github.com/yukk001/go1.10.8@v0.0.0-20190813125351-6df2d3982e20/src/cmd/compile/internal/gc/inl.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 // 5 // The inlining facility makes 2 passes: first caninl determines which 6 // functions are suitable for inlining, and for those that are it 7 // saves a copy of the body. Then inlcalls walks each function body to 8 // expand calls to inlinable functions. 9 // 10 // The debug['l'] flag controls the aggressiveness. Note that main() swaps level 0 and 1, 11 // making 1 the default and -l disable. Additional levels (beyond -l) may be buggy and 12 // are not supported. 13 // 0: disabled 14 // 1: 80-nodes leaf functions, oneliners, lazy typechecking (default) 15 // 2: (unassigned) 16 // 3: allow variadic functions 17 // 4: allow non-leaf functions 18 // 19 // At some point this may get another default and become switch-offable with -N. 20 // 21 // The -d typcheckinl flag enables early typechecking of all imported bodies, 22 // which is useful to flush out bugs. 23 // 24 // The debug['m'] flag enables diagnostic output. a single -m is useful for verifying 25 // which calls get inlined or not, more is for debugging, and may go away at any point. 26 // 27 // TODO: 28 // - inline functions with ... args 29 30 package gc 31 32 import ( 33 "cmd/compile/internal/types" 34 "cmd/internal/obj" 35 "cmd/internal/src" 36 "fmt" 37 "strings" 38 ) 39 40 // Get the function's package. For ordinary functions it's on the ->sym, but for imported methods 41 // the ->sym can be re-used in the local package, so peel it off the receiver's type. 42 func fnpkg(fn *Node) *types.Pkg { 43 if fn.IsMethod() { 44 // method 45 rcvr := fn.Type.Recv().Type 46 47 if rcvr.IsPtr() { 48 rcvr = rcvr.Elem() 49 } 50 if rcvr.Sym == nil { 51 Fatalf("receiver with no sym: [%v] %L (%v)", fn.Sym, fn, rcvr) 52 } 53 return rcvr.Sym.Pkg 54 } 55 56 // non-method 57 return fn.Sym.Pkg 58 } 59 60 // Lazy typechecking of imported bodies. For local functions, caninl will set ->typecheck 61 // because they're a copy of an already checked body. 62 func typecheckinl(fn *Node) { 63 lno := setlineno(fn) 64 65 // typecheckinl is only for imported functions; 66 // their bodies may refer to unsafe as long as the package 67 // was marked safe during import (which was checked then). 68 // the ->inl of a local function has been typechecked before caninl copied it. 69 pkg := fnpkg(fn) 70 71 if pkg == localpkg || pkg == nil { 72 return // typecheckinl on local function 73 } 74 75 if Debug['m'] > 2 || Debug_export != 0 { 76 fmt.Printf("typecheck import [%v] %L { %#v }\n", fn.Sym, fn, fn.Func.Inl) 77 } 78 79 save_safemode := safemode 80 safemode = false 81 82 savefn := Curfn 83 Curfn = fn 84 typecheckslice(fn.Func.Inl.Slice(), Etop) 85 Curfn = savefn 86 87 safemode = save_safemode 88 89 lineno = lno 90 } 91 92 // Caninl determines whether fn is inlineable. 93 // If so, caninl saves fn->nbody in fn->inl and substitutes it with a copy. 94 // fn and ->nbody will already have been typechecked. 95 func caninl(fn *Node) { 96 if fn.Op != ODCLFUNC { 97 Fatalf("caninl %v", fn) 98 } 99 if fn.Func.Nname == nil { 100 Fatalf("caninl no nname %+v", fn) 101 } 102 103 var reason string // reason, if any, that the function was not inlined 104 if Debug['m'] > 1 { 105 defer func() { 106 if reason != "" { 107 fmt.Printf("%v: cannot inline %v: %s\n", fn.Line(), fn.Func.Nname, reason) 108 } 109 }() 110 } 111 112 // If marked "go:noinline", don't inline 113 if fn.Func.Pragma&Noinline != 0 { 114 reason = "marked go:noinline" 115 return 116 } 117 118 // If marked "go:cgo_unsafe_args", don't inline, since the 119 // function makes assumptions about its argument frame layout. 120 if fn.Func.Pragma&CgoUnsafeArgs != 0 { 121 reason = "marked go:cgo_unsafe_args" 122 return 123 } 124 125 // The nowritebarrierrec checker currently works at function 126 // granularity, so inlining yeswritebarrierrec functions can 127 // confuse it (#22342). As a workaround, disallow inlining 128 // them for now. 129 if fn.Func.Pragma&Yeswritebarrierrec != 0 { 130 reason = "marked go:yeswritebarrierrec" 131 return 132 } 133 134 // If fn has no body (is defined outside of Go), cannot inline it. 135 if fn.Nbody.Len() == 0 { 136 reason = "no function body" 137 return 138 } 139 140 if fn.Typecheck() == 0 { 141 Fatalf("caninl on non-typechecked function %v", fn) 142 } 143 144 // can't handle ... args yet 145 if Debug['l'] < 3 { 146 f := fn.Type.Params().Fields() 147 if len := f.Len(); len > 0 { 148 if t := f.Index(len - 1); t.Isddd() { 149 reason = "has ... args" 150 return 151 } 152 } 153 } 154 155 // Runtime package must not be instrumented. 