github.com/yukk001/go1.10.8@v0.0.0-20190813125351-6df2d3982e20/src/cmd/compile/internal/ssa/regalloc.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Register allocation. 6 // 7 // We use a version of a linear scan register allocator. We treat the 8 // whole function as a single long basic block and run through 9 // it using a greedy register allocator. Then all merge edges 10 // (those targeting a block with len(Preds)>1) are processed to 11 // shuffle data into the place that the target of the edge expects. 12 // 13 // The greedy allocator moves values into registers just before they 14 // are used, spills registers only when necessary, and spills the 15 // value whose next use is farthest in the future. 16 // 17 // The register allocator requires that a block is not scheduled until 18 // at least one of its predecessors have been scheduled. The most recent 19 // such predecessor provides the starting register state for a block. 20 // 21 // It also requires that there are no critical edges (critical = 22 // comes from a block with >1 successor and goes to a block with >1 23 // predecessor). This makes it easy to add fixup code on merge edges - 24 // the source of a merge edge has only one successor, so we can add 25 // fixup code to the end of that block. 26 27 // Spilling 28 // 29 // During the normal course of the allocator, we might throw a still-live 30 // value out of all registers. When that value is subsequently used, we must 31 // load it from a slot on the stack. We must also issue an instruction to 32 // initialize that stack location with a copy of v. 33 // 34 // pre-regalloc: 35 // (1) v = Op ... 36 // (2) x = Op ... 37 // (3) ... = Op v ... 38 // 39 // post-regalloc: 40 // (1) v = Op ... : AX // computes v, store result in AX 41 // s = StoreReg v // spill v to a stack slot 42 // (2) x = Op ... : AX // some other op uses AX 43 // c = LoadReg s : CX // restore v from stack slot 44 // (3) ... = Op c ... // use the restored value 45 // 46 // Allocation occurs normally until we reach (3) and we realize we have 47 // a use of v and it isn't in any register. At that point, we allocate 48 // a spill (a StoreReg) for v. We can't determine the correct place for 49 // the spill at this point, so we allocate the spill as blockless initially. 50 // The restore is then generated to load v back into a register so it can 51 // be used. Subsequent uses of v will use the restored value c instead. 52 // 53 // What remains is the question of where to schedule the spill. 54 // During allocation, we keep track of the dominator of all restores of v. 55 // The spill of v must dominate that block. The spill must also be issued at 56 // a point where v is still in a register. 57 // 58 // To find the right place, start at b, the block which dominates all restores. 59 // - If b is v.Block, then issue the spill right after v. 60 // It is known to be in a register at that point, and dominates any restores. 61 // - Otherwise, if v is in a register at the start of b, 62 // put the spill of v at the start of b. 63 // - Otherwise, set b = immediate dominator of b, and repeat. 64 // 65 // Phi values are special, as always. We define two kinds of phis, those 66 // where the merge happens in a register (a "register" phi) and those where 67 // the merge happens in a stack location (a "stack" phi). 68 // 69 // A register phi must have the phi and all of its inputs allocated to the 70 // same register. Register phis are spilled similarly to regular ops. 71 // 72 // A stack phi must have the phi and all of its inputs allocated to the same 73 // stack location. Stack phis start out life already spilled - each phi 74 // input must be a store (using StoreReg) at the end of the corresponding 75 // predecessor block. 76 // b1: y = ... : AX b2: z = ... : BX 77 // y2 = StoreReg y z2 = StoreReg z 78 // goto b3 goto b3 79 // b3: x = phi(y2, z2) 80 // The stack allocator knows that StoreReg args of stack-allocated phis 81 // must be allocated to the same stack slot as the phi that uses them. 82 // x is now a spilled value and a restore must appear before its first use. 83 84 // TODO 85 86 // Use an affinity graph to mark two values which should use the 87 // same register. This affinity graph will be used to prefer certain 88 // registers for allocation. This affinity helps eliminate moves that 89 // are required for phi implementations and helps generate allocations 90 // for 2-register architectures. 91 92 // Note: regalloc generates a not-quite-SSA output. If we have: 93 // 94 // b1: x = ... : AX 95 // x2 = StoreReg x 96 // ... AX gets reused for something else ... 97 // if ... goto b3 else b4 98 // 99 // b3: x3 = LoadReg x2 : BX b4: x4 = LoadReg x2 : CX 100 // ... use x3 ... ... use x4 ... 101 // 102 // b2: ... use x3 ... 103 // 104 // If b3 is the primary predecessor of b2, then we use x3 in b2 and 105 // add a x4:CX->BX copy at the end of b4. 106 // But the definition of x3 doesn't dominate b2. We should really 107 // insert a dummy phi at the start of b2 (x5=phi(x3,x4):BX) to keep 108 // SSA form. For now, we ignore this problem as remaining in strict 109 // SSA form isn't needed after regalloc. We'll just leave the use 110 // of x3 not dominated by the definition of x3, and the CX->BX copy 111 // will have no use (so don't run deadcode after regalloc!). 112 // TODO: maybe we should introduce these extra phis? 113 114 package ssa 115 116 import ( 117 "cmd/compile/internal/types" 118 "cmd/internal/objabi" 119 "cmd/internal/src" 120 "fmt" 121 "unsafe" 122 ) 123 124 const ( 125 moveSpills = iota 126 logSpills 127 regDebug 128 stackDebug 129 ) 130 131 // distance is a measure of how far into the future values are used. 132 // distance is measured in units of instructions. 133 const ( 134 likelyDistance = 1 135 normalDistance = 10 136 unlikelyDistance = 100 137 ) 138 139 // regalloc performs register allocation on f. It sets f.RegAlloc 140 // to the resulting allocation. 141 func regalloc(f *Func) { 142 var s regAllocState 143 s.init(f) 144 s.regalloc(f) 145 } 146 147 type register uint8 148 149 const noRegister register = 255 150 151 type regMask uint64 152 153 func (m regMask) String() string { 154 s := "" 155 for r := register(0); m != 0; r++ { 156 if m>>r&1 == 0 { 157 continue 158 } 159 m &^= regMask(1) << r 160 if s != "" { 161 s += " " 162 } 163 s += fmt.Sprintf("r%d", r) 164 } 165 return s 166 } 167 168 // countRegs returns the number of set bits in the register mask. 169 func countRegs(r regMask) int { 170 n := 0 171 for r != 0 { 172 n += int(r & 1) 173 r >>= 1 174 } 175 return n 176 } 177 178 // pickReg picks an arbitrary register from the register mask. 179 func pickReg(r regMask) register { 180 // pick the lowest one 181 if r == 0 { 182 panic("can't pick a register from an empty set") 183 } 184 for i := register(0); ; i++ { 185 if r&1 != 0 { 186 return i 187 } 188 r >>= 1 189 } 190 } 191 192 type use struct { 193 dist int32 // distance from start of the block to a use of a value 194 pos src.XPos // source position of the use 195 next *use // linked list of uses of a value in nondecreasing dist order 196 } 197 198 // A valState records the register allocation state for a (pre-regalloc) value. 199 type valState struct { 200 regs regMask // the set of registers holding a Value (usually just one) 201 uses *use // list of uses in this block 202 spill *Value // spilled copy of the Value (if any) 203 restoreMin int32 // minimum of all restores' blocks' sdom.entry 204 restoreMax int32 // maximum of all restores' blocks' sdom.exit 205 needReg bool // cached value of !v.Type.IsMemory() && !v.Type.IsVoid() && !.v.Type.IsFlags() 206 rematerializeable bool // cached value of v.rematerializeable() 207 } 208 209 type regState struct { 210 v *Value // Original (preregalloc) Value stored in this register. 211 c *Value // A Value equal to v which is currently in a register. Might be v or a copy of it. 212 // If a register is unused, v==c==nil 213 } 214 215 type regAllocState struct { 216 f *Func 217 218 sdom SparseTree 219 registers []Register 220 numRegs register 221 SPReg register 222 SBReg register 223 GReg register 224 allocatable regMask 225 226 // for each block, its primary predecessor. 227 // A predecessor of b is primary if it is the closest 228 // predecessor that appears before b in the layout order. 229 // We record the index in the Preds list where the primary predecessor sits. 230 primary []int32 231 232 // live values at the end of each block. live[b.ID] is a list of value IDs 233 // which are live at the end of b, together with a count of how many instructions 234 // forward to the next use. 235 live [][]liveInfo 236 // desired register assignments at the end of each block. 237 // Note that this is a static map computed before allocation occurs. Dynamic 238 // register desires (from partially completed allocations) will trump 239 // this information. 240 desired []desiredState 241 242 // current state of each (preregalloc) Value 243 values []valState 244 245 // names associated with each Value 246 valueNames [][]LocalSlot 247 248 // ID of SP, SB values 249 sp, sb ID 250 251 // For each Value, map from its value ID back to the 252 // preregalloc Value it was derived from. 253 orig []*Value 254 255 // current state of each register 256 regs []regState 257 258 // registers that contain values which can't be kicked out 259 nospill regMask 260 261 // mask of registers currently in use 262 used regMask 263 264 // mask of registers used in the current instruction 265 tmpused regMask 266 267 // current block we're working on 268 curBlock *Block 269 270 // cache of use records 271 freeUseRecords *use 272 273 // endRegs[blockid] is the register state at the end of each block. 274 // encoded as a set of endReg records. 275 endRegs [][]endReg 276 277 // startRegs[blockid] is the register state at the start of merge blocks. 