github.com/zach-klippenstein/go@v0.0.0-20150108044943-fcfbeb3adf58/src/debug/dwarf/type.go (about)

     1  // Copyright 2009 The Go Authors.  All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // DWARF type information structures.
     6  // The format is heavily biased toward C, but for simplicity
     7  // the String methods use a pseudo-Go syntax.
     8  
     9  package dwarf
    10  
    11  import "strconv"
    12  
    13  // A Type conventionally represents a pointer to any of the
    14  // specific Type structures (CharType, StructType, etc.).
    15  type Type interface {
    16  	Common() *CommonType
    17  	String() string
    18  	Size() int64
    19  }
    20  
    21  // A CommonType holds fields common to multiple types.
    22  // If a field is not known or not applicable for a given type,
    23  // the zero value is used.
    24  type CommonType struct {
    25  	ByteSize int64  // size of value of this type, in bytes
    26  	Name     string // name that can be used to refer to type
    27  }
    28  
    29  func (c *CommonType) Common() *CommonType { return c }
    30  
    31  func (c *CommonType) Size() int64 { return c.ByteSize }
    32  
    33  // Basic types
    34  
    35  // A BasicType holds fields common to all basic types.
    36  type BasicType struct {
    37  	CommonType
    38  	BitSize   int64
    39  	BitOffset int64
    40  }
    41  
    42  func (b *BasicType) Basic() *BasicType { return b }
    43  
    44  func (t *BasicType) String() string {
    45  	if t.Name != "" {
    46  		return t.Name
    47  	}
    48  	return "?"
    49  }
    50  
    51  // A CharType represents a signed character type.
    52  type CharType struct {
    53  	BasicType
    54  }
    55  
    56  // A UcharType represents an unsigned character type.
    57  type UcharType struct {
    58  	BasicType
    59  }
    60  
    61  // An IntType represents a signed integer type.
    62  type IntType struct {
    63  	BasicType
    64  }
    65  
    66  // A UintType represents an unsigned integer type.
    67  type UintType struct {
    68  	BasicType
    69  }
    70  
    71  // A FloatType represents a floating point type.
    72  type FloatType struct {
    73  	BasicType
    74  }
    75  
    76  // A ComplexType represents a complex floating point type.
    77  type ComplexType struct {
    78  	BasicType
    79  }
    80  
    81  // A BoolType represents a boolean type.
    82  type BoolType struct {
    83  	BasicType
    84  }
    85  
    86  // An AddrType represents a machine address type.
    87  type AddrType struct {
    88  	BasicType
    89  }
    90  
    91  // An UnspecifiedType represents an implicit, unknown, ambiguous or nonexistent type.
    92  type UnspecifiedType struct {
    93  	BasicType
    94  }
    95  
    96  // qualifiers
    97  
    98  // A QualType represents a type that has the C/C++ "const", "restrict", or "volatile" qualifier.
    99  type QualType struct {
   100  	CommonType
   101  	Qual string
   102  	Type Type
   103  }
   104  
   105  func (t *QualType) String() string { return t.Qual + " " + t.Type.String() }
   106  
   107  func (t *QualType) Size() int64 { return t.Type.Size() }
   108  
   109  // An ArrayType represents a fixed size array type.
   110  type ArrayType struct {
   111  	CommonType
   112  	Type          Type
   113  	StrideBitSize int64 // if > 0, number of bits to hold each element
   114  	Count         int64 // if == -1, an incomplete array, like char x[].
   115  }
   116  
   117  func (t *ArrayType) String() string {
   118  	return "[" + strconv.FormatInt(t.Count, 10) + "]" + t.Type.String()
   119  }
   120  
   121  func (t *ArrayType) Size() int64 {
   122  	if t.Count == -1 {
   123  		return 0
   124  	}
   125  	return t.Count * t.Type.Size()
   126  }
   127  
   128  // A VoidType represents the C void type.
   129  type VoidType struct {
   130  	CommonType
   131  }
   132  
   133  func (t *VoidType) String() string { return "void" }
   134  
   135  // A PtrType represents a pointer type.