156 // Instrument skips runtime package. However, some runtime code can be 157 // inlined into other packages and instrumented there. To avoid this, 158 // we disable inlining of runtime functions when instrumenting. 159 // The example that we observed is inlining of LockOSThread, 160 // which lead to false race reports on m contents. 161 if instrumenting && myimportpath == "runtime" { 162 reason = "instrumenting and is runtime function" 163 return 164 } 165 166 n := fn.Func.Nname 167 if n.Func.InlinabilityChecked() { 168 return 169 } 170 defer n.Func.SetInlinabilityChecked(true) 171 172 const maxBudget = 80 173 visitor := hairyVisitor{budget: maxBudget} 174 if visitor.visitList(fn.Nbody) { 175 reason = visitor.reason 176 return 177 } 178 if visitor.budget < 0 { 179 reason = fmt.Sprintf("function too complex: cost %d exceeds budget %d", maxBudget-visitor.budget, maxBudget) 180 return 181 } 182 183 savefn := Curfn 184 Curfn = fn 185 186 n.Func.Inl.Set(fn.Nbody.Slice()) 187 fn.Nbody.Set(inlcopylist(n.Func.Inl.Slice())) 188 inldcl := inlcopylist(n.Name.Defn.Func.Dcl) 189 n.Func.Inldcl.Set(inldcl) 190 n.Func.InlCost = maxBudget - visitor.budget 191 192 // hack, TODO, check for better way to link method nodes back to the thing with the ->inl 193 // this is so export can find the body of a method 194 fn.Type.FuncType().Nname = asTypesNode(n) 195 196 if Debug['m'] > 1 { 197 fmt.Printf("%v: can inline %#v as: %#v { %#v }\n", fn.Line(), n, fn.Type, n.Func.Inl) 198 } else if Debug['m'] != 0 { 199 fmt.Printf("%v: can inline %v\n", fn.Line(), n) 200 } 201 202 Curfn = savefn 203 } 204 205 // inlFlood marks n's inline body for export and recursively ensures 206 // all called functions are marked too. 207 func inlFlood(n *Node) { 208 if n == nil { 209 return 210 } 211 if n.Op != ONAME || n.Class() != PFUNC { 212 Fatalf("inlFlood: unexpected %v, %v, %v", n, n.Op, n.Class()) 213 } 214 if n.Func == nil { 215 // TODO(mdempsky): Should init have a Func too? 216 if n.Sym.Name == "init" { 217 return 218 } 219 Fatalf("inlFlood: missing Func on %v", n) 220 } 221 if n.Func.Inl.Len() == 0 { 222 return 223 } 224 225 if n.Func.ExportInline() { 226 return 227 } 228 n.Func.SetExportInline(true) 229 230 typecheckinl(n) 231 232 // Recursively flood any functions called by this one. 233 inspectList(n.Func.Inl, func(n *Node) bool { 234 switch n.Op { 235 case OCALLFUNC, OCALLMETH: 236 inlFlood(asNode(n.Left.Type.Nname())) 237 } 238 return true 239 }) 240 } 241 242 // hairyVisitor visits a function body to determine its inlining 243 // hairiness and whether or not it can be inlined. 244 type hairyVisitor struct { 245 budget int32 246 reason string 247 } 248 249 // Look for anything we want to punt on. 250 func (v *hairyVisitor) visitList(ll Nodes) bool { 251 for _, n := range ll.Slice() { 252 if v.visit(n) { 253 return true 254 } 255 } 256 return false 257 } 258 259 func (v *hairyVisitor) visit(n *Node) bool { 260 if n == nil { 261 return false 262 } 263 264 switch n.Op { 265 // Call is okay if inlinable and we have the budget for the body. 266 case OCALLFUNC: 267 if isIntrinsicCall(n) { 268 v.budget-- 269 break 270 } 271 // Functions that call runtime.getcaller{pc,sp} can not be inlined 272 // because getcaller{pc,sp} expect a pointer to the caller's first argument. 273 if n.Left.Op == ONAME && n.Left.Class() == PFUNC && isRuntimePkg(n.Left.Sym.Pkg) { 274 fn := n.Left.Sym.Name 275 if fn == "getcallerpc" || fn == "getcallersp" { 276 v.reason = "call to " + fn 277 return true 278 } 279 } 280 281 if fn := n.Left.Func; fn != nil && fn.Inl.Len() != 0 { 282 v.budget -= fn.InlCost 283 break 284 } 285 if n.Left.isMethodExpression() { 286 if d := asNode(n.Left.Sym.Def); d != nil && d.Func.Inl.Len() != 0 { 287 v.budget -= d.Func.InlCost 288 break 289 } 290 } 291 // TODO(mdempsky): Budget for OCLOSURE calls if we 292 // ever allow that. See #15561 and #23093. 