278 // saved state does not include the state of phi ops in the block. 279 startRegs [][]startReg 280 281 // spillLive[blockid] is the set of live spills at the end of each block 282 spillLive [][]ID 283 284 // a set of copies we generated to move things around, and 285 // whether it is used in shuffle. Unused copies will be deleted. 286 copies map[*Value]bool 287 288 loopnest *loopnest 289 } 290 291 type endReg struct { 292 r register 293 v *Value // pre-regalloc value held in this register (TODO: can we use ID here?) 294 c *Value // cached version of the value 295 } 296 297 type startReg struct { 298 r register 299 v *Value // pre-regalloc value needed in this register 300 c *Value // cached version of the value 301 pos src.XPos // source position of use of this register 302 } 303 304 // freeReg frees up register r. Any current user of r is kicked out. 305 func (s *regAllocState) freeReg(r register) { 306 s.freeOrResetReg(r, false) 307 } 308 309 // freeOrResetReg frees up register r. Any current user of r is kicked out. 310 // resetting indicates that the operation is only for bookkeeping, 311 // e.g. when clearing out state upon entry to a new block. 312 func (s *regAllocState) freeOrResetReg(r register, resetting bool) { 313 v := s.regs[r].v 314 if v == nil { 315 s.f.Fatalf("tried to free an already free register %d\n", r) 316 } 317 318 // Mark r as unused. 319 if s.f.pass.debug > regDebug { 320 fmt.Printf("freeReg %s (dump %s/%s)\n", &s.registers[r], v, s.regs[r].c) 321 } 322 if !resetting && s.f.Config.ctxt.Flag_locationlists && len(s.valueNames[v.ID]) != 0 { 323 kill := s.curBlock.NewValue0(src.NoXPos, OpRegKill, types.TypeVoid) 324 for int(kill.ID) >= len(s.orig) { 325 s.orig = append(s.orig, nil) 326 } 327 for _, name := range s.valueNames[v.ID] { 328 s.f.NamedValues[name] = append(s.f.NamedValues[name], kill) 329 } 330 s.f.setHome(kill, &s.registers[r]) 331 } 332 s.regs[r] = regState{} 333 s.values[v.ID].regs &^= regMask(1) << r 334 s.used &^= regMask(1) << r 335 } 336 337 // freeRegs frees up all registers listed in m. 338 func (s *regAllocState) freeRegs(m regMask) { 339 for m&s.used != 0 { 340 s.freeReg(pickReg(m & s.used)) 341 } 342 } 343 344 // setOrig records that c's original value is the same as 345 // v's original value. 346 func (s *regAllocState) setOrig(c *Value, v *Value) { 347 for int(c.ID) >= len(s.orig) { 348 s.orig = append(s.orig, nil) 349 } 350 if s.orig[c.ID] != nil { 351 s.f.Fatalf("orig value set twice %s %s", c, v) 352 } 353 s.orig[c.ID] = s.orig[v.ID] 354 } 355 356 // assignReg assigns register r to hold c, a copy of v. 357 // r must be unused. 358 func (s *regAllocState) assignReg(r register, v *Value, c *Value) { 359 if s.f.pass.debug > regDebug { 360 fmt.Printf("assignReg %s %s/%s\n", &s.registers[r], v, c) 361 } 362 if s.regs[r].v != nil { 363 s.f.Fatalf("tried to assign register %d to %s/%s but it is already used by %s", r, v, c, s.regs[r].v) 364 } 365 366 // Update state. 367 s.regs[r] = regState{v, c} 368 s.values[v.ID].regs |= regMask(1) << r 369 s.used |= regMask(1) << r 370 s.f.setHome(c, &s.registers[r]) 371 } 372 373 // allocReg chooses a register from the set of registers in mask. 374 // If there is no unused register, a Value will be kicked out of 375 // a register to make room. 376 func (s *regAllocState) allocReg(mask regMask, v *Value) register { 377 mask &= s.allocatable 378 mask &^= s.nospill 379 if mask == 0 { 380 s.f.Fatalf("no register available for %s", v) 381 } 382 383 // Pick an unused register if one is available. 384 if mask&^s.used != 0 { 385 return pickReg(mask &^ s.used) 386 } 387 388 // Pick a value to spill. Spill the value with the 389 // farthest-in-the-future use. 390 // TODO: Prefer registers with already spilled Values? 391 // TODO: Modify preference using affinity graph. 392 // TODO: if a single value is in multiple registers, spill one of them 393 // before spilling a value in just a single register. 394 395 // Find a register to spill. We spill the register containing the value 396 // whose next use is as far in the future as possible. 397 // https://en.wikipedia.org/wiki/Page_replacement_algorithm#The_theoretically_optimal_page_replacement_algorithm 398 var r register 399 maxuse := int32(-1) 400 for t := register(0); t < s.numRegs; t++ { 401 if mask>>t&1 == 0 { 402 continue 403 } 404 v := s.regs[t].v 405 if n := s.values[v.ID].uses.dist; n > maxuse { 406 // v's next use is farther in the future than any value 407 // we've seen so far. A new best spill candidate. 408 r = t 409 maxuse = n 410 } 411 } 412 if maxuse == -1 { 413 s.f.Fatalf("couldn't find register to spill") 414 } 415 416 // Try to move it around before kicking out, if there is a free register. 417 // We generate a Copy and record it. It will be deleted if never used. 418 v2 := s.regs[r].v 419 m := s.compatRegs(v2.Type) &^ s.used &^ s.tmpused &^ (regMask(1) << r) 420 if m != 0 && !s.values[v2.ID].rematerializeable && countRegs(s.values[v2.ID].regs) == 1 { 421 r2 := pickReg(m) 422 c := s.curBlock.NewValue1(v2.Pos, OpCopy, v2.Type, s.regs[r].c) 423 s.copies[c] = false 424 if s.f.pass.debug > regDebug { 425 fmt.Printf("copy %s to %s : %s\n", v2, c, &s.registers[r2]) 426 } 427 s.setOrig(c, v2) 428 s.assignReg(r2, v2, c) 429 } 430 s.freeReg(r) 431 return r 432 } 433 434 // makeSpill returns a Value which represents the spilled value of v. 435 // b is the block in which the spill is used. 436 func (s *regAllocState) makeSpill(v *Value, b *Block) *Value { 437 vi := &s.values[v.ID] 438 if vi.spill != nil { 439 // Final block not known - keep track of subtree where restores reside. 440 vi.restoreMin = min32(vi.restoreMin, s.sdom[b.ID].entry) 441 vi.restoreMax = max32(vi.restoreMax, s.sdom[b.ID].exit) 442 return vi.spill 443 } 444 // Make a spill for v. We don't know where we want 445 // to put it yet, so we leave it blockless for now. 446 spill := s.f.newValueNoBlock(OpStoreReg, v.Type, v.Pos) 447 // We also don't know what the spill's arg will be. 448 // Leave it argless for now. 449 s.setOrig(spill, v) 450 vi.spill = spill 451 vi.restoreMin = s.sdom[b.ID].entry 452 vi.restoreMax = s.sdom[b.ID].exit 453 return spill 454 } 455 456 // allocValToReg allocates v to a register selected from regMask and 457 // returns the register copy of v. Any previous user is kicked out and spilled 458 // (if necessary). Load code is added at the current pc. If nospill is set the 459 // allocated register is marked nospill so the assignment cannot be 460 // undone until the caller allows it by clearing nospill. Returns a 461 // *Value which is either v or a copy of v allocated to the chosen register. 462 func (s *regAllocState) allocValToReg(v *Value, mask regMask, nospill bool, pos src.XPos) *Value { 463 vi := &s.values[v.ID] 464 465 // Check if v is already in a requested register. 466 if mask&vi.regs != 0 { 467 r := pickReg(mask & vi.regs) 468 if s.regs[r].v != v || s.regs[r].c == nil { 469 panic("bad register state") 470 } 471 if nospill { 472 s.nospill |= regMask(1) << r 473 } 474 return s.regs[r].c 475 } 476 477 // Allocate a register. 478 r := s.allocReg(mask, v) 479 480 // Allocate v to the new register. 481 var c *Value 482 if vi.regs != 0 { 483 // Copy from a register that v is already in. 484 r2 := pickReg(vi.regs) 485 if s.regs[r2].v != v { 486 panic("bad register state") 487 } 488 c = s.curBlock.NewValue1(pos, OpCopy, v.Type, s.regs[r2].c) 489 } else if v.rematerializeable() { 490 // Rematerialize instead of loading from the spill location. 491 c = v.copyIntoWithXPos(s.curBlock, pos) 492 } else { 493 // Load v from its spill location. 494 spill := s.makeSpill(v, s.curBlock) 495 if s.f.pass.debug > logSpills { 496 s.f.Warnl(vi.spill.Pos, "load spill for %v from %v", v, spill) 497 } 498 c = s.curBlock.NewValue1(pos, OpLoadReg, v.Type, spill) 499 } 500 s.setOrig(c, v) 501 s.assignReg(r, v, c) 502 if nospill { 503 s.nospill |= regMask(1) << r 504 } 505 return c 506 } 507 508 // isLeaf reports whether f performs any calls. 509 func isLeaf(f *Func) bool { 510 for _, b := range f.Blocks { 511 for _, v := range b.Values { 512 if opcodeTable[v.Op].call { 513 return false 514 } 515 } 516 } 517 return true 518 } 519 520 func (s *regAllocState) init(f *Func) { 521 s.f = f 522 s.f.RegAlloc = s.f.Cache.locs[:0] 523 s.registers = f.Config.registers 524 if nr := len(s.registers); nr == 0 || nr > int(noRegister) || nr > int(unsafe.Sizeof(regMask(0))*8) { 525 s.f.Fatalf("bad number of registers: %d", nr) 526 } else { 527 s.numRegs = register(nr) 528 } 529 // Locate SP, SB, and g registers. 530 s.SPReg = noRegister 531 s.SBReg = noRegister 532 s.GReg = noRegister 533 for r := register(0); r < s.numRegs; r++ { 534 switch s.registers[r].String() { 535 case "SP": 536 s.SPReg = r 537 case "SB": 538 s.SBReg = r 539 case "g": 540 s.GReg = r 541 } 542 } 543 // Make sure we found all required registers. 544 switch noRegister { 545 case s.SPReg: 546 s.f.Fatalf("no SP register found") 547 case s.SBReg: 548 s.f.Fatalf("no SB register found") 549 case s.GReg: 550 if f.Config.hasGReg { 551 s.f.Fatalf("no g register found") 552 } 553 } 554 555 // Figure out which registers we're allowed to use. 556 s.allocatable = s.f.Config.gpRegMask | s.f.Config.fpRegMask | s.f.Config.specialRegMask 557 s.allocatable &^= 1 << s.SPReg 558 s.allocatable &^= 1 << s.SBReg 559 if s.f.Config.hasGReg { 560 s.allocatable &^= 1 << s.GReg 561 } 562 if s.f.Config.ctxt.Framepointer_enabled && s.f.Config.FPReg >= 0 { 563 s.allocatable &^= 1 << uint(s.f.Config.FPReg) 564 } 565 if s.f.Config.LinkReg != -1 { 566 if isLeaf(f) { 567 // Leaf functions don't save/restore the link register. 568 s.allocatable &^= 1 << uint(s.f.Config.LinkReg) 569 } 570 if s.f.Config.arch == "arm" && objabi.GOARM == 5 { 571 // On ARMv5 we insert softfloat calls at each FP instruction. 572 // This clobbers LR almost everywhere. Disable allocating LR 573 // on ARMv5. 