github.com/yukk001/go1.10.8@v0.0.0-20190813125351-6df2d3982e20/src/cmd/compile/internal/gc/inl.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  //
     5  // The inlining facility makes 2 passes: first caninl determines which
     6  // functions are suitable for inlining, and for those that are it
     7  // saves a copy of the body. Then inlcalls walks each function body to
     8  // expand calls to inlinable functions.
     9  //
    10  // The debug['l'] flag controls the aggressiveness. Note that main() swaps level 0 and 1,
    11  // making 1 the default and -l disable. Additional levels (beyond -l) may be buggy and
    12  // are not supported.
    13  //      0: disabled
    14  //      1: 80-nodes leaf functions, oneliners, lazy typechecking (default)
    15  //      2: (unassigned)
    16  //      3: allow variadic functions
    17  //      4: allow non-leaf functions
    18  //
    19  // At some point this may get another default and become switch-offable with -N.
    20  //
    21  // The -d typcheckinl flag enables early typechecking of all imported bodies,
    22  // which is useful to flush out bugs.
    23  //
    24  // The debug['m'] flag enables diagnostic output.  a single -m is useful for verifying
    25  // which calls get inlined or not, more is for debugging, and may go away at any point.
    26  //
    27  // TODO:
    28  //   - inline functions with ... args
    29  
    30  package gc
    31  
    32  import (
    33  	"cmd/compile/internal/types"
    34  	"cmd/internal/obj"
    35  	"cmd/internal/src"
    36  	"fmt"
    37  	"strings"
    38  )
    39  
    40  // Get the function's package. For ordinary functions it's on the ->sym, but for imported methods
    41  // the ->sym can be re-used in the local package, so peel it off the receiver's type.
    42  func fnpkg(fn *Node) *types.Pkg {
    43  	if fn.IsMethod() {
    44  		// method
    45  		rcvr := fn.Type.Recv().Type
    46  
    47  		if rcvr.IsPtr() {
    48  			rcvr = rcvr.Elem()
    49  		}
    50  		if rcvr.Sym == nil {
    51  			Fatalf("receiver with no sym: [%v] %L  (%v)", fn.Sym, fn, rcvr)
    52  		}
    53  		return rcvr.Sym.Pkg
    54  	}
    55  
    56  	// non-method
    57  	return fn.Sym.Pkg
    58  }
    59  
    60  // Lazy typechecking of imported bodies. For local functions, caninl will set ->typecheck
    61  // because they're a copy of an already checked body.
    62  func typecheckinl(fn *Node) {
    63  	lno := setlineno(fn)
    64  
    65  	// typecheckinl is only for imported functions;
    66  	// their bodies may refer to unsafe as long as the package
    67  	// was marked safe during import (which was checked then).
    68  	// the ->inl of a local function has been typechecked before caninl copied it.
    69  	pkg := fnpkg(fn)
    70  
    71  	if pkg == localpkg || pkg == nil {
    72  		return // typecheckinl on local function
    73  	}
    74  
    75  	if Debug['m'] > 2 || Debug_export != 0 {
    76  		fmt.Printf("typecheck import [%v] %L { %#v }\n", fn.Sym, fn, fn.Func.Inl)
    77  	}
    78  
    79  	save_safemode := safemode
    80  	safemode = false
    81  
    82  	savefn := Curfn
    83  	Curfn = fn
    84  	typecheckslice(fn.Func.Inl.Slice(), Etop)
    85  	Curfn = savefn
    86  
    87  	safemode = save_safemode
    88  
    89  	lineno = lno
    90  }
    91  
    92  // Caninl determines whether fn is inlineable.
    93  // If so, caninl saves fn->nbody in fn->inl and substitutes it with a copy.
    94  // fn and ->nbody will already have been typechecked.
    95  func caninl(fn *Node) {
    96  	if fn.Op != ODCLFUNC {
    97  		Fatalf("caninl %v", fn)
    98  	}
    99  	if fn.Func.Nname == nil {
   100  		Fatalf("caninl no nname %+v", fn)
   101  	}
   102  
   103  	var reason string // reason, if any, that the function was not inlined
   104  	if Debug['m'] > 1 {
   105  		defer func() {
   106  			if reason != "" {
   107  				fmt.Printf("%v: cannot inline %v: %s\n", fn.Line(), fn.Func.Nname, reason)
   108  			}
   109  		}()
   110  	}
   111  
   112  	// If marked "go:noinline", don't inline
   113  	if fn.Func.Pragma&Noinline != 0 {
   114  		reason = "marked go:noinline"
   115  		return
   116  	}
   117  
   118  	// If marked "go:cgo_unsafe_args", don't inline, since the
   119  	// function makes assumptions about its argument frame layout.
   120  	if fn.Func.Pragma&CgoUnsafeArgs != 0 {
   121  		reason = "marked go:cgo_unsafe_args"
   122  		return
   123  	}
   124  
   125  	// The nowritebarrierrec checker currently works at function
   126  	// granularity, so inlining yeswritebarrierrec functions can
   127  	// confuse it (#22342). As a workaround, disallow inlining
   128  	// them for now.
   129  	if fn.Func.Pragma&Yeswritebarrierrec != 0 {
   130  		reason = "marked go:yeswritebarrierrec"
   131  		return
   132  	}
   133  
   134  	// If fn has no body (is defined outside of Go), cannot inline it.
   135  	if fn.Nbody.Len() == 0 {
   136  		reason = "no function body"
   137  		return
   138  	}
   139  
   140  	if fn.Typecheck() == 0 {
   141  		Fatalf("caninl on non-typechecked function %v", fn)
   142  	}
   143  
   144  	// can't handle ... args yet
   145  	if Debug['l'] < 3 {
   146  		f := fn.Type.Params().Fields()
   147  		if len := f.Len(); len > 0 {
   148  			if t := f.Index(len - 1); t.Isddd() {
   149  				reason = "has ... args"
   150  				return
   151  			}
   152  		}
   153  	}
   154  
   155  	// Runtime package must not be instrumented.
   156  	// Instrument skips runtime package. However, some runtime code can be
   157  	// inlined into other packages and instrumented there. To avoid this,
   158  	// we disable inlining of runtime functions when instrumenting.
