(x Value) bool {
  1631  	v.mustBe(Chan)
  1632  	v.mustBeExported()
  1633  	return v.send(x, true)
  1634  }
  1635  
  1636  // Type returns v's type.
  1637  func (v Value) Type() Type {
  1638  	f := v.flag
  1639  	if f == 0 {
  1640  		panic(&ValueError{"reflect.Value.Type", Invalid})
  1641  	}
  1642  	if f&flagMethod == 0 {
  1643  		// Easy case
  1644  		return v.typ
  1645  	}
  1646  
  1647  	// Method value.
  1648  	// v.typ describes the receiver, not the method type.
  1649  	i := int(v.flag) >> flagMethodShift
  1650  	if v.typ.Kind() == Interface {
  1651  		// Method on interface.
  1652  		tt := (*interfaceType)(unsafe.Pointer(v.typ))
  1653  		if uint(i) >= uint(len(tt.methods)) {
  1654  			panic("reflect: internal error: invalid method index")
  1655  		}
  1656  		m := &tt.methods[i]
  1657  		return m.typ
  1658  	}
  1659  	// Method on concrete type.
  1660  	ut := v.typ.uncommon()
  1661  	if ut == nil || uint(i) >= uint(len(ut.methods)) {
  1662  		panic("reflect: internal error: invalid method index")
  1663  	}
  1664  	m := &ut.methods[i]
  1665  	return m.mtyp
  1666  }
  1667  
  1668  // Uint returns v's underlying value, as a uint64.
  1669  // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
  1670  func (v Value) Uint() uint64 {
  1671  	k := v.kind()
  1672  	p := v.ptr
  1673  	switch k {
  1674  	case Uint:
  1675  		return uint64(*(*uint)(p))
  1676  	case Uint8:
  1677  		return uint64(*(*uint8)(p))
  1678  	case Uint16:
  1679  		return uint64(*(*uint16)(p))
  1680  	case Uint32:
  1681  		return uint64(*(*uint32)(p))
  1682  	case Uint64:
  1683  		return uint64(*(*uint64)(p))
  1684  	case Uintptr:
  1685  		return uint64(*(*uintptr)(p))
  1686  	}
  1687  	panic(&ValueError{"reflect.Value.Uint", v.kind()})
  1688  }
  1689  
  1690  // UnsafeAddr returns a pointer to v's data.
  1691  // It is for advanced clients that also import the "unsafe" package.
  1692  // It panics if v is not addressable.
  1693  func (v Value) UnsafeAddr() uintptr {
  1694  	// TODO: deprecate
  1695  	if v.typ == nil {
  1696  		panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid})
  1697  	}
  1698  	if v.flag&flagAddr == 0 {
  1699  		panic("reflect.Value.UnsafeAddr of unaddressable value")
  1700  	}
  1701  	return uintptr(v.ptr)
  1702  }
  1703  
  1704  // StringHeader is the runtime representation of a string.
  1705  // It cannot be used safely or portably and its representation may
  1706  // change in a later release.
  1707  // Moreover, the Data field is not sufficient to guarantee the data
  1708  // it references will not be garbage collected, so programs must keep
  1709  // a separate, correctly typed pointer to the underlying data.
  1710  type StringHeader struct {
  1711  	Data uintptr
  1712  	Len  int
  1713  }
  1714  
  1715  // stringHeader is a safe version of StringHeader used within this package.
  1716  type stringHeader struct {
  1717  	Data unsafe.Pointer
  1718  	Len  int
  1719  }
  1720  
  1721  // SliceHeader is the runtime representation of a slice.
  1722  // It cannot be used safely or portably and its representation may
  1723  // change in a later release.
  1724  // Moreover, the Data field is not sufficient to guarantee the data
  1725  // it references will not be garbage collected, so programs must keep
  1726  // a separate, correctly typed pointer to the underlying data.
  1727  type SliceHeader struct {
  1728  	Data uintptr
  1729  	Len  int
  1730  	Cap  int
  1731  }
  1732  
  1733  // sliceHeader is a safe version of SliceHeader used within this package.
  1734  type sliceHeader struct {
  1735  	Data unsafe.Pointer
  1736  	Len  int
  1737  	Cap  int
  1738  }
  1739  
  1740  func typesMustMatch(what string, t1, t2 Type) {
  1741  	if t1 != t2 {
  1742  		panic(what + ": " + t1.String() + " != " + t2.String())
  1743  	}
  1744  }
  1745  
  1746  // grow grows the slice s so that it can hold extra more values, allocating
  1747  // more capacity if needed. It also returns the old and new slice lengths.