293 if Debug['l'] < 4 { 294 v.reason = "non-leaf function" 295 return true 296 } 297 298 // Call is okay if inlinable and we have the budget for the body. 299 case OCALLMETH: 300 t := n.Left.Type 301 if t == nil { 302 Fatalf("no function type for [%p] %+v\n", n.Left, n.Left) 303 } 304 if t.Nname() == nil { 305 Fatalf("no function definition for [%p] %+v\n", t, t) 306 } 307 if inlfn := asNode(t.FuncType().Nname).Func; inlfn.Inl.Len() != 0 { 308 v.budget -= inlfn.InlCost 309 break 310 } 311 if Debug['l'] < 4 { 312 v.reason = "non-leaf method" 313 return true 314 } 315 316 // Things that are too hairy, irrespective of the budget 317 case OCALL, OCALLINTER, OPANIC: 318 if Debug['l'] < 4 { 319 v.reason = "non-leaf op " + n.Op.String() 320 return true 321 } 322 323 case ORECOVER: 324 // recover matches the argument frame pointer to find 325 // the right panic value, so it needs an argument frame. 326 v.reason = "call to recover" 327 return true 328 329 case OCLOSURE, 330 OCALLPART, 331 ORANGE, 332 OFOR, 333 OFORUNTIL, 334 OSELECT, 335 OTYPESW, 336 OPROC, 337 ODEFER, 338 ODCLTYPE, // can't print yet 339 OBREAK, 340 ORETJMP: 341 v.reason = "unhandled op " + n.Op.String() 342 return true 343 344 case ODCLCONST, OEMPTY, OFALL, OLABEL: 345 // These nodes don't produce code; omit from inlining budget. 346 return false 347 } 348 349 v.budget-- 350 // TODO(mdempsky/josharian): Hacks to appease toolstash; remove. 351 // See issue 17566 and CL 31674 for discussion. 352 switch n.Op { 353 case OSTRUCTKEY: 354 v.budget-- 355 case OSLICE, OSLICEARR, OSLICESTR: 356 v.budget-- 357 case OSLICE3, OSLICE3ARR: 358 v.budget -= 2 359 } 360 361 // When debugging, don't stop early, to get full cost of inlining this function 362 if v.budget < 0 && Debug['m'] < 2 { 363 return true 364 } 365 366 return v.visit(n.Left) || v.visit(n.Right) || 367 v.visitList(n.List) || v.visitList(n.Rlist) || 368 v.visitList(n.Ninit) || v.visitList(n.Nbody) 369 } 370 371 // Inlcopy and inlcopylist recursively copy the body of a function. 372 // Any name-like node of non-local class is marked for re-export by adding it to 373 // the exportlist. 374 func inlcopylist(ll []*Node) []*Node { 375 s := make([]*Node, 0, len(ll)) 376 for _, n := range ll { 377 s = append(s, inlcopy(n)) 378 } 379 return s 380 } 381 382 func inlcopy(n *Node) *Node { 383 if n == nil { 384 return nil 385 } 386 387 switch n.Op { 388 case ONAME, OTYPE, OLITERAL: 389 return n 390 } 391 392 m := *n 393 if m.Func != nil { 394 m.Func.Inl.Set(nil) 395 } 396 m.Left = inlcopy(n.Left) 397 m.Right = inlcopy(n.Right) 398 m.List.Set(inlcopylist(n.List.Slice())) 399 m.Rlist.Set(inlcopylist(n.Rlist.Slice())) 400 m.Ninit.Set(inlcopylist(n.Ninit.Slice())) 401 m.Nbody.Set(inlcopylist(n.Nbody.Slice())) 402 403 return &m 404 } 405 406 // Inlcalls/nodelist/node walks fn's statements and expressions and substitutes any 407 // calls made to inlineable functions. This is the external entry point. 408 func inlcalls(fn *Node) { 409 savefn := Curfn 410 Curfn = fn 411 fn = inlnode(fn) 412 if fn != Curfn { 413 Fatalf("inlnode replaced curfn") 414 } 415 Curfn = savefn 416 } 417 418 // Turn an OINLCALL into a statement. 419 func inlconv2stmt(n *Node) { 420 n.Op = OBLOCK 421 422 // n->ninit stays 423 n.List.Set(n.Nbody.Slice()) 424 425 n.Nbody.Set(nil) 426 n.Rlist.Set(nil) 427 } 428 429 // Turn an OINLCALL into a single valued expression. 430 // The result of inlconv2expr MUST be assigned back to n, e.g. 431 // n.Left = inlconv2expr(n.Left) 432 func inlconv2expr(n *Node) *Node { 433 r := n.Rlist.First() 434 return addinit(r, append(n.Ninit.Slice(), n.Nbody.Slice()...)) 435 } 436 437 // Turn the rlist (with the return values) of the OINLCALL in 438 // n into an expression list lumping the ninit and body 439 // containing the inlined statements on the first list element so 440 // order will be preserved Used in return, oas2func and call 441 // statements. 442 func inlconv2list(n *Node) []*Node { 443 if n.Op != OINLCALL || n.Rlist.Len() == 0 { 444 Fatalf("inlconv2list %+v\n", n) 445 } 446 447 s := n.Rlist.Slice() 448 s[0] = addinit(s[0], append(n.Ninit.Slice(), n.Nbody.Slice()...)) 449 return s 450 } 451 452 func inlnodelist(l Nodes) { 453 s := l.Slice() 454 for i := range s { 455 s[i] = inlnode(s[i]) 456 } 457 } 458 459 // inlnode recurses over the tree to find inlineable calls, which will 460 // be turned into OINLCALLs by mkinlcall. When the recursion comes 461 // back up will examine left, right, list, rlist, ninit, ntest, nincr, 462 // nbody and nelse and use one of the 4 inlconv/glue functions above 463 // to turn the OINLCALL into an expression, a statement, or patch it 464 // in to this nodes list or rlist as appropriate. 