574 s.allocatable &^= 1 << uint(s.f.Config.LinkReg) 575 } 576 } 577 if s.f.Config.ctxt.Flag_dynlink { 578 switch s.f.Config.arch { 579 case "amd64": 580 s.allocatable &^= 1 << 15 // R15 581 case "arm": 582 s.allocatable &^= 1 << 9 // R9 583 case "ppc64le": // R2 already reserved. 584 // nothing to do 585 case "arm64": 586 // nothing to do? 587 case "386": 588 // nothing to do. 589 // Note that for Flag_shared (position independent code) 590 // we do need to be careful, but that carefulness is hidden 591 // in the rewrite rules so we always have a free register 592 // available for global load/stores. See gen/386.rules (search for Flag_shared). 593 case "s390x": 594 // nothing to do, R10 & R11 already reserved 595 default: 596 s.f.fe.Fatalf(src.NoXPos, "arch %s not implemented", s.f.Config.arch) 597 } 598 } 599 if s.f.Config.nacl { 600 switch s.f.Config.arch { 601 case "arm": 602 s.allocatable &^= 1 << 9 // R9 is "thread pointer" on nacl/arm 603 case "amd64p32": 604 s.allocatable &^= 1 << 5 // BP - reserved for nacl 605 s.allocatable &^= 1 << 15 // R15 - reserved for nacl 606 } 607 } 608 if s.f.Config.use387 { 609 s.allocatable &^= 1 << 15 // X7 disallowed (one 387 register is used as scratch space during SSE->387 generation in ../x86/387.go) 610 } 611 612 s.regs = make([]regState, s.numRegs) 613 s.values = make([]valState, f.NumValues()) 614 s.orig = make([]*Value, f.NumValues()) 615 s.copies = make(map[*Value]bool) 616 if s.f.Config.ctxt.Flag_locationlists { 617 s.valueNames = make([][]LocalSlot, f.NumValues()) 618 for slot, values := range f.NamedValues { 619 if isSynthetic(&slot) { 620 continue 621 } 622 for _, value := range values { 623 s.valueNames[value.ID] = append(s.valueNames[value.ID], slot) 624 } 625 } 626 } 627 for _, b := range f.Blocks { 628 for _, v := range b.Values { 629 if !v.Type.IsMemory() && !v.Type.IsVoid() && !v.Type.IsFlags() && !v.Type.IsTuple() { 630 s.values[v.ID].needReg = true 631 s.values[v.ID].rematerializeable = v.rematerializeable() 632 s.orig[v.ID] = v 633 } 634 // Note: needReg is false for values returning Tuple types. 635 // Instead, we mark the corresponding Selects as needReg. 636 } 637 } 638 s.computeLive() 639 640 // Compute block order. This array allows us to distinguish forward edges 641 // from backward edges and compute how far they go. 642 blockOrder := make([]int32, f.NumBlocks()) 643 for i, b := range f.Blocks { 644 blockOrder[b.ID] = int32(i) 645 } 646 647 // Compute primary predecessors. 648 s.primary = make([]int32, f.NumBlocks()) 649 for _, b := range f.Blocks { 650 best := -1 651 for i, e := range b.Preds { 652 p := e.b 653 if blockOrder[p.ID] >= blockOrder[b.ID] { 654 continue // backward edge 655 } 656 if best == -1 || blockOrder[p.ID] > blockOrder[b.Preds[best].b.ID] { 657 best = i 658 } 659 } 660 s.primary[b.ID] = int32(best) 661 } 662 663 s.endRegs = make([][]endReg, f.NumBlocks()) 664 s.startRegs = make([][]startReg, f.NumBlocks()) 665 s.spillLive = make([][]ID, f.NumBlocks()) 666 s.sdom = f.sdom() 667 } 668 669 // Adds a use record for id at distance dist from the start of the block. 670 // All calls to addUse must happen with nonincreasing dist. 671 func (s *regAllocState) addUse(id ID, dist int32, pos src.XPos) { 672 r := s.freeUseRecords 673 if r != nil { 674 s.freeUseRecords = r.next 675 } else { 676 r = &use{} 677 } 678 r.dist = dist 679 r.pos = pos 680 r.next = s.values[id].uses 681 s.values[id].uses = r 682 if r.next != nil && dist > r.next.dist { 683 s.f.Fatalf("uses added in wrong order") 684 } 685 } 686 687 // advanceUses advances the uses of v's args from the state before v to the state after v. 688 // Any values which have no more uses are deallocated from registers. 689 func (s *regAllocState) advanceUses(v *Value) { 690 for _, a := range v.Args { 691 if !s.values[a.ID].needReg { 692 continue 693 } 694 ai := &s.values[a.ID] 695 r := ai.uses 696 ai.uses = r.next 697 if r.next == nil { 698 // Value is dead, free all registers that hold it. 699 s.freeRegs(ai.regs) 700 } 701 r.next = s.freeUseRecords 702 s.freeUseRecords = r 703 } 704 } 705 706 // liveAfterCurrentInstruction reports whether v is live after 707 // the current instruction is completed. v must be used by the 708 // current instruction. 709 func (s *regAllocState) liveAfterCurrentInstruction(v *Value) bool { 710 u := s.values[v.ID].uses 711 d := u.dist 712 for u != nil && u.dist == d { 713 u = u.next 714 } 715 return u != nil && u.dist > d 716 } 717 718 // Sets the state of the registers to that encoded in regs. 719 func (s *regAllocState) setState(regs []endReg) { 720 for s.used != 0 { 721 s.freeOrResetReg(pickReg(s.used), true) 722 } 723 for _, x := range regs { 724 s.assignReg(x.r, x.v, x.c) 725 } 726 } 727 728 // compatRegs returns the set of registers which can store a type t. 729 func (s *regAllocState) compatRegs(t *types.Type) regMask { 730 var m regMask 731 if t.IsTuple() || t.IsFlags() { 732 return 0 733 } 734 if t.IsFloat() || t == types.TypeInt128 { 735 m = s.f.Config.fpRegMask 736 } else { 737 m = s.f.Config.gpRegMask 738 } 739 return m & s.allocatable 740 } 741 742 func (s *regAllocState) regalloc(f *Func) { 743 regValLiveSet := f.newSparseSet(f.NumValues()) // set of values that may be live in register 744 defer f.retSparseSet(regValLiveSet) 745 var oldSched []*Value 746 var phis []*Value 747 var phiRegs []register 748 var args []*Value 749 750 // Data structure used for computing desired registers. 751 var desired desiredState 752 753 // Desired registers for inputs & outputs for each instruction in the block. 754 type dentry struct { 755 out [4]register // desired output registers 756 in [3][4]register // desired input registers (for inputs 0,1, and 2) 757 } 758 var dinfo []dentry 759 760 if f.Entry != f.Blocks[0] { 761 f.Fatalf("entry block must be first") 762 } 763 764 for _, b := range f.Blocks { 765 if s.f.pass.debug > regDebug { 766 fmt.Printf("Begin processing block %v\n", b) 767 } 768 s.curBlock = b 769 770 // Initialize regValLiveSet and uses fields for this block. 771 // Walk backwards through the block doing liveness analysis. 772 regValLiveSet.clear() 773 for _, e := range s.live[b.ID] { 774 s.addUse(e.ID, int32(len(b.Values))+e.dist, e.pos) // pseudo-uses from beyond end of block 775 regValLiveSet.add(e.ID) 776 } 777 if v := b.Control; v != nil && s.values[v.ID].needReg { 778 s.addUse(v.ID, int32(len(b.Values)), b.Pos) // pseudo-use by control value 779 regValLiveSet.add(v.ID) 780 } 781 for i := len(b.Values) - 1; i >= 0; i-- { 782 v := b.Values[i] 783 regValLiveSet.remove(v.ID) 784 if v.Op == OpPhi { 785 // Remove v from the live set, but don't add 786 // any inputs. This is the state the len(b.Preds)>1 787 // case below desires; it wants to process phis specially. 788 continue 789 } 790 if opcodeTable[v.Op].call { 791 // Function call clobbers all the registers but SP and SB. 792 regValLiveSet.clear() 793 if s.sp != 0 && s.values[s.sp].uses != nil { 794 regValLiveSet.add(s.sp) 795 } 796 if s.sb != 0 && s.values[s.sb].uses != nil { 797 regValLiveSet.add(s.sb) 798 } 799 } 800 for _, a := range v.Args { 801 if !s.values[a.ID].needReg { 802 continue 803 } 804 s.addUse(a.ID, int32(i), v.Pos) 805 regValLiveSet.add(a.ID) 806 } 807 } 808 if s.f.pass.debug > regDebug { 809 fmt.Printf("uses for %s:%s\n", s.f.Name, b) 810 for i := range s.values { 811 vi := &s.values[i] 812 u := vi.uses 813 if u == nil { 814 continue 815 } 816 fmt.Printf(" v%d:", i) 817 for u != nil { 818 fmt.Printf(" %d", u.dist) 819 u = u.next 820 } 821 fmt.Println() 822 } 823 } 824 825 // Make a copy of the block schedule so we can generate a new one in place. 826 // We make a separate copy for phis and regular values. 827 nphi := 0 828 for _, v := range b.Values { 829 if v.Op != OpPhi { 830 break 831 } 832 nphi++ 833 } 834 phis = append(phis[:0], b.Values[:nphi]...) 835 oldSched = append(oldSched[:0], b.Values[nphi:]...) 836 b.Values = b.Values[:0] 837 838 // Initialize start state of block. 839 if b == f.Entry { 840 // Regalloc state is empty to start. 841 if nphi > 0 { 842 f.Fatalf("phis in entry block") 843 } 844 } else if len(b.Preds) == 1 { 845 // Start regalloc state with the end state of the previous block. 846 s.setState(s.endRegs[b.Preds[0].b.ID]) 847 if nphi > 0 { 848 f.Fatalf("phis in single-predecessor block") 849 } 850 // Drop any values which are no longer live. 851 // This may happen because at the end of p, a value may be 852 // live but only used by some other successor of p. 853 for r := register(0); r < s.numRegs; r++ { 854 v := s.regs[r].v 855 if v != nil && !regValLiveSet.contains(v.ID) { 856 s.freeReg(r) 857 } 858 } 859 } else { 860 // This is the complicated case. We have more than one predecessor, 861 // which means we may have Phi ops. 862 863 // Start with the final register state of the primary predecessor 864 idx := s.primary[b.ID] 865 if idx < 0 { 866 f.Fatalf("block with no primary predecessor %s", b) 867 } 868 p := b.Preds[idx].b 869 s.setState(s.endRegs[p.ID]) 870 871 if s.f.pass.debug > regDebug { 872 fmt.Printf("starting merge block %s with end state of %s:\n", b, p) 873 for _, x := range s.endRegs[p.ID] { 874 fmt.Printf(" %s: orig:%s cache:%s\n", &s.registers[x.r], x.v, x.c) 875 } 876 } 877 878 // Decide on registers for phi ops. Use the registers determined 879 // by the primary predecessor if we can. 880 // TODO: pick best of (already processed) predecessors? 881 // Majority vote? Deepest nesting level? 882 phiRegs = phiRegs[:0] 883 var phiUsed regMask 884 for _, v := range phis { 885 if !s.values[v.ID].needReg { 886 phiRegs = append(phiRegs, noRegister) 887 continue 888 } 889 a := v.Args[idx] 890 // Some instructions target not-allocatable registers. 891 // They're not suitable for further (phi-function) allocation. 