github.com/ylsGit/go-ethereum@v1.6.5/p2p/rlpx.go (about)

     1  // Copyright 2015 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package p2p
    18  
    19  import (
    20  	"bytes"
    21  	"crypto/aes"
    22  	"crypto/cipher"
    23  	"crypto/ecdsa"
    24  	"crypto/elliptic"
    25  	"crypto/hmac"
    26  	"crypto/rand"
    27  	"encoding/binary"
    28  	"errors"
    29  	"fmt"
    30  	"hash"
    31  	"io"
    32  	mrand "math/rand"
    33  	"net"
    34  	"sync"
    35  	"time"
    36  
    37  	"github.com/ethereum/go-ethereum/crypto"
    38  	"github.com/ethereum/go-ethereum/crypto/ecies"
    39  	"github.com/ethereum/go-ethereum/crypto/secp256k1"
    40  	"github.com/ethereum/go-ethereum/crypto/sha3"
    41  	"github.com/ethereum/go-ethereum/p2p/discover"
    42  	"github.com/ethereum/go-ethereum/rlp"
    43  )
    44  
    45  const (
    46  	maxUint24 = ^uint32(0) >> 8
    47  
    48  	sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2
    49  	sigLen = 65 // elliptic S256
    50  	pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte
    51  	shaLen = 32 // hash length (for nonce etc)
    52  
    53  	authMsgLen  = sigLen + shaLen + pubLen + shaLen + 1
    54  	authRespLen = pubLen + shaLen + 1
    55  
    56  	eciesOverhead = 65 /* pubkey */ + 16 /* IV */ + 32 /* MAC */
    57  
    58  	encAuthMsgLen  = authMsgLen + eciesOverhead  // size of encrypted pre-EIP-8 initiator handshake
    59  	encAuthRespLen = authRespLen + eciesOverhead // size of encrypted pre-EIP-8 handshake reply
    60  
    61  	// total timeout for encryption handshake and protocol
    62  	// handshake in both directions.
    63  	handshakeTimeout = 5 * time.Second
    64  
    65  	// This is the timeout for sending the disconnect reason.
    66  	// This is shorter than the usual timeout because we don't want
    67  	// to wait if the connection is known to be bad anyway.
    68  	discWriteTimeout = 1 * time.Second
    69  )
    70  
    71  // rlpx is the transport protocol used by actual (non-test) connections.
    72  // It wraps the frame encoder with locks and read/write deadlines.
    73  type rlpx struct {
    74  	fd net.Conn
    75  
    76  	rmu, wmu sync.Mutex
    77  	rw       *rlpxFrameRW
    78  }
    79  
    80  func newRLPX(fd net.Conn) transport {
    81  	fd.SetDeadline(time.Now().Add(handshakeTimeout))
    82  	return &rlpx{fd: fd}
    83  }
    84  
    85  func (t *rlpx) ReadMsg() (Msg, error) {
    86  	t.rmu.Lock()
    87  	defer t.rmu.Unlock()
    88  	t.fd.SetReadDeadline(time.Now().Add(frameReadTimeout))
    89  	return t.rw.ReadMsg()
    90  }
    91  
    92  func (t *rlpx) WriteMsg(msg Msg) error {
    93  	t.wmu.Lock()
    94  	defer t.wmu.Unlock()
    95  	t.fd.SetWriteDeadline(time.Now().Add(frameWriteTimeout))
    96  	return t.rw.WriteMsg(msg)
    97  }
    98  
    99  func (t *rlpx) close(err error) {
   100  	t.wmu.Lock()
   101  	defer t.wmu.Unlock()
   102  	// Tell the remote end why we're disconnecting if possible.
   103  	if t.rw != nil {
   104  		if r, ok := err.(DiscReason); ok && r != DiscNetworkError {
   105  			t.fd.SetWriteDeadline(time.Now().Add(discWriteTimeout))
   106  			SendItems(t.rw, discMsg, r)
   107  		}
   108  	}
   109  	t.fd.Close()
   110  }
   111  
   112  // doEncHandshake runs the protocol handshake using authenticated
   113  // messages. the protocol handshake is the first authenticated message
   114  // and also verifies whether the encryption handshake 'worked' and the
   115  // remote side actually provided the right public key.