   159  	// The example that we observed is inlining of LockOSThread,
   160  	// which lead to false race reports on m contents.
   161  	if instrumenting && myimportpath == "runtime" {
   162  		reason = "instrumenting and is runtime function"
   163  		return
   164  	}
   165  
   166  	n := fn.Func.Nname
   167  	if n.Func.InlinabilityChecked() {
   168  		return
   169  	}
   170  	defer n.Func.SetInlinabilityChecked(true)
   171  
   172  	const maxBudget = 80
   173  	visitor := hairyVisitor{budget: maxBudget}
   174  	if visitor.visitList(fn.Nbody) {
   175  		reason = visitor.reason
   176  		return
   177  	}
   178  	if visitor.budget < 0 {
   179  		reason = fmt.Sprintf("function too complex: cost %d exceeds budget %d", maxBudget-visitor.budget, maxBudget)
   180  		return
   181  	}
   182  
   183  	savefn := Curfn
   184  	Curfn = fn
   185  
   186  	n.Func.Inl.Set(fn.Nbody.Slice())
   187  	fn.Nbody.Set(inlcopylist(n.Func.Inl.Slice()))
   188  	inldcl := inlcopylist(n.Name.Defn.Func.Dcl)
   189  	n.Func.Inldcl.Set(inldcl)
   190  	n.Func.InlCost = maxBudget - visitor.budget
   191  
   192  	// hack, TODO, check for better way to link method nodes back to the thing with the ->inl
   193  	// this is so export can find the body of a method
   194  	fn.Type.FuncType().Nname = asTypesNode(n)
   195  
   196  	if Debug['m'] > 1 {
   197  		fmt.Printf("%v: can inline %#v as: %#v { %#v }\n", fn.Line(), n, fn.Type, n.Func.Inl)
   198  	} else if Debug['m'] != 0 {
   199  		fmt.Printf("%v: can inline %v\n", fn.Line(), n)
   200  	}
   201  
   202  	Curfn = savefn
   203  }
   204  
   205  // inlFlood marks n's inline body for export and recursively ensures
   206  // all called functions are marked too.
   207  func inlFlood(n *Node) {
   208  	if n == nil {
   209  		return
   210  	}
   211  	if n.Op != ONAME || n.Class() != PFUNC {
   212  		Fatalf("inlFlood: unexpected %v, %v, %v", n, n.Op, n.Class())
   213  	}
   214  	if n.Func == nil {
   215  		// TODO(mdempsky): Should init have a Func too?
   216  		if n.Sym.Name == "init" {
   217  			return
   218  		}
   219  		Fatalf("inlFlood: missing Func on %v", n)
   220  	}
   221  	if n.Func.Inl.Len() == 0 {
   222  		return
   223  	}
   224  
   225  	if n.Func.ExportInline() {
   226  		return
   227  	}
   228  	n.Func.SetExportInline(true)
   229  
   230  	typecheckinl(n)
   231  
   232  	// Recursively flood any functions called by this one.
   233  	inspectList(n.Func.Inl, func(n *Node) bool {
   234  		switch n.Op {
   235  		case OCALLFUNC, OCALLMETH:
   236  			inlFlood(asNode(n.Left.Type.Nname()))
   237  		}
   238  		return true
   239  	})
   240  }
   241  
   242  // hairyVisitor visits a function body to determine its inlining
   243  // hairiness and whether or not it can be inlined.
   244  type hairyVisitor struct {
   245  	budget int32
   246  	reason string
   247  }
   248  
   249  // Look for anything we want to punt on.
   250  func (v *hairyVisitor) visitList(ll Nodes) bool {
   251  	for _, n := range ll.Slice() {
   252  		if v.visit(n) {
   253  			return true
   254  		}
   255  	}
   256  	return false
   257  }
   258  
   259  func (v *hairyVisitor) visit(n *Node) bool {
   260  	if n == nil {
   261  		return false
   262  	}
   263  
   264  	switch n.Op {
   265  	// Call is okay if inlinable and we have the budget for the body.
   266  	case OCALLFUNC:
   267  		if isIntrinsicCall(n) {
   268  			v.budget--
   269  			break
   270  		}
   271  		// Functions that call runtime.getcaller{pc,sp} can not be inlined
   272  		// because getcaller{pc,sp} expect a pointer to the caller's first argument.
   273  		if n.Left.Op == ONAME && n.Left.Class() == PFUNC && isRuntimePkg(n.Left.Sym.Pkg) {
   274  			fn := n.Left.Sym.Name
   275  			if fn == "getcallerpc" || fn == "getcallersp" {
   276  				v.reason = "call to " + fn
   277  				return true
   278  			}
   279  		}
   280  
   281  		if fn := n.Left.Func; fn != nil && fn.Inl.Len() != 0 {
   282  			v.budget -= fn.InlCost
   283  			break
   284  		}
   285  		if n.Left.isMethodExpression() {
   286  			if d := asNode(n.Left.Sym.Def); d != nil && d.Func.Inl.Len() != 0 {
   287  				v.budget -= d.Func.InlCost
   288  				break
   289  			}
   290  		}
   291  		// TODO(mdempsky): Budget for OCLOSURE calls if we
   292  		// ever allow that. See #15561 and #23093.
   293  		if Debug['l'] < 4 {
   294  			v.reason = "non-leaf function"
   295  			return true
   296  		}
   297  
   298  	// Call is okay if inlinable and we have the budget for the body.
   299  	case OCALLMETH:
   300  		t := n.Left.Type
   301  		if t == nil {
   302  			Fatalf("no function type for [%p] %+v\n", n.Left, n.Left)
   303  		}
   304  		if t.Nname() == nil {
   305  			Fatalf("no function definition for [%p] %+v\n", t, t)
   306  		}
   307  		if inlfn := asNode(t.FuncType().Nname).Func; inlfn.Inl.Len() != 0 {
   308  			v.budget -= inlfn.InlCost
   309  			break
   310  		}
   311  		if Debug['l'] < 4 {
   312  			v.reason = "non-leaf method"
   313  			return true
   314  		}
   315  
   316  	// Things that are too hairy, irrespective of the budget
   317  	case OCALL, OCALLINTER, OPANIC:
   318  		if Debug['l'] < 4 {
   319  			v.reason = "non-leaf op " + n.Op.String()
   320  			return true
   321  		}
   322  
   323  	case ORECOVER:
   324  		// recover matches the argument frame pointer to find
   325  		// the right panic value, so it needs an argument frame.
