github.com/zach-klippenstein/go@v0.0.0-20150108044943-fcfbeb3adf58/src/compress/flate/inflate.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  //go:generate go run gen.go -output fixedhuff.go
     6  
     7  // Package flate implements the DEFLATE compressed data format, described in
     8  // RFC 1951.  The gzip and zlib packages implement access to DEFLATE-based file
     9  // formats.
    10  package flate
    11  
    12  import (
    13  	"bufio"
    14  	"io"
    15  	"strconv"
    16  )
    17  
    18  const (
    19  	maxCodeLen = 16    // max length of Huffman code
    20  	maxHist    = 32768 // max history required
    21  	// The next three numbers come from the RFC, section 3.2.7.
    22  	maxLit   = 286
    23  	maxDist  = 32
    24  	numCodes = 19 // number of codes in Huffman meta-code
    25  )
    26  
    27  // A CorruptInputError reports the presence of corrupt input at a given offset.
    28  type CorruptInputError int64
    29  
    30  func (e CorruptInputError) Error() string {
    31  	return "flate: corrupt input before offset " + strconv.FormatInt(int64(e), 10)
    32  }
    33  
    34  // An InternalError reports an error in the flate code itself.
    35  type InternalError string
    36  
    37  func (e InternalError) Error() string { return "flate: internal error: " + string(e) }
    38  
    39  // A ReadError reports an error encountered while reading input.
    40  type ReadError struct {
    41  	Offset int64 // byte offset where error occurred
    42  	Err    error // error returned by underlying Read
    43  }
    44  
    45  func (e *ReadError) Error() string {
    46  	return "flate: read error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
    47  }
    48  
    49  // A WriteError reports an error encountered while writing output.
    50  type WriteError struct {
    51  	Offset int64 // byte offset where error occurred
    52  	Err    error // error returned by underlying Write
    53  }
    54  
    55  func (e *WriteError) Error() string {
    56  	return "flate: write error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
    57  }
    58  
    59  // Resetter resets a ReadCloser returned by NewReader or NewReaderDict to
    60  // to switch to a new underlying Reader. This permits reusing a ReadCloser
    61  // instead of allocating a new one.
    62  type Resetter interface {
    63  	// Reset discards any buffered data and resets the Resetter as if it was
    64  	// newly initialized with the given reader.
    65  	Reset(r io.Reader, dict []byte) error
    66  }
    67  
    68  // Note that much of the implementation of huffmanDecoder is also copied
    69  // into gen.go (in package main) for the purpose of precomputing the
    70  // fixed huffman tables so they can be included statically.
    71  
    72  // The data structure for decoding Huffman tables is based on that of
    73  // zlib. There is a lookup table of a fixed bit width (huffmanChunkBits),
    74  // For codes smaller than the table width, there are multiple entries
    75  // (each combination of trailing bits has the same value). For codes
    76  // larger than the table width, the table contains a link to an overflow
    77  // table. The width of each entry in the link table is the maximum code
    78  // size minus the chunk width.
    79  
    80  // Note that you can do a lookup in the table even without all bits
    81  // filled. Since the extra bits are zero, and the DEFLATE Huffman codes
    82  // have the property that shorter codes come before longer ones, the
    83  // bit length estimate in the result is a lower bound on the actual
    84  // number of bits.
    85  
    86  // chunk & 15 is number of bits
    87  // chunk >> 4 is value, including table link
    88  
    89  const (
    90  	huffmanChunkBits  = 9
    91  	huffmanNumChunks  = 1 << huffmanChunkBits
    92  	huffmanCountMask  = 15
    93  	huffmanValueShift = 4
    94  )
    95  
    96  type huffmanDecoder struct {
    97  	min      int                      // the minimum code length
    98  	chunks   [huffmanNumChunks]uint32 // chunks as described above
    99  	links    [][]uint32               // overflow links
   100  	linkMask uint32                   // mask the width of the link table
   101  }
   102  
   103  // Initialize Huffman decoding tables from array of code lengths.
   104  func (h *huffmanDecoder) init(bits []int) bool {
   105  	if h.min != 0 {
   106  		*h = huffmanDecoder{}
   107  	}
   108  
   109  	// Count number of codes of each length,
   110  	// compute min and max length.
