github.com/yukk001/go1.10.8@v0.0.0-20190813125351-6df2d3982e20/src/cmd/compile/internal/ssa/cse.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssa
     6  
     7  import (
     8  	"cmd/compile/internal/types"
     9  	"fmt"
    10  	"sort"
    11  )
    12  
    13  // cse does common-subexpression elimination on the Function.
    14  // Values are just relinked, nothing is deleted. A subsequent deadcode
    15  // pass is required to actually remove duplicate expressions.
    16  func cse(f *Func) {
    17  	// Two values are equivalent if they satisfy the following definition:
    18  	// equivalent(v, w):
    19  	//   v.op == w.op
    20  	//   v.type == w.type
    21  	//   v.aux == w.aux
    22  	//   v.auxint == w.auxint
    23  	//   len(v.args) == len(w.args)
    24  	//   v.block == w.block if v.op == OpPhi
    25  	//   equivalent(v.args[i], w.args[i]) for i in 0..len(v.args)-1
    26  
    27  	// The algorithm searches for a partition of f's values into
    28  	// equivalence classes using the above definition.
    29  	// It starts with a coarse partition and iteratively refines it
    30  	// until it reaches a fixed point.
    31  
    32  	// Make initial coarse partitions by using a subset of the conditions above.
    33  	a := make([]*Value, 0, f.NumValues())
    34  	if f.auxmap == nil {
    35  		f.auxmap = auxmap{}
    36  	}
    37  	for _, b := range f.Blocks {
    38  		for _, v := range b.Values {
    39  			if v.Type.IsMemory() {
    40  				continue // memory values can never cse
    41  			}
    42  			if f.auxmap[v.Aux] == 0 {
    43  				f.auxmap[v.Aux] = int32(len(f.auxmap)) + 1
    44  			}
    45  			a = append(a, v)
    46  		}
    47  	}
    48  	partition := partitionValues(a, f.auxmap)
    49  
    50  	// map from value id back to eqclass id
    51  	valueEqClass := make([]ID, f.NumValues())
    52  	for _, b := range f.Blocks {
    53  		for _, v := range b.Values {
    54  			// Use negative equivalence class #s for unique values.
    55  			valueEqClass[v.ID] = -v.ID
    56  		}
    57  	}
    58  	var pNum ID = 1
    59  	for _, e := range partition {
    60  		if f.pass.debug > 1 && len(e) > 500 {
    61  			fmt.Printf("CSE.large partition (%d): ", len(e))
    62  			for j := 0; j < 3; j++ {
    63  				fmt.Printf("%s ", e[j].LongString())
    64  			}
    65  			fmt.Println()
    66  		}
    67  
    68  		for _, v := range e {
    69  			valueEqClass[v.ID] = pNum
    70  		}
    71  		if f.pass.debug > 2 && len(e) > 1 {
    72  			fmt.Printf("CSE.partition #%d:", pNum)
    73  			for _, v := range e {
    74  				fmt.Printf(" %s", v.String())
    75  			}
    76  			fmt.Printf("\n")
    77  		}
    78  		pNum++
    79  	}
    80  
    81  	// Split equivalence classes at points where they have
    82  	// non-equivalent arguments.  Repeat until we can't find any
    83  	// more splits.
    84  	var splitPoints []int
    85  	byArgClass := new(partitionByArgClass) // reuseable partitionByArgClass to reduce allocations
    86  	for {
    87  		changed := false
    88  
    89  		// partition can grow in the loop. By not using a range loop here,
    90  		// we process new additions as they arrive, avoiding O(n^2) behavior.
    91  		for i := 0; i < len(partition); i++ {
    92  			e := partition[i]
    93  
    94  			if opcodeTable[e[0].Op].commutative {
    95  				// Order the first two args before comparison.
    96  				for _, v := range e {
    97  					if valueEqClass[v.Args[0].ID] > valueEqClass[v.Args[1].ID] {
    98  						v.Args[0], v.Args[1] = v.Args[1], v.Args[0]
    99  					}
   100  				}
   101  			}
   102  
   103  			// Sort by eq class of arguments.
   104  			byArgClass.a = e
   105  			byArgClass.eqClass = valueEqClass
   106  			sort.Sort(byArgClass)
   107  
   108  			// Find split points.
   109  			splitPoints = append(splitPoints[:0], 0)
   110  			for j := 1; j < len(e); j++ {
   111  				v, w := e[j-1], e[j]
   112  				// Note: commutative args already correctly ordered by byArgClass.
   113  				eqArgs := true
   114  				for k, a := range v.Args {
   115  					b := w.Args[k]
   116  					if valueEqClass[a.ID] != valueEqClass[b.ID] {
   117  						eqArgs = false
   118  						break
   119  					}
   120  				}
   121  				if !eqArgs {
   122  					splitPoints = append(splitPoints, j)
   123  				}
   124  			}
   125  			if len(splitPoints) == 1 {
   126  				continue // no splits, leave equivalence class alone.
   127  			}
   128  
   129  			// Move another equivalence class down in place of e.
   130  			partition[i] = partition[len(partition)-1]
   131  			partition = partition[:len(partition)-1]
   132  			i--
   133  
   134  			// Add new equivalence classes for the parts of e we found.