  1748  func grow(s Value, extra int) (Value, int, int) {
  1749  	i0 := s.Len()
  1750  	i1 := i0 + extra
  1751  	if i1 < i0 {
  1752  		panic("reflect.Append: slice overflow")
  1753  	}
  1754  	m := s.Cap()
  1755  	if i1 <= m {
  1756  		return s.Slice(0, i1), i0, i1
  1757  	}
  1758  	if m == 0 {
  1759  		m = extra
  1760  	} else {
  1761  		for m < i1 {
  1762  			if i0 < 1024 {
  1763  				m += m
  1764  			} else {
  1765  				m += m / 4
  1766  			}
  1767  		}
  1768  	}
  1769  	t := MakeSlice(s.Type(), i1, m)
  1770  	Copy(t, s)
  1771  	return t, i0, i1
  1772  }
  1773  
  1774  // Append appends the values x to a slice s and returns the resulting slice.
  1775  // As in Go, each x's value must be assignable to the slice's element type.
  1776  func Append(s Value, x ...Value) Value {
  1777  	s.mustBe(Slice)
  1778  	s, i0, i1 := grow(s, len(x))
  1779  	for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
  1780  		s.Index(i).Set(x[j])
  1781  	}
  1782  	return s
  1783  }
  1784  
  1785  // AppendSlice appends a slice t to a slice s and returns the resulting slice.
  1786  // The slices s and t must have the same element type.
  1787  func AppendSlice(s, t Value) Value {
  1788  	s.mustBe(Slice)
  1789  	t.mustBe(Slice)
  1790  	typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem())
  1791  	s, i0, i1 := grow(s, t.Len())
  1792  	Copy(s.Slice(i0, i1), t)
  1793  	return s
  1794  }
  1795  
  1796  // Copy copies the contents of src into dst until either
  1797  // dst has been filled or src has been exhausted.
  1798  // It returns the number of elements copied.
  1799  // Dst and src each must have kind Slice or Array, and
  1800  // dst and src must have the same element type.
  1801  func Copy(dst, src Value) int {
  1802  	dk := dst.kind()
  1803  	if dk != Array && dk != Slice {
  1804  		panic(&ValueError{"reflect.Copy", dk})
  1805  	}
  1806  	if dk == Array {
  1807  		dst.mustBeAssignable()
  1808  	}
  1809  	dst.mustBeExported()
  1810  
  1811  	sk := src.kind()
  1812  	if sk != Array && sk != Slice {
  1813  		panic(&ValueError{"reflect.Copy", sk})
  1814  	}
  1815  	src.mustBeExported()
  1816  
  1817  	de := dst.typ.Elem()
  1818  	se := src.typ.Elem()
  1819  	typesMustMatch("reflect.Copy", de, se)
  1820  
  1821  	var ds, ss sliceHeader
  1822  	if dk == Array {
  1823  		ds.Data = dst.ptr
  1824  		ds.Len = dst.Len()
  1825  		ds.Cap = ds.Len
  1826  	} else {
  1827  		ds = *(*sliceHeader)(dst.ptr)
  1828  	}
  1829  	if sk == Array {
  1830  		ss.Data = src.ptr
  1831  		ss.Len = src.Len()
  1832  		ss.Cap = ss.Len
  1833  	} else {
  1834  		ss = *(*sliceHeader)(src.ptr)
  1835  	}
  1836  
  1837  	return typedslicecopy(de.common(), ds, ss)
  1838  }
  1839  
  1840  // A runtimeSelect is a single case passed to rselect.
  1841  // This must match ../runtime/select.go:/runtimeSelect
  1842  type runtimeSelect struct {
  1843  	dir uintptr        // 0, SendDir, or RecvDir
  1844  	typ *rtype         // channel type
  1845  	ch  unsafe.Pointer // channel
  1846  	val unsafe.Pointer // ptr to data (SendDir) or ptr to receive buffer (RecvDir)
  1847  }
  1848  
  1849  // rselect runs a select.  It returns the index of the chosen case.
  1850  // If the case was a receive, val is filled in with the received value.
  1851  // The conventional OK bool indicates whether the receive corresponds
  1852  // to a sent value.
