github.com/zach-klippenstein/go@v0.0.0-20150108044943-fcfbeb3adf58/src/image/draw/draw.go (about)

     1  // Copyright 2009 The Go Authors.  All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package draw provides image composition functions.
     6  //
     7  // See "The Go image/draw package" for an introduction to this package:
     8  // http://golang.org/doc/articles/image_draw.html
     9  package draw
    10  
    11  import (
    12  	"image"
    13  	"image/color"
    14  )
    15  
    16  // m is the maximum color value returned by image.Color.RGBA.
    17  const m = 1<<16 - 1
    18  
    19  // Image is an image.Image with a Set method to change a single pixel.
    20  type Image interface {
    21  	image.Image
    22  	Set(x, y int, c color.Color)
    23  }
    24  
    25  // Quantizer produces a palette for an image.
    26  type Quantizer interface {
    27  	// Quantize appends up to cap(p) - len(p) colors to p and returns the
    28  	// updated palette suitable for converting m to a paletted image.
    29  	Quantize(p color.Palette, m image.Image) color.Palette
    30  }
    31  
    32  // Op is a Porter-Duff compositing operator.
    33  type Op int
    34  
    35  const (
    36  	// Over specifies ``(src in mask) over dst''.
    37  	Over Op = iota
    38  	// Src specifies ``src in mask''.
    39  	Src
    40  )
    41  
    42  // Draw implements the Drawer interface by calling the Draw function with this
    43  // Op.
    44  func (op Op) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) {
    45  	DrawMask(dst, r, src, sp, nil, image.Point{}, op)
    46  }
    47  
    48  // Drawer contains the Draw method.
    49  type Drawer interface {
    50  	// Draw aligns r.Min in dst with sp in src and then replaces the
    51  	// rectangle r in dst with the result of drawing src on dst.
    52  	Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point)
    53  }
    54  
    55  // FloydSteinberg is a Drawer that is the Src Op with Floyd-Steinberg error
    56  // diffusion.
    57  var FloydSteinberg Drawer = floydSteinberg{}
    58  
    59  type floydSteinberg struct{}
    60  
    61  func (floydSteinberg) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) {
    62  	clip(dst, &r, src, &sp, nil, nil)
    63  	if r.Empty() {
    64  		return
    65  	}
    66  	drawPaletted(dst, r, src, sp, true)
    67  }
    68  
    69  // clip clips r against each image's bounds (after translating into the
    70  // destination image's co-ordinate space) and shifts the points sp and mp by
    71  // the same amount as the change in r.Min.
    72  func clip(dst Image, r *image.Rectangle, src image.Image, sp *image.Point, mask image.Image, mp *image.Point) {
    73  	orig := r.Min
    74  	*r = r.Intersect(dst.Bounds())
    75  	*r = r.Intersect(src.Bounds().Add(orig.Sub(*sp)))
    76  	if mask != nil {
    77  		*r = r.Intersect(mask.Bounds().Add(orig.Sub(*mp)))
    78  	}
    79  	dx := r.Min.X - orig.X
    80  	dy := r.Min.Y - orig.Y
    81  	if dx == 0 && dy == 0 {
    82  		return
    83  	}
    84  	(*sp).X += dx
    85  	(*sp).Y += dy
    86  	if mp != nil {
    87  		(*mp).X += dx
    88  		(*mp).Y += dy
    89  	}
    90  }
    91  
    92  func processBackward(dst Image, r image.Rectangle, src image.Image, sp image.Point) bool {
    93  	return image.Image(dst) == src &&
    94  		r.Overlaps(r.Add(sp.Sub(r.Min))) &&
    95  		(sp.Y < r.Min.Y || (sp.Y == r.Min.Y && sp.X < r.Min.X))
    96  }
    97  
    98  // Draw calls DrawMask with a nil mask.
    99  func Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point, op Op) {
   100  	DrawMask(dst, r, src, sp, nil, image.Point{}, op)
   101  }
   102  
   103  // DrawMask aligns r.Min in dst with sp in src and mp in mask and then replaces the rectangle r
   104  // in dst with the result of a Porter-Duff composition. A nil mask is treated as opaque.