   111  	var count [maxCodeLen]int
   112  	var min, max int
   113  	for _, n := range bits {
   114  		if n == 0 {
   115  			continue
   116  		}
   117  		if min == 0 || n < min {
   118  			min = n
   119  		}
   120  		if n > max {
   121  			max = n
   122  		}
   123  		count[n]++
   124  	}
   125  	if max == 0 {
   126  		return false
   127  	}
   128  
   129  	h.min = min
   130  	var linkBits uint
   131  	var numLinks int
   132  	if max > huffmanChunkBits {
   133  		linkBits = uint(max) - huffmanChunkBits
   134  		numLinks = 1 << linkBits
   135  		h.linkMask = uint32(numLinks - 1)
   136  	}
   137  	code := 0
   138  	var nextcode [maxCodeLen]int
   139  	for i := min; i <= max; i++ {
   140  		if i == huffmanChunkBits+1 {
   141  			// create link tables
   142  			link := code >> 1
   143  			if huffmanNumChunks < link {
   144  				return false
   145  			}
   146  			h.links = make([][]uint32, huffmanNumChunks-link)
   147  			for j := uint(link); j < huffmanNumChunks; j++ {
   148  				reverse := int(reverseByte[j>>8]) | int(reverseByte[j&0xff])<<8
   149  				reverse >>= uint(16 - huffmanChunkBits)
   150  				off := j - uint(link)
   151  				h.chunks[reverse] = uint32(off<<huffmanValueShift + uint(i))
   152  				h.links[off] = make([]uint32, 1<<linkBits)
   153  			}
   154  		}
   155  		n := count[i]
   156  		nextcode[i] = code
   157  		code += n
   158  		code <<= 1
   159  	}
   160  
   161  	for i, n := range bits {
   162  		if n == 0 {
   163  			continue
   164  		}
   165  		code := nextcode[n]
   166  		nextcode[n]++
   167  		chunk := uint32(i<<huffmanValueShift | n)
   168  		reverse := int(reverseByte[code>>8]) | int(reverseByte[code&0xff])<<8
   169  		reverse >>= uint(16 - n)
   170  		if n <= huffmanChunkBits {
   171  			for off := reverse; off < huffmanNumChunks; off += 1 << uint(n) {
   172  				h.chunks[off] = chunk
   173  			}
   174  		} else {
   175  			value := h.chunks[reverse&(huffmanNumChunks-1)] >> huffmanValueShift
   176  			if value >= uint32(len(h.links)) {
   177  				return false
   178  			}
   179  			linktab := h.links[value]
   180  			reverse >>= huffmanChunkBits
   181  			for off := reverse; off < numLinks; off += 1 << uint(n-huffmanChunkBits) {
   182  				linktab[off] = chunk
   183  			}
   184  		}
   185  	}
   186  	return true
   187  }
   188  
   189  // The actual read interface needed by NewReader.
   190  // If the passed in io.Reader does not also have ReadByte,
   191  // the NewReader will introduce its own buffering.
   192  type Reader interface {
   193  	io.Reader
   194  	io.ByteReader
   195  }
   196  
   197  // Decompress state.
   198  type decompressor struct {
   199  	// Input source.
   200  	r       Reader
   201  	roffset int64
   202  	woffset int64
   203  
   204  	// Input bits, in top of b.
   205  	b  uint32
   206  	nb uint
   207  
   208  	// Huffman decoders for literal/length, distance.
   209  	h1, h2 huffmanDecoder
   210  
   211  	// Length arrays used to define Huffman codes.
   212  	bits     *[maxLit + maxDist]int
   213  	codebits *[numCodes]int
   214  
   215  	// Output history, buffer.
   216  	hist  *[maxHist]byte
   217  	hp    int  // current output position in buffer
   218  	hw    int  // have written hist[0:hw] already
   219  	hfull bool // buffer has filled at least once
   220  
   221  	// Temporary buffer (avoids repeated allocation).
   222  	buf [4]byte
   223  
   224  	// Next step in the decompression,
   225  	// and decompression state.