465 // NOTE it makes no sense to pass the glue functions down the 466 // recursion to the level where the OINLCALL gets created because they 467 // have to edit /this/ n, so you'd have to push that one down as well, 468 // but then you may as well do it here. so this is cleaner and 469 // shorter and less complicated. 470 // The result of inlnode MUST be assigned back to n, e.g. 471 // n.Left = inlnode(n.Left) 472 func inlnode(n *Node) *Node { 473 if n == nil { 474 return n 475 } 476 477 switch n.Op { 478 // inhibit inlining of their argument 479 case ODEFER, OPROC: 480 switch n.Left.Op { 481 case OCALLFUNC, OCALLMETH: 482 n.Left.SetNoInline(true) 483 } 484 return n 485 486 // TODO do them here (or earlier), 487 // so escape analysis can avoid more heapmoves. 488 case OCLOSURE: 489 return n 490 } 491 492 lno := setlineno(n) 493 494 inlnodelist(n.Ninit) 495 for _, n1 := range n.Ninit.Slice() { 496 if n1.Op == OINLCALL { 497 inlconv2stmt(n1) 498 } 499 } 500 501 n.Left = inlnode(n.Left) 502 if n.Left != nil && n.Left.Op == OINLCALL { 503 n.Left = inlconv2expr(n.Left) 504 } 505 506 n.Right = inlnode(n.Right) 507 if n.Right != nil && n.Right.Op == OINLCALL { 508 if n.Op == OFOR || n.Op == OFORUNTIL { 509 inlconv2stmt(n.Right) 510 } else { 511 n.Right = inlconv2expr(n.Right) 512 } 513 } 514 515 inlnodelist(n.List) 516 switch n.Op { 517 case OBLOCK: 518 for _, n2 := range n.List.Slice() { 519 if n2.Op == OINLCALL { 520 inlconv2stmt(n2) 521 } 522 } 523 524 case ORETURN, OCALLFUNC, OCALLMETH, OCALLINTER, OAPPEND, OCOMPLEX: 525 // if we just replaced arg in f(arg()) or return arg with an inlined call 526 // and arg returns multiple values, glue as list 527 if n.List.Len() == 1 && n.List.First().Op == OINLCALL && n.List.First().Rlist.Len() > 1 { 528 n.List.Set(inlconv2list(n.List.First())) 529 break 530 } 531 fallthrough 532 533 default: 534 s := n.List.Slice() 535 for i1, n1 := range s { 536 if n1 != nil && n1.Op == OINLCALL { 537 s[i1] = inlconv2expr(s[i1]) 538 } 539 } 540 } 541 542 inlnodelist(n.Rlist) 543 if n.Op == OAS2FUNC && n.Rlist.First().Op == OINLCALL { 544 n.Rlist.Set(inlconv2list(n.Rlist.First())) 545 n.Op = OAS2 546 n.SetTypecheck(0) 547 n = typecheck(n, Etop) 548 } else { 549 s := n.Rlist.Slice() 550 for i1, n1 := range s { 551 if n1.Op == OINLCALL { 552 if n.Op == OIF { 553 inlconv2stmt(n1) 554 } else { 555 s[i1] = inlconv2expr(s[i1]) 556 } 557 } 558 } 559 } 560 561 inlnodelist(n.Nbody) 562 for _, n := range n.Nbody.Slice() { 563 if n.Op == OINLCALL { 564 inlconv2stmt(n) 565 } 566 } 567 568 // with all the branches out of the way, it is now time to 569 // transmogrify this node itself unless inhibited by the 570 // switch at the top of this function. 571 switch n.Op { 572 case OCALLFUNC, OCALLMETH: 573 if n.NoInline() { 574 return n 575 } 576 } 577 578 switch n.Op { 579 case OCALLFUNC: 580 if Debug['m'] > 3 { 581 fmt.Printf("%v:call to func %+v\n", n.Line(), n.Left) 582 } 583 if n.Left.Func != nil && n.Left.Func.Inl.Len() != 0 && !isIntrinsicCall(n) { // normal case 584 n = mkinlcall(n, n.Left, n.Isddd()) 585 } else if n.Left.isMethodExpression() && asNode(n.Left.Sym.Def) != nil { 586 n = mkinlcall(n, asNode(n.Left.Sym.Def), n.Isddd()) 587 } else if n.Left.Op == OCLOSURE { 588 if f := inlinableClosure(n.Left); f != nil { 589 n = mkinlcall(n, f, n.Isddd()) 590 } 591 } else if n.Left.Op == ONAME && n.Left.Name != nil && n.Left.Name.Defn != nil { 592 if d := n.Left.Name.Defn; d.Op == OAS && d.Right.Op == OCLOSURE { 593 if f := inlinableClosure(d.Right); f != nil { 594 // NB: this check is necessary to prevent indirect re-assignment of the variable 595 // having the address taken after the invocation or only used for reads is actually fine 596 // but we have no easy way to distinguish the safe cases 597 if d.Left.Addrtaken() { 598 if Debug['m'] > 1 { 599 fmt.Printf("%v: cannot inline escaping closure variable %v\n", n.Line(), n.Left) 600 } 601 break 602 } 603 604 // ensure the variable is never re-assigned 605 if unsafe, a := reassigned(n.Left); unsafe { 606 if Debug['m'] > 1 { 607 if a != nil { 608 fmt.Printf("%v: cannot inline re-assigned closure variable at %v: %v\n", n.Line(), a.Line(), a) 609 } else { 610 fmt.Printf("%v: cannot inline global closure variable %v\n", n.Line(), n.Left) 611 } 612 } 613 break 614 } 615 n = mkinlcall(n, f, n.Isddd()) 616 } 617 } 618 } 619 620 case OCALLMETH: 621 if Debug['m'] > 3 { 622 fmt.Printf("%v:call to meth %L\n", n.Line(), n.Left.Right) 623 } 624 625 // typecheck should have resolved ODOTMETH->type, whose nname points to the actual function. 