   105  func DrawMask(dst Image, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) {
   106  	clip(dst, &r, src, &sp, mask, &mp)
   107  	if r.Empty() {
   108  		return
   109  	}
   110  
   111  	// Fast paths for special cases. If none of them apply, then we fall back to a general but slow implementation.
   112  	switch dst0 := dst.(type) {
   113  	case *image.RGBA:
   114  		if op == Over {
   115  			if mask == nil {
   116  				switch src0 := src.(type) {
   117  				case *image.Uniform:
   118  					drawFillOver(dst0, r, src0)
   119  					return
   120  				case *image.RGBA:
   121  					drawCopyOver(dst0, r, src0, sp)
   122  					return
   123  				case *image.NRGBA:
   124  					drawNRGBAOver(dst0, r, src0, sp)
   125  					return
   126  				case *image.YCbCr:
   127  					if drawYCbCr(dst0, r, src0, sp) {
   128  						return
   129  					}
   130  				}
   131  			} else if mask0, ok := mask.(*image.Alpha); ok {
   132  				switch src0 := src.(type) {
   133  				case *image.Uniform:
   134  					drawGlyphOver(dst0, r, src0, mask0, mp)
   135  					return
   136  				}
   137  			}
   138  		} else {
   139  			if mask == nil {
   140  				switch src0 := src.(type) {
   141  				case *image.Uniform:
   142  					drawFillSrc(dst0, r, src0)
   143  					return
   144  				case *image.RGBA:
   145  					drawCopySrc(dst0, r, src0, sp)
   146  					return
   147  				case *image.NRGBA:
   148  					drawNRGBASrc(dst0, r, src0, sp)
   149  					return
   150  				case *image.YCbCr:
   151  					if drawYCbCr(dst0, r, src0, sp) {
   152  						return
   153  					}
   154  				}
   155  			}
   156  		}
   157  		drawRGBA(dst0, r, src, sp, mask, mp, op)
   158  		return
   159  	case *image.Paletted:
   160  		if op == Src && mask == nil && !processBackward(dst, r, src, sp) {
   161  			drawPaletted(dst0, r, src, sp, false)
   162  		}
   163  	}
   164  
   165  	x0, x1, dx := r.Min.X, r.Max.X, 1
   166  	y0, y1, dy := r.Min.Y, r.Max.Y, 1
   167  	if processBackward(dst, r, src, sp) {
   168  		x0, x1, dx = x1-1, x0-1, -1
   169  		y0, y1, dy = y1-1, y0-1, -1
   170  	}
   171  
   172  	var out color.RGBA64
   173  	sy := sp.Y + y0 - r.Min.Y
   174  	my := mp.Y + y0 - r.Min.Y
   175  	for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy {
   176  		sx := sp.X + x0 - r.Min.X
   177  		mx := mp.X + x0 - r.Min.X
   178  		for x := x0; x != x1; x, sx, mx = x+dx, sx+dx, mx+dx {
   179  			ma := uint32(m)
   180  			if mask != nil {
   181  				_, _, _, ma = mask.At(mx, my).RGBA()
   182  			}
   183  			switch {
   184  			case ma == 0:
   185  				if op == Over {
   186  					// No-op.
   187  				} else {
   188  					dst.Set(x, y, color.Transparent)
   189  				}
   190  			case ma == m && op == Src:
   191  				dst.Set(x, y, src.At(sx, sy))
   192  			default:
   193  				sr, sg, sb, sa := src.At(sx, sy).RGBA()
   194  				if op == Over {
   195  					dr, dg, db, da := dst.At(x, y).RGBA()
   196  					a := m - (sa * ma / m)
   197  					out.R = uint16((dr*a + sr*ma) / m)
   198  					out.G = uint16((dg*a + sg*ma) / m)
   199  					out.B = uint16((db*a + sb*ma) / m)
   200  					out.A = uint16((da*a + sa*ma) / m)
   201  				} else {
   202  					out.R = uint16(sr * ma / m)
   203  					out.G = uint16(sg * ma / m)
   204  					out.B = uint16(sb * ma / m)
   205  					out.A = uint16(sa * ma / m)
   206  				}
   207  				// The third argument is &out instead of out (and out is
   208  				// declared outside of the inner loop) to avoid the implicit
   209  				// conversion to color.Color here allocating memory in the
   210  				// inner loop if sizeof(color.RGBA64) > sizeof(uintptr).
