github.com/zebozhuang/go@v0.0.0-20200207033046-f8a98f6f5c5d/src/cmd/compile/internal/gc/ssa.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gc 6 7 import ( 8 "bytes" 9 "encoding/binary" 10 "fmt" 11 "html" 12 "os" 13 "sort" 14 15 "cmd/compile/internal/ssa" 16 "cmd/compile/internal/types" 17 "cmd/internal/obj" 18 "cmd/internal/objabi" 19 "cmd/internal/src" 20 "cmd/internal/sys" 21 ) 22 23 var ssaConfig *ssa.Config 24 var ssaCaches []ssa.Cache 25 26 func initssaconfig() { 27 types_ := ssa.Types{ 28 Bool: types.Types[TBOOL], 29 Int8: types.Types[TINT8], 30 Int16: types.Types[TINT16], 31 Int32: types.Types[TINT32], 32 Int64: types.Types[TINT64], 33 UInt8: types.Types[TUINT8], 34 UInt16: types.Types[TUINT16], 35 UInt32: types.Types[TUINT32], 36 UInt64: types.Types[TUINT64], 37 Float32: types.Types[TFLOAT32], 38 Float64: types.Types[TFLOAT64], 39 Int: types.Types[TINT], 40 Uintptr: types.Types[TUINTPTR], 41 String: types.Types[TSTRING], 42 BytePtr: types.NewPtr(types.Types[TUINT8]), 43 Int32Ptr: types.NewPtr(types.Types[TINT32]), 44 UInt32Ptr: types.NewPtr(types.Types[TUINT32]), 45 IntPtr: types.NewPtr(types.Types[TINT]), 46 UintptrPtr: types.NewPtr(types.Types[TUINTPTR]), 47 Float32Ptr: types.NewPtr(types.Types[TFLOAT32]), 48 Float64Ptr: types.NewPtr(types.Types[TFLOAT64]), 49 BytePtrPtr: types.NewPtr(types.NewPtr(types.Types[TUINT8])), 50 } 51 // Generate a few pointer types that are uncommon in the frontend but common in the backend. 52 // Caching is disabled in the backend, so generating these here avoids allocations. 53 _ = types.NewPtr(types.Types[TINTER]) // *interface{} 54 _ = types.NewPtr(types.NewPtr(types.Types[TSTRING])) // **string 55 _ = types.NewPtr(types.NewPtr(types.Idealstring)) // **string 56 _ = types.NewPtr(types.NewSlice(types.Types[TINTER])) // *[]interface{} 57 _ = types.NewPtr(types.NewPtr(types.Bytetype)) // **byte 58 _ = types.NewPtr(types.NewSlice(types.Bytetype)) // *[]byte 59 _ = types.NewPtr(types.NewSlice(types.Types[TSTRING])) // *[]string 60 _ = types.NewPtr(types.NewSlice(types.Idealstring)) // *[]string 61 _ = types.NewPtr(types.NewPtr(types.NewPtr(types.Types[TUINT8]))) // ***uint8 62 _ = types.NewPtr(types.Types[TINT16]) // *int16 63 _ = types.NewPtr(types.Types[TINT64]) // *int64 64 _ = types.NewPtr(types.Errortype) // *error 65 types.NewPtrCacheEnabled = false 66 ssaConfig = ssa.NewConfig(thearch.LinkArch.Name, types_, Ctxt, Debug['N'] == 0) 67 if thearch.LinkArch.Name == "386" { 68 ssaConfig.Set387(thearch.Use387) 69 } 70 ssaCaches = make([]ssa.Cache, nBackendWorkers) 71 72 // Set up some runtime functions we'll need to call. 73 Newproc = Sysfunc("newproc") 74 Deferproc = Sysfunc("deferproc") 75 Deferreturn = Sysfunc("deferreturn") 76 Duffcopy = Sysfunc("duffcopy") 77 Duffzero = Sysfunc("duffzero") 78 panicindex = Sysfunc("panicindex") 79 panicslice = Sysfunc("panicslice") 80 panicdivide = Sysfunc("panicdivide") 81 growslice = Sysfunc("growslice") 82 panicdottypeE = Sysfunc("panicdottypeE") 83 panicdottypeI = Sysfunc("panicdottypeI") 84 panicnildottype = Sysfunc("panicnildottype") 85 assertE2I = Sysfunc("assertE2I") 86 assertE2I2 = Sysfunc("assertE2I2") 87 assertI2I = Sysfunc("assertI2I") 88 assertI2I2 = Sysfunc("assertI2I2") 89 goschedguarded = Sysfunc("goschedguarded") 90 writeBarrier = Sysfunc("writeBarrier") 91 writebarrierptr = Sysfunc("writebarrierptr") 92 typedmemmove = Sysfunc("typedmemmove") 93 typedmemclr = Sysfunc("typedmemclr") 94 Udiv = Sysfunc("udiv") 95 96 // GO386=387 runtime functions 97 ControlWord64trunc = Sysfunc("controlWord64trunc") 98 ControlWord32 = Sysfunc("controlWord32") 99 } 100 101 // buildssa builds an SSA function for fn. 102 // worker indicates which of the backend workers is doing the processing. 