626 if n.Left.Type == nil { 627 Fatalf("no function type for [%p] %+v\n", n.Left, n.Left) 628 } 629 630 if n.Left.Type.Nname() == nil { 631 Fatalf("no function definition for [%p] %+v\n", n.Left.Type, n.Left.Type) 632 } 633 634 n = mkinlcall(n, asNode(n.Left.Type.FuncType().Nname), n.Isddd()) 635 } 636 637 lineno = lno 638 return n 639 } 640 641 // inlinableClosure takes an OCLOSURE node and follows linkage to the matching ONAME with 642 // the inlinable body. Returns nil if the function is not inlinable. 643 func inlinableClosure(n *Node) *Node { 644 c := n.Func.Closure 645 caninl(c) 646 f := c.Func.Nname 647 if f == nil || f.Func.Inl.Len() == 0 { 648 return nil 649 } 650 return f 651 } 652 653 // reassigned takes an ONAME node, walks the function in which it is defined, and returns a boolean 654 // indicating whether the name has any assignments other than its declaration. 655 // The second return value is the first such assignment encountered in the walk, if any. It is mostly 656 // useful for -m output documenting the reason for inhibited optimizations. 657 // NB: global variables are always considered to be re-assigned. 658 // TODO: handle initial declaration not including an assignment and followed by a single assignment? 659 func reassigned(n *Node) (bool, *Node) { 660 if n.Op != ONAME { 661 Fatalf("reassigned %v", n) 662 } 663 // no way to reliably check for no-reassignment of globals, assume it can be 664 if n.Name.Curfn == nil { 665 return true, nil 666 } 667 f := n.Name.Curfn 668 // There just might be a good reason for this although this can be pretty surprising: 669 // local variables inside a closure have Curfn pointing to the OCLOSURE node instead 670 // of the corresponding ODCLFUNC. 671 // We need to walk the function body to check for reassignments so we follow the 672 // linkage to the ODCLFUNC node as that is where body is held. 673 if f.Op == OCLOSURE { 674 f = f.Func.Closure 675 } 676 v := reassignVisitor{name: n} 677 a := v.visitList(f.Nbody) 678 return a != nil, a 679 } 680 681 type reassignVisitor struct { 682 name *Node 683 } 684 685 func (v *reassignVisitor) visit(n *Node) *Node { 686 if n == nil { 687 return nil 688 } 689 switch n.Op { 690 case OAS: 691 if n.Left == v.name && n != v.name.Name.Defn { 692 return n 693 } 694 return nil 695 case OAS2, OAS2FUNC, OAS2MAPR, OAS2DOTTYPE: 696 for _, p := range n.List.Slice() { 697 if p == v.name && n != v.name.Name.Defn { 698 return n 699 } 700 } 701 return nil 702 } 703 if a := v.visit(n.Left); a != nil { 704 return a 705 } 706 if a := v.visit(n.Right); a != nil { 707 return a 708 } 709 if a := v.visitList(n.List); a != nil { 710 return a 711 } 712 if a := v.visitList(n.Rlist); a != nil { 713 return a 714 } 715 if a := v.visitList(n.Ninit); a != nil { 716 return a 717 } 718 if a := v.visitList(n.Nbody); a != nil { 719 return a 720 } 721 return nil 722 } 723 724 func (v *reassignVisitor) visitList(l Nodes) *Node { 725 for _, n := range l.Slice() { 726 if a := v.visit(n); a != nil { 727 return a 728 } 729 } 730 return nil 731 } 732 733 // The result of mkinlcall MUST be assigned back to n, e.g. 734 // n.Left = mkinlcall(n.Left, fn, isddd) 735 func mkinlcall(n *Node, fn *Node, isddd bool) *Node { 736 save_safemode := safemode 737 738 // imported functions may refer to unsafe as long as the 739 // package was marked safe during import (already checked). 740 pkg := fnpkg(fn) 741 742 if pkg != localpkg && pkg != nil { 743 safemode = false 744 } 745 n = mkinlcall1(n, fn, isddd) 746 safemode = save_safemode 747 return n 748 } 749 750 func tinlvar(t *types.Field, inlvars map[*Node]*Node) *Node { 751 if asNode(t.Nname) != nil && !isblank(asNode(t.Nname)) { 752 inlvar := inlvars[asNode(t.Nname)] 753 if inlvar == nil { 754 Fatalf("missing inlvar for %v\n", asNode(t.Nname)) 755 } 756 return inlvar 757 } 758 759 return typecheck(nblank, Erv|Easgn) 760 } 761 762 var inlgen int 763 764 // If n is a call, and fn is a function with an inlinable body, 765 // return an OINLCALL. 766 // On return ninit has the parameter assignments, the nbody is the 767 // inlined function body and list, rlist contain the input, output 768 // parameters. 