   211  				dst.Set(x, y, &out)
   212  			}
   213  		}
   214  	}
   215  }
   216  
   217  func drawFillOver(dst *image.RGBA, r image.Rectangle, src *image.Uniform) {
   218  	sr, sg, sb, sa := src.RGBA()
   219  	// The 0x101 is here for the same reason as in drawRGBA.
   220  	a := (m - sa) * 0x101
   221  	i0 := dst.PixOffset(r.Min.X, r.Min.Y)
   222  	i1 := i0 + r.Dx()*4
   223  	for y := r.Min.Y; y != r.Max.Y; y++ {
   224  		for i := i0; i < i1; i += 4 {
   225  			dr := uint32(dst.Pix[i+0])
   226  			dg := uint32(dst.Pix[i+1])
   227  			db := uint32(dst.Pix[i+2])
   228  			da := uint32(dst.Pix[i+3])
   229  
   230  			dst.Pix[i+0] = uint8((dr*a/m + sr) >> 8)
   231  			dst.Pix[i+1] = uint8((dg*a/m + sg) >> 8)
   232  			dst.Pix[i+2] = uint8((db*a/m + sb) >> 8)
   233  			dst.Pix[i+3] = uint8((da*a/m + sa) >> 8)
   234  		}
   235  		i0 += dst.Stride
   236  		i1 += dst.Stride
   237  	}
   238  }
   239  
   240  func drawFillSrc(dst *image.RGBA, r image.Rectangle, src *image.Uniform) {
   241  	sr, sg, sb, sa := src.RGBA()
   242  	// The built-in copy function is faster than a straightforward for loop to fill the destination with
   243  	// the color, but copy requires a slice source. We therefore use a for loop to fill the first row, and
   244  	// then use the first row as the slice source for the remaining rows.
   245  	i0 := dst.PixOffset(r.Min.X, r.Min.Y)
   246  	i1 := i0 + r.Dx()*4
   247  	for i := i0; i < i1; i += 4 {
   248  		dst.Pix[i+0] = uint8(sr >> 8)
   249  		dst.Pix[i+1] = uint8(sg >> 8)
   250  		dst.Pix[i+2] = uint8(sb >> 8)
   251  		dst.Pix[i+3] = uint8(sa >> 8)
   252  	}
   253  	firstRow := dst.Pix[i0:i1]
   254  	for y := r.Min.Y + 1; y < r.Max.Y; y++ {
   255  		i0 += dst.Stride
   256  		i1 += dst.Stride
   257  		copy(dst.Pix[i0:i1], firstRow)
   258  	}
   259  }
   260  
   261  func drawCopyOver(dst *image.RGBA, r image.Rectangle, src *image.RGBA, sp image.Point) {
   262  	dx, dy := r.Dx(), r.Dy()
   263  	d0 := dst.PixOffset(r.Min.X, r.Min.Y)
   264  	s0 := src.PixOffset(sp.X, sp.Y)
   265  	var (
   266  		ddelta, sdelta int
   267  		i0, i1, idelta int
   268  	)
   269  	if r.Min.Y < sp.Y || r.Min.Y == sp.Y && r.Min.X <= sp.X {
   270  		ddelta = dst.Stride
   271  		sdelta = src.Stride
   272  		i0, i1, idelta = 0, dx*4, +4
   273  	} else {
   274  		// If the source start point is higher than the destination start point, or equal height but to the left,
   275  		// then we compose the rows in right-to-left, bottom-up order instead of left-to-right, top-down.
