github.com/yukk001/go1.10.8@v0.0.0-20190813125351-6df2d3982e20/src/crypto/ecdsa/ecdsa.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as 6 // defined in FIPS 186-3. 7 // 8 // This implementation derives the nonce from an AES-CTR CSPRNG keyed by 9 // ChopMD(256, SHA2-512(priv.D || entropy || hash)). The CSPRNG key is IRO by 10 // a result of Coron; the AES-CTR stream is IRO under standard assumptions. 11 package ecdsa 12 13 // References: 14 // [NSA]: Suite B implementer's guide to FIPS 186-3, 15 // http://www.nsa.gov/ia/_files/ecdsa.pdf 16 // [SECG]: SECG, SEC1 17 // http://www.secg.org/sec1-v2.pdf 18 19 import ( 20 "crypto" 21 "crypto/aes" 22 "crypto/cipher" 23 "crypto/elliptic" 24 "crypto/sha512" 25 "encoding/asn1" 26 "errors" 27 "io" 28 "math/big" 29 ) 30 31 // A invertible implements fast inverse mod Curve.Params().N 32 type invertible interface { 33 // Inverse returns the inverse of k in GF(P) 34 Inverse(k *big.Int) *big.Int 35 } 36 37 // combinedMult implements fast multiplication S1*g + S2*p (g - generator, p - arbitrary point) 38 type combinedMult interface { 39 CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) 40 } 41 42 const ( 43 aesIV = "IV for ECDSA CTR" 44 ) 45 46 // PublicKey represents an ECDSA public key. 47 type PublicKey struct { 48 elliptic.Curve 49 X, Y *big.Int 50 } 51 52 // PrivateKey represents an ECDSA private key. 53 type PrivateKey struct { 54 PublicKey 55 D *big.Int 56 } 57 58 type ecdsaSignature struct { 59 R, S *big.Int 60 } 61 62 // Public returns the public key corresponding to priv. 63 func (priv *PrivateKey) Public() crypto.PublicKey { 64 return &priv.PublicKey 65 } 66 67 // Sign signs digest with priv, reading randomness from rand. The opts argument 68 // is not currently used but, in keeping with the crypto.Signer interface, 69 // should be the hash function used to digest the message. 70 // 71 // This method implements crypto.Signer, which is an interface to support keys 72 // where the private part is kept in, for example, a hardware module. Common 73 // uses should use the Sign function in this package directly. 74 func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) { 75 r, s, err := Sign(rand, priv, digest) 76 if err != nil { 77 return nil, err 78 } 79 80 return asn1.Marshal(ecdsaSignature{r, s}) 81 } 82 83 var one = new(big.Int).SetInt64(1) 84 85 // randFieldElement returns a random element of the field underlying the given 86 // curve using the procedure given in [NSA] A.2.1. 87 func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) { 88 params := c.Params() 89 b := make([]byte, params.BitSize/8+8) 90 _, err = io.ReadFull(rand, b) 91 if err != nil { 92 return 93 } 94 95 k = new(big.Int).SetBytes(b) 96 n := new(big.Int).Sub(params.N, one) 97 k.Mod(k, n) 98 k.Add(k, one) 99 return 100 } 101 102 // GenerateKey generates a public and private key pair. 103 func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) { 104 k, err := randFieldElement(c, rand) 105 if err != nil { 106 return nil, err 107 } 108 109 priv := new(PrivateKey) 110 priv.PublicKey.Curve = c 111 priv.D = k 112 priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes()) 113 return priv, nil 114 } 115 116 // hashToInt converts a hash value to an integer. There is some disagreement 117 // about how this is done. [NSA] suggests that this is done in the obvious 118 // manner, but [SECG] truncates the hash to the bit-length of the curve order 119 // first. We follow [SECG] because that's what OpenSSL does. Additionally, 120 // OpenSSL right shifts excess bits from the number if the hash is too large 121 // and we mirror that too. 122 func hashToInt(hash []byte, c elliptic.Curve) *big.Int { 123 orderBits := c.Params().N.BitLen() 124 orderBytes := (orderBits + 7) / 8 125 if len(hash) > orderBytes { 126 hash = hash[:orderBytes] 127 } 128 129 ret := new(big.Int).SetBytes(hash) 130 excess := len(hash)*8 - orderBits 131 if excess > 0 { 132 ret.Rsh(ret, uint(excess)) 133 } 134 return ret 135 } 136 137 // fermatInverse calculates the inverse of k in GF(P) using Fermat's method. 