   136  type PtrType struct {
   137  	CommonType
   138  	Type Type
   139  }
   140  
   141  func (t *PtrType) String() string { return "*" + t.Type.String() }
   142  
   143  // A StructType represents a struct, union, or C++ class type.
   144  type StructType struct {
   145  	CommonType
   146  	StructName string
   147  	Kind       string // "struct", "union", or "class".
   148  	Field      []*StructField
   149  	Incomplete bool // if true, struct, union, class is declared but not defined
   150  }
   151  
   152  // A StructField represents a field in a struct, union, or C++ class type.
   153  type StructField struct {
   154  	Name       string
   155  	Type       Type
   156  	ByteOffset int64
   157  	ByteSize   int64
   158  	BitOffset  int64 // within the ByteSize bytes at ByteOffset
   159  	BitSize    int64 // zero if not a bit field
   160  }
   161  
   162  func (t *StructType) String() string {
   163  	if t.StructName != "" {
   164  		return t.Kind + " " + t.StructName
   165  	}
   166  	return t.Defn()
   167  }
   168  
   169  func (t *StructType) Defn() string {
   170  	s := t.Kind
   171  	if t.StructName != "" {
   172  		s += " " + t.StructName
   173  	}
   174  	if t.Incomplete {
   175  		s += " /*incomplete*/"
   176  		return s
   177  	}
   178  	s += " {"
   179  	for i, f := range t.Field {
   180  		if i > 0 {
   181  			s += "; "
   182  		}
   183  		s += f.Name + " " + f.Type.String()
   184  		s += "@" + strconv.FormatInt(f.ByteOffset, 10)
   185  		if f.BitSize > 0 {
   186  			s += " : " + strconv.FormatInt(f.BitSize, 10)
   187  			s += "@" + strconv.FormatInt(f.BitOffset, 10)
   188  		}
   189  	}
   190  	s += "}"
   191  	return s
   192  }
   193  
   194  // An EnumType represents an enumerated type.
   195  // The only indication of its native integer type is its ByteSize
   196  // (inside CommonType).
   197  type EnumType struct {
   198  	CommonType
   199  	EnumName string
   200  	Val      []*EnumValue
   201  }
   202  
   203  // An EnumValue represents a single enumeration value.
   204  type EnumValue struct {
   205  	Name string
   206  	Val  int64
   207  }
   208  
   209  func (t *EnumType) String() string {
   210  	s := "enum"
   211  	if t.EnumName != "" {
   212  		s += " " + t.EnumName
   213  	}
   214  	s += " {"
   215  	for i, v := range t.Val {
   216  		if i > 0 {
   217  			s += "; "
   218  		}
   219  		s += v.Name + "=" + strconv.FormatInt(v.Val, 10)
   220  	}
   221  	s += "}"
   222  	return s
   223  }
   224  
   225  // A FuncType represents a function type.
   226  type FuncType struct {
   227  	CommonType
   228  	ReturnType Type
   229  	ParamType  []Type
   230  }
   231  
   232  func (t *FuncType) String() string {
   233  	s := "func("
   234  	for i, t := range t.ParamType {
   235  		if i > 0 {
   236  			s += ", "
   237  		}
   238  		s += t.String()
   239  	}
   240  	s += ")"
   241  	if t.ReturnType != nil {
   242  		s += " " + t.ReturnType.String()
   243  	}
   244  	return s
   245  }
   246  
   247  // A DotDotDotType represents the variadic ... function parameter.
   248  type DotDotDotType struct {
   249  	CommonType
   250  }
   251  
   252  func (t *DotDotDotType) String() string { return "..." }
   253  
   254  // A TypedefType represents a named type.
   255  type TypedefType struct {
   256  	CommonType
   257  	Type Type
   258  }
   259  
   260  func (t *TypedefType) String() string { return t.Name }
   261  
   262  func (t *TypedefType) Size() int64 { return t.Type.Size() }
   263  
   264  // typeReader is used to read from either the info section or the
   265  // types section.