   276  		d0 += (dy - 1) * dst.Stride
   277  		s0 += (dy - 1) * src.Stride
   278  		ddelta = -dst.Stride
   279  		sdelta = -src.Stride
   280  		i0, i1, idelta = (dx-1)*4, -4, -4
   281  	}
   282  	for ; dy > 0; dy-- {
   283  		dpix := dst.Pix[d0:]
   284  		spix := src.Pix[s0:]
   285  		for i := i0; i != i1; i += idelta {
   286  			sr := uint32(spix[i+0]) * 0x101
   287  			sg := uint32(spix[i+1]) * 0x101
   288  			sb := uint32(spix[i+2]) * 0x101
   289  			sa := uint32(spix[i+3]) * 0x101
   290  
   291  			dr := uint32(dpix[i+0])
   292  			dg := uint32(dpix[i+1])
   293  			db := uint32(dpix[i+2])
   294  			da := uint32(dpix[i+3])
   295  
   296  			// The 0x101 is here for the same reason as in drawRGBA.
   297  			a := (m - sa) * 0x101
   298  
   299  			dpix[i+0] = uint8((dr*a/m + sr) >> 8)
   300  			dpix[i+1] = uint8((dg*a/m + sg) >> 8)
   301  			dpix[i+2] = uint8((db*a/m + sb) >> 8)
   302  			dpix[i+3] = uint8((da*a/m + sa) >> 8)
   303  		}
   304  		d0 += ddelta
   305  		s0 += sdelta
   306  	}
   307  }
   308  
   309  func drawCopySrc(dst *image.RGBA, r image.Rectangle, src *image.RGBA, sp image.Point) {
   310  	n, dy := 4*r.Dx(), r.Dy()
   311  	d0 := dst.PixOffset(r.Min.X, r.Min.Y)
   312  	s0 := src.PixOffset(sp.X, sp.Y)
   313  	var ddelta, sdelta int
   314  	if r.Min.Y <= sp.Y {
   315  		ddelta = dst.Stride
   316  		sdelta = src.Stride
   317  	} else {
   318  		// If the source start point is higher than the destination start point, then we compose the rows
   319  		// in bottom-up order instead of top-down. Unlike the drawCopyOver function, we don't have to
   320  		// check the x co-ordinates because the built-in copy function can handle overlapping slices.
   321  		d0 += (dy - 1) * dst.Stride
   322  		s0 += (dy - 1) * src.Stride
   323  		ddelta = -dst.Stride
   324  		sdelta = -src.Stride
   325  	}
   326  	for ; dy > 0; dy-- {
   327  		copy(dst.Pix[d0:d0+n], src.Pix[s0:s0+n])
   328  		d0 += ddelta
   329  		s0 += sdelta
   330  	}
   331  }
   332  
   333  func drawNRGBAOver(dst *image.RGBA, r image.Rectangle, src *image.NRGBA, sp image.Point) {
   334  	i0 := (r.Min.X - dst.Rect.Min.X) * 4
   335  	i1 := (r.Max.X - dst.Rect.Min.X) * 4
   336  	si0 := (sp.X - src.Rect.Min.X) * 4
   337  	yMax := r.Max.Y - dst.Rect.Min.Y
   338  
   339  	y := r.Min.Y - dst.Rect.Min.Y
   340  	sy := sp.Y - src.Rect.Min.Y
   341  	for ; y != yMax; y, sy = y+1, sy+1 {
   342  		dpix := dst.Pix[y*dst.Stride:]
   343  		spix := src.Pix[sy*src.Stride:]
   344  
   345  		for i, si := i0, si0; i < i1; i, si = i+4, si+4 {
   346  			// Convert from non-premultiplied color to pre-multiplied color.
   347  			sa := uint32(spix[si+3]) * 0x101
   348  			sr := uint32(spix[si+0]) * sa / 0xff
   349  			sg := uint32(spix[si+1]) * sa / 0xff
   350  			sb := uint32(spix[si+2]) * sa / 0xff
   351  
   352  			dr := uint32(dpix[i+0])
   353  			dg := uint32(dpix[i+1])
   354  			db := uint32(dpix[i+2])
   355  			da := uint32(dpix[i+3])
   356  
   357  			// The 0x101 is here for the same reason as in drawRGBA.