   116  func (t *rlpx) doProtoHandshake(our *protoHandshake) (their *protoHandshake, err error) {
   117  	// Writing our handshake happens concurrently, we prefer
   118  	// returning the handshake read error. If the remote side
   119  	// disconnects us early with a valid reason, we should return it
   120  	// as the error so it can be tracked elsewhere.
   121  	werr := make(chan error, 1)
   122  	go func() { werr <- Send(t.rw, handshakeMsg, our) }()
   123  	if their, err = readProtocolHandshake(t.rw, our); err != nil {
   124  		<-werr // make sure the write terminates too
   125  		return nil, err
   126  	}
   127  	if err := <-werr; err != nil {
   128  		return nil, fmt.Errorf("write error: %v", err)
   129  	}
   130  	return their, nil
   131  }
   132  
   133  func readProtocolHandshake(rw MsgReader, our *protoHandshake) (*protoHandshake, error) {
   134  	msg, err := rw.ReadMsg()
   135  	if err != nil {
   136  		return nil, err
   137  	}
   138  	if msg.Size > baseProtocolMaxMsgSize {
   139  		return nil, fmt.Errorf("message too big")
   140  	}
   141  	if msg.Code == discMsg {
   142  		// Disconnect before protocol handshake is valid according to the
   143  		// spec and we send it ourself if the posthanshake checks fail.
   144  		// We can't return the reason directly, though, because it is echoed
   145  		// back otherwise. Wrap it in a string instead.
   146  		var reason [1]DiscReason
   147  		rlp.Decode(msg.Payload, &reason)
   148  		return nil, reason[0]
   149  	}
   150  	if msg.Code != handshakeMsg {
   151  		return nil, fmt.Errorf("expected handshake, got %x", msg.Code)
   152  	}
   153  	var hs protoHandshake
   154  	if err := msg.Decode(&hs); err != nil {
   155  		return nil, err
   156  	}
   157  	if (hs.ID == discover.NodeID{}) {
   158  		return nil, DiscInvalidIdentity
   159  	}
   160  	return &hs, nil
   161  }
   162  
   163  func (t *rlpx) doEncHandshake(prv *ecdsa.PrivateKey, dial *discover.Node) (discover.NodeID, error) {
   164  	var (
   165  		sec secrets
   166  		err error
   167  	)
   168  	if dial == nil {
   169  		sec, err = receiverEncHandshake(t.fd, prv, nil)
   170  	} else {
   171  		sec, err = initiatorEncHandshake(t.fd, prv, dial.ID, nil)
   172  	}
   173  	if err != nil {
   174  		return discover.NodeID{}, err
   175  	}
   176  	t.wmu.Lock()
   177  	t.rw = newRLPXFrameRW(t.fd, sec)
   178  	t.wmu.Unlock()
   179  	return sec.RemoteID, nil
   180  }
   181  
   182  // encHandshake contains the state of the encryption handshake.
   183  type encHandshake struct {
   184  	initiator bool
   185  	remoteID  discover.NodeID
   186  
   187  	remotePub            *ecies.PublicKey  // remote-pubk
   188  	initNonce, respNonce []byte            // nonce
   189  	randomPrivKey        *ecies.PrivateKey // ecdhe-random
   190  	remoteRandomPub      *ecies.PublicKey  // ecdhe-random-pubk
   191  }
   192  
   193  // secrets represents the connection secrets
   194  // which are negotiated during the encryption handshake.
   195  type secrets struct {
   196  	RemoteID              discover.NodeID
   197  	AES, MAC              []byte
   198  	EgressMAC, IngressMAC hash.Hash
   199  	Token                 []byte
   200  }
   201  
   202  // RLPx v4 handshake auth (defined in EIP-8).
   203  type authMsgV4 struct {
   204  	gotPlain bool // whether read packet had plain format.
   205  
   206  	Signature       [sigLen]byte
   207  	InitiatorPubkey [pubLen]byte
   208  	Nonce           [shaLen]byte
   209  	Version         uint
   210  
   211  	// Ignore additional fields (forward-compatibility)
   212  	Rest []rlp.RawValue `rlp:"tail"`
   213  }
   214  
   215  // RLPx v4 handshake response (defined in EIP-8).