   326  		v.reason = "call to recover"
   327  		return true
   328  
   329  	case OCLOSURE,
   330  		OCALLPART,
   331  		ORANGE,
   332  		OFOR,
   333  		OFORUNTIL,
   334  		OSELECT,
   335  		OTYPESW,
   336  		OPROC,
   337  		ODEFER,
   338  		ODCLTYPE, // can't print yet
   339  		OBREAK,
   340  		ORETJMP:
   341  		v.reason = "unhandled op " + n.Op.String()
   342  		return true
   343  
   344  	case ODCLCONST, OEMPTY, OFALL, OLABEL:
   345  		// These nodes don't produce code; omit from inlining budget.
   346  		return false
   347  	}
   348  
   349  	v.budget--
   350  	// TODO(mdempsky/josharian): Hacks to appease toolstash; remove.
   351  	// See issue 17566 and CL 31674 for discussion.
   352  	switch n.Op {
   353  	case OSTRUCTKEY:
   354  		v.budget--
   355  	case OSLICE, OSLICEARR, OSLICESTR:
   356  		v.budget--
   357  	case OSLICE3, OSLICE3ARR:
   358  		v.budget -= 2
   359  	}
   360  
   361  	// When debugging, don't stop early, to get full cost of inlining this function
   362  	if v.budget < 0 && Debug['m'] < 2 {
   363  		return true
   364  	}
   365  
   366  	return v.visit(n.Left) || v.visit(n.Right) ||
   367  		v.visitList(n.List) || v.visitList(n.Rlist) ||
   368  		v.visitList(n.Ninit) || v.visitList(n.Nbody)
   369  }
   370  
   371  // Inlcopy and inlcopylist recursively copy the body of a function.
   372  // Any name-like node of non-local class is marked for re-export by adding it to
   373  // the exportlist.
   374  func inlcopylist(ll []*Node) []*Node {
   375  	s := make([]*Node, 0, len(ll))
   376  	for _, n := range ll {
   377  		s = append(s, inlcopy(n))
   378  	}
   379  	return s
   380  }
   381  
   382  func inlcopy(n *Node) *Node {
   383  	if n == nil {
   384  		return nil
   385  	}
   386  
   387  	switch n.Op {
   388  	case ONAME, OTYPE, OLITERAL:
   389  		return n
   390  	}
   391  
   392  	m := *n
   393  	if m.Func != nil {
   394  		m.Func.Inl.Set(nil)
   395  	}
   396  	m.Left = inlcopy(n.Left)
   397  	m.Right = inlcopy(n.Right)
   398  	m.List.Set(inlcopylist(n.List.Slice()))
   399  	m.Rlist.Set(inlcopylist(n.Rlist.Slice()))
   400  	m.Ninit.Set(inlcopylist(n.Ninit.Slice()))
   401  	m.Nbody.Set(inlcopylist(n.Nbody.Slice()))
   402  
   403  	return &m
   404  }
   405  
   406  // Inlcalls/nodelist/node walks fn's statements and expressions and substitutes any
   407  // calls made to inlineable functions. This is the external entry point.
   408  func inlcalls(fn *Node) {
   409  	savefn := Curfn
   410  	Curfn = fn
   411  	fn = inlnode(fn)
   412  	if fn != Curfn {
   413  		Fatalf("inlnode replaced curfn")
   414  	}
   415  	Curfn = savefn
   416  }
   417  
   418  // Turn an OINLCALL into a statement.
   419  func inlconv2stmt(n *Node) {
   420  	n.Op = OBLOCK
   421  
   422  	// n->ninit stays
   423  	n.List.Set(n.Nbody.Slice())
   424  
   425  	n.Nbody.Set(nil)
   426  	n.Rlist.Set(nil)
   427  }
   428  
   429  // Turn an OINLCALL into a single valued expression.
   430  // The result of inlconv2expr MUST be assigned back to n, e.g.
   431  // 	n.Left = inlconv2expr(n.Left)
   432  func inlconv2expr(n *Node) *Node {
   433  	r := n.Rlist.First()
   434  	return addinit(r, append(n.Ninit.Slice(), n.Nbody.Slice()...))
   435  }
   436  
   437  // Turn the rlist (with the return values) of the OINLCALL in
   438  // n into an expression list lumping the ninit and body
   439  // containing the inlined statements on the first list element so
   440  // order will be preserved Used in return, oas2func and call
   441  // statements.
   442  func inlconv2list(n *Node) []*Node {
   443  	if n.Op != OINLCALL || n.Rlist.Len() == 0 {
   444  		Fatalf("inlconv2list %+v\n", n)
   445  	}
   446  
   447  	s := n.Rlist.Slice()
   448  	s[0] = addinit(s[0], append(n.Ninit.Slice(), n.Nbody.Slice()...))
   449  	return s
   450  }
   451  
   452  func inlnodelist(l Nodes) {
   453  	s := l.Slice()
   454  	for i := range s {
   455  		s[i] = inlnode(s[i])
   456  	}
   457  }
   458  
   459  // inlnode recurses over the tree to find inlineable calls, which will
   460  // be turned into OINLCALLs by mkinlcall. When the recursion comes
   461  // back up will examine left, right, list, rlist, ninit, ntest, nincr,
   462  // nbody and nelse and use one of the 4 inlconv/glue functions above
   463  // to turn the OINLCALL into an expression, a statement, or patch it
   464  // in to this nodes list or rlist as appropriate.
   465  // NOTE it makes no sense to pass the glue functions down the
   466  // recursion to the level where the OINLCALL gets created because they
   467  // have to edit /this/ n, so you'd have to push that one down as well,
   468  // but then you may as well do it here.  so this is cleaner and
   469  // shorter and less complicated.