  1853  //go:noescape
  1854  func rselect([]runtimeSelect) (chosen int, recvOK bool)
  1855  
  1856  // A SelectDir describes the communication direction of a select case.
  1857  type SelectDir int
  1858  
  1859  // NOTE: These values must match ../runtime/select.go:/selectDir.
  1860  
  1861  const (
  1862  	_             SelectDir = iota
  1863  	SelectSend              // case Chan <- Send
  1864  	SelectRecv              // case <-Chan:
  1865  	SelectDefault           // default
  1866  )
  1867  
  1868  // A SelectCase describes a single case in a select operation.
  1869  // The kind of case depends on Dir, the communication direction.
  1870  //
  1871  // If Dir is SelectDefault, the case represents a default case.
  1872  // Chan and Send must be zero Values.
  1873  //
  1874  // If Dir is SelectSend, the case represents a send operation.
  1875  // Normally Chan's underlying value must be a channel, and Send's underlying value must be
  1876  // assignable to the channel's element type. As a special case, if Chan is a zero Value,
  1877  // then the case is ignored, and the field Send will also be ignored and may be either zero
  1878  // or non-zero.
  1879  //
  1880  // If Dir is SelectRecv, the case represents a receive operation.
  1881  // Normally Chan's underlying value must be a channel and Send must be a zero Value.
  1882  // If Chan is a zero Value, then the case is ignored, but Send must still be a zero Value.
  1883  // When a receive operation is selected, the received Value is returned by Select.
  1884  //
  1885  type SelectCase struct {
  1886  	Dir  SelectDir // direction of case
  1887  	Chan Value     // channel to use (for send or receive)
  1888  	Send Value     // value to send (for send)
  1889  }
  1890  
  1891  // Select executes a select operation described by the list of cases.
  1892  // Like the Go select statement, it blocks until at least one of the cases
  1893  // can proceed, makes a uniform pseudo-random choice,
  1894  // and then executes that case. It returns the index of the chosen case
  1895  // and, if that case was a receive operation, the value received and a
  1896  // boolean indicating whether the value corresponds to a send on the channel
  1897  // (as opposed to a zero value received because the channel is closed).
  1898  func Select(cases []SelectCase) (chosen int, recv Value, recvOK bool) {
  1899  	// NOTE: Do not trust that caller is not modifying cases data underfoot.
  1900  	// The range is safe because the caller cannot modify our copy of the len
  1901  	// and each iteration makes its own copy of the value c.
  1902  	runcases := make([]runtimeSelect, len(cases))
  1903  	haveDefault := false
  1904  	for i, c := range cases {
  1905  		rc := &runcases[i]
  1906  		rc.dir = uintptr(c.Dir)
  1907  		switch c.Dir {
  1908  		default:
  1909  			panic("reflect.Select: invalid Dir")
  1910  
  1911  		case SelectDefault: // default
  1912  			if haveDefault {
  1913  				panic("reflect.Select: multiple default cases")
  1914  			}
  1915  			haveDefault = true
  1916  			if c.Chan.IsValid() {
  1917  				panic("reflect.Select: default case has Chan value")
  1918  			}
  1919  			if c.Send.IsValid() {
  1920  				panic("reflect.Select: default case has Send value")
  1921  			}
  1922  
  1923  		case SelectSend:
  1924  			ch := c.Chan
  1925  			if !ch.IsValid() {
  1926  				break
  1927  			}
  1928  			ch.mustBe(Chan)
  1929  			ch.mustBeExported()
  1930  			tt := (*chanType)(unsafe.Pointer(ch.typ))
  1931  			if ChanDir(tt.dir)&SendDir == 0 {
  1932  				panic("reflect.Select: SendDir case using recv-only channel")
  1933  			}
  1934  			rc.ch = ch.pointer()
  1935  			rc.typ = &tt.rtype
  1936  			v := c.Send
  1937  			if !v.IsValid() {