   216  type authRespV4 struct {
   217  	RandomPubkey [pubLen]byte
   218  	Nonce        [shaLen]byte
   219  	Version      uint
   220  
   221  	// Ignore additional fields (forward-compatibility)
   222  	Rest []rlp.RawValue `rlp:"tail"`
   223  }
   224  
   225  // secrets is called after the handshake is completed.
   226  // It extracts the connection secrets from the handshake values.
   227  func (h *encHandshake) secrets(auth, authResp []byte) (secrets, error) {
   228  	ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen)
   229  	if err != nil {
   230  		return secrets{}, err
   231  	}
   232  
   233  	// derive base secrets from ephemeral key agreement
   234  	sharedSecret := crypto.Keccak256(ecdheSecret, crypto.Keccak256(h.respNonce, h.initNonce))
   235  	aesSecret := crypto.Keccak256(ecdheSecret, sharedSecret)
   236  	s := secrets{
   237  		RemoteID: h.remoteID,
   238  		AES:      aesSecret,
   239  		MAC:      crypto.Keccak256(ecdheSecret, aesSecret),
   240  	}
   241  
   242  	// setup sha3 instances for the MACs
   243  	mac1 := sha3.NewKeccak256()
   244  	mac1.Write(xor(s.MAC, h.respNonce))
   245  	mac1.Write(auth)
   246  	mac2 := sha3.NewKeccak256()
   247  	mac2.Write(xor(s.MAC, h.initNonce))
   248  	mac2.Write(authResp)
   249  	if h.initiator {
   250  		s.EgressMAC, s.IngressMAC = mac1, mac2
   251  	} else {
   252  		s.EgressMAC, s.IngressMAC = mac2, mac1
   253  	}
   254  
   255  	return s, nil
   256  }
   257  
   258  // staticSharedSecret returns the static shared secret, the result
   259  // of key agreement between the local and remote static node key.
   260  func (h *encHandshake) staticSharedSecret(prv *ecdsa.PrivateKey) ([]byte, error) {
   261  	return ecies.ImportECDSA(prv).GenerateShared(h.remotePub, sskLen, sskLen)
   262  }
   263  
   264  // initiatorEncHandshake negotiates a session token on conn.
   265  // it should be called on the dialing side of the connection.
   266  //
   267  // prv is the local client's private key.
   268  func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remoteID discover.NodeID, token []byte) (s secrets, err error) {
   269  	h := &encHandshake{initiator: true, remoteID: remoteID}
   270  	authMsg, err := h.makeAuthMsg(prv, token)
   271  	if err != nil {
   272  		return s, err
   273  	}
   274  	authPacket, err := sealEIP8(authMsg, h)
   275  	if err != nil {
   276  		return s, err
   277  	}
   278  	if _, err = conn.Write(authPacket); err != nil {
   279  		return s, err
   280  	}
   281  
   282  	authRespMsg := new(authRespV4)
   283  	authRespPacket, err := readHandshakeMsg(authRespMsg, encAuthRespLen, prv, conn)
   284  	if err != nil {
   285  		return s, err
   286  	}
   287  	if err := h.handleAuthResp(authRespMsg); err != nil {
   288  		return s, err
   289  	}
   290  	return h.secrets(authPacket, authRespPacket)
   291  }
   292  
   293  // makeAuthMsg creates the initiator handshake message.
   294  func (h *encHandshake) makeAuthMsg(prv *ecdsa.PrivateKey, token []byte) (*authMsgV4, error) {
   295  	rpub, err := h.remoteID.Pubkey()
   296  	if err != nil {
   297  		return nil, fmt.Errorf("bad remoteID: %v", err)
   298  	}
   299  	h.remotePub = ecies.ImportECDSAPublic(rpub)
   300  	// Generate random initiator nonce.
   301  	h.initNonce = make([]byte, shaLen)
   302  	if _, err := rand.Read(h.initNonce); err != nil {
   303  		return nil, err
   304  	}
   305  	// Generate random keypair to for ECDH.