   470  // The result of inlnode MUST be assigned back to n, e.g.
   471  // 	n.Left = inlnode(n.Left)
   472  func inlnode(n *Node) *Node {
   473  	if n == nil {
   474  		return n
   475  	}
   476  
   477  	switch n.Op {
   478  	// inhibit inlining of their argument
   479  	case ODEFER, OPROC:
   480  		switch n.Left.Op {
   481  		case OCALLFUNC, OCALLMETH:
   482  			n.Left.SetNoInline(true)
   483  		}
   484  		return n
   485  
   486  	// TODO do them here (or earlier),
   487  	// so escape analysis can avoid more heapmoves.
   488  	case OCLOSURE:
   489  		return n
   490  	}
   491  
   492  	lno := setlineno(n)
   493  
   494  	inlnodelist(n.Ninit)
   495  	for _, n1 := range n.Ninit.Slice() {
   496  		if n1.Op == OINLCALL {
   497  			inlconv2stmt(n1)
   498  		}
   499  	}
   500  
   501  	n.Left = inlnode(n.Left)
   502  	if n.Left != nil && n.Left.Op == OINLCALL {
   503  		n.Left = inlconv2expr(n.Left)
   504  	}
   505  
   506  	n.Right = inlnode(n.Right)
   507  	if n.Right != nil && n.Right.Op == OINLCALL {
   508  		if n.Op == OFOR || n.Op == OFORUNTIL {
   509  			inlconv2stmt(n.Right)
   510  		} else {
   511  			n.Right = inlconv2expr(n.Right)
   512  		}
   513  	}
   514  
   515  	inlnodelist(n.List)
   516  	switch n.Op {
   517  	case OBLOCK:
   518  		for _, n2 := range n.List.Slice() {
   519  			if n2.Op == OINLCALL {
   520  				inlconv2stmt(n2)
   521  			}
   522  		}
   523  
   524  	case ORETURN, OCALLFUNC, OCALLMETH, OCALLINTER, OAPPEND, OCOMPLEX:
   525  		// if we just replaced arg in f(arg()) or return arg with an inlined call
   526  		// and arg returns multiple values, glue as list
   527  		if n.List.Len() == 1 && n.List.First().Op == OINLCALL && n.List.First().Rlist.Len() > 1 {
   528  			n.List.Set(inlconv2list(n.List.First()))
   529  			break
   530  		}
   531  		fallthrough
   532  
   533  	default:
   534  		s := n.List.Slice()
   535  		for i1, n1 := range s {
   536  			if n1 != nil && n1.Op == OINLCALL {
   537  				s[i1] = inlconv2expr(s[i1])
   538  			}
   539  		}
   540  	}
   541  
   542  	inlnodelist(n.Rlist)
   543  	if n.Op == OAS2FUNC && n.Rlist.First().Op == OINLCALL {
   544  		n.Rlist.Set(inlconv2list(n.Rlist.First()))
   545  		n.Op = OAS2
   546  		n.SetTypecheck(0)
   547  		n = typecheck(n, Etop)
   548  	} else {
   549  		s := n.Rlist.Slice()
   550  		for i1, n1 := range s {
   551  			if n1.Op == OINLCALL {
   552  				if n.Op == OIF {
   553  					inlconv2stmt(n1)
   554  				} else {
   555  					s[i1] = inlconv2expr(s[i1])
   556  				}
   557  			}
   558  		}
   559  	}
   560  
   561  	inlnodelist(n.Nbody)
   562  	for _, n := range n.Nbody.Slice() {
   563  		if n.Op == OINLCALL {
   564  			inlconv2stmt(n)
   565  		}
   566  	}
   567  
   568  	// with all the branches out of the way, it is now time to
   569  	// transmogrify this node itself unless inhibited by the
   570  	// switch at the top of this function.
   571  	switch n.Op {
   572  	case OCALLFUNC, OCALLMETH:
   573  		if n.NoInline() {
   574  			return n
   575  		}
   576  	}
   577  
   578  	switch n.Op {
   579  	case OCALLFUNC:
   580  		if Debug['m'] > 3 {
   581  			fmt.Printf("%v:call to func %+v\n", n.Line(), n.Left)
   582  		}
   583  		if n.Left.Func != nil && n.Left.Func.Inl.Len() != 0 && !isIntrinsicCall(n) { // normal case
   584  			n = mkinlcall(n, n.Left, n.Isddd())
   585  		} else if n.Left.isMethodExpression() && asNode(n.Left.Sym.Def) != nil {
   586  			n = mkinlcall(n, asNode(n.Left.Sym.Def), n.Isddd())
   587  		} else if n.Left.Op == OCLOSURE {
   588  			if f := inlinableClosure(n.Left); f != nil {
   589  				n = mkinlcall(n, f, n.Isddd())
   590  			}
   591  		} else if n.Left.Op == ONAME && n.Left.Name != nil && n.Left.Name.Defn != nil {
   592  			if d := n.Left.Name.Defn; d.Op == OAS && d.Right.Op == OCLOSURE {
   593  				if f := inlinableClosure(d.Right); f != nil {
   594  					// NB: this check is necessary to prevent indirect re-assignment of the variable
   595  					// having the address taken after the invocation or only used for reads is actually fine
   596  					// but we have no easy way to distinguish the safe cases
   597  					if d.Left.Addrtaken() {
   598  						if Debug['m'] > 1 {
   599  							fmt.Printf("%v: cannot inline escaping closure variable %v\n", n.Line(), n.Left)
   600  						}
   601  						break
   602  					}
   603  
   604  					// ensure the variable is never re-assigned
   605  					if unsafe, a := reassigned(n.Left); unsafe {
   606  						if Debug['m'] > 1 {
   607  							if a != nil {
   608  								fmt.Printf("%v: cannot inline re-assigned closure variable at %v: %v\n", n.Line(), a.Line(), a)
   609  							} else {
   610  								fmt.Printf("%v: cannot inline global closure variable %v\n", n.Line(), n.Left)
   611  							}
   612  						}
   613  						break
   614  					}
   615  					n = mkinlcall(n, f, n.Isddd())
   616  				}
   617  			}
   618  		}
   619  
   620  	case OCALLMETH:
   621  		if Debug['m'] > 3 {
   622  			fmt.Printf("%v:call to meth %L\n", n.Line(), n.Left.Right)
   623  		}
   624  
   625  		// typecheck should have resolved ODOTMETH->type, whose nname points to the actual function.