769 // The result of mkinlcall1 MUST be assigned back to n, e.g. 770 // n.Left = mkinlcall1(n.Left, fn, isddd) 771 func mkinlcall1(n, fn *Node, isddd bool) *Node { 772 if fn.Func.Inl.Len() == 0 { 773 // No inlinable body. 774 return n 775 } 776 777 if fn == Curfn || fn.Name.Defn == Curfn { 778 // Can't recursively inline a function into itself. 779 return n 780 } 781 782 if Debug_typecheckinl == 0 { 783 typecheckinl(fn) 784 } 785 786 // We have a function node, and it has an inlineable body. 787 if Debug['m'] > 1 { 788 fmt.Printf("%v: inlining call to %v %#v { %#v }\n", n.Line(), fn.Sym, fn.Type, fn.Func.Inl) 789 } else if Debug['m'] != 0 { 790 fmt.Printf("%v: inlining call to %v\n", n.Line(), fn) 791 } 792 if Debug['m'] > 2 { 793 fmt.Printf("%v: Before inlining: %+v\n", n.Line(), n) 794 } 795 796 ninit := n.Ninit 797 798 // Make temp names to use instead of the originals. 799 inlvars := make(map[*Node]*Node) 800 801 // record formals/locals for later post-processing 802 var inlfvars []*Node 803 804 // Find declarations corresponding to inlineable body. 805 var dcl []*Node 806 if fn.Name.Defn != nil { 807 dcl = fn.Func.Inldcl.Slice() // local function 808 809 // handle captured variables when inlining closures 810 if c := fn.Name.Defn.Func.Closure; c != nil { 811 for _, v := range c.Func.Cvars.Slice() { 812 if v.Op == OXXX { 813 continue 814 } 815 816 o := v.Name.Param.Outer 817 // make sure the outer param matches the inlining location 818 // NB: if we enabled inlining of functions containing OCLOSURE or refined 819 // the reassigned check via some sort of copy propagation this would most 820 // likely need to be changed to a loop to walk up to the correct Param 821 if o == nil || (o.Name.Curfn != Curfn && o.Name.Curfn.Func.Closure != Curfn) { 822 Fatalf("%v: unresolvable capture %v %v\n", n.Line(), fn, v) 823 } 824 825 if v.Name.Byval() { 826 iv := typecheck(inlvar(v), Erv) 827 ninit.Append(nod(ODCL, iv, nil)) 828 ninit.Append(typecheck(nod(OAS, iv, o), Etop)) 829 inlvars[v] = iv 830 } else { 831 addr := newname(lookup("&" + v.Sym.Name)) 832 addr.Type = types.NewPtr(v.Type) 833 ia := typecheck(inlvar(addr), Erv) 834 ninit.Append(nod(ODCL, ia, nil)) 835 ninit.Append(typecheck(nod(OAS, ia, nod(OADDR, o, nil)), Etop)) 836 inlvars[addr] = ia 837 838 // When capturing by reference, all occurrence of the captured var 839 // must be substituted with dereference of the temporary address 840 inlvars[v] = typecheck(nod(OIND, ia, nil), Erv) 841 } 842 } 843 } 844 } else { 845 dcl = fn.Func.Dcl // imported function 846 } 847 848 for _, ln := range dcl { 849 if ln.Op != ONAME { 850 continue 851 } 852 if ln.Class() == PPARAMOUT { // return values handled below. 853 continue 854 } 855 if ln.isParamStackCopy() { // ignore the on-stack copy of a parameter that moved to the heap 856 continue 857 } 858 inlvars[ln] = typecheck(inlvar(ln), Erv) 859 if ln.Class() == PPARAM || ln.Name.Param.Stackcopy != nil && ln.Name.Param.Stackcopy.Class() == PPARAM { 860 ninit.Append(nod(ODCL, inlvars[ln], nil)) 861 } 862 if genDwarfInline > 0 { 863 inlf := inlvars[ln] 864 if ln.Class() == PPARAM { 865 inlf.SetInlFormal(true) 866 } else { 867 inlf.SetInlLocal(true) 868 } 869 inlf.Pos = ln.Pos 870 inlfvars = append(inlfvars, inlf) 871 } 872 } 873 874 // temporaries for return values. 875 var retvars []*Node 876 for i, t := range fn.Type.Results().Fields().Slice() { 877 var m *Node 878 var mpos src.XPos 879 if t != nil && asNode(t.Nname) != nil && !isblank(asNode(t.Nname)) { 880 mpos = asNode(t.Nname).Pos 881 m = inlvar(asNode(t.Nname)) 882 m = typecheck(m, Erv) 883 inlvars[asNode(t.Nname)] = m 884 } else { 885 // anonymous return values, synthesize names for use in assignment that replaces return 886 m = retvar(t, i) 887 } 888 889 if genDwarfInline > 0 { 890 // Don't update the src.Pos on a return variable if it 891 // was manufactured by the inliner (e.g. "~R2"); such vars 892 // were not part of the original callee. 893 if !strings.HasPrefix(m.Sym.Name, "~R") { 894 m.SetInlFormal(true) 895 m.Pos = mpos 896 inlfvars = append(inlfvars, m) 897 } 898 } 899 900 ninit.Append(nod(ODCL, m, nil)) 901 retvars = append(retvars, m) 902 } 903 904 // Assign arguments to the parameters' temp names. 905 as := nod(OAS2, nil, nil) 906 as.Rlist.Set(n.List.Slice()) 907 908 // For non-dotted calls to variadic functions, we assign the 909 // variadic parameter's temp name separately. 