   358  			a := (m - sa) * 0x101
   359  
   360  			dpix[i+0] = uint8((dr*a/m + sr) >> 8)
   361  			dpix[i+1] = uint8((dg*a/m + sg) >> 8)
   362  			dpix[i+2] = uint8((db*a/m + sb) >> 8)
   363  			dpix[i+3] = uint8((da*a/m + sa) >> 8)
   364  		}
   365  	}
   366  }
   367  
   368  func drawNRGBASrc(dst *image.RGBA, r image.Rectangle, src *image.NRGBA, sp image.Point) {
   369  	i0 := (r.Min.X - dst.Rect.Min.X) * 4
   370  	i1 := (r.Max.X - dst.Rect.Min.X) * 4
   371  	si0 := (sp.X - src.Rect.Min.X) * 4
   372  	yMax := r.Max.Y - dst.Rect.Min.Y
   373  
   374  	y := r.Min.Y - dst.Rect.Min.Y
   375  	sy := sp.Y - src.Rect.Min.Y
   376  	for ; y != yMax; y, sy = y+1, sy+1 {
   377  		dpix := dst.Pix[y*dst.Stride:]
   378  		spix := src.Pix[sy*src.Stride:]
   379  
   380  		for i, si := i0, si0; i < i1; i, si = i+4, si+4 {
   381  			// Convert from non-premultiplied color to pre-multiplied color.
   382  			sa := uint32(spix[si+3]) * 0x101
   383  			sr := uint32(spix[si+0]) * sa / 0xff
   384  			sg := uint32(spix[si+1]) * sa / 0xff
   385  			sb := uint32(spix[si+2]) * sa / 0xff
   386  
   387  			dpix[i+0] = uint8(sr >> 8)
   388  			dpix[i+1] = uint8(sg >> 8)
   389  			dpix[i+2] = uint8(sb >> 8)
   390  			dpix[i+3] = uint8(sa >> 8)
   391  		}
   392  	}
   393  }
   394  
   395  func drawYCbCr(dst *image.RGBA, r image.Rectangle, src *image.YCbCr, sp image.Point) (ok bool) {
   396  	// An image.YCbCr is always fully opaque, and so if the mask is implicitly nil
   397  	// (i.e. fully opaque) then the op is effectively always Src.
   398  	x0 := (r.Min.X - dst.Rect.Min.X) * 4
   399  	x1 := (r.Max.X - dst.Rect.Min.X) * 4
   400  	y0 := r.Min.Y - dst.Rect.Min.Y
   401  	y1 := r.Max.Y - dst.Rect.Min.Y
   402  	switch src.SubsampleRatio {
   403  	case image.YCbCrSubsampleRatio444:
   404  		for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 {
   405  			dpix := dst.Pix[y*dst.Stride:]
   406  			yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X)
   407  			ci := (sy-src.Rect.Min.Y)*src.CStride + (sp.X - src.Rect.Min.X)
   408  			for x := x0; x != x1; x, yi, ci = x+4, yi+1, ci+1 {
   409  				rr, gg, bb := color.YCbCrToRGB(src.Y[yi], src.Cb[ci], src.Cr[ci])
   410  				dpix[x+0] = rr
   411  				dpix[x+1] = gg
   412  				dpix[x+2] = bb
   413  				dpix[x+3] = 255
   414  			}
   415  		}
   416  	case image.YCbCrSubsampleRatio422:
   417  		for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 {
   418  			dpix := dst.Pix[y*dst.Stride:]
   419  			yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X)
   420  			ciBase := (sy-src.Rect.Min.Y)*src.CStride - src.Rect.Min.X/2
   421  			for x, sx := x0, sp.X; x != x1; x, sx, yi = x+4, sx+1, yi+1 {
   422  				ci := ciBase + sx/2
   423  				rr, gg, bb := color.YCbCrToRGB(src.Y[yi], src.Cb[ci], src.Cr[ci])
   424  				dpix[x+0] = rr
   425  				dpix[x+1] = gg
   426  				dpix[x+2] = bb
   427  				dpix[x+3] = 255
   428  			}
   429  		}
   430  	case image.YCbCrSubsampleRatio420:
   431  		for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 {
   432  			dpix := dst.Pix[y*dst.Stride:]
   433  			yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X)
   434  			ciBase := (sy/2-src.Rect.Min.Y/2)*src.CStride - src.Rect.Min.X/2
   435  			for x, sx := x0, sp.X; x != x1; x, sx, yi = x+4, sx+1, yi+1 {