103 func buildssa(fn *Node, worker int) *ssa.Func { 104 name := fn.funcname() 105 printssa := name == os.Getenv("GOSSAFUNC") 106 if printssa { 107 fmt.Println("generating SSA for", name) 108 dumplist("buildssa-enter", fn.Func.Enter) 109 dumplist("buildssa-body", fn.Nbody) 110 dumplist("buildssa-exit", fn.Func.Exit) 111 } 112 113 var s state 114 s.pushLine(fn.Pos) 115 defer s.popLine() 116 117 s.hasdefer = fn.Func.HasDefer() 118 if fn.Func.Pragma&CgoUnsafeArgs != 0 { 119 s.cgoUnsafeArgs = true 120 } 121 122 fe := ssafn{ 123 curfn: fn, 124 log: printssa, 125 } 126 s.curfn = fn 127 128 s.f = ssa.NewFunc(&fe) 129 s.config = ssaConfig 130 s.f.Config = ssaConfig 131 s.f.Cache = &ssaCaches[worker] 132 s.f.Cache.Reset() 133 s.f.DebugTest = s.f.DebugHashMatch("GOSSAHASH", name) 134 s.f.Name = name 135 if fn.Func.Pragma&Nosplit != 0 { 136 s.f.NoSplit = true 137 } 138 defer func() { 139 if s.f.WBPos.IsKnown() { 140 fn.Func.WBPos = s.f.WBPos 141 } 142 }() 143 s.exitCode = fn.Func.Exit 144 s.panics = map[funcLine]*ssa.Block{} 145 146 if name == os.Getenv("GOSSAFUNC") { 147 s.f.HTMLWriter = ssa.NewHTMLWriter("ssa.html", s.f.Frontend(), name) 148 // TODO: generate and print a mapping from nodes to values and blocks 149 } 150 151 // Allocate starting block 152 s.f.Entry = s.f.NewBlock(ssa.BlockPlain) 153 154 // Allocate starting values 155 s.labels = map[string]*ssaLabel{} 156 s.labeledNodes = map[*Node]*ssaLabel{} 157 s.fwdVars = map[*Node]*ssa.Value{} 158 s.startmem = s.entryNewValue0(ssa.OpInitMem, types.TypeMem) 159 s.sp = s.entryNewValue0(ssa.OpSP, types.Types[TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead 160 s.sb = s.entryNewValue0(ssa.OpSB, types.Types[TUINTPTR]) 161 162 s.startBlock(s.f.Entry) 163 s.vars[&memVar] = s.startmem 164 165 s.varsyms = map[*Node]interface{}{} 166 167 // Generate addresses of local declarations 168 s.decladdrs = map[*Node]*ssa.Value{} 169 for _, n := range fn.Func.Dcl { 170 switch n.Class() { 171 case PPARAM, PPARAMOUT: 172 aux := s.lookupSymbol(n, &ssa.ArgSymbol{Node: n}) 173 s.decladdrs[n] = s.entryNewValue1A(ssa.OpAddr, types.NewPtr(n.Type), aux, s.sp) 174 if n.Class() == PPARAMOUT && s.canSSA(n) { 175 // Save ssa-able PPARAMOUT variables so we can 176 // store them back to the stack at the end of 177 // the function. 178 s.returns = append(s.returns, n) 179 } 180 case PAUTO: 181 // processed at each use, to prevent Addr coming 182 // before the decl. 183 case PAUTOHEAP: 184 // moved to heap - already handled by frontend 185 case PFUNC: 186 // local function - already handled by frontend 187 default: 188 s.Fatalf("local variable with class %s unimplemented", classnames[n.Class()]) 189 } 190 } 191 192 // Populate SSAable arguments. 193 for _, n := range fn.Func.Dcl { 194 if n.Class() == PPARAM && s.canSSA(n) { 195 s.vars[n] = s.newValue0A(ssa.OpArg, n.Type, n) 196 } 197 } 198 199 // Convert the AST-based IR to the SSA-based IR 200 s.stmtList(fn.Func.Enter) 201 s.stmtList(fn.Nbody) 202 203 // fallthrough to exit 204 if s.curBlock != nil { 205 s.pushLine(fn.Func.Endlineno) 206 s.exit() 207 s.popLine() 208 } 209 210 s.insertPhis() 211 212 // Don't carry reference this around longer than necessary 213 s.exitCode = Nodes{} 214 215 // Main call to ssa package to compile function 216 ssa.Compile(s.f) 217 return s.f 218 } 219 220 type state struct { 221 // configuration (arch) information 222 config *ssa.Config 223 224 // function we're building 225 f *ssa.Func 226 227 // Node for function 228 curfn *Node 229 230 // labels and labeled control flow nodes (OFOR, OFORUNTIL, OSWITCH, OSELECT) in f 231 labels map[string]*ssaLabel 232 labeledNodes map[*Node]*ssaLabel 233 234 // Code that must precede any return 235 // (e.g., copying value of heap-escaped paramout back to true paramout) 236 exitCode Nodes 237 238 // unlabeled break and continue statement tracking 239 breakTo *ssa.Block // current target for plain break statement 240 continueTo *ssa.Block // current target for plain continue statement 241 242 // current location where we're interpreting the AST 243 curBlock *ssa.Block 244 245 // variable assignments in the current block (map from variable symbol to ssa value) 246 // *Node is the unique identifier (an ONAME Node) for the variable. 