  1938  				panic("reflect.Select: SendDir case missing Send value")
  1939  			}
  1940  			v.mustBeExported()
  1941  			v = v.assignTo("reflect.Select", tt.elem, nil)
  1942  			if v.flag&flagIndir != 0 {
  1943  				rc.val = v.ptr
  1944  			} else {
  1945  				rc.val = unsafe.Pointer(&v.ptr)
  1946  			}
  1947  
  1948  		case SelectRecv:
  1949  			if c.Send.IsValid() {
  1950  				panic("reflect.Select: RecvDir case has Send value")
  1951  			}
  1952  			ch := c.Chan
  1953  			if !ch.IsValid() {
  1954  				break
  1955  			}
  1956  			ch.mustBe(Chan)
  1957  			ch.mustBeExported()
  1958  			tt := (*chanType)(unsafe.Pointer(ch.typ))
  1959  			if ChanDir(tt.dir)&RecvDir == 0 {
  1960  				panic("reflect.Select: RecvDir case using send-only channel")
  1961  			}
  1962  			rc.ch = ch.pointer()
  1963  			rc.typ = &tt.rtype
  1964  			rc.val = unsafe_New(tt.elem)
  1965  		}
  1966  	}
  1967  
  1968  	chosen, recvOK = rselect(runcases)
  1969  	if runcases[chosen].dir == uintptr(SelectRecv) {
  1970  		tt := (*chanType)(unsafe.Pointer(runcases[chosen].typ))
  1971  		t := tt.elem
  1972  		p := runcases[chosen].val
  1973  		fl := flag(t.Kind())
  1974  		if ifaceIndir(t) {
  1975  			recv = Value{t, p, fl | flagIndir}
  1976  		} else {
  1977  			recv = Value{t, *(*unsafe.Pointer)(p), fl}
  1978  		}
  1979  	}
  1980  	return chosen, recv, recvOK
  1981  }
  1982  
  1983  /*
  1984   * constructors
  1985   */
  1986  
  1987  // implemented in package runtime
  1988  func unsafe_New(*rtype) unsafe.Pointer
  1989  func unsafe_NewArray(*rtype, int) unsafe.Pointer
  1990  
  1991  // MakeSlice creates a new zero-initialized slice value
  1992  // for the specified slice type, length, and capacity.
  1993  func MakeSlice(typ Type, len, cap int) Value {
  1994  	if typ.Kind() != Slice {
  1995  		panic("reflect.MakeSlice of non-slice type")
  1996  	}
  1997  	if len < 0 {
  1998  		panic("reflect.MakeSlice: negative len")
  1999  	}
  2000  	if cap < 0 {
  2001  		panic("reflect.MakeSlice: negative cap")
  2002  	}
  2003  	if len > cap {
  2004  		panic("reflect.MakeSlice: len > cap")
  2005  	}
  2006  
  2007  	s := sliceHeader{unsafe_NewArray(typ.Elem().(*rtype), cap), len, cap}
  2008  	return Value{typ.common(), unsafe.Pointer(&s), flagIndir | flag(Slice)}
  2009  }
  2010  
  2011  // MakeChan creates a new channel with the specified type and buffer size.
  2012  func MakeChan(typ Type, buffer int) Value {
  2013  	if typ.Kind() != Chan {
  2014  		panic("reflect.MakeChan of non-chan type")
  2015  	}
  2016  	if buffer < 0 {
  2017  		panic("reflect.MakeChan: negative buffer size")
  2018  	}
  2019  	if typ.ChanDir() != BothDir {
  2020  		panic("reflect.MakeChan: unidirectional channel type")
  2021  	}
  2022  	ch := makechan(typ.(*rtype), uint64(buffer))
  2023  	return Value{typ.common(), ch, flag(Chan)}
  2024  }
  2025  
  2026  // MakeMap creates a new map of the specified type.
  2027  func MakeMap(typ Type) Value {
  2028  	if typ.Kind() != Map {
  2029  		panic("reflect.MakeMap of non-map type")
  2030  	}
  2031  	m := makemap(typ.(*rtype))
  2032  	return Value{typ.common(), m, flag(Map)}
  2033  }
  2034  
  2035  // Indirect returns the value that v points to.
  2036  // If v is a nil pointer, Indirect returns a zero Value.
  2037  // If v is not a pointer, Indirect returns v.
  2038  func Indirect(v Value) Value {
  2039  	if v.Kind() != Ptr {
  2040  		return v
  2041  	}
  2042  	return v.Elem()
  2043  }
  2044  
  2045  // ValueOf returns a new Value initialized to the concrete value
  2046  // stored in the interface i.  ValueOf(nil) returns the zero Value.
  2047  func ValueOf(i interface{}) Value {
  2048  	if i == nil {
  2049  		return Value{}
  2050  	}
  2051  
  2052  	// TODO(rsc): Eliminate this terrible hack.