138 // This has better constant-time properties than Euclid's method (implemented 139 // in math/big.Int.ModInverse) although math/big itself isn't strictly 140 // constant-time so it's not perfect. 141 func fermatInverse(k, N *big.Int) *big.Int { 142 two := big.NewInt(2) 143 nMinus2 := new(big.Int).Sub(N, two) 144 return new(big.Int).Exp(k, nMinus2, N) 145 } 146 147 var errZeroParam = errors.New("zero parameter") 148 149 // Sign signs a hash (which should be the result of hashing a larger message) 150 // using the private key, priv. If the hash is longer than the bit-length of the 151 // private key's curve order, the hash will be truncated to that length. It 152 // returns the signature as a pair of integers. The security of the private key 153 // depends on the entropy of rand. 154 func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) { 155 // Get min(log2(q) / 2, 256) bits of entropy from rand. 156 entropylen := (priv.Curve.Params().BitSize + 7) / 16 157 if entropylen > 32 { 158 entropylen = 32 159 } 160 entropy := make([]byte, entropylen) 161 _, err = io.ReadFull(rand, entropy) 162 if err != nil { 163 return 164 } 165 166 // Initialize an SHA-512 hash context; digest ... 167 md := sha512.New() 168 md.Write(priv.D.Bytes()) // the private key, 169 md.Write(entropy) // the entropy, 170 md.Write(hash) // and the input hash; 171 key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512), 172 // which is an indifferentiable MAC. 173 174 // Create an AES-CTR instance to use as a CSPRNG. 175 block, err := aes.NewCipher(key) 176 if err != nil { 177 return nil, nil, err 178 } 179 180 // Create a CSPRNG that xors a stream of zeros with 181 // the output of the AES-CTR instance. 182 csprng := cipher.StreamReader{ 183 R: zeroReader, 184 S: cipher.NewCTR(block, []byte(aesIV)), 185 } 186 187 // See [NSA] 3.4.1 188 c := priv.PublicKey.Curve 189 N := c.Params().N 190 if N.Sign() == 0 { 191 return nil, nil, errZeroParam 192 } 193 var k, kInv *big.Int 194 for { 195 for { 196 k, err = randFieldElement(c, csprng) 197 if err != nil { 198 r = nil 199 return 200 } 201 202 if in, ok := priv.Curve.(invertible); ok { 203 kInv = in.Inverse(k) 204 } else { 205 kInv = fermatInverse(k, N) // N != 0 206 } 207 208 r, _ = priv.Curve.ScalarBaseMult(k.Bytes()) 209 r.Mod(r, N) 210 if r.Sign() != 0 { 211 break 212 } 213 } 214 215 e := hashToInt(hash, c) 216 s = new(big.Int).Mul(priv.D, r) 217 s.Add(s, e) 218 s.Mul(s, kInv) 219 s.Mod(s, N) // N != 0 220 if s.Sign() != 0 { 221 break 222 } 223 } 224 225 return 226 } 227 228 // Verify verifies the signature in r, s of hash using the public key, pub. Its 229 // return value records whether the signature is valid. 230 func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool { 231 // See [NSA] 3.4.2 232 c := pub.Curve 233 N := c.Params().N 234 235 if r.Sign() <= 0 || s.Sign() <= 0 { 236 return false 237 } 238 if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 { 239 return false 240 } 241 e := hashToInt(hash, c) 242 243 var w *big.Int 244 if in, ok := c.(invertible); ok { 245 w = in.Inverse(s) 246 } else { 247 w = new(big.Int).ModInverse(s, N) 248 } 249 250 u1 := e.Mul(e, w) 251 u1.Mod(u1, N) 252 u2 := w.Mul(r, w) 253 u2.Mod(u2, N) 254 255 // Check if implements S1*g + S2*p 256 var x, y *big.Int 257 if opt, ok := c.(combinedMult); ok { 258 x, y = opt.CombinedMult(pub.X, pub.Y, u1.Bytes(), u2.Bytes()) 259 } else { 260 x1, y1 := c.ScalarBaseMult(u1.Bytes()) 261 x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes()) 262 x, y = c.Add(x1, y1, x2, y2) 263 } 264 265 if x.Sign() == 0 && y.Sign() == 0 { 266 return false 267 } 268 x.Mod(x, N) 269 return x.Cmp(r) == 0 270 } 271 272 type zr struct { 273 io.Reader 274 } 275 276 // Read replaces the contents of dst with zeros. 277 func (z *zr) Read(dst []byte) (n int, err error) { 278 for i := range dst { 279 dst[i] = 0 280 } 281 return len(dst), nil 282 } 283 284 var zeroReader = &zr{}