247 // TODO: keep a single varnum map, then make all of these maps slices instead? 248 vars map[*Node]*ssa.Value 249 250 // fwdVars are variables that are used before they are defined in the current block. 251 // This map exists just to coalesce multiple references into a single FwdRef op. 252 // *Node is the unique identifier (an ONAME Node) for the variable. 253 fwdVars map[*Node]*ssa.Value 254 255 // all defined variables at the end of each block. Indexed by block ID. 256 defvars []map[*Node]*ssa.Value 257 258 // addresses of PPARAM and PPARAMOUT variables. 259 decladdrs map[*Node]*ssa.Value 260 261 // symbols for PEXTERN, PAUTO and PPARAMOUT variables so they can be reused. 262 varsyms map[*Node]interface{} 263 264 // starting values. Memory, stack pointer, and globals pointer 265 startmem *ssa.Value 266 sp *ssa.Value 267 sb *ssa.Value 268 269 // line number stack. The current line number is top of stack 270 line []src.XPos 271 272 // list of panic calls by function name and line number. 273 // Used to deduplicate panic calls. 274 panics map[funcLine]*ssa.Block 275 276 // list of PPARAMOUT (return) variables. 277 returns []*Node 278 279 cgoUnsafeArgs bool 280 hasdefer bool // whether the function contains a defer statement 281 } 282 283 type funcLine struct { 284 f *obj.LSym 285 base *src.PosBase 286 line uint 287 } 288 289 type ssaLabel struct { 290 target *ssa.Block // block identified by this label 291 breakTarget *ssa.Block // block to break to in control flow node identified by this label 292 continueTarget *ssa.Block // block to continue to in control flow node identified by this label 293 } 294 295 // label returns the label associated with sym, creating it if necessary. 296 func (s *state) label(sym *types.Sym) *ssaLabel { 297 lab := s.labels[sym.Name] 298 if lab == nil { 299 lab = new(ssaLabel) 300 s.labels[sym.Name] = lab 301 } 302 return lab 303 } 304 305 func (s *state) Logf(msg string, args ...interface{}) { s.f.Logf(msg, args...) } 306 func (s *state) Log() bool { return s.f.Log() } 307 func (s *state) Fatalf(msg string, args ...interface{}) { 308 s.f.Frontend().Fatalf(s.peekPos(), msg, args...) 309 } 310 func (s *state) Warnl(pos src.XPos, msg string, args ...interface{}) { s.f.Warnl(pos, msg, args...) } 311 func (s *state) Debug_checknil() bool { return s.f.Frontend().Debug_checknil() } 312 313 var ( 314 // dummy node for the memory variable 315 memVar = Node{Op: ONAME, Sym: &types.Sym{Name: "mem"}} 316 317 // dummy nodes for temporary variables 318 ptrVar = Node{Op: ONAME, Sym: &types.Sym{Name: "ptr"}} 319 lenVar = Node{Op: ONAME, Sym: &types.Sym{Name: "len"}} 320 newlenVar = Node{Op: ONAME, Sym: &types.Sym{Name: "newlen"}} 321 capVar = Node{Op: ONAME, Sym: &types.Sym{Name: "cap"}} 322 typVar = Node{Op: ONAME, Sym: &types.Sym{Name: "typ"}} 323 okVar = Node{Op: ONAME, Sym: &types.Sym{Name: "ok"}} 324 ) 325 326 // startBlock sets the current block we're generating code in to b. 327 func (s *state) startBlock(b *ssa.Block) { 328 if s.curBlock != nil { 329 s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock) 330 } 331 s.curBlock = b 332 s.vars = map[*Node]*ssa.Value{} 333 for n := range s.fwdVars { 334 delete(s.fwdVars, n) 335 } 336 } 337 338 // endBlock marks the end of generating code for the current block. 339 // Returns the (former) current block. Returns nil if there is no current 340 // block, i.e. if no code flows to the current execution point. 341 func (s *state) endBlock() *ssa.Block { 342 b := s.curBlock 343 if b == nil { 344 return nil 345 } 346 for len(s.defvars) <= int(b.ID) { 347 s.defvars = append(s.defvars, nil) 348 } 349 s.defvars[b.ID] = s.vars 350 s.curBlock = nil 351 s.vars = nil 352 b.Pos = s.peekPos() 353 return b 354 } 355 356 // pushLine pushes a line number on the line number stack. 