   626  		if n.Left.Type == nil {
   627  			Fatalf("no function type for [%p] %+v\n", n.Left, n.Left)
   628  		}
   629  
   630  		if n.Left.Type.Nname() == nil {
   631  			Fatalf("no function definition for [%p] %+v\n", n.Left.Type, n.Left.Type)
   632  		}
   633  
   634  		n = mkinlcall(n, asNode(n.Left.Type.FuncType().Nname), n.Isddd())
   635  	}
   636  
   637  	lineno = lno
   638  	return n
   639  }
   640  
   641  // inlinableClosure takes an OCLOSURE node and follows linkage to the matching ONAME with
   642  // the inlinable body. Returns nil if the function is not inlinable.
   643  func inlinableClosure(n *Node) *Node {
   644  	c := n.Func.Closure
   645  	caninl(c)
   646  	f := c.Func.Nname
   647  	if f == nil || f.Func.Inl.Len() == 0 {
   648  		return nil
   649  	}
   650  	return f
   651  }
   652  
   653  // reassigned takes an ONAME node, walks the function in which it is defined, and returns a boolean
   654  // indicating whether the name has any assignments other than its declaration.
   655  // The second return value is the first such assignment encountered in the walk, if any. It is mostly
   656  // useful for -m output documenting the reason for inhibited optimizations.
   657  // NB: global variables are always considered to be re-assigned.
   658  // TODO: handle initial declaration not including an assignment and followed by a single assignment?
   659  func reassigned(n *Node) (bool, *Node) {
   660  	if n.Op != ONAME {
   661  		Fatalf("reassigned %v", n)
   662  	}
   663  	// no way to reliably check for no-reassignment of globals, assume it can be
   664  	if n.Name.Curfn == nil {
   665  		return true, nil
   666  	}
   667  	f := n.Name.Curfn
   668  	// There just might be a good reason for this although this can be pretty surprising:
   669  	// local variables inside a closure have Curfn pointing to the OCLOSURE node instead
   670  	// of the corresponding ODCLFUNC.
   671  	// We need to walk the function body to check for reassignments so we follow the
   672  	// linkage to the ODCLFUNC node as that is where body is held.
   673  	if f.Op == OCLOSURE {
   674  		f = f.Func.Closure
   675  	}
   676  	v := reassignVisitor{name: n}
   677  	a := v.visitList(f.Nbody)
   678  	return a != nil, a
   679  }
   680  
   681  type reassignVisitor struct {
   682  	name *Node
   683  }
   684  
   685  func (v *reassignVisitor) visit(n *Node) *Node {
   686  	if n == nil {
   687  		return nil
   688  	}
   689  	switch n.Op {
   690  	case OAS:
   691  		if n.Left == v.name && n != v.name.Name.Defn {
   692  			return n
   693  		}
   694  		return nil
   695  	case OAS2, OAS2FUNC, OAS2MAPR, OAS2DOTTYPE:
   696  		for _, p := range n.List.Slice() {
   697  			if p == v.name && n != v.name.Name.Defn {
   698  				return n
   699  			}
   700  		}
   701  		return nil
   702  	}
   703  	if a := v.visit(n.Left); a != nil {
   704  		return a
   705  	}
   706  	if a := v.visit(n.Right); a != nil {
   707  		return a
   708  	}
   709  	if a := v.visitList(n.List); a != nil {
   710  		return a
   711  	}
   712  	if a := v.visitList(n.Rlist); a != nil {
   713  		return a
   714  	}
   715  	if a := v.visitList(n.Ninit); a != nil {
   716  		return a
   717  	}
   718  	if a := v.visitList(n.Nbody); a != nil {
   719  		return a
   720  	}
   721  	return nil
   722  }
   723  
   724  func (v *reassignVisitor) visitList(l Nodes) *Node {
   725  	for _, n := range l.Slice() {
   726  		if a := v.visit(n); a != nil {
   727  			return a
   728  		}
   729  	}
   730  	return nil
   731  }
   732  
   733  // The result of mkinlcall MUST be assigned back to n, e.g.
   734  // 	n.Left = mkinlcall(n.Left, fn, isddd)
   735  func mkinlcall(n *Node, fn *Node, isddd bool) *Node {
   736  	save_safemode := safemode
   737  
   738  	// imported functions may refer to unsafe as long as the
   739  	// package was marked safe during import (already checked).
   740  	pkg := fnpkg(fn)
   741  
   742  	if pkg != localpkg && pkg != nil {
   743  		safemode = false
   744  	}
   745  	n = mkinlcall1(n, fn, isddd)
   746  	safemode = save_safemode
   747  	return n
   748  }
   749  
   750  func tinlvar(t *types.Field, inlvars map[*Node]*Node) *Node {
   751  	if asNode(t.Nname) != nil && !isblank(asNode(t.Nname)) {
   752  		inlvar := inlvars[asNode(t.Nname)]
   753  		if inlvar == nil {
   754  			Fatalf("missing inlvar for %v\n", asNode(t.Nname))
   755  		}
   756  		return inlvar
   757  	}
   758  
   759  	return typecheck(nblank, Erv|Easgn)
   760  }
   761  
   762  var inlgen int
   763  
   764  // If n is a call, and fn is a function with an inlinable body,
   765  // return an OINLCALL.
   766  // On return ninit has the parameter assignments, the nbody is the
   767  // inlined function body and list, rlist contain the input, output
   768  // parameters.
   769  // The result of mkinlcall1 MUST be assigned back to n, e.g.
   770  // 	n.Left = mkinlcall1(n.Left, fn, isddd)
   771  func mkinlcall1(n, fn *Node, isddd bool) *Node {
   772  	if fn.Func.Inl.Len() == 0 {
   773  		// No inlinable body.