892 m := s.values[a.ID].regs &^ phiUsed & s.allocatable 893 if m != 0 { 894 r := pickReg(m) 895 phiUsed |= regMask(1) << r 896 phiRegs = append(phiRegs, r) 897 } else { 898 phiRegs = append(phiRegs, noRegister) 899 } 900 } 901 902 // Second pass - deallocate any phi inputs which are now dead. 903 for i, v := range phis { 904 if !s.values[v.ID].needReg { 905 continue 906 } 907 a := v.Args[idx] 908 if !regValLiveSet.contains(a.ID) { 909 // Input is dead beyond the phi, deallocate 910 // anywhere else it might live. 911 s.freeRegs(s.values[a.ID].regs) 912 } else { 913 // Input is still live. 914 // Try to move it around before kicking out, if there is a free register. 915 // We generate a Copy in the predecessor block and record it. It will be 916 // deleted if never used. 917 r := phiRegs[i] 918 if r == noRegister { 919 continue 920 } 921 // Pick a free register. At this point some registers used in the predecessor 922 // block may have been deallocated. Those are the ones used for Phis. Exclude 923 // them (and they are not going to be helpful anyway). 924 m := s.compatRegs(a.Type) &^ s.used &^ phiUsed 925 if m != 0 && !s.values[a.ID].rematerializeable && countRegs(s.values[a.ID].regs) == 1 { 926 r2 := pickReg(m) 927 c := p.NewValue1(a.Pos, OpCopy, a.Type, s.regs[r].c) 928 s.copies[c] = false 929 if s.f.pass.debug > regDebug { 930 fmt.Printf("copy %s to %s : %s\n", a, c, &s.registers[r2]) 931 } 932 s.setOrig(c, a) 933 s.assignReg(r2, a, c) 934 s.endRegs[p.ID] = append(s.endRegs[p.ID], endReg{r2, a, c}) 935 } 936 s.freeReg(r) 937 } 938 } 939 940 // Copy phi ops into new schedule. 941 b.Values = append(b.Values, phis...) 942 943 // Third pass - pick registers for phis whose inputs 944 // were not in a register. 945 for i, v := range phis { 946 if !s.values[v.ID].needReg { 947 continue 948 } 949 if phiRegs[i] != noRegister { 950 continue 951 } 952 if s.f.Config.use387 && v.Type.IsFloat() { 953 continue // 387 can't handle floats in registers between blocks 954 } 955 m := s.compatRegs(v.Type) &^ phiUsed &^ s.used 956 if m != 0 { 957 r := pickReg(m) 958 phiRegs[i] = r 959 phiUsed |= regMask(1) << r 960 } 961 } 962 963 // Set registers for phis. Add phi spill code. 964 for i, v := range phis { 965 if !s.values[v.ID].needReg { 966 continue 967 } 968 r := phiRegs[i] 969 if r == noRegister { 970 // stack-based phi 971 // Spills will be inserted in all the predecessors below. 972 s.values[v.ID].spill = v // v starts life spilled 973 continue 974 } 975 // register-based phi 976 s.assignReg(r, v, v) 977 } 978 979 // Deallocate any values which are no longer live. Phis are excluded. 980 for r := register(0); r < s.numRegs; r++ { 981 if phiUsed>>r&1 != 0 { 982 continue 983 } 984 v := s.regs[r].v 985 if v != nil && !regValLiveSet.contains(v.ID) { 986 s.freeReg(r) 987 } 988 } 989 990 // Save the starting state for use by merge edges. 991 var regList []startReg 992 for r := register(0); r < s.numRegs; r++ { 993 v := s.regs[r].v 994 if v == nil { 995 continue 996 } 997 if phiUsed>>r&1 != 0 { 998 // Skip registers that phis used, we'll handle those 999 // specially during merge edge processing. 1000 continue 1001 } 1002 regList = append(regList, startReg{r, v, s.regs[r].c, s.values[v.ID].uses.pos}) 1003 } 1004 s.startRegs[b.ID] = regList 1005 1006 if s.f.pass.debug > regDebug { 1007 fmt.Printf("after phis\n") 1008 for _, x := range s.startRegs[b.ID] { 1009 fmt.Printf(" %s: v%d\n", &s.registers[x.r], x.v.ID) 1010 } 1011 } 1012 } 1013 1014 // Allocate space to record the desired registers for each value. 1015 dinfo = dinfo[:0] 1016 for i := 0; i < len(oldSched); i++ { 1017 dinfo = append(dinfo, dentry{}) 1018 } 1019 1020 // Load static desired register info at the end of the block. 1021 desired.copy(&s.desired[b.ID]) 1022 1023 // Check actual assigned registers at the start of the next block(s). 1024 // Dynamically assigned registers will trump the static 1025 // desired registers computed during liveness analysis. 1026 // Note that we do this phase after startRegs is set above, so that 1027 // we get the right behavior for a block which branches to itself. 1028 for _, e := range b.Succs { 1029 succ := e.b 1030 // TODO: prioritize likely successor? 1031 for _, x := range s.startRegs[succ.ID] { 1032 desired.add(x.v.ID, x.r) 1033 } 1034 // Process phi ops in succ. 1035 pidx := e.i 1036 for _, v := range succ.Values { 1037 if v.Op != OpPhi { 1038 continue 1039 } 1040 if !s.values[v.ID].needReg { 1041 continue 1042 } 1043 rp, ok := s.f.getHome(v.ID).(*Register) 1044 if !ok { 1045 continue 1046 } 1047 desired.add(v.Args[pidx].ID, register(rp.num)) 1048 } 1049 } 1050 // Walk values backwards computing desired register info. 1051 // See computeLive for more comments. 1052 for i := len(oldSched) - 1; i >= 0; i-- { 1053 v := oldSched[i] 1054 prefs := desired.remove(v.ID) 1055 desired.clobber(opcodeTable[v.Op].reg.clobbers) 1056 for _, j := range opcodeTable[v.Op].reg.inputs { 1057 if countRegs(j.regs) != 1 { 1058 continue 1059 } 1060 desired.clobber(j.regs) 1061 desired.add(v.Args[j.idx].ID, pickReg(j.regs)) 1062 } 1063 if opcodeTable[v.Op].resultInArg0 { 1064 if opcodeTable[v.Op].commutative { 1065 desired.addList(v.Args[1].ID, prefs) 1066 } 1067 desired.addList(v.Args[0].ID, prefs) 1068 } 1069 // Save desired registers for this value. 1070 dinfo[i].out = prefs 1071 for j, a := range v.Args { 1072 if j >= len(dinfo[i].in) { 1073 break 1074 } 1075 dinfo[i].in[j] = desired.get(a.ID) 1076 } 1077 } 1078 1079 // Process all the non-phi values. 1080 for idx, v := range oldSched { 1081 if s.f.pass.debug > regDebug { 1082 fmt.Printf(" processing %s\n", v.LongString()) 1083 } 1084 regspec := opcodeTable[v.Op].reg 1085 if v.Op == OpPhi { 1086 f.Fatalf("phi %s not at start of block", v) 1087 } 1088 if v.Op == OpSP { 1089 s.assignReg(s.SPReg, v, v) 1090 b.Values = append(b.Values, v) 1091 s.advanceUses(v) 1092 s.sp = v.ID 1093 continue 1094 } 1095 if v.Op == OpSB { 1096 s.assignReg(s.SBReg, v, v) 1097 b.Values = append(b.Values, v) 1098 s.advanceUses(v) 1099 s.sb = v.ID 1100 continue 1101 } 1102 if v.Op == OpSelect0 || v.Op == OpSelect1 { 1103 if s.values[v.ID].needReg { 1104 var i = 0 1105 if v.Op == OpSelect1 { 1106 i = 1 1107 } 1108 s.assignReg(register(s.f.getHome(v.Args[0].ID).(LocPair)[i].(*Register).num), v, v) 1109 } 1110 b.Values = append(b.Values, v) 1111 s.advanceUses(v) 1112 goto issueSpill 1113 } 1114 if v.Op == OpGetG && s.f.Config.hasGReg { 1115 // use hardware g register 1116 if s.regs[s.GReg].v != nil { 1117 s.freeReg(s.GReg) // kick out the old value 1118 } 1119 s.assignReg(s.GReg, v, v) 1120 b.Values = append(b.Values, v) 1121 s.advanceUses(v) 1122 goto issueSpill 1123 } 1124 if v.Op == OpArg { 1125 // Args are "pre-spilled" values. We don't allocate 1126 // any register here. We just set up the spill pointer to 1127 // point at itself and any later user will restore it to use it. 1128 s.values[v.ID].spill = v 1129 b.Values = append(b.Values, v) 1130 s.advanceUses(v) 1131 continue 1132 } 1133 if v.Op == OpKeepAlive { 1134 // Make sure the argument to v is still live here. 1135 s.advanceUses(v) 1136 a := v.Args[0] 1137 vi := &s.values[a.ID] 1138 if vi.regs == 0 && !vi.rematerializeable { 1139 // Use the spill location. 1140 // This forces later liveness analysis to make the 1141 // value live at this point. 1142 v.SetArg(0, s.makeSpill(a, b)) 1143 } else { 1144 // In-register and rematerializeable values are already live. 1145 // These are typically rematerializeable constants like nil, 1146 // or values of a variable that were modified since the last call. 1147 v.Op = OpCopy 1148 v.SetArgs1(v.Args[1]) 1149 } 1150 b.Values = append(b.Values, v) 1151 continue 1152 } 1153 if len(regspec.inputs) == 0 && len(regspec.outputs) == 0 { 1154 // No register allocation required (or none specified yet) 1155 s.freeRegs(regspec.clobbers) 1156 b.Values = append(b.Values, v) 1157 s.advanceUses(v) 1158 continue 1159 } 1160 1161 if s.values[v.ID].rematerializeable { 1162 // Value is rematerializeable, don't issue it here. 1163 // It will get issued just before each use (see 1164 // allocValueToReg). 1165 for _, a := range v.Args { 1166 a.Uses-- 1167 } 1168 s.advanceUses(v) 1169 continue 1170 } 1171 1172 if s.f.pass.debug > regDebug { 1173 fmt.Printf("value %s\n", v.LongString()) 1174 fmt.Printf(" out:") 1175 for _, r := range dinfo[idx].out { 1176 if r != noRegister { 1177 fmt.Printf(" %s", &s.registers[r]) 1178 } 1179 } 1180 fmt.Println() 1181 for i := 0; i < len(v.Args) && i < 3; i++ { 1182 fmt.Printf(" in%d:", i) 1183 for _, r := range dinfo[idx].in[i] { 1184 if r != noRegister { 1185 fmt.Printf(" %s", &s.registers[r]) 1186 } 1187 } 1188 fmt.Println() 1189 } 1190 } 1191 1192 // Move arguments to registers. Process in an ordering defined 1193 // by the register specification (most constrained first). 1194 args = append(args[:0], v.Args...) 1195 for _, i := range regspec.inputs { 1196 mask := i.regs 1197 if mask&s.values[args[i.idx].ID].regs == 0 { 1198 // Need a new register for the input. 1199 mask &= s.allocatable 1200 mask &^= s.nospill 1201 // Used desired register if available. 1202 if i.idx < 3 { 1203 for _, r := range dinfo[idx].in[i.idx] { 1204 if r != noRegister && (mask&^s.used)>>r&1 != 0 { 1205 // Desired register is allowed and unused. 1206 mask = regMask(1) << r 1207 break 1208 } 1209 } 1210 } 1211 // Avoid registers we're saving for other values. 1212 if mask&^desired.avoid != 0 { 1213 mask &^= desired.avoid 1214 } 1215 } 1216 args[i.idx] = s.allocValToReg(args[i.idx], mask, true, v.Pos) 1217 } 1218 1219 // If the output clobbers the input register, make sure we have 1220 // at least two copies of the input register so we don't 1221 // have to reload the value from the spill location. 1222 if opcodeTable[v.Op].resultInArg0 { 1223 var m regMask 1224 if !s.liveAfterCurrentInstruction(v.Args[0]) { 1225 // arg0 is dead. We can clobber its register. 