357 func (s *state) pushLine(line src.XPos) { 358 if !line.IsKnown() { 359 // the frontend may emit node with line number missing, 360 // use the parent line number in this case. 361 line = s.peekPos() 362 if Debug['K'] != 0 { 363 Warn("buildssa: unknown position (line 0)") 364 } 365 } 366 s.line = append(s.line, line) 367 } 368 369 // popLine pops the top of the line number stack. 370 func (s *state) popLine() { 371 s.line = s.line[:len(s.line)-1] 372 } 373 374 // peekPos peeks the top of the line number stack. 375 func (s *state) peekPos() src.XPos { 376 return s.line[len(s.line)-1] 377 } 378 379 // newValue0 adds a new value with no arguments to the current block. 380 func (s *state) newValue0(op ssa.Op, t *types.Type) *ssa.Value { 381 return s.curBlock.NewValue0(s.peekPos(), op, t) 382 } 383 384 // newValue0A adds a new value with no arguments and an aux value to the current block. 385 func (s *state) newValue0A(op ssa.Op, t *types.Type, aux interface{}) *ssa.Value { 386 return s.curBlock.NewValue0A(s.peekPos(), op, t, aux) 387 } 388 389 // newValue0I adds a new value with no arguments and an auxint value to the current block. 390 func (s *state) newValue0I(op ssa.Op, t *types.Type, auxint int64) *ssa.Value { 391 return s.curBlock.NewValue0I(s.peekPos(), op, t, auxint) 392 } 393 394 // newValue1 adds a new value with one argument to the current block. 395 func (s *state) newValue1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value { 396 return s.curBlock.NewValue1(s.peekPos(), op, t, arg) 397 } 398 399 // newValue1A adds a new value with one argument and an aux value to the current block. 400 func (s *state) newValue1A(op ssa.Op, t *types.Type, aux interface{}, arg *ssa.Value) *ssa.Value { 401 return s.curBlock.NewValue1A(s.peekPos(), op, t, aux, arg) 402 } 403 404 // newValue1I adds a new value with one argument and an auxint value to the current block. 405 func (s *state) newValue1I(op ssa.Op, t *types.Type, aux int64, arg *ssa.Value) *ssa.Value { 406 return s.curBlock.NewValue1I(s.peekPos(), op, t, aux, arg) 407 } 408 409 // newValue2 adds a new value with two arguments to the current block. 410 func (s *state) newValue2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value { 411 return s.curBlock.NewValue2(s.peekPos(), op, t, arg0, arg1) 412 } 413 414 // newValue2I adds a new value with two arguments and an auxint value to the current block. 415 func (s *state) newValue2I(op ssa.Op, t *types.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value { 416 return s.curBlock.NewValue2I(s.peekPos(), op, t, aux, arg0, arg1) 417 } 418 419 // newValue3 adds a new value with three arguments to the current block. 420 func (s *state) newValue3(op ssa.Op, t *types.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value { 421 return s.curBlock.NewValue3(s.peekPos(), op, t, arg0, arg1, arg2) 422 } 423 424 // newValue3I adds a new value with three arguments and an auxint value to the current block. 425 func (s *state) newValue3I(op ssa.Op, t *types.Type, aux int64, arg0, arg1, arg2 *ssa.Value) *ssa.Value { 426 return s.curBlock.NewValue3I(s.peekPos(), op, t, aux, arg0, arg1, arg2) 427 } 428 429 // newValue3A adds a new value with three arguments and an aux value to the current block. 430 func (s *state) newValue3A(op ssa.Op, t *types.Type, aux interface{}, arg0, arg1, arg2 *ssa.Value) *ssa.Value { 431 return s.curBlock.NewValue3A(s.peekPos(), op, t, aux, arg0, arg1, arg2) 432 } 433 434 // newValue4 adds a new value with four arguments to the current block. 435 func (s *state) newValue4(op ssa.Op, t *types.Type, arg0, arg1, arg2, arg3 *ssa.Value) *ssa.Value { 436 return s.curBlock.NewValue4(s.peekPos(), op, t, arg0, arg1, arg2, arg3) 437 } 438 439 // entryNewValue0 adds a new value with no arguments to the entry block. 