   226  	step     func(*decompressor)
   227  	final    bool
   228  	err      error
   229  	toRead   []byte
   230  	hl, hd   *huffmanDecoder
   231  	copyLen  int
   232  	copyDist int
   233  }
   234  
   235  func (f *decompressor) nextBlock() {
   236  	if f.final {
   237  		if f.hw != f.hp {
   238  			f.flush((*decompressor).nextBlock)
   239  			return
   240  		}
   241  		f.err = io.EOF
   242  		return
   243  	}
   244  	for f.nb < 1+2 {
   245  		if f.err = f.moreBits(); f.err != nil {
   246  			return
   247  		}
   248  	}
   249  	f.final = f.b&1 == 1
   250  	f.b >>= 1
   251  	typ := f.b & 3
   252  	f.b >>= 2
   253  	f.nb -= 1 + 2
   254  	switch typ {
   255  	case 0:
   256  		f.dataBlock()
   257  	case 1:
   258  		// compressed, fixed Huffman tables
   259  		f.hl = &fixedHuffmanDecoder
   260  		f.hd = nil
   261  		f.huffmanBlock()
   262  	case 2:
   263  		// compressed, dynamic Huffman tables
   264  		if f.err = f.readHuffman(); f.err != nil {
   265  			break
   266  		}
   267  		f.hl = &f.h1
   268  		f.hd = &f.h2
   269  		f.huffmanBlock()
   270  	default:
   271  		// 3 is reserved.
   272  		f.err = CorruptInputError(f.roffset)
   273  	}
   274  }
   275  
   276  func (f *decompressor) Read(b []byte) (int, error) {
   277  	for {
   278  		if len(f.toRead) > 0 {
   279  			n := copy(b, f.toRead)
   280  			f.toRead = f.toRead[n:]
   281  			return n, nil
   282  		}
   283  		if f.err != nil {
   284  			return 0, f.err
   285  		}
   286  		f.step(f)
   287  	}
   288  }
   289  
   290  func (f *decompressor) Close() error {
   291  	if f.err == io.EOF {
   292  		return nil
   293  	}
   294  	return f.err
   295  }
   296  
   297  // RFC 1951 section 3.2.7.
   298  // Compression with dynamic Huffman codes
   299  
   300  var codeOrder = [...]int{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
   301  
   302  func (f *decompressor) readHuffman() error {
   303  	// HLIT[5], HDIST[5], HCLEN[4].
   304  	for f.nb < 5+5+4 {
   305  		if err := f.moreBits(); err != nil {
   306  			return err
   307  		}
   308  	}
   309  	nlit := int(f.b&0x1F) + 257
   310  	if nlit > maxLit {
   311  		return CorruptInputError(f.roffset)
   312  	}
   313  	f.b >>= 5
   314  	ndist := int(f.b&0x1F) + 1
   315  	// maxDist is 32, so ndist is always valid.
   316  	f.b >>= 5
   317  	nclen := int(f.b&0xF) + 4
   318  	// numCodes is 19, so nclen is always valid.
   319  	f.b >>= 4
   320  	f.nb -= 5 + 5 + 4
   321  
   322  	// (HCLEN+4)*3 bits: code lengths in the magic codeOrder order.
   323  	for i := 0; i < nclen; i++ {
   324  		for f.nb < 3 {
   325  			if err := f.moreBits(); err != nil {
   326  				return err
   327  			}
   328  		}
   329  		f.codebits[codeOrder[i]] = int(f.b & 0x7)
   330  		f.b >>= 3
   331  		f.nb -= 3
   332  	}
   333  	for i := nclen; i < len(codeOrder); i++ {
   334  		f.codebits[codeOrder[i]] = 0
   335  	}
   336  	if !f.h1.init(f.codebits[0:]) {
   337  		return CorruptInputError(f.roffset)
   338  	}
   339  
   340  	// HLIT + 257 code lengths, HDIST + 1 code lengths,
   341  	// using the code length Huffman code.
   342  	for i, n := 0, nlit+ndist; i < n; {
   343  		x, err := f.huffSym(&f.h1)
   344  		if err != nil {
   345  			return err
   346  		}
   347  		if x < 16 {
   348  			// Actual length.
   349  			f.bits[i] = x
   350  			i++
   351  			continue
   352  		}
   353  		// Repeat previous length or zero.