   266  type typeReader interface {
   267  	Seek(Offset)
   268  	Next() (*Entry, error)
   269  	clone() typeReader
   270  	offset() Offset
   271  }
   272  
   273  // Type reads the type at off in the DWARF ``info'' section.
   274  func (d *Data) Type(off Offset) (Type, error) {
   275  	return d.readType("info", d.Reader(), off, d.typeCache)
   276  }
   277  
   278  // readType reads a type from r at off of name using and updating a
   279  // type cache.
   280  func (d *Data) readType(name string, r typeReader, off Offset, typeCache map[Offset]Type) (Type, error) {
   281  	if t, ok := typeCache[off]; ok {
   282  		return t, nil
   283  	}
   284  	r.Seek(off)
   285  	e, err := r.Next()
   286  	if err != nil {
   287  		return nil, err
   288  	}
   289  	if e == nil || e.Offset != off {
   290  		return nil, DecodeError{name, off, "no type at offset"}
   291  	}
   292  
   293  	// Parse type from Entry.
   294  	// Must always set typeCache[off] before calling
   295  	// d.Type recursively, to handle circular types correctly.
   296  	var typ Type
   297  
   298  	nextDepth := 0
   299  
   300  	// Get next child; set err if error happens.
   301  	next := func() *Entry {
   302  		if !e.Children {
   303  			return nil
   304  		}
   305  		// Only return direct children.
   306  		// Skip over composite entries that happen to be nested
   307  		// inside this one. Most DWARF generators wouldn't generate
   308  		// such a thing, but clang does.
   309  		// See golang.org/issue/6472.
   310  		for {
   311  			kid, err1 := r.Next()
   312  			if err1 != nil {
   313  				err = err1
   314  				return nil
   315  			}
   316  			if kid == nil {
   317  				err = DecodeError{name, r.offset(), "unexpected end of DWARF entries"}
   318  				return nil
   319  			}
   320  			if kid.Tag == 0 {
   321  				if nextDepth > 0 {
   322  					nextDepth--
   323  					continue
   324  				}
   325  				return nil
   326  			}
   327  			if kid.Children {
   328  				nextDepth++
   329  			}
   330  			if nextDepth > 0 {
   331  				continue
   332  			}
   333  			return kid
   334  		}
   335  	}
   336  
   337  	// Get Type referred to by Entry's AttrType field.
   338  	// Set err if error happens.  Not having a type is an error.
   339  	typeOf := func(e *Entry) Type {
   340  		tval := e.Val(AttrType)
   341  		var t Type
   342  		switch toff := tval.(type) {
   343  		case Offset:
   344  			if t, err = d.readType(name, r.clone(), toff, typeCache); err != nil {
   345  				return nil
   346  			}
   347  		case uint64:
   348  			if t, err = d.sigToType(toff); err != nil {
   349  				return nil
   350  			}
   351  		default:
   352  			// It appears that no Type means "void".
   353  			return new(VoidType)
   354  		}
   355  		return t
   356  	}
   357  
   358  	switch e.Tag {
   359  	case TagArrayType:
   360  		// Multi-dimensional array.  (DWARF v2 §5.4)
   361  		// Attributes:
   362  		//	AttrType:subtype [required]
   363  		//	AttrStrideSize: size in bits of each element of the array
   364  		//	AttrByteSize: size of entire array
   365  		// Children:
   366  		//	TagSubrangeType or TagEnumerationType giving one dimension.
   367  		//	dimensions are in left to right order.
   368  		t := new(ArrayType)
   369  		typ = t
   370  		typeCache[off] = t
   371  		if t.Type = typeOf(e); err != nil {
   372  			goto Error
   373  		}
   374  		t.StrideBitSize, _ = e.Val(AttrStrideSize).(int64)
   375  
   376  		// Accumulate dimensions,
   377  		var dims []int64
   378  		for kid := next(); kid != nil; kid = next() {
   379  			// TODO(rsc): Can also be TagEnumerationType
   380  			// but haven't seen that in the wild yet.
   381  			switch kid.Tag {
   382  			case TagSubrangeType:
   383  				count, ok := kid.Val(AttrCount).(int64)
   384  				if !ok {
   385  					// Old binaries may have an upper bound instead.