440 func (s *state) entryNewValue0(op ssa.Op, t *types.Type) *ssa.Value { 441 return s.f.Entry.NewValue0(src.NoXPos, op, t) 442 } 443 444 // entryNewValue0A adds a new value with no arguments and an aux value to the entry block. 445 func (s *state) entryNewValue0A(op ssa.Op, t *types.Type, aux interface{}) *ssa.Value { 446 return s.f.Entry.NewValue0A(s.peekPos(), op, t, aux) 447 } 448 449 // entryNewValue1 adds a new value with one argument to the entry block. 450 func (s *state) entryNewValue1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value { 451 return s.f.Entry.NewValue1(s.peekPos(), op, t, arg) 452 } 453 454 // entryNewValue1 adds a new value with one argument and an auxint value to the entry block. 455 func (s *state) entryNewValue1I(op ssa.Op, t *types.Type, auxint int64, arg *ssa.Value) *ssa.Value { 456 return s.f.Entry.NewValue1I(s.peekPos(), op, t, auxint, arg) 457 } 458 459 // entryNewValue1A adds a new value with one argument and an aux value to the entry block. 460 func (s *state) entryNewValue1A(op ssa.Op, t *types.Type, aux interface{}, arg *ssa.Value) *ssa.Value { 461 return s.f.Entry.NewValue1A(s.peekPos(), op, t, aux, arg) 462 } 463 464 // entryNewValue2 adds a new value with two arguments to the entry block. 465 func (s *state) entryNewValue2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value { 466 return s.f.Entry.NewValue2(s.peekPos(), op, t, arg0, arg1) 467 } 468 469 // const* routines add a new const value to the entry block. 470 func (s *state) constSlice(t *types.Type) *ssa.Value { 471 return s.f.ConstSlice(s.peekPos(), t) 472 } 473 func (s *state) constInterface(t *types.Type) *ssa.Value { 474 return s.f.ConstInterface(s.peekPos(), t) 475 } 476 func (s *state) constNil(t *types.Type) *ssa.Value { return s.f.ConstNil(s.peekPos(), t) } 477 func (s *state) constEmptyString(t *types.Type) *ssa.Value { 478 return s.f.ConstEmptyString(s.peekPos(), t) 479 } 480 func (s *state) constBool(c bool) *ssa.Value { 481 return s.f.ConstBool(s.peekPos(), types.Types[TBOOL], c) 482 } 483 func (s *state) constInt8(t *types.Type, c int8) *ssa.Value { 484 return s.f.ConstInt8(s.peekPos(), t, c) 485 } 486 func (s *state) constInt16(t *types.Type, c int16) *ssa.Value { 487 return s.f.ConstInt16(s.peekPos(), t, c) 488 } 489 func (s *state) constInt32(t *types.Type, c int32) *ssa.Value { 490 return s.f.ConstInt32(s.peekPos(), t, c) 491 } 492 func (s *state) constInt64(t *types.Type, c int64) *ssa.Value { 493 return s.f.ConstInt64(s.peekPos(), t, c) 494 } 495 func (s *state) constFloat32(t *types.Type, c float64) *ssa.Value { 496 return s.f.ConstFloat32(s.peekPos(), t, c) 497 } 498 func (s *state) constFloat64(t *types.Type, c float64) *ssa.Value { 499 return s.f.ConstFloat64(s.peekPos(), t, c) 500 } 501 func (s *state) constInt(t *types.Type, c int64) *ssa.Value { 502 if s.config.PtrSize == 8 { 503 return s.constInt64(t, c) 504 } 505 if int64(int32(c)) != c { 506 s.Fatalf("integer constant too big %d", c) 507 } 508 return s.constInt32(t, int32(c)) 509 } 510 func (s *state) constOffPtrSP(t *types.Type, c int64) *ssa.Value { 511 return s.f.ConstOffPtrSP(s.peekPos(), t, c, s.sp) 512 } 513 514 // stmtList converts the statement list n to SSA and adds it to s. 515 func (s *state) stmtList(l Nodes) { 516 for _, n := range l.Slice() { 517 s.stmt(n) 518 } 519 } 520 521 // stmt converts the statement n to SSA and adds it to s. 522 func (s *state) stmt(n *Node) { 523 s.pushLine(n.Pos) 524 defer s.popLine() 525 526 // If s.curBlock is nil, and n isn't a label (which might have an associated goto somewhere), 527 // then this code is dead. Stop here. 528 if s.curBlock == nil && n.Op != OLABEL { 529 return 530 } 531 532 s.stmtList(n.Ninit) 533 switch n.Op { 534 535 case OBLOCK: 536 s.stmtList(n.List) 537 538 // No-ops 539 case