   306  	h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
   307  	if err != nil {
   308  		return nil, err
   309  	}
   310  
   311  	// Sign known message: static-shared-secret ^ nonce
   312  	token, err = h.staticSharedSecret(prv)
   313  	if err != nil {
   314  		return nil, err
   315  	}
   316  	signed := xor(token, h.initNonce)
   317  	signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA())
   318  	if err != nil {
   319  		return nil, err
   320  	}
   321  
   322  	msg := new(authMsgV4)
   323  	copy(msg.Signature[:], signature)
   324  	copy(msg.InitiatorPubkey[:], crypto.FromECDSAPub(&prv.PublicKey)[1:])
   325  	copy(msg.Nonce[:], h.initNonce)
   326  	msg.Version = 4
   327  	return msg, nil
   328  }
   329  
   330  func (h *encHandshake) handleAuthResp(msg *authRespV4) (err error) {
   331  	h.respNonce = msg.Nonce[:]
   332  	h.remoteRandomPub, err = importPublicKey(msg.RandomPubkey[:])
   333  	return err
   334  }
   335  
   336  // receiverEncHandshake negotiates a session token on conn.
   337  // it should be called on the listening side of the connection.
   338  //
   339  // prv is the local client's private key.
   340  // token is the token from a previous session with this node.
   341  func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, token []byte) (s secrets, err error) {
   342  	authMsg := new(authMsgV4)
   343  	authPacket, err := readHandshakeMsg(authMsg, encAuthMsgLen, prv, conn)
   344  	if err != nil {
   345  		return s, err
   346  	}
   347  	h := new(encHandshake)
   348  	if err := h.handleAuthMsg(authMsg, prv); err != nil {
   349  		return s, err
   350  	}
   351  
   352  	authRespMsg, err := h.makeAuthResp()
   353  	if err != nil {
   354  		return s, err
   355  	}
   356  	var authRespPacket []byte
   357  	if authMsg.gotPlain {
   358  		authRespPacket, err = authRespMsg.sealPlain(h)
   359  	} else {
   360  		authRespPacket, err = sealEIP8(authRespMsg, h)
   361  	}
   362  	if err != nil {
   363  		return s, err
   364  	}
   365  	if _, err = conn.Write(authRespPacket); err != nil {
   366  		return s, err
   367  	}
   368  	return h.secrets(authPacket, authRespPacket)
   369  }
   370  
   371  func (h *encHandshake) handleAuthMsg(msg *authMsgV4, prv *ecdsa.PrivateKey) error {
   372  	// Import the remote identity.
   373  	h.initNonce = msg.Nonce[:]
   374  	h.remoteID = msg.InitiatorPubkey
   375  	rpub, err := h.remoteID.Pubkey()
   376  	if err != nil {
   377  		return fmt.Errorf("bad remoteID: %#v", err)
   378  	}
   379  	h.remotePub = ecies.ImportECDSAPublic(rpub)
   380  
   381  	// Generate random keypair for ECDH.
   382  	// If a private key is already set, use it instead of generating one (for testing).
   383  	if h.randomPrivKey == nil {
   384  		h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
   385  		if err != nil {
   386  			return err
   387  		}
   388  	}
   389  
   390  	// Check the signature.
   391  	token, err := h.staticSharedSecret(prv)
   392  	if err != nil {
   393  		return err
   394  	}
   395  	signedMsg := xor(token, h.initNonce)
   396  	remoteRandomPub, err := secp256k1.RecoverPubkey(signedMsg, msg.Signature[:])
   397  	if err != nil {
   398  		return err
   399  	}
   400  	h.remoteRandomPub, _ = importPublicKey(remoteRandomPub)
   401  	return nil
   402  }
   403  
   404  func (h *encHandshake) makeAuthResp() (msg *authRespV4, err error) {
   405  	// Generate random nonce.