  2053  	// In the call to unpackEface, i.typ doesn't escape,
  2054  	// and i.word is an integer.  So it looks like
  2055  	// i doesn't escape.  But really it does,
  2056  	// because i.word is actually a pointer.
  2057  	escapes(i)
  2058  
  2059  	return unpackEface(i)
  2060  }
  2061  
  2062  // Zero returns a Value representing the zero value for the specified type.
  2063  // The result is different from the zero value of the Value struct,
  2064  // which represents no value at all.
  2065  // For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0.
  2066  // The returned value is neither addressable nor settable.
  2067  func Zero(typ Type) Value {
  2068  	if typ == nil {
  2069  		panic("reflect: Zero(nil)")
  2070  	}
  2071  	t := typ.common()
  2072  	fl := flag(t.Kind())
  2073  	if ifaceIndir(t) {
  2074  		return Value{t, unsafe_New(typ.(*rtype)), fl | flagIndir}
  2075  	}
  2076  	return Value{t, nil, fl}
  2077  }
  2078  
  2079  // New returns a Value representing a pointer to a new zero value
  2080  // for the specified type.  That is, the returned Value's Type is PtrTo(typ).
  2081  func New(typ Type) Value {
  2082  	if typ == nil {
  2083  		panic("reflect: New(nil)")
  2084  	}
  2085  	ptr := unsafe_New(typ.(*rtype))
  2086  	fl := flag(Ptr)
  2087  	return Value{typ.common().ptrTo(), ptr, fl}
  2088  }
  2089  
  2090  // NewAt returns a Value representing a pointer to a value of the
  2091  // specified type, using p as that pointer.
  2092  func NewAt(typ Type, p unsafe.Pointer) Value {
  2093  	fl := flag(Ptr)
  2094  	return Value{typ.common().ptrTo(), p, fl}
  2095  }
  2096  
  2097  // assignTo returns a value v that can be assigned directly to typ.
  2098  // It panics if v is not assignable to typ.
  2099  // For a conversion to an interface type, target is a suggested scratch space to use.
  2100  func (v Value) assignTo(context string, dst *rtype, target unsafe.Pointer) Value {
  2101  	if v.flag&flagMethod != 0 {
  2102  		v = makeMethodValue(context, v)
  2103  	}
  2104  
  2105  	switch {
  2106  	case directlyAssignable(dst, v.typ):
  2107  		// Overwrite type so that they match.
  2108  		// Same memory layout, so no harm done.
  2109  		v.typ = dst
  2110  		fl := v.flag & (flagRO | flagAddr | flagIndir)
  2111  		fl |= flag(dst.Kind())
  2112  		return Value{dst, v.ptr, fl}
  2113  
  2114  	case implements(dst, v.typ):
  2115  		if target == nil {
  2116  			target = unsafe_New(dst)
  2117  		}
  2118  		x := valueInterface(v, false)
  2119  		if dst.NumMethod() == 0 {
  2120  			*(*interface{})(target) = x
  2121  		} else {
  2122  			ifaceE2I(dst, x, target)
  2123  		}
  2124  		return Value{dst, target, flagIndir | flag(Interface)}
  2125  	}
  2126  
  2127  	// Failed.
  2128  	panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String())
  2129  }
  2130  
  2131  // Convert returns the value v converted to type t.
  2132  // If the usual Go conversion rules do not allow conversion
  2133  // of the value v to type t, Convert panics.
  2134  func (v Value) Convert(t Type) Value {
  2135  	if v.flag&flagMethod != 0 {
  2136  		v = makeMethodValue("Convert", v)
  2137  	}
  2138  	op := convertOp(t.common(), v.typ)
  2139  	if op == nil {
  2140  		panic("reflect.Value.Convert: value of type " + v.typ.String() + " cannot be converted to type " + t.String())
  2141  	}
  2142  	return op(v, t)
  2143  }
  2144  
  2145  // convertOp returns the function to convert a value of type src
  2146  // to a value of type dst. If the conversion is illegal, convertOp returns nil.