   436  				ci := ciBase + sx/2
   437  				rr, gg, bb := color.YCbCrToRGB(src.Y[yi], src.Cb[ci], src.Cr[ci])
   438  				dpix[x+0] = rr
   439  				dpix[x+1] = gg
   440  				dpix[x+2] = bb
   441  				dpix[x+3] = 255
   442  			}
   443  		}
   444  	case image.YCbCrSubsampleRatio440:
   445  		for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 {
   446  			dpix := dst.Pix[y*dst.Stride:]
   447  			yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X)
   448  			ci := (sy/2-src.Rect.Min.Y/2)*src.CStride + (sp.X - src.Rect.Min.X)
   449  			for x := x0; x != x1; x, yi, ci = x+4, yi+1, ci+1 {
   450  				rr, gg, bb := color.YCbCrToRGB(src.Y[yi], src.Cb[ci], src.Cr[ci])
   451  				dpix[x+0] = rr
   452  				dpix[x+1] = gg
   453  				dpix[x+2] = bb
   454  				dpix[x+3] = 255
   455  			}
   456  		}
   457  	default:
   458  		return false
   459  	}
   460  	return true
   461  }
   462  
   463  func drawGlyphOver(dst *image.RGBA, r image.Rectangle, src *image.Uniform, mask *image.Alpha, mp image.Point) {
   464  	i0 := dst.PixOffset(r.Min.X, r.Min.Y)
   465  	i1 := i0 + r.Dx()*4
   466  	mi0 := mask.PixOffset(mp.X, mp.Y)
   467  	sr, sg, sb, sa := src.RGBA()
   468  	for y, my := r.Min.Y, mp.Y; y != r.Max.Y; y, my = y+1, my+1 {
   469  		for i, mi := i0, mi0; i < i1; i, mi = i+4, mi+1 {
   470  			ma := uint32(mask.Pix[mi])
   471  			if ma == 0 {
   472  				continue
   473  			}
   474  			ma |= ma << 8
   475  
   476  			dr := uint32(dst.Pix[i+0])
   477  			dg := uint32(dst.Pix[i+1])
   478  			db := uint32(dst.Pix[i+2])
   479  			da := uint32(dst.Pix[i+3])
   480  
   481  			// The 0x101 is here for the same reason as in drawRGBA.
   482  			a := (m - (sa * ma / m)) * 0x101
   483  
   484  			dst.Pix[i+0] = uint8((dr*a + sr*ma) / m >> 8)
   485  			dst.Pix[i+1] = uint8((dg*a + sg*ma) / m >> 8)
   486  			dst.Pix[i+2] = uint8((db*a + sb*ma) / m >> 8)
   487  			dst.Pix[i+3] = uint8((da*a + sa*ma) / m >> 8)
   488  		}
   489  		i0 += dst.Stride
   490  		i1 += dst.Stride
   491  		mi0 += mask.Stride
   492  	}
   493  }
   494  
   495  func drawRGBA(dst *image.RGBA, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) {
   496  	x0, x1, dx := r.Min.X, r.Max.X, 1
   497  	y0, y1, dy := r.Min.Y, r.Max.Y, 1
   498  	if image.Image(dst) == src && r.Overlaps(r.Add(sp.Sub(r.Min))) {
   499  		if sp.Y < r.Min.Y || sp.Y == r.Min.Y && sp.X < r.Min.X {
   500  			x0, x1, dx = x1-1, x0-1, -1
   501  			y0, y1, dy = y1-1, y0-1, -1
   502  		}
   503  	}
   504  
   505  	sy := sp.Y + y0 - r.Min.Y
   506  	my := mp.Y + y0 - r.Min.Y
   507  	sx0 := sp.X + x0 - r.Min.X
   508  	mx0 := mp.X + x0 - r.Min.X
   509  	sx1 := sx0 + (x1 - x0)
   510  	i0 := dst.PixOffset(x0, y0)
   511  	di := dx * 4
   512  	for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy {
   513  		for i, sx, mx := i0, sx0, mx0; sx != sx1; i, sx, mx = i+di, sx+dx, mx+dx {
   514  			ma := uint32(m)
   515  			if mask != nil {
   516  				_, _, _, ma = mask.At(mx, my).RGBA()
   517  			}
   518  			sr, sg, sb, sa := src.At(sx, sy).RGBA()
   519  			if op == Over {
   520  				dr := uint32(dst.Pix[i+0])
   521  				dg := uint32(dst.Pix[i+1])
   522  				db := uint32(dst.Pix[i+2])
   523  				da := uint32(dst.Pix[i+3])
   524  
   525  				// dr, dg, db and da are all 8-bit color at the moment, ranging in [0,255].