OEMPTY, ODCLCONST, ODCLTYPE, OFALL: 540 541 // Expression statements 542 case OCALLFUNC: 543 if isIntrinsicCall(n) { 544 s.intrinsicCall(n) 545 return 546 } 547 fallthrough 548 549 case OCALLMETH, OCALLINTER: 550 s.call(n, callNormal) 551 if n.Op == OCALLFUNC && n.Left.Op == ONAME && n.Left.Class() == PFUNC { 552 if fn := n.Left.Sym.Name; compiling_runtime && fn == "throw" || 553 n.Left.Sym.Pkg == Runtimepkg && (fn == "throwinit" || fn == "gopanic" || fn == "panicwrap" || fn == "block") { 554 m := s.mem() 555 b := s.endBlock() 556 b.Kind = ssa.BlockExit 557 b.SetControl(m) 558 // TODO: never rewrite OPANIC to OCALLFUNC in the 559 // first place. Need to wait until all backends 560 // go through SSA. 561 } 562 } 563 case ODEFER: 564 s.call(n.Left, callDefer) 565 case OPROC: 566 s.call(n.Left, callGo) 567 568 case OAS2DOTTYPE: 569 res, resok := s.dottype(n.Rlist.First(), true) 570 deref := false 571 if !canSSAType(n.Rlist.First().Type) { 572 if res.Op != ssa.OpLoad { 573 s.Fatalf("dottype of non-load") 574 } 575 mem := s.mem() 576 if mem.Op == ssa.OpVarKill { 577 mem = mem.Args[0] 578 } 579 if res.Args[1] != mem { 580 s.Fatalf("memory no longer live from 2-result dottype load") 581 } 582 deref = true 583 res = res.Args[0] 584 } 585 s.assign(n.List.First(), res, deref, 0) 586 s.assign(n.List.Second(), resok, false, 0) 587 return 588 589 case OAS2FUNC: 590 // We come here only when it is an intrinsic call returning two values. 591 if !isIntrinsicCall(n.Rlist.First()) { 592 s.Fatalf("non-intrinsic AS2FUNC not expanded %v", n.Rlist.First()) 593 } 594 v := s.intrinsicCall(n.Rlist.First()) 595 v1 := s.newValue1(ssa.OpSelect0, n.List.First().Type, v) 596 v2 := s.newValue1(ssa.OpSelect1, n.List.Second().Type, v) 597 s.assign(n.List.First(), v1, false, 0) 598 s.assign(n.List.Second(), v2, false, 0) 599 return 600 601 case ODCL: 602 if n.Left.Class() == PAUTOHEAP { 603 Fatalf("DCL %v", n) 604 } 605 606 case OLABEL: 607 sym := n.Left.Sym 608 lab := s.label(sym) 609 610 // Associate label with its control flow node, if any 611 if ctl := n.labeledControl(); ctl != nil { 612 s.labeledNodes[ctl] = lab 613 } 614 615 // The label might already have a target block via a goto. 616 if lab.target == nil { 617 lab.target = s.f.NewBlock(ssa.BlockPlain) 618 } 619 620 // Go to that label. 621 // (We pretend "label:" is preceded by "goto label", unless the predecessor is unreachable.) 622 if s.curBlock != nil { 623 b := s.endBlock() 624 b.AddEdgeTo(lab.target) 625 } 626 s.startBlock(lab.target) 627 628 case OGOTO: 629 sym := n.Left.Sym 630 631 lab := s.label(sym) 632 if lab.target == nil { 633 lab.target = s.f.NewBlock(ssa.BlockPlain) 634 } 635 636 b := s.endBlock() 637 b.AddEdgeTo(lab.target) 638 639 case OAS: 640 if n.Left == n.Right && n.Left.Op == ONAME { 641 // An x=x assignment. No point in doing anything 642 // here. In addition, skipping this assignment 643 // prevents generating: 644 // VARDEF x 645 // COPY x -> x 646 // which is bad because x is incorrectly considered 647 // dead before the vardef. See issue #14904. 648 return 649 } 650 651 // Evaluate RHS. 652 rhs := n.Right 653 if rhs != nil { 654 switch rhs.Op { 655 case OSTRUCTLIT, OARRAYLIT, OSLICELIT: 656 // All literals with nonzero fields have already been 657 // rewritten during walk. Any that remain are just T{} 658 // or equivalents. Use the zero value. 659 if !iszero(rhs) { 660 Fatalf("literal with nonzero value in SSA: %v", rhs) 661 } 662 rhs = nil 663 case OAPPEND: 664 // If we're writing the result of an append back to the same slice, 665 // handle it specially to avoid write barriers on the fast (non-growth) path. 666 // If the slice can be SSA'd, it'll be on the stack, 667 // so there will be no write barriers, 668 // so there's no need to attempt to prevent them. 669 if samesafeexpr(n.Left, rhs.List.First()) { 670 if !s.canSSA(n.Left) { 671 if Debug_append > 0 { 672 Warnl(n.Pos, "append: len-only update") 673 } 674 s.append(rhs, true) 675 return 676 } else { 677 if Debug_append > 0 { // replicating old diagnostic message 678 Warnl(n.Pos, "append: len-only update (in local slice)") 679 } 680 } 681 } 682 } 683 } 684 685 if isblank(n.Left) { 686 // _ = rhs 687 // Just evaluate rhs for side-effects. 