   774  		return n
   775  	}
   776  
   777  	if fn == Curfn || fn.Name.Defn == Curfn {
   778  		// Can't recursively inline a function into itself.
   779  		return n
   780  	}
   781  
   782  	if Debug_typecheckinl == 0 {
   783  		typecheckinl(fn)
   784  	}
   785  
   786  	// We have a function node, and it has an inlineable body.
   787  	if Debug['m'] > 1 {
   788  		fmt.Printf("%v: inlining call to %v %#v { %#v }\n", n.Line(), fn.Sym, fn.Type, fn.Func.Inl)
   789  	} else if Debug['m'] != 0 {
   790  		fmt.Printf("%v: inlining call to %v\n", n.Line(), fn)
   791  	}
   792  	if Debug['m'] > 2 {
   793  		fmt.Printf("%v: Before inlining: %+v\n", n.Line(), n)
   794  	}
   795  
   796  	ninit := n.Ninit
   797  
   798  	// Make temp names to use instead of the originals.
   799  	inlvars := make(map[*Node]*Node)
   800  
   801  	// record formals/locals for later post-processing
   802  	var inlfvars []*Node
   803  
   804  	// Find declarations corresponding to inlineable body.
   805  	var dcl []*Node
   806  	if fn.Name.Defn != nil {
   807  		dcl = fn.Func.Inldcl.Slice() // local function
   808  
   809  		// handle captured variables when inlining closures
   810  		if c := fn.Name.Defn.Func.Closure; c != nil {
   811  			for _, v := range c.Func.Cvars.Slice() {
   812  				if v.Op == OXXX {
   813  					continue
   814  				}
   815  
   816  				o := v.Name.Param.Outer
   817  				// make sure the outer param matches the inlining location
   818  				// NB: if we enabled inlining of functions containing OCLOSURE or refined
   819  				// the reassigned check via some sort of copy propagation this would most
   820  				// likely need to be changed to a loop to walk up to the correct Param
   821  				if o == nil || (o.Name.Curfn != Curfn && o.Name.Curfn.Func.Closure != Curfn) {
   822  					Fatalf("%v: unresolvable capture %v %v\n", n.Line(), fn, v)
   823  				}
   824  
   825  				if v.Name.Byval() {
   826  					iv := typecheck(inlvar(v), Erv)
   827  					ninit.Append(nod(ODCL, iv, nil))
   828  					ninit.Append(typecheck(nod(OAS, iv, o), Etop))
   829  					inlvars[v] = iv
   830  				} else {
   831  					addr := newname(lookup("&" + v.Sym.Name))
   832  					addr.Type = types.NewPtr(v.Type)
   833  					ia := typecheck(inlvar(addr), Erv)
   834  					ninit.Append(nod(ODCL, ia, nil))
   835  					ninit.Append(typecheck(nod(OAS, ia, nod(OADDR, o, nil)), Etop))
   836  					inlvars[addr] = ia
   837  
   838  					// When capturing by reference, all occurrence of the captured var
   839  					// must be substituted with dereference of the temporary address
   840  					inlvars[v] = typecheck(nod(OIND, ia, nil), Erv)
   841  				}
   842  			}
   843  		}
   844  	} else {
   845  		dcl = fn.Func.Dcl // imported function
   846  	}
   847  
   848  	for _, ln := range dcl {
   849  		if ln.Op != ONAME {
   850  			continue
   851  		}
   852  		if ln.Class() == PPARAMOUT { // return values handled below.
   853  			continue
   854  		}
   855  		if ln.isParamStackCopy() { // ignore the on-stack copy of a parameter that moved to the heap
   856  			continue
   857  		}
   858  		inlvars[ln] = typecheck(inlvar(ln), Erv)
   859  		if ln.Class() == PPARAM || ln.Name.Param.Stackcopy != nil && ln.Name.Param.Stackcopy.Class() == PPARAM {
   860  			ninit.Append(nod(ODCL, inlvars[ln], nil))
   861  		}
   862  		if genDwarfInline > 0 {
   863  			inlf := inlvars[ln]
   864  			if ln.Class() == PPARAM {
   865  				inlf.SetInlFormal(true)
   866  			} else {
   867  				inlf.SetInlLocal(true)
   868  			}
   869  			inlf.Pos = ln.Pos
   870  			inlfvars = append(inlfvars, inlf)
   871  		}
   872  	}
   873  
   874  	// temporaries for return values.
   875  	var retvars []*Node
   876  	for i, t := range fn.Type.Results().Fields().Slice() {
   877  		var m *Node
   878  		var mpos src.XPos
   879  		if t != nil && asNode(t.Nname) != nil && !isblank(asNode(t.Nname)) {
   880  			mpos = asNode(t.Nname).Pos
   881  			m = inlvar(asNode(t.Nname))
   882  			m = typecheck(m, Erv)
   883  			inlvars[asNode(t.Nname)] = m
   884  		} else {
   885  			// anonymous return values, synthesize names for use in assignment that replaces return
   886  			m = retvar(t, i)
   887  		}
   888  
   889  		if genDwarfInline > 0 {
   890  			// Don't update the src.Pos on a return variable if it
   891  			// was manufactured by the inliner (e.g. "~R2"); such vars
   892  			// were not part of the original callee.
   893  			if !strings.HasPrefix(m.Sym.Name, "~R") {
   894  				m.SetInlFormal(true)
   895  				m.Pos = mpos
   896  				inlfvars = append(inlfvars, m)
   897  			}
   898  		}
   899  
   900  		ninit.Append(nod(ODCL, m, nil))
   901  		retvars = append(retvars, m)
   902  	}
   903  
   904  	// Assign arguments to the parameters' temp names.
   905  	as := nod(OAS2, nil, nil)
   906  	as.Rlist.Set(n.List.Slice())
   907  
   908  	// For non-dotted calls to variadic functions, we assign the
   909  	// variadic parameter's temp name separately.
   910  	var vas *Node
   911  
   912  	if fn.IsMethod() {
   913  		rcv := fn.Type.Recv()
   914  
   915  		if n.Left.Op == ODOTMETH {
   916  			// For x.M(...), assign x directly to the
   917  			// receiver parameter.