   526  				// We work in 16-bit color, and so would normally do:
   527  				// dr |= dr << 8
   528  				// and similarly for dg, db and da, but instead we multiply a
   529  				// (which is a 16-bit color, ranging in [0,65535]) by 0x101.
   530  				// This yields the same result, but is fewer arithmetic operations.
   531  				a := (m - (sa * ma / m)) * 0x101
   532  
   533  				dst.Pix[i+0] = uint8((dr*a + sr*ma) / m >> 8)
   534  				dst.Pix[i+1] = uint8((dg*a + sg*ma) / m >> 8)
   535  				dst.Pix[i+2] = uint8((db*a + sb*ma) / m >> 8)
   536  				dst.Pix[i+3] = uint8((da*a + sa*ma) / m >> 8)
   537  
   538  			} else {
   539  				dst.Pix[i+0] = uint8(sr * ma / m >> 8)
   540  				dst.Pix[i+1] = uint8(sg * ma / m >> 8)
   541  				dst.Pix[i+2] = uint8(sb * ma / m >> 8)
   542  				dst.Pix[i+3] = uint8(sa * ma / m >> 8)
   543  			}
   544  		}
   545  		i0 += dy * dst.Stride
   546  	}
   547  }
   548  
   549  // clamp clamps i to the interval [0, 0xffff].
   550  func clamp(i int32) int32 {
   551  	if i < 0 {
   552  		return 0
   553  	}
   554  	if i > 0xffff {
   555  		return 0xffff
   556  	}
   557  	return i
   558  }
   559  
   560  func drawPaletted(dst Image, r image.Rectangle, src image.Image, sp image.Point, floydSteinberg bool) {
   561  	// TODO(nigeltao): handle the case where the dst and src overlap.
   562  	// Does it even make sense to try and do Floyd-Steinberg whilst
   563  	// walking the image backward (right-to-left bottom-to-top)?
   564  
   565  	// If dst is an *image.Paletted, we have a fast path for dst.Set and
   566  	// dst.At. The dst.Set equivalent is a batch version of the algorithm
   567  	// used by color.Palette's Index method in image/color/color.go, plus
   568  	// optional Floyd-Steinberg error diffusion.
   569  	palette, pix, stride := [][3]int32(nil), []byte(nil), 0
   570  	if p, ok := dst.(*image.Paletted); ok {
   571  		palette = make([][3]int32, len(p.Palette))
   572  		for i, col := range p.Palette {
   573  			r, g, b, _ := col.RGBA()
   574  			palette[i][0] = int32(r)
   575  			palette[i][1] = int32(g)
   576  			palette[i][2] = int32(b)
   577  		}
   578  		pix, stride = p.Pix[p.PixOffset(r.Min.X, r.Min.Y):], p.Stride
   579  	}
   580  
   581  	// quantErrorCurr and quantErrorNext are the Floyd-Steinberg quantization
   582  	// errors that have been propagated to the pixels in the current and next
   583  	// rows. The +2 simplifies calculation near the edges.
   584  	var quantErrorCurr, quantErrorNext [][3]int32
   585  	if floydSteinberg {
   586  		quantErrorCurr = make([][3]int32, r.Dx()+2)
   587  		quantErrorNext = make([][3]int32, r.Dx()+2)
   588  	}
   589  
   590  	// Loop over each source pixel.