1226 goto ok 1227 } 1228 if s.values[v.Args[0].ID].rematerializeable { 1229 // We can rematerialize the input, don't worry about clobbering it. 1230 goto ok 1231 } 1232 if countRegs(s.values[v.Args[0].ID].regs) >= 2 { 1233 // we have at least 2 copies of arg0. We can afford to clobber one. 1234 goto ok 1235 } 1236 if opcodeTable[v.Op].commutative { 1237 if !s.liveAfterCurrentInstruction(v.Args[1]) { 1238 args[0], args[1] = args[1], args[0] 1239 goto ok 1240 } 1241 if s.values[v.Args[1].ID].rematerializeable { 1242 args[0], args[1] = args[1], args[0] 1243 goto ok 1244 } 1245 if countRegs(s.values[v.Args[1].ID].regs) >= 2 { 1246 args[0], args[1] = args[1], args[0] 1247 goto ok 1248 } 1249 } 1250 1251 // We can't overwrite arg0 (or arg1, if commutative). So we 1252 // need to make a copy of an input so we have a register we can modify. 1253 1254 // Possible new registers to copy into. 1255 m = s.compatRegs(v.Args[0].Type) &^ s.used 1256 if m == 0 { 1257 // No free registers. In this case we'll just clobber 1258 // an input and future uses of that input must use a restore. 1259 // TODO(khr): We should really do this like allocReg does it, 1260 // spilling the value with the most distant next use. 1261 goto ok 1262 } 1263 1264 // Try to move an input to the desired output. 1265 for _, r := range dinfo[idx].out { 1266 if r != noRegister && m>>r&1 != 0 { 1267 m = regMask(1) << r 1268 args[0] = s.allocValToReg(v.Args[0], m, true, v.Pos) 1269 // Note: we update args[0] so the instruction will 1270 // use the register copy we just made. 1271 goto ok 1272 } 1273 } 1274 // Try to copy input to its desired location & use its old 1275 // location as the result register. 1276 for _, r := range dinfo[idx].in[0] { 1277 if r != noRegister && m>>r&1 != 0 { 1278 m = regMask(1) << r 1279 c := s.allocValToReg(v.Args[0], m, true, v.Pos) 1280 s.copies[c] = false 1281 // Note: no update to args[0] so the instruction will 1282 // use the original copy. 1283 goto ok 1284 } 1285 } 1286 if opcodeTable[v.Op].commutative { 1287 for _, r := range dinfo[idx].in[1] { 1288 if r != noRegister && m>>r&1 != 0 { 1289 m = regMask(1) << r 1290 c := s.allocValToReg(v.Args[1], m, true, v.Pos) 1291 s.copies[c] = false 1292 args[0], args[1] = args[1], args[0] 1293 goto ok 1294 } 1295 } 1296 } 1297 // Avoid future fixed uses if we can. 1298 if m&^desired.avoid != 0 { 1299 m &^= desired.avoid 1300 } 1301 // Save input 0 to a new register so we can clobber it. 1302 c := s.allocValToReg(v.Args[0], m, true, v.Pos) 1303 s.copies[c] = false 1304 } 1305 1306 ok: 1307 // Now that all args are in regs, we're ready to issue the value itself. 1308 // Before we pick a register for the output value, allow input registers 1309 // to be deallocated. We do this here so that the output can use the 1310 // same register as a dying input. 1311 if !opcodeTable[v.Op].resultNotInArgs { 1312 s.tmpused = s.nospill 1313 s.nospill = 0 1314 s.advanceUses(v) // frees any registers holding args that are no longer live 1315 } 1316 1317 // Dump any registers which will be clobbered 1318 s.freeRegs(regspec.clobbers) 1319 s.tmpused |= regspec.clobbers 1320 1321 // Pick registers for outputs. 1322 { 1323 outRegs := [2]register{noRegister, noRegister} 1324 var used regMask 1325 for _, out := range regspec.outputs { 1326 mask := out.regs & s.allocatable &^ used 1327 if mask == 0 { 1328 continue 1329 } 1330 if opcodeTable[v.Op].resultInArg0 && out.idx == 0 { 1331 if !opcodeTable[v.Op].commutative { 1332 // Output must use the same register as input 0. 1333 r := register(s.f.getHome(args[0].ID).(*Register).num) 1334 mask = regMask(1) << r 1335 } else { 1336 // Output must use the same register as input 0 or 1. 1337 r0 := register(s.f.getHome(args[0].ID).(*Register).num) 1338 r1 := register(s.f.getHome(args[1].ID).(*Register).num) 1339 // Check r0 and r1 for desired output register. 1340 found := false 1341 for _, r := range dinfo[idx].out { 1342 if (r == r0 || r == r1) && (mask&^s.used)>>r&1 != 0 { 1343 mask = regMask(1) << r 1344 found = true 1345 if r == r1 { 1346 args[0], args[1] = args[1], args[0] 1347 } 1348 break 1349 } 1350 } 1351 if !found { 1352 // Neither are desired, pick r0. 1353 mask = regMask(1) << r0 1354 } 1355 } 1356 } 1357 for _, r := range dinfo[idx].out { 1358 if r != noRegister && (mask&^s.used)>>r&1 != 0 { 1359 // Desired register is allowed and unused. 1360 mask = regMask(1) << r 1361 break 1362 } 1363 } 1364 // Avoid registers we're saving for other values. 1365 if mask&^desired.avoid != 0 { 1366 mask &^= desired.avoid 1367 } 1368 r := s.allocReg(mask, v) 1369 outRegs[out.idx] = r 1370 used |= regMask(1) << r 1371 s.tmpused |= regMask(1) << r 1372 } 1373 // Record register choices 1374 if v.Type.IsTuple() { 1375 var outLocs LocPair 1376 if r := outRegs[0]; r != noRegister { 1377 outLocs[0] = &s.registers[r] 1378 } 1379 if r := outRegs[1]; r != noRegister { 1380 outLocs[1] = &s.registers[r] 1381 } 1382 s.f.setHome(v, outLocs) 1383 // Note that subsequent SelectX instructions will do the assignReg calls. 1384 } else { 1385 if r := outRegs[0]; r != noRegister { 1386 s.assignReg(r, v, v) 1387 } 1388 } 1389 } 1390 1391 // deallocate dead args, if we have not done so 1392 if opcodeTable[v.Op].resultNotInArgs { 1393 s.nospill = 0 1394 s.advanceUses(v) // frees any registers holding args that are no longer live 1395 } 1396 s.tmpused = 0 1397 1398 // Issue the Value itself. 1399 for i, a := range args { 1400 v.SetArg(i, a) // use register version of arguments 1401 } 1402 b.Values = append(b.Values, v) 1403 1404 issueSpill: 1405 } 1406 1407 // Load control value into reg. 1408 if v := b.Control; v != nil && s.values[v.ID].needReg { 1409 if s.f.pass.debug > regDebug { 1410 fmt.Printf(" processing control %s\n", v.LongString()) 1411 } 1412 // We assume that a control input can be passed in any 1413 // type-compatible register. If this turns out not to be true, 1414 // we'll need to introduce a regspec for a block's control value. 1415 b.Control = s.allocValToReg(v, s.compatRegs(v.Type), false, b.Pos) 1416 if b.Control != v { 1417 v.Uses-- 1418 b.Control.Uses++ 1419 } 1420 // Remove this use from the uses list. 1421 vi := &s.values[v.ID] 1422 u := vi.uses 1423 vi.uses = u.next 1424 if u.next == nil { 1425 s.freeRegs(vi.regs) // value is dead 1426 } 1427 u.next = s.freeUseRecords 1428 s.freeUseRecords = u 1429 } 1430 1431 // Spill any values that can't live across basic block boundaries. 1432 if s.f.Config.use387 { 1433 s.freeRegs(s.f.Config.fpRegMask) 1434 } 1435 1436 // If we are approaching a merge point and we are the primary 1437 // predecessor of it, find live values that we use soon after 1438 // the merge point and promote them to registers now. 1439 if len(b.Succs) == 1 { 1440 // For this to be worthwhile, the loop must have no calls in it. 1441 top := b.Succs[0].b 1442 loop := s.loopnest.b2l[top.ID] 1443 if loop == nil || loop.header != top || loop.containsCall { 1444 goto badloop 1445 } 1446 1447 // TODO: sort by distance, pick the closest ones? 1448 for _, live := range s.live[b.ID] { 1449 if live.dist >= unlikelyDistance { 1450 // Don't preload anything live after the loop. 1451 continue 1452 } 1453 vid := live.ID 1454 vi := &s.values[vid] 1455 if vi.regs != 0 { 1456 continue 1457 } 1458 if vi.rematerializeable { 1459 continue 1460 } 1461 v := s.orig[vid] 1462 if s.f.Config.use387 && v.Type.IsFloat() { 1463 continue // 387 can't handle floats in registers between blocks 1464 } 1465 m := s.compatRegs(v.Type) &^ s.used 1466 if m&^desired.avoid != 0 { 1467 m &^= desired.avoid 1468 } 1469 if m != 0 { 1470 s.allocValToReg(v, m, false, b.Pos) 1471 } 1472 } 1473 } 1474 badloop: 1475 ; 1476 1477 // Save end-of-block register state. 1478 // First count how many, this cuts allocations in half. 1479 k := 0 1480 for r := register(0); r < s.numRegs; r++ { 1481 v := s.regs[r].v 1482 if v == nil { 1483 continue 1484 } 1485 k++ 1486 } 1487 regList := make([]endReg, 0, k) 1488 for r := register(0); r < s.numRegs; r++ { 1489 v := s.regs[r].v 1490 if v == nil { 1491 continue 1492 } 1493 regList = append(regList, endReg{r, v, s.regs[r].c}) 1494 } 1495 s.endRegs[b.ID] = regList 1496 1497 if checkEnabled { 1498 regValLiveSet.clear() 1499 for _, x := range s.live[b.ID] { 1500 regValLiveSet.add(x.ID) 1501 } 1502 for r := register(0); r < s.numRegs; r++ { 1503 v := s.regs[r].v 1504 if v == nil { 1505 continue 1506 } 1507 if !regValLiveSet.contains(v.ID) { 1508 s.f.Fatalf("val %s is in reg but not live at end of %s", v, b) 1509 } 1510 } 1511 } 1512 1513 // If a value is live at the end of the block and 1514 // isn't in a register, generate a use for the spill location. 1515 // We need to remember this information so that 1516 // the liveness analysis in stackalloc is correct. 1517 for _, e := range s.live[b.ID] { 1518 vi := &s.values[e.ID] 1519 if vi.regs != 0 { 1520 // in a register, we'll use that source for the merge. 1521 continue 1522 } 1523 if vi.rematerializeable { 1524 // we'll rematerialize during the merge. 1525 continue 1526 } 1527 //fmt.Printf("live-at-end spill for %s at %s\n", s.orig[e.ID], b) 1528 spill := s.makeSpill(s.orig[e.ID], b) 1529 s.spillLive[b.ID] = append(s.spillLive[b.ID], spill.ID) 1530 } 1531 1532 // Clear any final uses. 1533 // All that is left should be the pseudo-uses added for values which 1534 // are live at the end of b. 1535 for _, e := range s.live[b.ID] { 1536 u := s.values[e.ID].uses 1537 if u == nil { 1538 f.Fatalf("live at end, no uses v%d", e.ID) 1539 } 1540 if u.next != nil { 1541 f.Fatalf("live at end, too many uses v%d", e.ID) 1542 } 1543 s.values[e.ID].uses = nil 1544 u.next = s.freeUseRecords 1545 s.freeUseRecords = u 1546 } 1547 } 1548 1549 // Decide where the spills we generated will go. 1550 s.placeSpills() 1551 1552 // Anything that didn't get a register gets a stack location here. 1553 // (StoreReg, stack-based phis, inputs, ...) 1554 stacklive := stackalloc(s.f, s.spillLive) 1555 1556 // Fix up all merge edges. 1557 s.shuffle(stacklive) 1558 1559 // Erase any copies we never used. 1560 // Also, an unused copy might be the only use of another copy, 1561 // so continue erasing until we reach a fixed point. 