   354  		var rep int
   355  		var nb uint
   356  		var b int
   357  		switch x {
   358  		default:
   359  			return InternalError("unexpected length code")
   360  		case 16:
   361  			rep = 3
   362  			nb = 2
   363  			if i == 0 {
   364  				return CorruptInputError(f.roffset)
   365  			}
   366  			b = f.bits[i-1]
   367  		case 17:
   368  			rep = 3
   369  			nb = 3
   370  			b = 0
   371  		case 18:
   372  			rep = 11
   373  			nb = 7
   374  			b = 0
   375  		}
   376  		for f.nb < nb {
   377  			if err := f.moreBits(); err != nil {
   378  				return err
   379  			}
   380  		}
   381  		rep += int(f.b & uint32(1<<nb-1))
   382  		f.b >>= nb
   383  		f.nb -= nb
   384  		if i+rep > n {
   385  			return CorruptInputError(f.roffset)
   386  		}
   387  		for j := 0; j < rep; j++ {
   388  			f.bits[i] = b
   389  			i++
   390  		}
   391  	}
   392  
   393  	if !f.h1.init(f.bits[0:nlit]) || !f.h2.init(f.bits[nlit:nlit+ndist]) {
   394  		return CorruptInputError(f.roffset)
   395  	}
   396  
   397  	return nil
   398  }
   399  
   400  // Decode a single Huffman block from f.
   401  // hl and hd are the Huffman states for the lit/length values
   402  // and the distance values, respectively.  If hd == nil, using the
   403  // fixed distance encoding associated with fixed Huffman blocks.
   404  func (f *decompressor) huffmanBlock() {
   405  	for {
   406  		v, err := f.huffSym(f.hl)
   407  		if err != nil {
   408  			f.err = err
   409  			return
   410  		}
   411  		var n uint // number of bits extra
   412  		var length int
   413  		switch {
   414  		case v < 256:
   415  			f.hist[f.hp] = byte(v)
   416  			f.hp++
   417  			if f.hp == len(f.hist) {
   418  				// After the flush, continue this loop.
   419  				f.flush((*decompressor).huffmanBlock)
   420  				return
   421  			}
   422  			continue
   423  		case v == 256:
   424  			// Done with huffman block; read next block.
   425  			f.step = (*decompressor).nextBlock
   426  			return
   427  		// otherwise, reference to older data
   428  		case v < 265:
   429  			length = v - (257 - 3)
   430  			n = 0
   431  		case v < 269:
   432  			length = v*2 - (265*2 - 11)
   433  			n = 1
   434  		case v < 273:
   435  			length = v*4 - (269*4 - 19)
   436  			n = 2
   437  		case v < 277:
   438  			length = v*8 - (273*8 - 35)
   439  			n = 3
   440  		case v < 281:
   441  			length = v*16 - (277*16 - 67)
   442  			n = 4
   443  		case v < 285:
   444  			length = v*32 - (281*32 - 131)
   445  			n = 5
   446  		default:
   447  			length = 258
   448  			n = 0
   449  		}
   450  		if n > 0 {
   451  			for f.nb < n {
   452  				if err = f.moreBits(); err != nil {
   453  					f.err = err
   454  					return
   455  				}
   456  			}
   457  			length += int(f.b & uint32(1<<n-1))
   458  			f.b >>= n
   459  			f.nb -= n
   460  		}
   461  
   462  		var dist int
   463  		if f.hd == nil {
   464  			for f.nb < 5 {
   465  				if err = f.moreBits(); err != nil {
   466  					f.err = err
   467  					return
   468  				}
   469  			}
   470  			dist = int(reverseByte[(f.b&0x1F)<<3])
   471  			f.b >>= 5
   472  			f.nb -= 5
   473  		} else {
   474  			if dist, err = f.huffSym(f.hd); err != nil {
   475  				f.err = err
   476  				return
   477  			}
   478  		}
   479  
   480  		switch {
   481  		case dist < 4:
   482  			dist++
   483  		case dist >= 30:
   484  			f.err = CorruptInputError(f.roffset)
   485  			return
   486  		default:
   487  			nb := uint(dist-2) >> 1
   488  			// have 1 bit in bottom of dist, need nb more.
   489  			extra := (dist & 1) << nb
   490  			for f.nb < nb {
   491  				if err = f.moreBits(); err != nil {
   492  					f.err = err
   493  					return
   494  				}
   495  			}
   496  			extra |= int(f.b & uint32(1<<nb-1))
   497  			f.b >>= nb
   498  			f.nb -= nb
   499  			dist = 1<<(nb+1) + 1 + extra
   500  		}
   501  
   502  		// Copy history[-dist:-dist+length] into output.