910 var vas *Node 911 912 if fn.IsMethod() { 913 rcv := fn.Type.Recv() 914 915 if n.Left.Op == ODOTMETH { 916 // For x.M(...), assign x directly to the 917 // receiver parameter. 918 if n.Left.Left == nil { 919 Fatalf("method call without receiver: %+v", n) 920 } 921 ras := nod(OAS, tinlvar(rcv, inlvars), n.Left.Left) 922 ras = typecheck(ras, Etop) 923 ninit.Append(ras) 924 } else { 925 // For T.M(...), add the receiver parameter to 926 // as.List, so it's assigned by the normal 927 // arguments. 928 if as.Rlist.Len() == 0 { 929 Fatalf("non-method call to method without first arg: %+v", n) 930 } 931 as.List.Append(tinlvar(rcv, inlvars)) 932 } 933 } 934 935 for _, param := range fn.Type.Params().Fields().Slice() { 936 // For ordinary parameters or variadic parameters in 937 // dotted calls, just add the variable to the 938 // assignment list, and we're done. 939 if !param.Isddd() || isddd { 940 as.List.Append(tinlvar(param, inlvars)) 941 continue 942 } 943 944 // Otherwise, we need to collect the remaining values 945 // to pass as a slice. 946 947 numvals := n.List.Len() 948 if numvals == 1 && n.List.First().Type.IsFuncArgStruct() { 949 numvals = n.List.First().Type.NumFields() 950 } 951 952 x := as.List.Len() 953 for as.List.Len() < numvals { 954 as.List.Append(argvar(param.Type, as.List.Len())) 955 } 956 varargs := as.List.Slice()[x:] 957 958 vas = nod(OAS, tinlvar(param, inlvars), nil) 959 if len(varargs) == 0 { 960 vas.Right = nodnil() 961 vas.Right.Type = param.Type 962 } else { 963 vas.Right = nod(OCOMPLIT, nil, typenod(param.Type)) 964 vas.Right.List.Set(varargs) 965 } 966 } 967 968 if as.Rlist.Len() != 0 { 969 as = typecheck(as, Etop) 970 ninit.Append(as) 971 } 972 973 if vas != nil { 974 vas = typecheck(vas, Etop) 975 ninit.Append(vas) 976 } 977 978 // Zero the return parameters. 979 for _, n := range retvars { 980 ras := nod(OAS, n, nil) 981 ras = typecheck(ras, Etop) 982 ninit.Append(ras) 983 } 984 985 retlabel := autolabel(".i") 986 retlabel.Etype = 1 // flag 'safe' for escape analysis (no backjumps) 987 988 inlgen++ 989 990 parent := -1 991 if b := Ctxt.PosTable.Pos(n.Pos).Base(); b != nil { 992 parent = b.InliningIndex() 993 } 994 newIndex := Ctxt.InlTree.Add(parent, n.Pos, fn.Sym.Linksym()) 995 996 if genDwarfInline > 0 { 997 if !fn.Sym.Linksym().WasInlined() { 998 Ctxt.DwFixups.SetPrecursorFunc(fn.Sym.Linksym(), fn) 999 fn.Sym.Linksym().Set(obj.AttrWasInlined, true) 1000 } 1001 } 1002 1003 subst := inlsubst{ 1004 retlabel: retlabel, 1005 retvars: retvars, 1006 inlvars: inlvars, 1007 bases: make(map[*src.PosBase]*src.PosBase), 1008 newInlIndex: newIndex, 1009 } 1010 1011 body := subst.list(fn.Func.Inl) 1012 1013 lab := nod(OLABEL, retlabel, nil) 1014 body = append(body, lab) 1015 1016 typecheckslice(body, Etop) 1017 1018 if genDwarfInline > 0 { 1019 for _, v := range inlfvars { 1020 v.Pos = subst.updatedPos(v.Pos) 1021 } 1022 } 1023 1024 //dumplist("ninit post", ninit); 1025 1026 call := nod(OINLCALL, nil, nil) 1027 call.Ninit.Set(ninit.Slice()) 1028 call.Nbody.Set(body) 1029 call.Rlist.Set(retvars) 1030 call.Type = n.Type 1031 call.SetTypecheck(1) 1032 1033 // transitive inlining 1034 // might be nice to do this before exporting the body, 1035 // but can't emit the body with inlining expanded. 1036 // instead we emit the things that the body needs 1037 // and each use must redo the inlining. 1038 // luckily these are small. 1039 inlnodelist(call.Nbody) 1040 for _, n := range call.Nbody.Slice() { 1041 if n.Op == OINLCALL { 1042 inlconv2stmt(n) 1043 } 1044 } 1045 1046 if Debug['m'] > 2 { 1047 fmt.Printf("%v: After inlining %+v\n\n", call.Line(), call) 1048 } 1049 1050 return call 1051 } 1052 1053 // Every time we expand a function we generate a new set of tmpnames, 1054 // PAUTO's in the calling functions, and link them off of the 1055 // PPARAM's, PAUTOS and PPARAMOUTs of the called function. 