1562 for { 1563 progress := false 1564 for c, used := range s.copies { 1565 if !used && c.Uses == 0 { 1566 if s.f.pass.debug > regDebug { 1567 fmt.Printf("delete copied value %s\n", c.LongString()) 1568 } 1569 c.RemoveArg(0) 1570 f.freeValue(c) 1571 delete(s.copies, c) 1572 progress = true 1573 } 1574 } 1575 if !progress { 1576 break 1577 } 1578 } 1579 1580 for _, b := range f.Blocks { 1581 i := 0 1582 for _, v := range b.Values { 1583 if v.Op == OpInvalid { 1584 continue 1585 } 1586 b.Values[i] = v 1587 i++ 1588 } 1589 b.Values = b.Values[:i] 1590 } 1591 } 1592 1593 func (s *regAllocState) placeSpills() { 1594 f := s.f 1595 1596 // Precompute some useful info. 1597 phiRegs := make([]regMask, f.NumBlocks()) 1598 for _, b := range f.Blocks { 1599 var m regMask 1600 for _, v := range b.Values { 1601 if v.Op == OpRegKill { 1602 continue 1603 } 1604 if v.Op != OpPhi { 1605 break 1606 } 1607 if r, ok := f.getHome(v.ID).(*Register); ok { 1608 m |= regMask(1) << uint(r.num) 1609 } 1610 } 1611 phiRegs[b.ID] = m 1612 } 1613 1614 // Start maps block IDs to the list of spills 1615 // that go at the start of the block (but after any phis). 1616 start := map[ID][]*Value{} 1617 // After maps value IDs to the list of spills 1618 // that go immediately after that value ID. 1619 after := map[ID][]*Value{} 1620 1621 for i := range s.values { 1622 vi := s.values[i] 1623 spill := vi.spill 1624 if spill == nil { 1625 continue 1626 } 1627 if spill.Block != nil { 1628 // Some spills are already fully set up, 1629 // like OpArgs and stack-based phis. 1630 continue 1631 } 1632 v := s.orig[i] 1633 1634 // Walk down the dominator tree looking for a good place to 1635 // put the spill of v. At the start "best" is the best place 1636 // we have found so far. 1637 // TODO: find a way to make this O(1) without arbitrary cutoffs. 1638 best := v.Block 1639 bestArg := v 1640 var bestDepth int16 1641 if l := s.loopnest.b2l[best.ID]; l != nil { 1642 bestDepth = l.depth 1643 } 1644 b := best 1645 const maxSpillSearch = 100 1646 for i := 0; i < maxSpillSearch; i++ { 1647 // Find the child of b in the dominator tree which 1648 // dominates all restores. 1649 p := b 1650 b = nil 1651 for c := s.sdom.Child(p); c != nil && i < maxSpillSearch; c, i = s.sdom.Sibling(c), i+1 { 1652 if s.sdom[c.ID].entry <= vi.restoreMin && s.sdom[c.ID].exit >= vi.restoreMax { 1653 // c also dominates all restores. Walk down into c. 1654 b = c 1655 break 1656 } 1657 } 1658 if b == nil { 1659 // Ran out of blocks which dominate all restores. 1660 break 1661 } 1662 1663 var depth int16 1664 if l := s.loopnest.b2l[b.ID]; l != nil { 1665 depth = l.depth 1666 } 1667 if depth > bestDepth { 1668 // Don't push the spill into a deeper loop. 1669 continue 1670 } 1671 1672 // If v is in a register at the start of b, we can 1673 // place the spill here (after the phis). 1674 if len(b.Preds) == 1 { 1675 for _, e := range s.endRegs[b.Preds[0].b.ID] { 1676 if e.v == v { 1677 // Found a better spot for the spill. 1678 best = b 1679 bestArg = e.c 1680 bestDepth = depth 1681 break 1682 } 1683 } 1684 } else { 1685 for _, e := range s.startRegs[b.ID] { 1686 if e.v == v { 1687 // Found a better spot for the spill. 1688 best = b 1689 bestArg = e.c 1690 bestDepth = depth 1691 break 1692 } 1693 } 1694 } 1695 } 1696 1697 // Put the spill in the best block we found. 1698 spill.Block = best 1699 spill.AddArg(bestArg) 1700 if best == v.Block && v.Op != OpPhi { 1701 // Place immediately after v. 1702 after[v.ID] = append(after[v.ID], spill) 1703 } else { 1704 // Place at the start of best block. 1705 start[best.ID] = append(start[best.ID], spill) 1706 } 1707 } 1708 1709 // Insert spill instructions into the block schedules. 1710 var oldSched []*Value 1711 for _, b := range f.Blocks { 1712 nphi := 0 1713 for _, v := range b.Values { 1714 if v.Op != OpRegKill && v.Op != OpPhi { 1715 break 1716 } 1717 nphi++ 1718 } 1719 oldSched = append(oldSched[:0], b.Values[nphi:]...) 1720 b.Values = b.Values[:nphi] 1721 b.Values = append(b.Values, start[b.ID]...) 1722 for _, v := range oldSched { 1723 b.Values = append(b.Values, v) 1724 b.Values = append(b.Values, after[v.ID]...) 1725 } 1726 } 1727 } 1728 1729 // shuffle fixes up all the merge edges (those going into blocks of indegree > 1). 1730 func (s *regAllocState) shuffle(stacklive [][]ID) { 1731 var e edgeState 1732 e.s = s 1733 e.cache = map[ID][]*Value{} 1734 e.contents = map[Location]contentRecord{} 1735 if s.f.pass.debug > regDebug { 1736 fmt.Printf("shuffle %s\n", s.f.Name) 1737 fmt.Println(s.f.String()) 1738 } 1739 1740 for _, b := range s.f.Blocks { 1741 if len(b.Preds) <= 1 { 1742 continue 1743 } 1744 e.b = b 1745 for i, edge := range b.Preds { 1746 p := edge.b 1747 e.p = p 1748 e.setup(i, s.endRegs[p.ID], s.startRegs[b.ID], stacklive[p.ID]) 1749 e.process() 1750 } 1751 } 1752 } 1753 1754 type edgeState struct { 1755 s *regAllocState 1756 p, b *Block // edge goes from p->b. 1757 1758 // for each pre-regalloc value, a list of equivalent cached values 1759 cache map[ID][]*Value 1760 cachedVals []ID // (superset of) keys of the above map, for deterministic iteration 1761 1762 // map from location to the value it contains 1763 contents map[Location]contentRecord 1764 1765 // desired destination locations 1766 destinations []dstRecord 1767 extra []dstRecord 1768 1769 usedRegs regMask // registers currently holding something 1770 uniqueRegs regMask // registers holding the only copy of a value 1771 finalRegs regMask // registers holding final target 1772 } 1773 1774 type contentRecord struct { 1775 vid ID // pre-regalloc value 1776 c *Value // cached value 1777 final bool // this is a satisfied destination 1778 pos src.XPos // source position of use of the value 1779 } 1780 1781 type dstRecord struct { 1782 loc Location // register or stack slot 1783 vid ID // pre-regalloc value it should contain 1784 splice **Value // place to store reference to the generating instruction 1785 pos src.XPos // source position of use of this location 1786 } 1787 1788 // setup initializes the edge state for shuffling. 1789 func (e *edgeState) setup(idx int, srcReg []endReg, dstReg []startReg, stacklive []ID) { 1790 if e.s.f.pass.debug > regDebug { 1791 fmt.Printf("edge %s->%s\n", e.p, e.b) 1792 } 1793 1794 // Clear state. 1795 for _, vid := range e.cachedVals { 1796 delete(e.cache, vid) 1797 } 1798 e.cachedVals = e.cachedVals[:0] 1799 for k := range e.contents { 1800 delete(e.contents, k) 1801 } 1802 e.usedRegs = 0 1803 e.uniqueRegs = 0 1804 e.finalRegs = 0 1805 1806 // Live registers can be sources. 1807 for _, x := range srcReg { 1808 e.set(&e.s.registers[x.r], x.v.ID, x.c, false, src.NoXPos) // don't care the position of the source 1809 } 1810 // So can all of the spill locations. 1811 for _, spillID := range stacklive { 1812 v := e.s.orig[spillID] 1813 spill := e.s.values[v.ID].spill 1814 if !e.s.sdom.isAncestorEq(spill.Block, e.p) { 1815 // Spills were placed that only dominate the uses found 1816 // during the first regalloc pass. The edge fixup code 1817 // can't use a spill location if the spill doesn't dominate 1818 // the edge. 1819 // We are guaranteed that if the spill doesn't dominate this edge, 1820 // then the value is available in a register (because we called 1821 // makeSpill for every value not in a register at the start 1822 // of an edge). 1823 continue 1824 } 1825 e.set(e.s.f.getHome(spillID), v.ID, spill, false, src.NoXPos) // don't care the position of the source 1826 } 1827 1828 // Figure out all the destinations we need. 1829 dsts := e.destinations[:0] 1830 for _, x := range dstReg { 1831 dsts = append(dsts, dstRecord{&e.s.registers[x.r], x.v.ID, nil, x.pos}) 1832 } 1833 // Phis need their args to end up in a specific location. 1834 for _, v := range e.b.Values { 1835 if v.Op == OpRegKill { 1836 continue 1837 } 1838 if v.Op != OpPhi { 1839 break 1840 } 1841 loc := e.s.f.getHome(v.ID) 1842 if loc == nil { 1843 continue 1844 } 1845 dsts = append(dsts, dstRecord{loc, v.Args[idx].ID, &v.Args[idx], v.Pos}) 1846 } 1847 e.destinations = dsts 1848 1849 if e.s.f.pass.debug > regDebug { 1850 for _, vid := range e.cachedVals { 1851 a := e.cache[vid] 1852 for _, c := range a { 1853 fmt.Printf("src %s: v%d cache=%s\n", e.s.f.getHome(c.ID), vid, c) 1854 } 1855 } 1856 for _, d := range e.destinations { 1857 fmt.Printf("dst %s: v%d\n", d.loc, d.vid) 1858 } 1859 } 1860 } 1861 1862 // process generates code to move all the values to the right destination locations. 1863 func (e *edgeState) process() { 1864 dsts := e.destinations 1865 1866 // Process the destinations until they are all satisfied. 1867 for len(dsts) > 0 { 1868 i := 0 1869 for _, d := range dsts { 1870 if !e.processDest(d.loc, d.vid, d.splice, d.pos) { 1871 // Failed - save for next iteration. 1872 dsts[i] = d 1873 i++ 1874 } 1875 } 1876 if i < len(dsts) { 1877 // Made some progress. Go around again. 1878 dsts = dsts[:i] 1879 1880 // Append any extras destinations we generated. 1881 dsts = append(dsts, e.extra...) 1882 e.extra = e.extra[:0] 1883 continue 1884 } 1885 1886 // We made no progress. That means that any 1887 // remaining unsatisfied moves are in simple cycles. 1888 // For example, A -> B -> C -> D -> A. 1889 // A ----> B 1890 // ^ | 1891 // | | 1892 // | v 1893 // D <---- C 1894 1895 // To break the cycle, we pick an unused register, say R, 1896 // and put a copy of B there. 1897 // A ----> B 1898 // ^ | 1899 // | | 1900 // | v 1901 // D <---- C <---- R=copyofB 1902 // When we resume the outer loop, the A->B move can now proceed, 1903 // and eventually the whole cycle completes. 1904 1905 // Copy any cycle location to a temp register. This duplicates 1906 // one of the cycle entries, allowing the just duplicated value 1907 // to be overwritten and the cycle to proceed. 