   386  					count, ok = kid.Val(AttrUpperBound).(int64)
   387  					if ok {
   388  						count++ // Length is one more than upper bound.
   389  					} else if len(dims) == 0 {
   390  						count = -1 // As in x[].
   391  					}
   392  				}
   393  				dims = append(dims, count)
   394  			case TagEnumerationType:
   395  				err = DecodeError{name, kid.Offset, "cannot handle enumeration type as array bound"}
   396  				goto Error
   397  			}
   398  		}
   399  		if len(dims) == 0 {
   400  			// LLVM generates this for x[].
   401  			dims = []int64{-1}
   402  		}
   403  
   404  		t.Count = dims[0]
   405  		for i := len(dims) - 1; i >= 1; i-- {
   406  			t.Type = &ArrayType{Type: t.Type, Count: dims[i]}
   407  		}
   408  
   409  	case TagBaseType:
   410  		// Basic type.  (DWARF v2 §5.1)
   411  		// Attributes:
   412  		//	AttrName: name of base type in programming language of the compilation unit [required]
   413  		//	AttrEncoding: encoding value for type (encFloat etc) [required]
   414  		//	AttrByteSize: size of type in bytes [required]
   415  		//	AttrBitOffset: for sub-byte types, size in bits
   416  		//	AttrBitSize: for sub-byte types, bit offset of high order bit in the AttrByteSize bytes
   417  		name, _ := e.Val(AttrName).(string)
   418  		enc, ok := e.Val(AttrEncoding).(int64)
   419  		if !ok {
   420  			err = DecodeError{name, e.Offset, "missing encoding attribute for " + name}
   421  			goto Error
   422  		}
   423  		switch enc {
   424  		default:
   425  			err = DecodeError{name, e.Offset, "unrecognized encoding attribute value"}
   426  			goto Error
   427  
   428  		case encAddress:
   429  			typ = new(AddrType)
   430  		case encBoolean:
   431  			typ = new(BoolType)
   432  		case encComplexFloat:
   433  			typ = new(ComplexType)
   434  			if name == "complex" {
   435  				// clang writes out 'complex' instead of 'complex float' or 'complex double'.
   436  				// clang also writes out a byte size that we can use to distinguish.
   437  				// See issue 8694.
   438  				switch byteSize, _ := e.Val(AttrByteSize).(int64); byteSize {
   439  				case 8:
   440  					name = "complex float"
   441  				case 16:
   442  					name = "complex double"
   443  				}
   444  			}
   445  		case encFloat:
   446  			typ = new(FloatType)
   447  		case encSigned:
   448  			typ = new(IntType)
   449  		case encUnsigned:
   450  			typ = new(UintType)
   451  		case encSignedChar:
   452  			typ = new(CharType)
   453  		case encUnsignedChar:
   454  			typ = new(UcharType)
   455  		}
   456  		typeCache[off] = typ
   457  		t := typ.(interface {
   458  			Basic() *BasicType
   459  		}).Basic()
   460  		t.Name = name
   461  		t.BitSize, _ = e.Val(AttrBitSize).(int64)
   462  		t.BitOffset, _ = e.Val(AttrBitOffset).(int64)
   463  
   464  	case TagClassType, TagStructType, TagUnionType:
   465  		// Structure, union, or class type.  (DWARF v2 §5.5)
   466  		// Attributes:
   467  		//	AttrName: name of struct, union, or class
   468  		//	AttrByteSize: byte size [required]
   469  		//	AttrDeclaration: if true, struct/union/class is incomplete
   470  		// Children:
   471  		//	TagMember to describe one member.
   472  		//		AttrName: name of member [required]
   473  		//		AttrType: type of member [required]
   474  		//		AttrByteSize: size in bytes
   475  		//		AttrBitOffset: bit offset within bytes for bit fields
   476  		//		AttrBitSize: bit size for bit fields
   477  		//		AttrDataMemberLoc: location within struct [required for struct, class]
   478  		// There is much more to handle C++, all ignored for now.