   406  	h.respNonce = make([]byte, shaLen)
   407  	if _, err = rand.Read(h.respNonce); err != nil {
   408  		return nil, err
   409  	}
   410  
   411  	msg = new(authRespV4)
   412  	copy(msg.Nonce[:], h.respNonce)
   413  	copy(msg.RandomPubkey[:], exportPubkey(&h.randomPrivKey.PublicKey))
   414  	msg.Version = 4
   415  	return msg, nil
   416  }
   417  
   418  func (msg *authMsgV4) sealPlain(h *encHandshake) ([]byte, error) {
   419  	buf := make([]byte, authMsgLen)
   420  	n := copy(buf, msg.Signature[:])
   421  	n += copy(buf[n:], crypto.Keccak256(exportPubkey(&h.randomPrivKey.PublicKey)))
   422  	n += copy(buf[n:], msg.InitiatorPubkey[:])
   423  	n += copy(buf[n:], msg.Nonce[:])
   424  	buf[n] = 0 // token-flag
   425  	return ecies.Encrypt(rand.Reader, h.remotePub, buf, nil, nil)
   426  }
   427  
   428  func (msg *authMsgV4) decodePlain(input []byte) {
   429  	n := copy(msg.Signature[:], input)
   430  	n += shaLen // skip sha3(initiator-ephemeral-pubk)
   431  	n += copy(msg.InitiatorPubkey[:], input[n:])
   432  	copy(msg.Nonce[:], input[n:])
   433  	msg.Version = 4
   434  	msg.gotPlain = true
   435  }
   436  
   437  func (msg *authRespV4) sealPlain(hs *encHandshake) ([]byte, error) {
   438  	buf := make([]byte, authRespLen)
   439  	n := copy(buf, msg.RandomPubkey[:])
   440  	copy(buf[n:], msg.Nonce[:])
   441  	return ecies.Encrypt(rand.Reader, hs.remotePub, buf, nil, nil)
   442  }
   443  
   444  func (msg *authRespV4) decodePlain(input []byte) {
   445  	n := copy(msg.RandomPubkey[:], input)
   446  	copy(msg.Nonce[:], input[n:])
   447  	msg.Version = 4
   448  }
   449  
   450  var padSpace = make([]byte, 300)
   451  
   452  func sealEIP8(msg interface{}, h *encHandshake) ([]byte, error) {
   453  	buf := new(bytes.Buffer)
   454  	if err := rlp.Encode(buf, msg); err != nil {
   455  		return nil, err
   456  	}
   457  	// pad with random amount of data. the amount needs to be at least 100 bytes to make
   458  	// the message distinguishable from pre-EIP-8 handshakes.
   459  	pad := padSpace[:mrand.Intn(len(padSpace)-100)+100]
   460  	buf.Write(pad)
   461  	prefix := make([]byte, 2)
   462  	binary.BigEndian.PutUint16(prefix, uint16(buf.Len()+eciesOverhead))
   463  
   464  	enc, err := ecies.Encrypt(rand.Reader, h.remotePub, buf.Bytes(), nil, prefix)
   465  	return append(prefix, enc...), err
   466  }
   467  
   468  type plainDecoder interface {
   469  	decodePlain([]byte)
   470  }
   471  
   472  func readHandshakeMsg(msg plainDecoder, plainSize int, prv *ecdsa.PrivateKey, r io.Reader) ([]byte, error) {
   473  	buf := make([]byte, plainSize)
   474  	if _, err := io.ReadFull(r, buf); err != nil {
   475  		return buf, err
   476  	}
   477  	// Attempt decoding pre-EIP-8 "plain" format.
   478  	key := ecies.ImportECDSA(prv)
   479  	if dec, err := key.Decrypt(rand.Reader, buf, nil, nil); err == nil {
   480  		msg.decodePlain(dec)
   481  		return buf, nil
   482  	}
   483  	// Could be EIP-8 format, try that.
   484  	prefix := buf[:2]
   485  	size := binary.BigEndian.Uint16(prefix)
   486  	if size < uint16(plainSize) {
   487  		return buf, fmt.Errorf("size underflow, need at least %d bytes", plainSize)
   488  	}
   489  	buf = append(buf, make([]byte, size-uint16(plainSize)+2)...)
   490  	if _, err := io.ReadFull(r, buf[plainSize:]); err != nil {
   491  		return buf, err
   492  	}
   493  	dec, err := key.Decrypt(rand.Reader, buf[2:], nil, prefix)
   494  	if err != nil {
   495  		return buf, err
   496  	}
   497  	// Can't use rlp.DecodeBytes here because it rejects
   498  	// trailing data (forward-compatibility).