   918  			if n.Left.Left == nil {
   919  				Fatalf("method call without receiver: %+v", n)
   920  			}
   921  			ras := nod(OAS, tinlvar(rcv, inlvars), n.Left.Left)
   922  			ras = typecheck(ras, Etop)
   923  			ninit.Append(ras)
   924  		} else {
   925  			// For T.M(...), add the receiver parameter to
   926  			// as.List, so it's assigned by the normal
   927  			// arguments.
   928  			if as.Rlist.Len() == 0 {
   929  				Fatalf("non-method call to method without first arg: %+v", n)
   930  			}
   931  			as.List.Append(tinlvar(rcv, inlvars))
   932  		}
   933  	}
   934  
   935  	for _, param := range fn.Type.Params().Fields().Slice() {
   936  		// For ordinary parameters or variadic parameters in
   937  		// dotted calls, just add the variable to the
   938  		// assignment list, and we're done.
   939  		if !param.Isddd() || isddd {
   940  			as.List.Append(tinlvar(param, inlvars))
   941  			continue
   942  		}
   943  
   944  		// Otherwise, we need to collect the remaining values
   945  		// to pass as a slice.
   946  
   947  		numvals := n.List.Len()
   948  		if numvals == 1 && n.List.First().Type.IsFuncArgStruct() {
   949  			numvals = n.List.First().Type.NumFields()
   950  		}
   951  
   952  		x := as.List.Len()
   953  		for as.List.Len() < numvals {
   954  			as.List.Append(argvar(param.Type, as.List.Len()))
   955  		}
   956  		varargs := as.List.Slice()[x:]
   957  
   958  		vas = nod(OAS, tinlvar(param, inlvars), nil)
   959  		if len(varargs) == 0 {
   960  			vas.Right = nodnil()
   961  			vas.Right.Type = param.Type
   962  		} else {
   963  			vas.Right = nod(OCOMPLIT, nil, typenod(param.Type))
   964  			vas.Right.List.Set(varargs)
   965  		}
   966  	}
   967  
   968  	if as.Rlist.Len() != 0 {
   969  		as = typecheck(as, Etop)
   970  		ninit.Append(as)
   971  	}
   972  
   973  	if vas != nil {
   974  		vas = typecheck(vas, Etop)
   975  		ninit.Append(vas)
   976  	}
   977  
   978  	// Zero the return parameters.
   979  	for _, n := range retvars {
   980  		ras := nod(OAS, n, nil)
   981  		ras = typecheck(ras, Etop)
   982  		ninit.Append(ras)
   983  	}
   984  
   985  	retlabel := autolabel(".i")
   986  	retlabel.Etype = 1 // flag 'safe' for escape analysis (no backjumps)
   987  
   988  	inlgen++
   989  
   990  	parent := -1
   991  	if b := Ctxt.PosTable.Pos(n.Pos).Base(); b != nil {
   992  		parent = b.InliningIndex()
   993  	}
   994  	newIndex := Ctxt.InlTree.Add(parent, n.Pos, fn.Sym.Linksym())
   995  
   996  	if genDwarfInline > 0 {
   997  		if !fn.Sym.Linksym().WasInlined() {
   998  			Ctxt.DwFixups.SetPrecursorFunc(fn.Sym.Linksym(), fn)
   999  			fn.Sym.Linksym().Set(obj.AttrWasInlined, true)
  1000  		}
  1001  	}
  1002  
  1003  	subst := inlsubst{
  1004  		retlabel:    retlabel,
  1005  		retvars:     retvars,
  1006  		inlvars:     inlvars,
  1007  		bases:       make(map[*src.PosBase]*src.PosBase),
  1008  		newInlIndex: newIndex,
  1009  	}
  1010  
  1011  	body := subst.list(fn.Func.Inl)
  1012  
  1013  	lab := nod(OLABEL, retlabel, nil)
  1014  	body = append(body, lab)
  1015  
  1016  	typecheckslice(body, Etop)
  1017  
  1018  	if genDwarfInline > 0 {
  1019  		for _, v := range inlfvars {
  1020  			v.Pos = subst.updatedPos(v.Pos)
  1021  		}
  1022  	}
  1023  
  1024  	//dumplist("ninit post", ninit);
  1025  
  1026  	call := nod(OINLCALL, nil, nil)
  1027  	call.Ninit.Set(ninit.Slice())
  1028  	call.Nbody.Set(body)
  1029  	call.Rlist.Set(retvars)
  1030  	call.Type = n.Type
  1031  	call.SetTypecheck(1)
  1032  
  1033  	// transitive inlining
  1034  	// might be nice to do this before exporting the body,
  1035  	// but can't emit the body with inlining expanded.
  1036  	// instead we emit the things that the body needs
  1037  	// and each use must redo the inlining.
  1038  	// luckily these are small.
  1039  	inlnodelist(call.Nbody)
  1040  	for _, n := range call.Nbody.Slice() {
  1041  		if n.Op == OINLCALL {
  1042  			inlconv2stmt(n)
  1043  		}
  1044  	}
  1045  
  1046  	if Debug['m'] > 2 {
  1047  		fmt.Printf("%v: After inlining %+v\n\n", call.Line(), call)
  1048  	}
  1049  
  1050  	return call
  1051  }
  1052  
  1053  // Every time we expand a function we generate a new set of tmpnames,
  1054  // PAUTO's in the calling functions, and link them off of the
  1055  // PPARAM's, PAUTOS and PPARAMOUTs of the called function.
  1056  func inlvar(var_ *Node) *Node {
  1057  	if Debug['m'] > 3 {
  1058  		fmt.Printf("inlvar %+v\n", var_)
  1059  	}
  1060  
  1061  	n := newname(var_.Sym)
  1062  	n.Type = var_.Type
  1063  	n.SetClass(PAUTO)
  1064  	n.Name.SetUsed(true)
  1065  	n.Name.Curfn = Curfn // the calling function, not the called one
  1066  	n.SetAddrtaken(var_.Addrtaken())
  1067  
  1068  	Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
  1069  	return n
  1070  }
  1071  
  1072  // Synthesize a variable to store the inlined function's results in.