   503  		if dist > len(f.hist) {
   504  			f.err = InternalError("bad history distance")
   505  			return
   506  		}
   507  
   508  		// No check on length; encoding can be prescient.
   509  		if !f.hfull && dist > f.hp {
   510  			f.err = CorruptInputError(f.roffset)
   511  			return
   512  		}
   513  
   514  		f.copyLen, f.copyDist = length, dist
   515  		if f.copyHist() {
   516  			return
   517  		}
   518  	}
   519  }
   520  
   521  // copyHist copies f.copyLen bytes from f.hist (f.copyDist bytes ago) to itself.
   522  // It reports whether the f.hist buffer is full.
   523  func (f *decompressor) copyHist() bool {
   524  	p := f.hp - f.copyDist
   525  	if p < 0 {
   526  		p += len(f.hist)
   527  	}
   528  	for f.copyLen > 0 {
   529  		n := f.copyLen
   530  		if x := len(f.hist) - f.hp; n > x {
   531  			n = x
   532  		}
   533  		if x := len(f.hist) - p; n > x {
   534  			n = x
   535  		}
   536  		forwardCopy(f.hist[:], f.hp, p, n)
   537  		p += n
   538  		f.hp += n
   539  		f.copyLen -= n
   540  		if f.hp == len(f.hist) {
   541  			// After flush continue copying out of history.
   542  			f.flush((*decompressor).copyHuff)
   543  			return true
   544  		}
   545  		if p == len(f.hist) {
   546  			p = 0
   547  		}
   548  	}
   549  	return false
   550  }
   551  
   552  func (f *decompressor) copyHuff() {
   553  	if f.copyHist() {
   554  		return
   555  	}
   556  	f.huffmanBlock()
   557  }
   558  
   559  // Copy a single uncompressed data block from input to output.
   560  func (f *decompressor) dataBlock() {
   561  	// Uncompressed.
   562  	// Discard current half-byte.
   563  	f.nb = 0
   564  	f.b = 0
   565  
   566  	// Length then ones-complement of length.
   567  	nr, err := io.ReadFull(f.r, f.buf[0:4])
   568  	f.roffset += int64(nr)
   569  	if err != nil {
   570  		f.err = &ReadError{f.roffset, err}
   571  		return
   572  	}
   573  	n := int(f.buf[0]) | int(f.buf[1])<<8
   574  	nn := int(f.buf[2]) | int(f.buf[3])<<8
   575  	if uint16(nn) != uint16(^n) {
   576  		f.err = CorruptInputError(f.roffset)
   577  		return
   578  	}
   579  
   580  	if n == 0 {
   581  		// 0-length block means sync
   582  		f.flush((*decompressor).nextBlock)
   583  		return
   584  	}
   585  
   586  	f.copyLen = n
   587  	f.copyData()
   588  }
   589  
   590  // copyData copies f.copyLen bytes from the underlying reader into f.hist.
   591  // It pauses for reads when f.hist is full.
   592  func (f *decompressor) copyData() {
   593  	n := f.copyLen
   594  	for n > 0 {
   595  		m := len(f.hist) - f.hp
   596  		if m > n {
   597  			m = n
   598  		}
   599  		m, err := io.ReadFull(f.r, f.hist[f.hp:f.hp+m])
   600  		f.roffset += int64(m)
   601  		if err != nil {
   602  			f.err = &ReadError{f.roffset, err}
   603  			return
   604  		}
   605  		n -= m
   606  		f.hp += m
   607  		if f.hp == len(f.hist) {
   608  			f.copyLen = n
   609  			f.flush((*decompressor).copyData)
   610  			return
   611  		}
   612  	}
   613  	f.step = (*decompressor).nextBlock
   614  }
   615  
   616  func (f *decompressor) setDict(dict []byte) {
   617  	if len(dict) > len(f.hist) {
   618  		// Will only remember the tail.