   499  	s := rlp.NewStream(bytes.NewReader(dec), 0)
   500  	return buf, s.Decode(msg)
   501  }
   502  
   503  // importPublicKey unmarshals 512 bit public keys.
   504  func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) {
   505  	var pubKey65 []byte
   506  	switch len(pubKey) {
   507  	case 64:
   508  		// add 'uncompressed key' flag
   509  		pubKey65 = append([]byte{0x04}, pubKey...)
   510  	case 65:
   511  		pubKey65 = pubKey
   512  	default:
   513  		return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey))
   514  	}
   515  	// TODO: fewer pointless conversions
   516  	pub := crypto.ToECDSAPub(pubKey65)
   517  	if pub.X == nil {
   518  		return nil, fmt.Errorf("invalid public key")
   519  	}
   520  	return ecies.ImportECDSAPublic(pub), nil
   521  }
   522  
   523  func exportPubkey(pub *ecies.PublicKey) []byte {
   524  	if pub == nil {
   525  		panic("nil pubkey")
   526  	}
   527  	return elliptic.Marshal(pub.Curve, pub.X, pub.Y)[1:]
   528  }
   529  
   530  func xor(one, other []byte) (xor []byte) {
   531  	xor = make([]byte, len(one))
   532  	for i := 0; i < len(one); i++ {
   533  		xor[i] = one[i] ^ other[i]
   534  	}
   535  	return xor
   536  }
   537  
   538  var (
   539  	// this is used in place of actual frame header data.
   540  	// TODO: replace this when Msg contains the protocol type code.
   541  	zeroHeader = []byte{0xC2, 0x80, 0x80}
   542  	// sixteen zero bytes
   543  	zero16 = make([]byte, 16)
   544  )
   545  
   546  // rlpxFrameRW implements a simplified version of RLPx framing.
   547  // chunked messages are not supported and all headers are equal to
   548  // zeroHeader.
   549  //
   550  // rlpxFrameRW is not safe for concurrent use from multiple goroutines.
   551  type rlpxFrameRW struct {
   552  	conn io.ReadWriter
   553  	enc  cipher.Stream
   554  	dec  cipher.Stream
   555  
   556  	macCipher  cipher.Block
   557  	egressMAC  hash.Hash
   558  	ingressMAC hash.Hash
   559  }
   560  
   561  func newRLPXFrameRW(conn io.ReadWriter, s secrets) *rlpxFrameRW {
   562  	macc, err := aes.NewCipher(s.MAC)
   563  	if err != nil {
   564  		panic("invalid MAC secret: " + err.Error())
   565  	}
   566  	encc, err := aes.NewCipher(s.AES)
   567  	if err != nil {
   568  		panic("invalid AES secret: " + err.Error())
   569  	}
   570  	// we use an all-zeroes IV for AES because the key used
   571  	// for encryption is ephemeral.
   572  	iv := make([]byte, encc.BlockSize())
   573  	return &rlpxFrameRW{
   574  		conn:       conn,
   575  		enc:        cipher.NewCTR(encc, iv),
   576  		dec:        cipher.NewCTR(encc, iv),
   577  		macCipher:  macc,
   578  		egressMAC:  s.EgressMAC,
   579  		ingressMAC: s.IngressMAC,
   580  	}
   581  }
   582  
   583  func (rw *rlpxFrameRW) WriteMsg(msg Msg) error {
   584  	ptype, _ := rlp.EncodeToBytes(msg.Code)
   585  
   586  	// write header
   587  	headbuf := make([]byte, 32)
   588  	fsize := uint32(len(ptype)) + msg.Size
   589  	if fsize > maxUint24 {
   590  		return errors.New("message size overflows uint24")
   591  	}
   592  	putInt24(fsize, headbuf) // TODO: check overflow
   593  	copy(headbuf[3:], zeroHeader)
   594  	rw.enc.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now encrypted
   595  
   596  	// write header MAC
   597  	copy(headbuf[16:], updateMAC(rw.egressMAC, rw.macCipher, headbuf[:16]))
   598  	if _, err := rw.conn.Write(headbuf); err != nil {
   599  		return err
   600  	}
   601  
   602  	// write encrypted frame, updating the egress MAC hash with
   603  	// the data written to conn.