1056 func inlvar(var_ *Node) *Node { 1057 if Debug['m'] > 3 { 1058 fmt.Printf("inlvar %+v\n", var_) 1059 } 1060 1061 n := newname(var_.Sym) 1062 n.Type = var_.Type 1063 n.SetClass(PAUTO) 1064 n.Name.SetUsed(true) 1065 n.Name.Curfn = Curfn // the calling function, not the called one 1066 n.SetAddrtaken(var_.Addrtaken()) 1067 1068 Curfn.Func.Dcl = append(Curfn.Func.Dcl, n) 1069 return n 1070 } 1071 1072 // Synthesize a variable to store the inlined function's results in. 1073 func retvar(t *types.Field, i int) *Node { 1074 n := newname(lookupN("~R", i)) 1075 n.Type = t.Type 1076 n.SetClass(PAUTO) 1077 n.Name.SetUsed(true) 1078 n.Name.Curfn = Curfn // the calling function, not the called one 1079 Curfn.Func.Dcl = append(Curfn.Func.Dcl, n) 1080 return n 1081 } 1082 1083 // Synthesize a variable to store the inlined function's arguments 1084 // when they come from a multiple return call. 1085 func argvar(t *types.Type, i int) *Node { 1086 n := newname(lookupN("~arg", i)) 1087 n.Type = t.Elem() 1088 n.SetClass(PAUTO) 1089 n.Name.SetUsed(true) 1090 n.Name.Curfn = Curfn // the calling function, not the called one 1091 Curfn.Func.Dcl = append(Curfn.Func.Dcl, n) 1092 return n 1093 } 1094 1095 // The inlsubst type implements the actual inlining of a single 1096 // function call. 1097 type inlsubst struct { 1098 // Target of the goto substituted in place of a return. 1099 retlabel *Node 1100 1101 // Temporary result variables. 1102 retvars []*Node 1103 1104 inlvars map[*Node]*Node 1105 1106 // bases maps from original PosBase to PosBase with an extra 1107 // inlined call frame. 1108 bases map[*src.PosBase]*src.PosBase 1109 1110 // newInlIndex is the index of the inlined call frame to 1111 // insert for inlined nodes. 1112 newInlIndex int 1113 } 1114 1115 // list inlines a list of nodes. 1116 func (subst *inlsubst) list(ll Nodes) []*Node { 1117 s := make([]*Node, 0, ll.Len()) 1118 for _, n := range ll.Slice() { 1119 s = append(s, subst.node(n)) 1120 } 1121 return s 1122 } 1123 1124 // node recursively copies a node from the saved pristine body of the 1125 // inlined function, substituting references to input/output 1126 // parameters with ones to the tmpnames, and substituting returns with 1127 // assignments to the output. 1128 func (subst *inlsubst) node(n *Node) *Node { 1129 if n == nil { 1130 return nil 1131 } 1132 1133 switch n.Op { 1134 case ONAME: 1135 if inlvar := subst.inlvars[n]; inlvar != nil { // These will be set during inlnode 1136 if Debug['m'] > 2 { 1137 fmt.Printf("substituting name %+v -> %+v\n", n, inlvar) 1138 } 1139 return inlvar 1140 } 1141 1142 if Debug['m'] > 2 { 1143 fmt.Printf("not substituting name %+v\n", n) 1144 } 1145 return n 1146 1147 case OLITERAL, OTYPE: 1148 // If n is a named constant or type, we can continue 1149 // using it in the inline copy. Otherwise, make a copy 1150 // so we can update the line number. 1151 if n.Sym != nil { 1152 return n 1153 } 1154 1155 // Since we don't handle bodies with closures, this return is guaranteed to belong to the current inlined function. 1156 1157 // dump("Return before substitution", n); 1158 case ORETURN: 1159 m := nod(OGOTO, subst.retlabel, nil) 1160 m.Ninit.Set(subst.list(n.Ninit)) 1161 1162 if len(subst.retvars) != 0 && n.List.Len() != 0 { 1163 as := nod(OAS2, nil, nil) 1164 1165 // Make a shallow copy of retvars. 1166 // Otherwise OINLCALL.Rlist will be the same list, 1167 // and later walk and typecheck may clobber it. 1168 for _, n := range subst.retvars { 1169 as.List.Append(n) 1170 } 1171 as.Rlist.Set(subst.list(n.List)) 1172 as = typecheck(as, Etop) 1173 m.Ninit.Append(as) 1174 } 1175 1176 typecheckslice(m.Ninit.Slice(), Etop) 1177 m = typecheck(m, Etop) 1178 1179 // dump("Return after substitution", m); 1180 return m 1181 1182 case OGOTO, OLABEL: 1183 m := nod(OXXX, nil, nil) 1184 *m = *n 1185 m.Pos = subst.updatedPos(m.Pos) 1186 m.Ninit.Set(nil) 1187 p := fmt.Sprintf("%s·%d", n.Left.Sym.Name, inlgen) 1188 m.Left = newname(lookup(p)) 1189 1190 return m 1191 } 1192 1193 m := nod(OXXX, nil, nil) 1194 *m = *n 1195 m.Pos = subst.updatedPos(m.Pos) 1196 m.Ninit.Set(nil) 1197 1198 if n.Op == OCLOSURE { 1199 Fatalf("cannot inline function containing closure: %+v", n) 1200 } 1201 1202 m.Left = subst.node(n.Left) 1203 m.Right = subst.node(n.Right) 1204 m.List.Set(subst.list(n.List)) 1205 m.Rlist.Set(subst.list(n.Rlist)) 1206 m.Ninit.Set(append(m.Ninit.Slice(), subst.list(n.Ninit)...)) 1207 m.Nbody.Set(subst.list(n.Nbody)) 1208 1209 return m 1210 } 1211 1212 func (subst *inlsubst) updatedPos(xpos src.XPos) src.XPos { 1213 pos := Ctxt.PosTable.Pos(xpos) 1214 oldbase := pos.Base() // can be nil 1215 newbase := subst.bases[oldbase] 1216 if newbase == nil { 1217 newbase = src.NewInliningBase(oldbase, subst.newInlIndex) 1218 subst.bases[oldbase] = newbase 1219 } 1220 pos.SetBase(newbase) 1221 return Ctxt.PosTable.XPos(pos) 1222 }