   619  		dict = dict[len(dict)-len(f.hist):]
   620  	}
   621  
   622  	f.hp = copy(f.hist[:], dict)
   623  	if f.hp == len(f.hist) {
   624  		f.hp = 0
   625  		f.hfull = true
   626  	}
   627  	f.hw = f.hp
   628  }
   629  
   630  func (f *decompressor) moreBits() error {
   631  	c, err := f.r.ReadByte()
   632  	if err != nil {
   633  		if err == io.EOF {
   634  			err = io.ErrUnexpectedEOF
   635  		}
   636  		return err
   637  	}
   638  	f.roffset++
   639  	f.b |= uint32(c) << f.nb
   640  	f.nb += 8
   641  	return nil
   642  }
   643  
   644  // Read the next Huffman-encoded symbol from f according to h.
   645  func (f *decompressor) huffSym(h *huffmanDecoder) (int, error) {
   646  	n := uint(h.min)
   647  	for {
   648  		for f.nb < n {
   649  			if err := f.moreBits(); err != nil {
   650  				return 0, err
   651  			}
   652  		}
   653  		chunk := h.chunks[f.b&(huffmanNumChunks-1)]
   654  		n = uint(chunk & huffmanCountMask)
   655  		if n > huffmanChunkBits {
   656  			chunk = h.links[chunk>>huffmanValueShift][(f.b>>huffmanChunkBits)&h.linkMask]
   657  			n = uint(chunk & huffmanCountMask)
   658  			if n == 0 {
   659  				f.err = CorruptInputError(f.roffset)
   660  				return 0, f.err
   661  			}
   662  		}
   663  		if n <= f.nb {
   664  			f.b >>= n
   665  			f.nb -= n
   666  			return int(chunk >> huffmanValueShift), nil
   667  		}
   668  	}
   669  }
   670  
   671  // Flush any buffered output to the underlying writer.
   672  func (f *decompressor) flush(step func(*decompressor)) {
   673  	f.toRead = f.hist[f.hw:f.hp]
   674  	f.woffset += int64(f.hp - f.hw)
   675  	f.hw = f.hp
   676  	if f.hp == len(f.hist) {
   677  		f.hp = 0
   678  		f.hw = 0
   679  		f.hfull = true
   680  	}
   681  	f.step = step
   682  }
   683  
   684  func makeReader(r io.Reader) Reader {
   685  	if rr, ok := r.(Reader); ok {
   686  		return rr
   687  	}
   688  	return bufio.NewReader(r)
   689  }
   690  
   691  func (f *decompressor) Reset(r io.Reader, dict []byte) error {
   692  	*f = decompressor{
   693  		r:        makeReader(r),
   694  		bits:     f.bits,
   695  		codebits: f.codebits,
   696  		hist:     f.hist,
   697  		step:     (*decompressor).nextBlock,
   698  	}
   699  	if dict != nil {
   700  		f.setDict(dict)
   701  	}
   702  	return nil
   703  }
   704  
   705  // NewReader returns a new ReadCloser that can be used
   706  // to read the uncompressed version of r.
   707  // If r does not also implement io.ByteReader,
   708  // the decompressor may read more data than necessary from r.
   709  // It is the caller's responsibility to call Close on the ReadCloser
   710  // when finished reading.
   711  //
   712  // The ReadCloser returned by NewReader also implements Resetter.
   713  func NewReader(r io.Reader) io.ReadCloser {
   714  	var f decompressor
   715  	f.bits = new([maxLit + maxDist]int)
   716  	f.codebits = new([numCodes]int)
   717  	f.r = makeReader(r)
   718  	f.hist = new([maxHist]byte)
   719  	f.step = (*decompressor).nextBlock
   720  	return &f
   721  }
   722  
   723  // NewReaderDict is like NewReader but initializes the reader
   724  // with a preset dictionary.  The returned Reader behaves as if
   725  // the uncompressed data stream started with the given dictionary,
   726  // which has already been read.  NewReaderDict is typically used
   727  // to read data compressed by NewWriterDict.
   728  //
   729  // The ReadCloser returned by NewReader also implements Resetter.
   730  func NewReaderDict(r io.Reader, dict []byte) io.ReadCloser {
   731  	var f decompressor
   732  	f.r = makeReader(r)
   733  	f.hist = new([maxHist]byte)
   734  	f.bits = new([maxLit + maxDist]int)
   735  	f.codebits = new([numCodes]int)
   736  	f.step = (*decompressor).nextBlock
   737  	f.setDict(dict)
   738  	return &f
   739  }