   479  		t := new(StructType)
   480  		typ = t
   481  		typeCache[off] = t
   482  		switch e.Tag {
   483  		case TagClassType:
   484  			t.Kind = "class"
   485  		case TagStructType:
   486  			t.Kind = "struct"
   487  		case TagUnionType:
   488  			t.Kind = "union"
   489  		}
   490  		t.StructName, _ = e.Val(AttrName).(string)
   491  		t.Incomplete = e.Val(AttrDeclaration) != nil
   492  		t.Field = make([]*StructField, 0, 8)
   493  		var lastFieldType *Type
   494  		var lastFieldBitOffset int64
   495  		for kid := next(); kid != nil; kid = next() {
   496  			if kid.Tag == TagMember {
   497  				f := new(StructField)
   498  				if f.Type = typeOf(kid); err != nil {
   499  					goto Error
   500  				}
   501  				switch loc := kid.Val(AttrDataMemberLoc).(type) {
   502  				case []byte:
   503  					// TODO: Should have original compilation
   504  					// unit here, not unknownFormat.
   505  					b := makeBuf(d, unknownFormat{}, "location", 0, loc)
   506  					if b.uint8() != opPlusUconst {
   507  						err = DecodeError{name, kid.Offset, "unexpected opcode"}
   508  						goto Error
   509  					}
   510  					f.ByteOffset = int64(b.uint())
   511  					if b.err != nil {
   512  						err = b.err
   513  						goto Error
   514  					}
   515  				case int64:
   516  					f.ByteOffset = loc
   517  				}
   518  
   519  				haveBitOffset := false
   520  				f.Name, _ = kid.Val(AttrName).(string)
   521  				f.ByteSize, _ = kid.Val(AttrByteSize).(int64)
   522  				f.BitOffset, haveBitOffset = kid.Val(AttrBitOffset).(int64)
   523  				f.BitSize, _ = kid.Val(AttrBitSize).(int64)
   524  				t.Field = append(t.Field, f)
   525  
   526  				bito := f.BitOffset
   527  				if !haveBitOffset {
   528  					bito = f.ByteOffset * 8
   529  				}
   530  				if bito == lastFieldBitOffset && t.Kind != "union" {
   531  					// Last field was zero width.  Fix array length.
   532  					// (DWARF writes out 0-length arrays as if they were 1-length arrays.)
   533  					zeroArray(lastFieldType)
   534  				}
   535  				lastFieldType = &f.Type
   536  				lastFieldBitOffset = bito
   537  			}
   538  		}
   539  		if t.Kind != "union" {
   540  			b, ok := e.Val(AttrByteSize).(int64)
   541  			if ok && b*8 == lastFieldBitOffset {
   542  				// Final field must be zero width.  Fix array length.
   543  				zeroArray(lastFieldType)
   544  			}
   545  		}
   546  
   547  	case TagConstType, TagVolatileType, TagRestrictType:
   548  		// Type modifier (DWARF v2 §5.2)
   549  		// Attributes:
   550  		//	AttrType: subtype
   551  		t := new(QualType)
   552  		typ = t
   553  		typeCache[off] = t
   554  		if t.Type = typeOf(e); err != nil {
   555  			goto Error
   556  		}
   557  		switch e.Tag {
   558  		case TagConstType:
   559  			t.Qual = "const"
   560  		case TagRestrictType:
   561  			t.Qual = "restrict"
   562  		case TagVolatileType:
   563  			t.Qual = "volatile"
   564  		}
   565  
   566  	case TagEnumerationType:
   567  		// Enumeration type (DWARF v2 §5.6)
   568  		// Attributes:
   569  		//	AttrName: enum name if any
   570  		//	AttrByteSize: bytes required to represent largest value
   571  		// Children:
   572  		//	TagEnumerator:
   573  		//		AttrName: name of constant
   574  		//		AttrConstValue: value of constant
   575  		t := new(EnumType)
   576  		typ = t
   577  		typeCache[off] = t
   578  		t.EnumName, _ = e.Val(AttrName).(string)
   579  		t.Val = make([]*EnumValue, 0, 8)