   591  	out := color.RGBA64{A: 0xffff}
   592  	for y := 0; y != r.Dy(); y++ {
   593  		for x := 0; x != r.Dx(); x++ {
   594  			// er, eg and eb are the pixel's R,G,B values plus the
   595  			// optional Floyd-Steinberg error.
   596  			sr, sg, sb, _ := src.At(sp.X+x, sp.Y+y).RGBA()
   597  			er, eg, eb := int32(sr), int32(sg), int32(sb)
   598  			if floydSteinberg {
   599  				er = clamp(er + quantErrorCurr[x+1][0]/16)
   600  				eg = clamp(eg + quantErrorCurr[x+1][1]/16)
   601  				eb = clamp(eb + quantErrorCurr[x+1][2]/16)
   602  			}
   603  
   604  			if palette != nil {
   605  				// Find the closest palette color in Euclidean R,G,B space: the
   606  				// one that minimizes sum-squared-difference. We shift by 1 bit
   607  				// to avoid potential uint32 overflow in sum-squared-difference.
   608  				// TODO(nigeltao): consider smarter algorithms.
   609  				bestIndex, bestSSD := 0, uint32(1<<32-1)
   610  				for index, p := range palette {
   611  					delta := (er - p[0]) >> 1
   612  					ssd := uint32(delta * delta)
   613  					delta = (eg - p[1]) >> 1
   614  					ssd += uint32(delta * delta)
   615  					delta = (eb - p[2]) >> 1
   616  					ssd += uint32(delta * delta)
   617  					if ssd < bestSSD {
   618  						bestIndex, bestSSD = index, ssd
   619  						if ssd == 0 {
   620  							break
   621  						}
   622  					}
   623  				}
   624  				pix[y*stride+x] = byte(bestIndex)
   625  
   626  				if !floydSteinberg {
   627  					continue
   628  				}
   629  				er -= int32(palette[bestIndex][0])
   630  				eg -= int32(palette[bestIndex][1])
   631  				eb -= int32(palette[bestIndex][2])
   632  
   633  			} else {
   634  				out.R = uint16(er)
   635  				out.G = uint16(eg)
   636  				out.B = uint16(eb)
   637  				// The third argument is &out instead of out (and out is
   638  				// declared outside of the inner loop) to avoid the implicit
   639  				// conversion to color.Color here allocating memory in the
   640  				// inner loop if sizeof(color.RGBA64) > sizeof(uintptr).
   641  				dst.Set(r.Min.X+x, r.Min.Y+y, &out)
   642  
   643  				if !floydSteinberg {
   644  					continue
   645  				}
   646  				sr, sg, sb, _ = dst.At(r.Min.X+x, r.Min.Y+y).RGBA()
   647  				er -= int32(sr)
   648  				eg -= int32(sg)
   649  				eb -= int32(sb)
   650  			}
   651  
   652  			// Propagate the Floyd-Steinberg quantization error.
   653  			quantErrorNext[x+0][0] += er * 3
   654  			quantErrorNext[x+0][1] += eg * 3
   655  			quantErrorNext[x+0][2] += eb * 3
   656  			quantErrorNext[x+1][0] += er * 5
   657  			quantErrorNext[x+1][1] += eg * 5
   658  			quantErrorNext[x+1][2] += eb * 5
   659  			quantErrorNext[x+2][0] += er * 1
   660  			quantErrorNext[x+2][1] += eg * 1
   661  			quantErrorNext[x+2][2] += eb * 1
   662  			quantErrorCurr[x+2][0] += er * 7
   663  			quantErrorCurr[x+2][1] += eg * 7
   664  			quantErrorCurr[x+2][2] += eb * 7
   665  		}
   666  
   667  		// Recycle the quantization error buffers.
   668  		if floydSteinberg {
   669  			quantErrorCurr, quantErrorNext = quantErrorNext, quantErrorCurr
   670  			for i := range quantErrorNext {
   671  				quantErrorNext[i] = [3]int32{}
   672  			}
   673  		}
   674  	}
   675  }