  1073  func retvar(t *types.Field, i int) *Node {
  1074  	n := newname(lookupN("~R", i))
  1075  	n.Type = t.Type
  1076  	n.SetClass(PAUTO)
  1077  	n.Name.SetUsed(true)
  1078  	n.Name.Curfn = Curfn // the calling function, not the called one
  1079  	Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
  1080  	return n
  1081  }
  1082  
  1083  // Synthesize a variable to store the inlined function's arguments
  1084  // when they come from a multiple return call.
  1085  func argvar(t *types.Type, i int) *Node {
  1086  	n := newname(lookupN("~arg", i))
  1087  	n.Type = t.Elem()
  1088  	n.SetClass(PAUTO)
  1089  	n.Name.SetUsed(true)
  1090  	n.Name.Curfn = Curfn // the calling function, not the called one
  1091  	Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
  1092  	return n
  1093  }
  1094  
  1095  // The inlsubst type implements the actual inlining of a single
  1096  // function call.
  1097  type inlsubst struct {
  1098  	// Target of the goto substituted in place of a return.
  1099  	retlabel *Node
  1100  
  1101  	// Temporary result variables.
  1102  	retvars []*Node
  1103  
  1104  	inlvars map[*Node]*Node
  1105  
  1106  	// bases maps from original PosBase to PosBase with an extra
  1107  	// inlined call frame.
  1108  	bases map[*src.PosBase]*src.PosBase
  1109  
  1110  	// newInlIndex is the index of the inlined call frame to
  1111  	// insert for inlined nodes.
  1112  	newInlIndex int
  1113  }
  1114  
  1115  // list inlines a list of nodes.
  1116  func (subst *inlsubst) list(ll Nodes) []*Node {
  1117  	s := make([]*Node, 0, ll.Len())
  1118  	for _, n := range ll.Slice() {
  1119  		s = append(s, subst.node(n))
  1120  	}
  1121  	return s
  1122  }
  1123  
  1124  // node recursively copies a node from the saved pristine body of the
  1125  // inlined function, substituting references to input/output
  1126  // parameters with ones to the tmpnames, and substituting returns with
  1127  // assignments to the output.
  1128  func (subst *inlsubst) node(n *Node) *Node {
  1129  	if n == nil {
  1130  		return nil
  1131  	}
  1132  
  1133  	switch n.Op {
  1134  	case ONAME:
  1135  		if inlvar := subst.inlvars[n]; inlvar != nil { // These will be set during inlnode
  1136  			if Debug['m'] > 2 {
  1137  				fmt.Printf("substituting name %+v  ->  %+v\n", n, inlvar)
  1138  			}
  1139  			return inlvar
  1140  		}
  1141  
  1142  		if Debug['m'] > 2 {
  1143  			fmt.Printf("not substituting name %+v\n", n)
  1144  		}
  1145  		return n
  1146  
  1147  	case OLITERAL, OTYPE:
  1148  		// If n is a named constant or type, we can continue
  1149  		// using it in the inline copy. Otherwise, make a copy
  1150  		// so we can update the line number.
  1151  		if n.Sym != nil {
  1152  			return n
  1153  		}
  1154  
  1155  		// Since we don't handle bodies with closures, this return is guaranteed to belong to the current inlined function.
  1156  
  1157  	//		dump("Return before substitution", n);
  1158  	case ORETURN:
  1159  		m := nod(OGOTO, subst.retlabel, nil)
  1160  		m.Ninit.Set(subst.list(n.Ninit))
  1161  
  1162  		if len(subst.retvars) != 0 && n.List.Len() != 0 {
  1163  			as := nod(OAS2, nil, nil)
  1164  
  1165  			// Make a shallow copy of retvars.
  1166  			// Otherwise OINLCALL.Rlist will be the same list,
  1167  			// and later walk and typecheck may clobber it.
  1168  			for _, n := range subst.retvars {
  1169  				as.List.Append(n)
  1170  			}
  1171  			as.Rlist.Set(subst.list(n.List))
  1172  			as = typecheck(as, Etop)
  1173  			m.Ninit.Append(as)
  1174  		}
  1175  
  1176  		typecheckslice(m.Ninit.Slice(), Etop)
  1177  		m = typecheck(m, Etop)
  1178  
  1179  		//		dump("Return after substitution", m);
  1180  		return m
  1181  
  1182  	case OGOTO, OLABEL:
  1183  		m := nod(OXXX, nil, nil)
  1184  		*m = *n
  1185  		m.Pos = subst.updatedPos(m.Pos)
  1186  		m.Ninit.Set(nil)
  1187  		p := fmt.Sprintf("%s·%d", n.Left.Sym.Name, inlgen)
  1188  		m.Left = newname(lookup(p))
  1189  
  1190  		return m
  1191  	}
  1192  
  1193  	m := nod(OXXX, nil, nil)
  1194  	*m = *n
  1195  	m.Pos = subst.updatedPos(m.Pos)
  1196  	m.Ninit.Set(nil)
  1197  
  1198  	if n.Op == OCLOSURE {
  1199  		Fatalf("cannot inline function containing closure: %+v", n)
  1200  	}
  1201  
  1202  	m.Left = subst.node(n.Left)
  1203  	m.Right = subst.node(n.Right)
  1204  	m.List.Set(subst.list(n.List))
  1205  	m.Rlist.Set(subst.list(n.Rlist))
  1206  	m.Ninit.Set(append(m.Ninit.Slice(), subst.list(n.Ninit)...))
  1207  	m.Nbody.Set(subst.list(n.Nbody))
  1208  
  1209  	return m
  1210  }
  1211  
  1212  func (subst *inlsubst) updatedPos(xpos src.XPos) src.XPos {
  1213  	pos := Ctxt.PosTable.Pos(xpos)
  1214  	oldbase := pos.Base() // can be nil
  1215  	newbase := subst.bases[oldbase]
  1216  	if newbase == nil {
  1217  		newbase = src.NewInliningBase(oldbase, subst.newInlIndex)
  1218  		subst.bases[oldbase] = newbase
  1219  	}
  1220  	pos.SetBase(newbase)
  1221  	return Ctxt.PosTable.XPos(pos)
  1222  }