   580  		for kid := next(); kid != nil; kid = next() {
   581  			if kid.Tag == TagEnumerator {
   582  				f := new(EnumValue)
   583  				f.Name, _ = kid.Val(AttrName).(string)
   584  				f.Val, _ = kid.Val(AttrConstValue).(int64)
   585  				n := len(t.Val)
   586  				if n >= cap(t.Val) {
   587  					val := make([]*EnumValue, n, n*2)
   588  					copy(val, t.Val)
   589  					t.Val = val
   590  				}
   591  				t.Val = t.Val[0 : n+1]
   592  				t.Val[n] = f
   593  			}
   594  		}
   595  
   596  	case TagPointerType:
   597  		// Type modifier (DWARF v2 §5.2)
   598  		// Attributes:
   599  		//	AttrType: subtype [not required!  void* has no AttrType]
   600  		//	AttrAddrClass: address class [ignored]
   601  		t := new(PtrType)
   602  		typ = t
   603  		typeCache[off] = t
   604  		if e.Val(AttrType) == nil {
   605  			t.Type = &VoidType{}
   606  			break
   607  		}
   608  		t.Type = typeOf(e)
   609  
   610  	case TagSubroutineType:
   611  		// Subroutine type.  (DWARF v2 §5.7)
   612  		// Attributes:
   613  		//	AttrType: type of return value if any
   614  		//	AttrName: possible name of type [ignored]
   615  		//	AttrPrototyped: whether used ANSI C prototype [ignored]
   616  		// Children:
   617  		//	TagFormalParameter: typed parameter
   618  		//		AttrType: type of parameter
   619  		//	TagUnspecifiedParameter: final ...
   620  		t := new(FuncType)
   621  		typ = t
   622  		typeCache[off] = t
   623  		if t.ReturnType = typeOf(e); err != nil {
   624  			goto Error
   625  		}
   626  		t.ParamType = make([]Type, 0, 8)
   627  		for kid := next(); kid != nil; kid = next() {
   628  			var tkid Type
   629  			switch kid.Tag {
   630  			default:
   631  				continue
   632  			case TagFormalParameter:
   633  				if tkid = typeOf(kid); err != nil {
   634  					goto Error
   635  				}
   636  			case TagUnspecifiedParameters:
   637  				tkid = &DotDotDotType{}
   638  			}
   639  			t.ParamType = append(t.ParamType, tkid)
   640  		}
   641  
   642  	case TagTypedef:
   643  		// Typedef (DWARF v2 §5.3)
   644  		// Attributes:
   645  		//	AttrName: name [required]
   646  		//	AttrType: type definition [required]
   647  		t := new(TypedefType)
   648  		typ = t
   649  		typeCache[off] = t
   650  		t.Name, _ = e.Val(AttrName).(string)
   651  		t.Type = typeOf(e)
   652  
   653  	case TagUnspecifiedType:
   654  		// Unspecified type (DWARF v3 §5.2)
   655  		// Attributes:
   656  		//	AttrName: name
   657  		t := new(UnspecifiedType)
   658  		typ = t
   659  		typeCache[off] = t
   660  		t.Name, _ = e.Val(AttrName).(string)
   661  	}
   662  
   663  	if err != nil {
   664  		goto Error
   665  	}
   666  
   667  	{
   668  		b, ok := e.Val(AttrByteSize).(int64)
   669  		if !ok {
   670  			b = -1
   671  		}
   672  		typ.Common().ByteSize = b
   673  	}
   674  	return typ, nil
   675  
   676  Error:
   677  	// If the parse fails, take the type out of the cache
   678  	// so that the next call with this offset doesn't hit
   679  	// the cache and return success.
   680  	delete(typeCache, off)
   681  	return nil, err
   682  }
   683  
   684  func zeroArray(t *Type) {
   685  	if t == nil {
   686  		return
   687  	}
   688  	at, ok := (*t).(*ArrayType)
   689  	if !ok || at.Type.Size() == 0 {
   690  		return
   691  	}
   692  	// Make a copy to avoid invalidating typeCache.
   693  	tt := *at
   694  	tt.Count = 0
   695  	*t = &tt
   696  }