688 if rhs != nil { 689 s.expr(rhs) 690 } 691 return 692 } 693 694 var t *types.Type 695 if n.Right != nil { 696 t = n.Right.Type 697 } else { 698 t = n.Left.Type 699 } 700 701 var r *ssa.Value 702 deref := !canSSAType(t) 703 if deref { 704 if rhs == nil { 705 r = nil // Signal assign to use OpZero. 706 } else { 707 r = s.addr(rhs, false) 708 } 709 } else { 710 if rhs == nil { 711 r = s.zeroVal(t) 712 } else { 713 r = s.expr(rhs) 714 } 715 } 716 717 var skip skipMask 718 if rhs != nil && (rhs.Op == OSLICE || rhs.Op == OSLICE3 || rhs.Op == OSLICESTR) && samesafeexpr(rhs.Left, n.Left) { 719 // We're assigning a slicing operation back to its source. 720 // Don't write back fields we aren't changing. See issue #14855. 721 i, j, k := rhs.SliceBounds() 722 if i != nil && (i.Op == OLITERAL && i.Val().Ctype() == CTINT && i.Int64() == 0) { 723 // [0:...] is the same as [:...] 724 i = nil 725 } 726 // TODO: detect defaults for len/cap also. 727 // Currently doesn't really work because (*p)[:len(*p)] appears here as: 728 // tmp = len(*p) 729 // (*p)[:tmp] 730 //if j != nil && (j.Op == OLEN && samesafeexpr(j.Left, n.Left)) { 731 // j = nil 732 //} 733 //if k != nil && (k.Op == OCAP && samesafeexpr(k.Left, n.Left)) { 734 // k = nil 735 //} 736 if i == nil { 737 skip |= skipPtr 738 if j == nil { 739 skip |= skipLen 740 } 741 if k == nil { 742 skip |= skipCap 743 } 744 } 745 } 746 747 s.assign(n.Left, r, deref, skip) 748 749 case OIF: 750 bThen := s.f.NewBlock(ssa.BlockPlain) 751 bEnd := s.f.NewBlock(ssa.BlockPlain) 752 var bElse *ssa.Block 753 var likely int8 754 if n.Likely() { 755 likely = 1 756 } 757 if n.Rlist.Len() != 0 { 758 bElse = s.f.NewBlock(ssa.BlockPlain) 759 s.condBranch(n.Left, bThen, bElse, likely) 760 } else { 761 s.condBranch(n.Left, bThen, bEnd, likely) 762 } 763 764 s.startBlock(bThen) 765 s.stmtList(n.Nbody) 766 if b := s.endBlock(); b != nil { 767 b.AddEdgeTo(bEnd) 768 } 769 770 if n.Rlist.Len() != 0 { 771 s.startBlock(bElse) 772 s.stmtList(n.Rlist) 773 if b := s.endBlock(); b != nil { 774 b.AddEdgeTo(bEnd) 775 } 776 } 777 s.startBlock(bEnd) 778 779 case ORETURN: 780 s.stmtList(n.List) 781 s.exit() 782 case ORETJMP: 783 s.stmtList(n.List) 784 b := s.exit() 785 b.Kind = ssa.BlockRetJmp // override BlockRet 786 b.Aux = n.Left.Sym.Linksym() 787 788 case OCONTINUE, OBREAK: 789 var to *ssa.Block 790 if n.Left == nil { 791 // plain break/continue 792 switch n.Op { 793 case OCONTINUE: 794 to = s.continueTo 795 case OBREAK: 796 to = s.breakTo 797 } 798 } else { 799 // labeled break/continue; look up the target 800 sym := n.Left.Sym 801 lab := s.label(sym) 802 switch n.Op { 803 case OCONTINUE: 804 to = lab.continueTarget 805 case OBREAK: 806 to = lab.breakTarget 807 } 808 } 809 810 b := s.endBlock() 811 b.AddEdgeTo(to) 812 813 case OFOR, OFORUNTIL: 814 // OFOR: for Ninit; Left; Right { Nbody } 815 // For = cond; body; incr 816 // Foruntil = body; incr; cond 817 bCond := s.f.NewBlock(ssa.BlockPlain) 818 bBody := s.f.NewBlock(ssa.BlockPlain) 819 bIncr := s.f.NewBlock(ssa.BlockPlain) 820 bEnd := s.f.NewBlock(ssa.BlockPlain) 821 822 // first, jump to condition test (OFOR) or body (OFORUNTIL) 823 b := s.endBlock() 824 if n.Op == OFOR { 825 b.AddEdgeTo(bCond) 826 // generate code to test condition 827 s.startBlock(bCond) 828 if n.Left != nil { 829 s.condBranch(n.Left, bBody, bEnd, 1) 830 } else { 831 b := s.endBlock() 832 b.Kind = ssa.BlockPlain 833 b.AddEdgeTo(bBody) 834 } 835 836 } else { 837 b.AddEdgeTo(bBody) 838 } 839 840 // set up for continue/break in body 841 