  2147  func convertOp(dst, src *rtype) func(Value, Type) Value {
  2148  	switch src.Kind() {
  2149  	case Int, Int8, Int16, Int32, Int64:
  2150  		switch dst.Kind() {
  2151  		case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  2152  			return cvtInt
  2153  		case Float32, Float64:
  2154  			return cvtIntFloat
  2155  		case String:
  2156  			return cvtIntString
  2157  		}
  2158  
  2159  	case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  2160  		switch dst.Kind() {
  2161  		case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  2162  			return cvtUint
  2163  		case Float32, Float64:
  2164  			return cvtUintFloat
  2165  		case String:
  2166  			return cvtUintString
  2167  		}
  2168  
  2169  	case Float32, Float64:
  2170  		switch dst.Kind() {
  2171  		case Int, Int8, Int16, Int32, Int64:
  2172  			return cvtFloatInt
  2173  		case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  2174  			return cvtFloatUint
  2175  		case Float32, Float64:
  2176  			return cvtFloat
  2177  		}
  2178  
  2179  	case Complex64, Complex128:
  2180  		switch dst.Kind() {
  2181  		case Complex64, Complex128:
  2182  			return cvtComplex
  2183  		}
  2184  
  2185  	case String:
  2186  		if dst.Kind() == Slice && dst.Elem().PkgPath() == "" {
  2187  			switch dst.Elem().Kind() {
  2188  			case Uint8:
  2189  				return cvtStringBytes
  2190  			case Int32:
  2191  				return cvtStringRunes
  2192  			}
  2193  		}
  2194  
  2195  	case Slice:
  2196  		if dst.Kind() == String && src.Elem().PkgPath() == "" {
  2197  			switch src.Elem().Kind() {
  2198  			case Uint8:
  2199  				return cvtBytesString
  2200  			case Int32:
  2201  				return cvtRunesString
  2202  			}
  2203  		}
  2204  	}
  2205  
  2206  	// dst and src have same underlying type.
  2207  	if haveIdenticalUnderlyingType(dst, src) {
  2208  		return cvtDirect
  2209  	}
  2210  
  2211  	// dst and src are unnamed pointer types with same underlying base type.
  2212  	if dst.Kind() == Ptr && dst.Name() == "" &&
  2213  		src.Kind() == Ptr && src.Name() == "" &&
  2214  		haveIdenticalUnderlyingType(dst.Elem().common(), src.Elem().common()) {
  2215  		return cvtDirect
  2216  	}
  2217  
  2218  	if implements(dst, src) {
  2219  		if src.Kind() == Interface {
  2220  			return cvtI2I
  2221  		}
  2222  		return cvtT2I
  2223  	}
  2224  
  2225  	return nil
  2226  }
  2227  
  2228  // makeInt returns a Value of type t equal to bits (possibly truncated),
  2229  // where t is a signed or unsigned int type.
  2230  func makeInt(f flag, bits uint64, t Type) Value {
  2231  	typ := t.common()
  2232  	ptr := unsafe_New(typ)
  2233  	switch typ.size {
  2234  	case 1:
  2235  		*(*uint8)(unsafe.Pointer(ptr)) = uint8(bits)
  2236  	case 2:
  2237  		*(*uint16)(unsafe.Pointer(ptr)) = uint16(bits)
  2238  	case 4:
  2239  		*(*uint32)(unsafe.Pointer(ptr)) = uint32(bits)
  2240  	case 8:
  2241  		*(*uint64)(unsafe.Pointer(ptr)) = bits
  2242  	}
  2243  	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
  2244  }
  2245  
  2246  // makeFloat returns a Value of type t equal to v (possibly truncated to float32),
  2247  // where t is a float32 or float64 type.
  2248  func makeFloat(f flag, v float64, t Type) Value {
  2249  	typ := t.common()
  2250  	ptr := unsafe_New(typ)
  2251  	switch typ.size {
  2252  	case 4:
  2253  		*(*float32)(unsafe.Pointer(ptr)) = float32(v)
  2254  	case 8:
  2255  		*(*float64)(unsafe.Pointer(ptr)) = v
  2256  	}
  2257  	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
  2258  }
  2259  
  2260  // makeComplex returns a Value of type t equal to v (possibly truncated to complex64),
  2261  // where t is a complex64 or complex128 type.