   604  	tee := cipher.StreamWriter{S: rw.enc, W: io.MultiWriter(rw.conn, rw.egressMAC)}
   605  	if _, err := tee.Write(ptype); err != nil {
   606  		return err
   607  	}
   608  	if _, err := io.Copy(tee, msg.Payload); err != nil {
   609  		return err
   610  	}
   611  	if padding := fsize % 16; padding > 0 {
   612  		if _, err := tee.Write(zero16[:16-padding]); err != nil {
   613  			return err
   614  		}
   615  	}
   616  
   617  	// write frame MAC. egress MAC hash is up to date because
   618  	// frame content was written to it as well.
   619  	fmacseed := rw.egressMAC.Sum(nil)
   620  	mac := updateMAC(rw.egressMAC, rw.macCipher, fmacseed)
   621  	_, err := rw.conn.Write(mac)
   622  	return err
   623  }
   624  
   625  func (rw *rlpxFrameRW) ReadMsg() (msg Msg, err error) {
   626  	// read the header
   627  	headbuf := make([]byte, 32)
   628  	if _, err := io.ReadFull(rw.conn, headbuf); err != nil {
   629  		return msg, err
   630  	}
   631  	// verify header mac
   632  	shouldMAC := updateMAC(rw.ingressMAC, rw.macCipher, headbuf[:16])
   633  	if !hmac.Equal(shouldMAC, headbuf[16:]) {
   634  		return msg, errors.New("bad header MAC")
   635  	}
   636  	rw.dec.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now decrypted
   637  	fsize := readInt24(headbuf)
   638  	// ignore protocol type for now
   639  
   640  	// read the frame content
   641  	var rsize = fsize // frame size rounded up to 16 byte boundary
   642  	if padding := fsize % 16; padding > 0 {
   643  		rsize += 16 - padding
   644  	}
   645  	framebuf := make([]byte, rsize)
   646  	if _, err := io.ReadFull(rw.conn, framebuf); err != nil {
   647  		return msg, err
   648  	}
   649  
   650  	// read and validate frame MAC. we can re-use headbuf for that.
   651  	rw.ingressMAC.Write(framebuf)
   652  	fmacseed := rw.ingressMAC.Sum(nil)
   653  	if _, err := io.ReadFull(rw.conn, headbuf[:16]); err != nil {
   654  		return msg, err
   655  	}
   656  	shouldMAC = updateMAC(rw.ingressMAC, rw.macCipher, fmacseed)
   657  	if !hmac.Equal(shouldMAC, headbuf[:16]) {
   658  		return msg, errors.New("bad frame MAC")
   659  	}
   660  
   661  	// decrypt frame content
   662  	rw.dec.XORKeyStream(framebuf, framebuf)
   663  
   664  	// decode message code
   665  	content := bytes.NewReader(framebuf[:fsize])
   666  	if err := rlp.Decode(content, &msg.Code); err != nil {
   667  		return msg, err
   668  	}
   669  	msg.Size = uint32(content.Len())
   670  	msg.Payload = content
   671  	return msg, nil
   672  }
   673  
   674  // updateMAC reseeds the given hash with encrypted seed.
   675  // it returns the first 16 bytes of the hash sum after seeding.
   676  func updateMAC(mac hash.Hash, block cipher.Block, seed []byte) []byte {
   677  	aesbuf := make([]byte, aes.BlockSize)
   678  	block.Encrypt(aesbuf, mac.Sum(nil))
   679  	for i := range aesbuf {
   680  		aesbuf[i] ^= seed[i]
   681  	}
   682  	mac.Write(aesbuf)
   683  	return mac.Sum(nil)[:16]
   684  }
   685  
   686  func readInt24(b []byte) uint32 {
   687  	return uint32(b[2]) | uint32(b[1])<<8 | uint32(b[0])<<16
   688  }
   689  
   690  func putInt24(v uint32, b []byte) {
   691  	b[0] = byte(v >> 16)
   692  	b[1] = byte(v >> 8)
   693  	b[2] = byte(v)
   694  }