   135  			splitPoints = append(splitPoints, len(e))
   136  			for j := 0; j < len(splitPoints)-1; j++ {
   137  				f := e[splitPoints[j]:splitPoints[j+1]]
   138  				if len(f) == 1 {
   139  					// Don't add singletons.
   140  					valueEqClass[f[0].ID] = -f[0].ID
   141  					continue
   142  				}
   143  				for _, v := range f {
   144  					valueEqClass[v.ID] = pNum
   145  				}
   146  				pNum++
   147  				partition = append(partition, f)
   148  			}
   149  			changed = true
   150  		}
   151  
   152  		if !changed {
   153  			break
   154  		}
   155  	}
   156  
   157  	sdom := f.sdom()
   158  
   159  	// Compute substitutions we would like to do. We substitute v for w
   160  	// if v and w are in the same equivalence class and v dominates w.
   161  	rewrite := make([]*Value, f.NumValues())
   162  	byDom := new(partitionByDom) // reusable partitionByDom to reduce allocs
   163  	for _, e := range partition {
   164  		byDom.a = e
   165  		byDom.sdom = sdom
   166  		sort.Sort(byDom)
   167  		for i := 0; i < len(e)-1; i++ {
   168  			// e is sorted by domorder, so a maximal dominant element is first in the slice
   169  			v := e[i]
   170  			if v == nil {
   171  				continue
   172  			}
   173  
   174  			e[i] = nil
   175  			// Replace all elements of e which v dominates
   176  			for j := i + 1; j < len(e); j++ {
   177  				w := e[j]
   178  				if w == nil {
   179  					continue
   180  				}
   181  				if sdom.isAncestorEq(v.Block, w.Block) {
   182  					rewrite[w.ID] = v
   183  					e[j] = nil
   184  				} else {
   185  					// e is sorted by domorder, so v.Block doesn't dominate any subsequent blocks in e
   186  					break
   187  				}
   188  			}
   189  		}
   190  	}
   191  
   192  	// if we rewrite a tuple generator to a new one in a different block,
   193  	// copy its selectors to the new generator's block, so tuple generator
   194  	// and selectors stay together.
   195  	// be careful not to copy same selectors more than once (issue 16741).
   196  	copiedSelects := make(map[ID][]*Value)
   197  	for _, b := range f.Blocks {
   198  	out:
   199  		for _, v := range b.Values {
   200  			// New values are created when selectors are copied to
   201  			// a new block. We can safely ignore those new values,
   202  			// since they have already been copied (issue 17918).
   203  			if int(v.ID) >= len(rewrite) || rewrite[v.ID] != nil {
   204  				continue
   205  			}
   206  			if v.Op != OpSelect0 && v.Op != OpSelect1 {
   207  				continue
   208  			}
   209  			if !v.Args[0].Type.IsTuple() {
   210  				f.Fatalf("arg of tuple selector %s is not a tuple: %s", v.String(), v.Args[0].LongString())
   211  			}
   212  			t := rewrite[v.Args[0].ID]
   213  			if t != nil && t.Block != b {
   214  				// v.Args[0] is tuple generator, CSE'd into a different block as t, v is left behind
   215  				for _, c := range copiedSelects[t.ID] {
   216  					if v.Op == c.Op {
   217  						// an equivalent selector is already copied
   218  						rewrite[v.ID] = c
   219  						continue out
   220  					}
   221  				}
   222  				c := v.copyInto(t.Block)
   223  				rewrite[v.ID] = c
   224  				copiedSelects[t.ID] = append(copiedSelects[t.ID], c)
   225  			}
   226  		}
   227  	}
   228  
   229  	rewrites := int64(0)
   230  
   231  	// Apply substitutions
   232  	for _, b := range f.Blocks {
   233  		for _, v := range b.Values {
   234  			for i, w := range v.Args {
   235  				if x := rewrite[w.ID]; x != nil {
   236  					v.SetArg(i, x)
   237  					rewrites++
   238  				}
   239  			}
   240  		}
   241  		if v := b.Control; v != nil {
   242  			if x := rewrite[v.ID]; x != nil {
   243  				if v.Op == OpNilCheck {
   244  					// nilcheck pass will remove the nil checks and log
   245  					// them appropriately, so don't mess with them here.
   246  					continue
   247  				}
   248  				b.SetControl(x)
   249  			}
   250  		}
   251  	}
   252  	if f.pass.stats > 0 {
   253  		f.LogStat("CSE REWRITES", rewrites)
   254  	}
   255  }
   256  
   257  // An eqclass approximates an equivalence class. During the
   258  // algorithm it may represent the union of several of the
   259  // final equivalence classes.
   260  type eqclass []*Value
   261  
   262  // partitionValues partitions the values into equivalence classes
   263  // based on having all the following features match:
   264  //  - opcode
   265  //  - type
   266  //  - auxint
   267  //  - aux
   268  //  - nargs
   269  //  - block # if a phi op
   270  //  - first two arg's opcodes and auxint
   271  //  - NOT first two arg's aux; that can break CSE.