  2262  func makeComplex(f flag, v complex128, t Type) Value {
  2263  	typ := t.common()
  2264  	ptr := unsafe_New(typ)
  2265  	switch typ.size {
  2266  	case 8:
  2267  		*(*complex64)(unsafe.Pointer(ptr)) = complex64(v)
  2268  	case 16:
  2269  		*(*complex128)(unsafe.Pointer(ptr)) = v
  2270  	}
  2271  	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
  2272  }
  2273  
  2274  func makeString(f flag, v string, t Type) Value {
  2275  	ret := New(t).Elem()
  2276  	ret.SetString(v)
  2277  	ret.flag = ret.flag&^flagAddr | f
  2278  	return ret
  2279  }
  2280  
  2281  func makeBytes(f flag, v []byte, t Type) Value {
  2282  	ret := New(t).Elem()
  2283  	ret.SetBytes(v)
  2284  	ret.flag = ret.flag&^flagAddr | f
  2285  	return ret
  2286  }
  2287  
  2288  func makeRunes(f flag, v []rune, t Type) Value {
  2289  	ret := New(t).Elem()
  2290  	ret.setRunes(v)
  2291  	ret.flag = ret.flag&^flagAddr | f
  2292  	return ret
  2293  }
  2294  
  2295  // These conversion functions are returned by convertOp
  2296  // for classes of conversions. For example, the first function, cvtInt,
  2297  // takes any value v of signed int type and returns the value converted
  2298  // to type t, where t is any signed or unsigned int type.
  2299  
  2300  // convertOp: intXX -> [u]intXX
  2301  func cvtInt(v Value, t Type) Value {
  2302  	return makeInt(v.flag&flagRO, uint64(v.Int()), t)
  2303  }
  2304  
  2305  // convertOp: uintXX -> [u]intXX
  2306  func cvtUint(v Value, t Type) Value {
  2307  	return makeInt(v.flag&flagRO, v.Uint(), t)
  2308  }
  2309  
  2310  // convertOp: floatXX -> intXX
  2311  func cvtFloatInt(v Value, t Type) Value {
  2312  	return makeInt(v.flag&flagRO, uint64(int64(v.Float())), t)
  2313  }
  2314  
  2315  // convertOp: floatXX -> uintXX
  2316  func cvtFloatUint(v Value, t Type) Value {
  2317  	return makeInt(v.flag&flagRO, uint64(v.Float()), t)
  2318  }
  2319  
  2320  // convertOp: intXX -> floatXX
  2321  func cvtIntFloat(v Value, t Type) Value {
  2322  	return makeFloat(v.flag&flagRO, float64(v.Int()), t)
  2323  }
  2324  
  2325  // convertOp: uintXX -> floatXX
  2326  func cvtUintFloat(v Value, t Type) Value {
  2327  	return makeFloat(v.flag&flagRO, float64(v.Uint()), t)
  2328  }
  2329  
  2330  // convertOp: floatXX -> floatXX
  2331  func cvtFloat(v Value, t Type) Value {
  2332  	return makeFloat(v.flag&flagRO, v.Float(), t)
  2333  }
  2334  
  2335  // convertOp: complexXX -> complexXX
  2336  func cvtComplex(v Value, t Type) Value {
  2337  	return makeComplex(v.flag&flagRO, v.Complex(), t)
  2338  }
  2339  
  2340  // convertOp: intXX -> string
  2341  func cvtIntString(v Value, t Type) Value {
  2342  	return makeString(v.flag&flagRO, string(v.Int()), t)
  2343  }
  2344  
  2345  // convertOp: uintXX -> string
  2346  func cvtUintString(v Value, t Type) Value {
  2347  	return makeString(v.flag&flagRO, string(v.Uint()), t)
  2348  }
  2349  
  2350  // convertOp: []byte -> string
  2351  func cvtBytesString(v Value, t Type) Value {
  2352  	return makeString(v.flag&flagRO, string(v.Bytes()), t)
  2353  }
  2354  
  2355  // convertOp: string -> []byte
  2356  func cvtStringBytes(v Value, t Type) Value {
  2357  	return makeBytes(v.flag&flagRO, []byte(v.String()), t)
  2358  }
  2359  
  2360  // convertOp: []rune -> string
  2361  func cvtRunesString(v Value, t Type) Value {
  2362  	return makeString(v.flag&flagRO, string(v.runes()), t)
  2363  }
  2364  
  2365  // convertOp: string -> []rune
  2366  func cvtStringRunes(v Value, t Type) Value {
  2367  	return makeRunes(v.flag&flagRO, []rune(v.String()), t)
  2368  }
  2369  
  2370  // convertOp: direct copy
  2371  func cvtDirect(v Value, typ Type) Value {
  2372  	f := v.flag
  2373  	t := typ.common()
  2374  	ptr := v.ptr
  2375  	if f&flagAddr != 0 {
  2376  		// indirect, mutable word - make a copy
  2377  		c := unsafe_New(t)
  2378  		typedmemmove(t, c, ptr)
  2379  		ptr = c
  2380  		f &^= flagAddr
  2381  	}
  2382  	return Value{t, ptr, v.flag&flagRO | f} // v.flag&flagRO|f == f?