1908 d := dsts[0] 1909 loc := d.loc 1910 vid := e.contents[loc].vid 1911 c := e.contents[loc].c 1912 r := e.findRegFor(c.Type) 1913 if e.s.f.pass.debug > regDebug { 1914 fmt.Printf("breaking cycle with v%d in %s:%s\n", vid, loc, c) 1915 } 1916 e.erase(r) 1917 if _, isReg := loc.(*Register); isReg { 1918 c = e.p.NewValue1(d.pos, OpCopy, c.Type, c) 1919 } else { 1920 c = e.p.NewValue1(d.pos, OpLoadReg, c.Type, c) 1921 } 1922 e.set(r, vid, c, false, d.pos) 1923 } 1924 } 1925 1926 // processDest generates code to put value vid into location loc. Returns true 1927 // if progress was made. 1928 func (e *edgeState) processDest(loc Location, vid ID, splice **Value, pos src.XPos) bool { 1929 occupant := e.contents[loc] 1930 if occupant.vid == vid { 1931 // Value is already in the correct place. 1932 e.contents[loc] = contentRecord{vid, occupant.c, true, pos} 1933 if splice != nil { 1934 (*splice).Uses-- 1935 *splice = occupant.c 1936 occupant.c.Uses++ 1937 } 1938 // Note: if splice==nil then c will appear dead. This is 1939 // non-SSA formed code, so be careful after this pass not to run 1940 // deadcode elimination. 1941 if _, ok := e.s.copies[occupant.c]; ok { 1942 // The copy at occupant.c was used to avoid spill. 1943 e.s.copies[occupant.c] = true 1944 } 1945 return true 1946 } 1947 1948 // Check if we're allowed to clobber the destination location. 1949 if len(e.cache[occupant.vid]) == 1 && !e.s.values[occupant.vid].rematerializeable { 1950 // We can't overwrite the last copy 1951 // of a value that needs to survive. 1952 return false 1953 } 1954 1955 // Copy from a source of v, register preferred. 1956 v := e.s.orig[vid] 1957 var c *Value 1958 var src Location 1959 if e.s.f.pass.debug > regDebug { 1960 fmt.Printf("moving v%d to %s\n", vid, loc) 1961 fmt.Printf("sources of v%d:", vid) 1962 } 1963 for _, w := range e.cache[vid] { 1964 h := e.s.f.getHome(w.ID) 1965 if e.s.f.pass.debug > regDebug { 1966 fmt.Printf(" %s:%s", h, w) 1967 } 1968 _, isreg := h.(*Register) 1969 if src == nil || isreg { 1970 c = w 1971 src = h 1972 } 1973 } 1974 if e.s.f.pass.debug > regDebug { 1975 if src != nil { 1976 fmt.Printf(" [use %s]\n", src) 1977 } else { 1978 fmt.Printf(" [no source]\n") 1979 } 1980 } 1981 _, dstReg := loc.(*Register) 1982 1983 // Pre-clobber destination. This avoids the 1984 // following situation: 1985 // - v is currently held in R0 and stacktmp0. 1986 // - We want to copy stacktmp1 to stacktmp0. 1987 // - We choose R0 as the temporary register. 1988 // During the copy, both R0 and stacktmp0 are 1989 // clobbered, losing both copies of v. Oops! 1990 // Erasing the destination early means R0 will not 1991 // be chosen as the temp register, as it will then 1992 // be the last copy of v. 1993 e.erase(loc) 1994 var x *Value 1995 if c == nil { 1996 if !e.s.values[vid].rematerializeable { 1997 e.s.f.Fatalf("can't find source for %s->%s: %s\n", e.p, e.b, v.LongString()) 1998 } 1999 if dstReg { 2000 x = v.copyIntoNoXPos(e.p) 2001 } else { 2002 // Rematerialize into stack slot. Need a free 2003 // register to accomplish this. 2004 r := e.findRegFor(v.Type) 2005 e.erase(r) 2006 x = v.copyIntoWithXPos(e.p, pos) 2007 e.set(r, vid, x, false, pos) 2008 // Make sure we spill with the size of the slot, not the 2009 // size of x (which might be wider due to our dropping 2010 // of narrowing conversions). 2011 x = e.p.NewValue1(pos, OpStoreReg, loc.(LocalSlot).Type, x) 2012 } 2013 } else { 2014 // Emit move from src to dst. 2015 _, srcReg := src.(*Register) 2016 if srcReg { 2017 if dstReg { 2018 x = e.p.NewValue1(pos, OpCopy, c.Type, c) 2019 } else { 2020 x = e.p.NewValue1(pos, OpStoreReg, loc.(LocalSlot).Type, c) 2021 } 2022 } else { 2023 if dstReg { 2024 x = e.p.NewValue1(pos, OpLoadReg, c.Type, c) 2025 } else { 2026 // mem->mem. Use temp register. 2027 r := e.findRegFor(c.Type) 2028 e.erase(r) 2029 t := e.p.NewValue1(pos, OpLoadReg, c.Type, c) 2030 e.set(r, vid, t, false, pos) 2031 x = e.p.NewValue1(pos, OpStoreReg, loc.(LocalSlot).Type, t) 2032 } 2033 } 2034 } 2035 e.set(loc, vid, x, true, pos) 2036 if splice != nil { 2037 (*splice).Uses-- 2038 *splice = x 2039 x.Uses++ 2040 } 2041 return true 2042 } 2043 2044 // set changes the contents of location loc to hold the given value and its cached representative. 2045 func (e *edgeState) set(loc Location, vid ID, c *Value, final bool, pos src.XPos) { 2046 e.s.f.setHome(c, loc) 2047 e.contents[loc] = contentRecord{vid, c, final, pos} 2048 a := e.cache[vid] 2049 if len(a) == 0 { 2050 e.cachedVals = append(e.cachedVals, vid) 2051 } 2052 a = append(a, c) 2053 e.cache[vid] = a 2054 if r, ok := loc.(*Register); ok { 2055 e.usedRegs |= regMask(1) << uint(r.num) 2056 if final { 2057 e.finalRegs |= regMask(1) << uint(r.num) 2058 } 2059 if len(a) == 1 { 2060 e.uniqueRegs |= regMask(1) << uint(r.num) 2061 } 2062 if len(a) == 2 { 2063 if t, ok := e.s.f.getHome(a[0].ID).(*Register); ok { 2064 e.uniqueRegs &^= regMask(1) << uint(t.num) 2065 } 2066 } 2067 } 2068 if e.s.f.pass.debug > regDebug { 2069 fmt.Printf("%s\n", c.LongString()) 2070 fmt.Printf("v%d now available in %s:%s\n", vid, loc, c) 2071 } 2072 } 2073 2074 // erase removes any user of loc. 2075 func (e *edgeState) erase(loc Location) { 2076 cr := e.contents[loc] 2077 if cr.c == nil { 2078 return 2079 } 2080 vid := cr.vid 2081 2082 if cr.final { 2083 // Add a destination to move this value back into place. 2084 // Make sure it gets added to the tail of the destination queue 2085 // so we make progress on other moves first. 2086 e.extra = append(e.extra, dstRecord{loc, cr.vid, nil, cr.pos}) 2087 } 2088 2089 // Remove c from the list of cached values. 2090 a := e.cache[vid] 2091 for i, c := range a { 2092 if e.s.f.getHome(c.ID) == loc { 2093 if e.s.f.pass.debug > regDebug { 2094 fmt.Printf("v%d no longer available in %s:%s\n", vid, loc, c) 2095 } 2096 a[i], a = a[len(a)-1], a[:len(a)-1] 2097 if e.s.f.Config.ctxt.Flag_locationlists { 2098 if _, isReg := loc.(*Register); isReg && int(c.ID) < len(e.s.valueNames) && len(e.s.valueNames[c.ID]) != 0 { 2099 kill := e.p.NewValue0(src.NoXPos, OpRegKill, types.TypeVoid) 2100 e.s.f.setHome(kill, loc) 2101 for _, name := range e.s.valueNames[c.ID] { 2102 e.s.f.NamedValues[name] = append(e.s.f.NamedValues[name], kill) 2103 } 2104 } 2105 } 2106 2107 break 2108 } 2109 } 2110 e.cache[vid] = a 2111 2112 // Update register masks. 2113 if r, ok := loc.(*Register); ok { 2114 e.usedRegs &^= regMask(1) << uint(r.num) 2115 if cr.final { 2116 e.finalRegs &^= regMask(1) << uint(r.num) 2117 } 2118 } 2119 if len(a) == 1 { 2120 if r, ok := e.s.f.getHome(a[0].ID).(*Register); ok { 2121 e.uniqueRegs |= regMask(1) << uint(r.num) 2122 } 2123 } 2124 } 2125 2126 // findRegFor finds a register we can use to make a temp copy of type typ. 2127 func (e *edgeState) findRegFor(typ *types.Type) Location { 2128 // Which registers are possibilities. 2129 var m regMask 2130 types := &e.s.f.Config.Types 2131 if typ.IsFloat() { 2132 m = e.s.compatRegs(types.Float64) 2133 } else { 2134 m = e.s.compatRegs(types.Int64) 2135 } 2136 2137 // Pick a register. In priority order: 2138 // 1) an unused register 2139 // 2) a non-unique register not holding a final value 2140 // 3) a non-unique register 2141 // 4) TODO: a register holding a rematerializeable value 2142 x := m &^ e.usedRegs 2143 if x != 0 { 2144 return &e.s.registers[pickReg(x)] 2145 } 2146 x = m &^ e.uniqueRegs &^ e.finalRegs 2147 if x != 0 { 2148 return &e.s.registers[pickReg(x)] 2149 } 2150 x = m &^ e.uniqueRegs 2151 if x != 0 { 2152 return &e.s.registers[pickReg(x)] 2153 } 2154 2155 // No register is available. 2156 // Pick a register to spill. 2157 for _, vid := range e.cachedVals { 2158 a := e.cache[vid] 2159 for _, c := range a { 2160 if r, ok := e.s.f.getHome(c.ID).(*Register); ok && m>>uint(r.num)&1 != 0 { 2161 if !c.rematerializeable() { 2162 x := e.p.NewValue1(c.Pos, OpStoreReg, c.Type, c) 2163 // Allocate a temp location to spill a register to. 2164 // The type of the slot is immaterial - it will not be live across 2165 // any safepoint. Just use a type big enough to hold any register. 2166 t := LocalSlot{N: e.s.f.fe.Auto(c.Pos, types.Int64), Type: types.Int64} 2167 // TODO: reuse these slots. They'll need to be erased first. 2168 e.set(t, vid, x, false, c.Pos) 2169 if e.s.f.pass.debug > regDebug { 2170 fmt.Printf(" SPILL %s->%s %s\n", r, t, x.LongString()) 2171 } 2172 } 2173 // r will now be overwritten by the caller. At some point 2174 // later, the newly saved value will be moved back to its 2175 // final destination in processDest. 2176 return r 2177 } 2178 } 2179 } 2180 2181 fmt.Printf("m:%d unique:%d final:%d\n", m, e.uniqueRegs, e.finalRegs) 2182 for _, vid := range e.cachedVals { 2183 a := e.cache[vid] 2184 for _, c := range a { 2185 fmt.Printf("v%d: %s %s\n", vid, c, e.s.f.getHome(c.ID)) 2186 } 2187 } 2188 e.s.f.Fatalf("can't find empty register on edge %s->%s", e.p, e.b) 2189 return nil 2190 } 2191 2192 // rematerializeable reports whether the register allocator should recompute 2193 // a value instead of spilling/restoring it. 2194 func (v *Value) rematerializeable() bool { 2195 if !opcodeTable[v.Op].rematerializeable { 2196 return false 2197 } 2198 for _, a := range v.Args { 2199 // SP and SB (generated by OpSP and OpSB) are always available. 2200 if a.Op != OpSP && a.Op != OpSB { 2201 return false 2202 } 2203 } 2204 return true 2205 } 2206 2207 type liveInfo struct { 2208 ID ID // ID of value 2209 dist int32 // # of instructions before next use 2210 pos src.XPos // source position of next use 2211 } 2212 2213 // computeLive computes a map from block ID to a list of value IDs live at the end 2214 // of that block. Together with the value ID is a count of how many instructions 2215 // to the next use of that value. The resulting map is stored in s.live. 2216 // computeLive also computes the desired register information at the end of each block. 2217 // This desired register information is stored in s.desired. 