   272  // partitionValues returns a list of equivalence classes, each
   273  // being a sorted by ID list of *Values. The eqclass slices are
   274  // backed by the same storage as the input slice.
   275  // Equivalence classes of size 1 are ignored.
   276  func partitionValues(a []*Value, auxIDs auxmap) []eqclass {
   277  	sort.Sort(sortvalues{a, auxIDs})
   278  
   279  	var partition []eqclass
   280  	for len(a) > 0 {
   281  		v := a[0]
   282  		j := 1
   283  		for ; j < len(a); j++ {
   284  			w := a[j]
   285  			if cmpVal(v, w, auxIDs) != types.CMPeq {
   286  				break
   287  			}
   288  		}
   289  		if j > 1 {
   290  			partition = append(partition, a[:j])
   291  		}
   292  		a = a[j:]
   293  	}
   294  
   295  	return partition
   296  }
   297  func lt2Cmp(isLt bool) types.Cmp {
   298  	if isLt {
   299  		return types.CMPlt
   300  	}
   301  	return types.CMPgt
   302  }
   303  
   304  type auxmap map[interface{}]int32
   305  
   306  func cmpVal(v, w *Value, auxIDs auxmap) types.Cmp {
   307  	// Try to order these comparison by cost (cheaper first)
   308  	if v.Op != w.Op {
   309  		return lt2Cmp(v.Op < w.Op)
   310  	}
   311  	if v.AuxInt != w.AuxInt {
   312  		return lt2Cmp(v.AuxInt < w.AuxInt)
   313  	}
   314  	if len(v.Args) != len(w.Args) {
   315  		return lt2Cmp(len(v.Args) < len(w.Args))
   316  	}
   317  	if v.Op == OpPhi && v.Block != w.Block {
   318  		return lt2Cmp(v.Block.ID < w.Block.ID)
   319  	}
   320  	if v.Type.IsMemory() {
   321  		// We will never be able to CSE two values
   322  		// that generate memory.
   323  		return lt2Cmp(v.ID < w.ID)
   324  	}
   325  	// OpSelect is a pseudo-op. We need to be more aggressive
   326  	// regarding CSE to keep multiple OpSelect's of the same
   327  	// argument from existing.
   328  	if v.Op != OpSelect0 && v.Op != OpSelect1 {
   329  		if tc := v.Type.Compare(w.Type); tc != types.CMPeq {
   330  			return tc
   331  		}
   332  	}
   333  
   334  	if v.Aux != w.Aux {
   335  		if v.Aux == nil {
   336  			return types.CMPlt
   337  		}
   338  		if w.Aux == nil {
   339  			return types.CMPgt
   340  		}
   341  		return lt2Cmp(auxIDs[v.Aux] < auxIDs[w.Aux])
   342  	}
   343  
   344  	return types.CMPeq
   345  }
   346  
   347  // Sort values to make the initial partition.
   348  type sortvalues struct {
   349  	a      []*Value // array of values
   350  	auxIDs auxmap   // aux -> aux ID map
   351  }
   352  
   353  func (sv sortvalues) Len() int      { return len(sv.a) }
   354  func (sv sortvalues) Swap(i, j int) { sv.a[i], sv.a[j] = sv.a[j], sv.a[i] }
   355  func (sv sortvalues) Less(i, j int) bool {
   356  	v := sv.a[i]
   357  	w := sv.a[j]
   358  	if cmp := cmpVal(v, w, sv.auxIDs); cmp != types.CMPeq {
   359  		return cmp == types.CMPlt
   360  	}
   361  
   362  	// Sort by value ID last to keep the sort result deterministic.
   363  	return v.ID < w.ID
   364  }
   365  
   366  type partitionByDom struct {
   367  	a    []*Value // array of values
   368  	sdom SparseTree
   369  }
   370  
   371  func (sv partitionByDom) Len() int      { return len(sv.a) }
   372  func (sv partitionByDom) Swap(i, j int) { sv.a[i], sv.a[j] = sv.a[j], sv.a[i] }
   373  func (sv partitionByDom) Less(i, j int) bool {
   374  	v := sv.a[i]
   375  	w := sv.a[j]
   376  	return sv.sdom.domorder(v.Block) < sv.sdom.domorder(w.Block)
   377  }
   378  
   379  type partitionByArgClass struct {
   380  	a       []*Value // array of values
   381  	eqClass []ID     // equivalence class IDs of values
   382  }
   383  
   384  func (sv partitionByArgClass) Len() int      { return len(sv.a) }
   385  func (sv partitionByArgClass) Swap(i, j int) { sv.a[i], sv.a[j] = sv.a[j], sv.a[i] }
   386  func (sv partitionByArgClass) Less(i, j int) bool {
   387  	v := sv.a[i]
   388  	w := sv.a[j]
   389  	for i, a := range v.Args {
   390  		b := w.Args[i]
   391  		if sv.eqClass[a.ID] < sv.eqClass[b.ID] {
   392  			return true
   393  		}
   394  		if sv.eqClass[a.ID] > sv.eqClass[b.ID] {
   395  			return false
   396  		}
   397  	}
   398  	return false
   399  }