  2383  }
  2384  
  2385  // convertOp: concrete -> interface
  2386  func cvtT2I(v Value, typ Type) Value {
  2387  	target := unsafe_New(typ.common())
  2388  	x := valueInterface(v, false)
  2389  	if typ.NumMethod() == 0 {
  2390  		*(*interface{})(target) = x
  2391  	} else {
  2392  		ifaceE2I(typ.(*rtype), x, target)
  2393  	}
  2394  	return Value{typ.common(), target, v.flag&flagRO | flagIndir | flag(Interface)}
  2395  }
  2396  
  2397  // convertOp: interface -> interface
  2398  func cvtI2I(v Value, typ Type) Value {
  2399  	if v.IsNil() {
  2400  		ret := Zero(typ)
  2401  		ret.flag |= v.flag & flagRO
  2402  		return ret
  2403  	}
  2404  	return cvtT2I(v.Elem(), typ)
  2405  }
  2406  
  2407  // implemented in ../runtime
  2408  func chancap(ch unsafe.Pointer) int
  2409  func chanclose(ch unsafe.Pointer)
  2410  func chanlen(ch unsafe.Pointer) int
  2411  
  2412  //go:noescape
  2413  func chanrecv(t *rtype, ch unsafe.Pointer, nb bool, val unsafe.Pointer) (selected, received bool)
  2414  
  2415  //go:noescape
  2416  func chansend(t *rtype, ch unsafe.Pointer, val unsafe.Pointer, nb bool) bool
  2417  
  2418  func makechan(typ *rtype, size uint64) (ch unsafe.Pointer)
  2419  func makemap(t *rtype) (m unsafe.Pointer)
  2420  func mapaccess(t *rtype, m unsafe.Pointer, key unsafe.Pointer) (val unsafe.Pointer)
  2421  func mapassign(t *rtype, m unsafe.Pointer, key, val unsafe.Pointer)
  2422  func mapdelete(t *rtype, m unsafe.Pointer, key unsafe.Pointer)
  2423  func mapiterinit(t *rtype, m unsafe.Pointer) unsafe.Pointer
  2424  func mapiterkey(it unsafe.Pointer) (key unsafe.Pointer)
  2425  func mapiternext(it unsafe.Pointer)
  2426  func maplen(m unsafe.Pointer) int
  2427  
  2428  // call calls fn with a copy of the n argument bytes pointed at by arg.
  2429  // After fn returns, reflectcall copies n-retoffset result bytes
  2430  // back into arg+retoffset before returning. If copying result bytes back,
  2431  // the caller must pass the argument frame type as argtype, so that
  2432  // call can execute appropriate write barriers during the copy.
  2433  func call(argtype *rtype, fn, arg unsafe.Pointer, n uint32, retoffset uint32)
  2434  
  2435  func ifaceE2I(t *rtype, src interface{}, dst unsafe.Pointer)
  2436  
  2437  // typedmemmove copies a value of type t to dst from src.
  2438  //go:noescape
  2439  func typedmemmove(t *rtype, dst, src unsafe.Pointer)
  2440  
  2441  // typedmemmovepartial is like typedmemmove but assumes that
  2442  // dst and src point off bytes into the value and only copies size bytes.
  2443  //go:noescape
  2444  func typedmemmovepartial(t *rtype, dst, src unsafe.Pointer, off, size uintptr)
  2445  
  2446  // typedslicecopy copies a slice of elemType values from src to dst,
  2447  // returning the number of elements copied.
  2448  //go:noescape
  2449  func typedslicecopy(elemType *rtype, dst, src sliceHeader) int
  2450  
  2451  // Dummy annotation marking that the value x escapes,
  2452  // for use in cases where the reflect code is so clever that
  2453  // the compiler cannot follow.
  2454  func escapes(x interface{}) {
  2455  	if dummy.b {
  2456  		dummy.x = x
  2457  	}
  2458  }
  2459  
  2460  var dummy struct {
  2461  	b bool
  2462  	x interface{}
  2463  }