2218 // TODO: this could be quadratic if lots of variables are live across lots of 2219 // basic blocks. Figure out a way to make this function (or, more precisely, the user 2220 // of this function) require only linear size & time. 2221 func (s *regAllocState) computeLive() { 2222 f := s.f 2223 s.live = make([][]liveInfo, f.NumBlocks()) 2224 s.desired = make([]desiredState, f.NumBlocks()) 2225 var phis []*Value 2226 2227 live := newSparseMap(f.NumValues()) 2228 t := newSparseMap(f.NumValues()) 2229 2230 // Keep track of which value we want in each register. 2231 var desired desiredState 2232 2233 // Instead of iterating over f.Blocks, iterate over their postordering. 2234 // Liveness information flows backward, so starting at the end 2235 // increases the probability that we will stabilize quickly. 2236 // TODO: Do a better job yet. Here's one possibility: 2237 // Calculate the dominator tree and locate all strongly connected components. 2238 // If a value is live in one block of an SCC, it is live in all. 2239 // Walk the dominator tree from end to beginning, just once, treating SCC 2240 // components as single blocks, duplicated calculated liveness information 2241 // out to all of them. 2242 po := f.postorder() 2243 s.loopnest = f.loopnest() 2244 s.loopnest.calculateDepths() 2245 for { 2246 changed := false 2247 2248 for _, b := range po { 2249 // Start with known live values at the end of the block. 2250 // Add len(b.Values) to adjust from end-of-block distance 2251 // to beginning-of-block distance. 2252 live.clear() 2253 for _, e := range s.live[b.ID] { 2254 live.set(e.ID, e.dist+int32(len(b.Values)), e.pos) 2255 } 2256 2257 // Mark control value as live 2258 if b.Control != nil && s.values[b.Control.ID].needReg { 2259 live.set(b.Control.ID, int32(len(b.Values)), b.Pos) 2260 } 2261 2262 // Propagate backwards to the start of the block 2263 // Assumes Values have been scheduled. 2264 phis = phis[:0] 2265 for i := len(b.Values) - 1; i >= 0; i-- { 2266 v := b.Values[i] 2267 live.remove(v.ID) 2268 if v.Op == OpPhi { 2269 // save phi ops for later 2270 phis = append(phis, v) 2271 continue 2272 } 2273 if opcodeTable[v.Op].call { 2274 c := live.contents() 2275 for i := range c { 2276 c[i].val += unlikelyDistance 2277 } 2278 } 2279 for _, a := range v.Args { 2280 if s.values[a.ID].needReg { 2281 live.set(a.ID, int32(i), v.Pos) 2282 } 2283 } 2284 } 2285 // Propagate desired registers backwards. 2286 desired.copy(&s.desired[b.ID]) 2287 for i := len(b.Values) - 1; i >= 0; i-- { 2288 v := b.Values[i] 2289 prefs := desired.remove(v.ID) 2290 if v.Op == OpPhi { 2291 // TODO: if v is a phi, save desired register for phi inputs. 2292 // For now, we just drop it and don't propagate 2293 // desired registers back though phi nodes. 2294 continue 2295 } 2296 // Cancel desired registers if they get clobbered. 2297 desired.clobber(opcodeTable[v.Op].reg.clobbers) 2298 // Update desired registers if there are any fixed register inputs. 2299 for _, j := range opcodeTable[v.Op].reg.inputs { 2300 if countRegs(j.regs) != 1 { 2301 continue 2302 } 2303 desired.clobber(j.regs) 2304 desired.add(v.Args[j.idx].ID, pickReg(j.regs)) 2305 } 2306 // Set desired register of input 0 if this is a 2-operand instruction. 2307 if opcodeTable[v.Op].resultInArg0 { 2308 if opcodeTable[v.Op].commutative { 2309 desired.addList(v.Args[1].ID, prefs) 2310 } 2311 desired.addList(v.Args[0].ID, prefs) 2312 } 2313 } 2314 2315 // For each predecessor of b, expand its list of live-at-end values. 2316 // invariant: live contains the values live at the start of b (excluding phi inputs) 2317 for i, e := range b.Preds { 2318 p := e.b 2319 // Compute additional distance for the edge. 2320 // Note: delta must be at least 1 to distinguish the control 2321 // value use from the first user in a successor block. 2322 delta := int32(normalDistance) 2323 if len(p.Succs) == 2 { 2324 if p.Succs[0].b == b && p.Likely == BranchLikely || 2325 p.Succs[1].b == b && p.Likely == BranchUnlikely { 2326 delta = likelyDistance 2327 } 2328 if p.Succs[0].b == b && p.Likely == BranchUnlikely || 2329 p.Succs[1].b == b && p.Likely == BranchLikely { 2330 delta = unlikelyDistance 2331 } 2332 } 2333 2334 // Update any desired registers at the end of p. 2335 s.desired[p.ID].merge(&desired) 2336 2337 // Start t off with the previously known live values at the end of p. 2338 t.clear() 2339 for _, e := range s.live[p.ID] { 2340 t.set(e.ID, e.dist, e.pos) 2341 } 2342 update := false 2343 2344 // Add new live values from scanning this block. 2345 for _, e := range live.contents() { 2346 d := e.val + delta 2347 if !t.contains(e.key) || d < t.get(e.key) { 2348 update = true 2349 t.set(e.key, d, e.aux) 2350 } 2351 } 2352 // Also add the correct arg from the saved phi values. 2353 // All phis are at distance delta (we consider them 2354 // simultaneously happening at the start of the block). 2355 for _, v := range phis { 2356 id := v.Args[i].ID 2357 if s.values[id].needReg && (!t.contains(id) || delta < t.get(id)) { 2358 update = true 2359 t.set(id, delta, v.Pos) 2360 } 2361 } 2362 2363 if !update { 2364 continue 2365 } 2366 // The live set has changed, update it. 2367 l := s.live[p.ID][:0] 2368 if cap(l) < t.size() { 2369 l = make([]liveInfo, 0, t.size()) 2370 } 2371 for _, e := range t.contents() { 2372 l = append(l, liveInfo{e.key, e.val, e.aux}) 2373 } 2374 s.live[p.ID] = l 2375 changed = true 2376 } 2377 } 2378 2379 if !changed { 2380 break 2381 } 2382 } 2383 if f.pass.debug > regDebug { 2384 fmt.Println("live values at end of each block") 2385 for _, b := range f.Blocks { 2386 fmt.Printf(" %s:", b) 2387 for _, x := range s.live[b.ID] { 2388 fmt.Printf(" v%d", x.ID) 2389 for _, e := range s.desired[b.ID].entries { 2390 if e.ID != x.ID { 2391 continue 2392 } 2393 fmt.Printf("[") 2394 first := true 2395 for _, r := range e.regs { 2396 if r == noRegister { 2397 continue 2398 } 2399 if !first { 2400 fmt.Printf(",") 2401 } 2402 fmt.Print(&s.registers[r]) 2403 first = false 2404 } 2405 fmt.Printf("]") 2406 } 2407 } 2408 fmt.Printf(" avoid=%x", int64(s.desired[b.ID].avoid)) 2409 fmt.Println() 2410 } 2411 } 2412 } 2413 2414 // A desiredState represents desired register assignments. 2415 type desiredState struct { 2416 // Desired assignments will be small, so we just use a list 2417 // of valueID+registers entries. 2418 entries []desiredStateEntry 2419 // Registers that other values want to be in. This value will 2420 // contain at least the union of the regs fields of entries, but 2421 // may contain additional entries for values that were once in 2422 // this data structure but are no longer. 2423 avoid regMask 2424 } 2425 type desiredStateEntry struct { 2426 // (pre-regalloc) value 2427 ID ID 2428 // Registers it would like to be in, in priority order. 2429 // Unused slots are filled with noRegister. 2430 regs [4]register 2431 } 2432 2433 func (d *desiredState) clear() { 2434 d.entries = d.entries[:0] 2435 d.avoid = 0 2436 } 2437 2438 // get returns a list of desired registers for value vid. 2439 func (d *desiredState) get(vid ID) [4]register { 2440 for _, e := range d.entries { 2441 if e.ID == vid { 2442 return e.regs 2443 } 2444 } 2445 return [4]register{noRegister, noRegister, noRegister, noRegister} 2446 } 2447 2448 // add records that we'd like value vid to be in register r. 2449 func (d *desiredState) add(vid ID, r register) { 2450 d.avoid |= regMask(1) << r 2451 for i := range d.entries { 2452 e := &d.entries[i] 2453 if e.ID != vid { 2454 continue 2455 } 2456 if e.regs[0] == r { 2457 // Already known and highest priority 2458 return 2459 } 2460 for j := 1; j < len(e.regs); j++ { 2461 if e.regs[j] == r { 2462 // Move from lower priority to top priority 2463 copy(e.regs[1:], e.regs[:j]) 2464 e.regs[0] = r 2465 return 2466 } 2467 } 2468 copy(e.regs[1:], e.regs[:]) 2469 e.regs[0] = r 2470 return 2471 } 2472 d.entries = append(d.entries, desiredStateEntry{vid, [4]register{r, noRegister, noRegister, noRegister}}) 2473 } 2474 2475 func (d *desiredState) addList(vid ID, regs [4]register) { 2476 // regs is in priority order, so iterate in reverse order. 2477 for i := len(regs) - 1; i >= 0; i-- { 2478 r := regs[i] 2479 if r != noRegister { 2480 d.add(vid, r) 2481 } 2482 } 2483 } 2484 2485 // clobber erases any desired registers in the set m. 2486 func (d *desiredState) clobber(m regMask) { 2487 for i := 0; i < len(d.entries); { 2488 e := &d.entries[i] 2489 j := 0 2490 for _, r := range e.regs { 2491 if r != noRegister && m>>r&1 == 0 { 2492 e.regs[j] = r 2493 j++ 2494 } 2495 } 2496 if j == 0 { 2497 // No more desired registers for this value. 2498 d.entries[i] = d.entries[len(d.entries)-1] 2499 d.entries = d.entries[:len(d.entries)-1] 2500 continue 2501 } 2502 for ; j < len(e.regs); j++ { 2503 e.regs[j] = noRegister 2504 } 2505 i++ 2506 } 2507 d.avoid &^= m 2508 } 2509 2510 // copy copies a desired state from another desiredState x. 2511 func (d *desiredState) copy(x *desiredState) { 2512 d.entries = append(d.entries[:0], x.entries...) 2513 d.avoid = x.avoid 2514 } 2515 2516 // remove removes the desired registers for vid and returns them. 2517 func (d *desiredState) remove(vid ID) [4]register { 2518 for i := range d.entries { 2519 if d.entries[i].ID == vid { 2520 regs := d.entries[i].regs 2521 d.entries[i] = d.entries[len(d.entries)-1] 2522 d.entries = d.entries[:len(d.entries)-1] 2523 return regs 2524 } 2525 } 2526 return [4]register{noRegister, noRegister, noRegister, noRegister} 2527 } 2528 2529 // merge merges another desired state x into d. 2530 func (d *desiredState) merge(x *desiredState) { 2531 d.avoid |= x.avoid 2532 // There should only be a few desired registers, so 2533 // linear insert is ok. 2534 for _, e := range x.entries { 2535 d.addList(e.ID, e.regs) 2536 } 2537 } 2538 2539 func min32(x, y int32) int32 { 2540 if x < y { 2541 return x 2542 } 2543 return y 2544 } 2545 func max32(x, y int32) int32 { 2546 if x > y { 2547 return x 2548 } 2549 return y 2550 }