prevContinue := s.continueTo 842 prevBreak := s.breakTo 843 s.continueTo = bIncr 844 s.breakTo = bEnd 845 lab := s.labeledNodes[n] 846 if lab != nil { 847 // labeled for loop 848 lab.continueTarget = bIncr 849 lab.breakTarget = bEnd 850 } 851 852 // generate body 853 s.startBlock(bBody) 854 s.stmtList(n.Nbody) 855 856 // tear down continue/break 857 s.continueTo = prevContinue 858 s.breakTo = prevBreak 859 if lab != nil { 860 lab.continueTarget = nil 861 lab.breakTarget = nil 862 } 863 864 // done with body, goto incr 865 if b := s.endBlock(); b != nil { 866 b.AddEdgeTo(bIncr) 867 } 868 869 // generate incr 870 s.startBlock(bIncr) 871 if n.Right != nil { 872 s.stmt(n.Right) 873 } 874 if b := s.endBlock(); b != nil { 875 b.AddEdgeTo(bCond) 876 } 877 878 if n.Op == OFORUNTIL { 879 // generate code to test condition 880 s.startBlock(bCond) 881 if n.Left != nil { 882 s.condBranch(n.Left, bBody, bEnd, 1) 883 } else { 884 b := s.endBlock() 885 b.Kind = ssa.BlockPlain 886 b.AddEdgeTo(bBody) 887 } 888 } 889 890 s.startBlock(bEnd) 891 892 case OSWITCH, OSELECT: 893 // These have been mostly rewritten by the front end into their Nbody fields. 894 // Our main task is to correctly hook up any break statements. 895 bEnd := s.f.NewBlock(ssa.BlockPlain) 896 897 prevBreak := s.breakTo 898 s.breakTo = bEnd 899 lab := s.labeledNodes[n] 900 if lab != nil { 901 // labeled 902 lab.breakTarget = bEnd 903 } 904 905 // generate body code 906 s.stmtList(n.Nbody) 907 908 s.breakTo = prevBreak 909 if lab != nil { 910 lab.breakTarget = nil 911 } 912 913 // walk adds explicit OBREAK nodes to the end of all reachable code paths. 914 // If we still have a current block here, then mark it unreachable. 915 if s.curBlock != nil { 916 m := s.mem() 917 b := s.endBlock() 918 b.Kind = ssa.BlockExit 919 b.SetControl(m) 920 } 921 s.startBlock(bEnd) 922 923 case OVARKILL: 924 // Insert a varkill op to record that a variable is no longer live. 925 // We only care about liveness info at call sites, so putting the 926 // varkill in the store chain is enough to keep it correctly ordered 927 // with respect to call ops. 928 if !s.canSSA(n.Left) { 929 s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, types.TypeMem, n.Left, s.mem()) 930 } 931 932 case OVARLIVE: 933 // Insert a varlive op to record that a variable is still live. 934 if !n.Left.Addrtaken() { 935 s.Fatalf("VARLIVE variable %v must have Addrtaken set", n.Left) 936 } 937 s.vars[&memVar] = s.newValue1A(ssa.OpVarLive, types.TypeMem, n.Left, s.mem()) 938 939 case OCHECKNIL: 940 p := s.expr(n.Left) 941 s.nilCheck(p) 942 943 default: 944 s.Fatalf("unhandled stmt %v", n.Op) 945 } 946 } 947 948 // exit processes any code that needs to be generated just before returning. 949 // It returns a BlockRet block that ends the control flow. Its control value 950 // will be set to the final memory state. 951 func (s *state) exit() *ssa.Block { 952 if s.hasdefer { 953 s.rtcall(Deferreturn, true, nil) 954 } 955 956 // Run exit code. Typically, this code copies heap-allocated PPARAMOUT 957 // variables back to the stack. 958 s.stmtList(s.exitCode) 959 960 // Store SSAable PPARAMOUT variables back to stack locations. 961 for _, n := range s.returns { 962 addr := s.decladdrs[n] 963 val := s.variable(n, n.Type) 964 s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, n, s.mem()) 965 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, n.Type, addr, val, s.mem()) 966 // TODO: if val is ever spilled, we'd like to use the 967 // PPARAMOUT slot for spilling it. That won't happen 968 // currently. 969 } 970 971 // Do actual return. 972 m := s.mem() 973 b := s.endBlock() 974 b.Kind = ssa.BlockRet 975 b.SetControl(m) 976 return b 977 } 978 979 type opAndType struct { 980 op Op 981 etype types.EType 982 } 983 984 var opToSSA = map[opAndType]ssa.Op{ 985 opAndType{OADD, TINT8}: ssa.OpAdd8, 986 opAndType{OADD, TUINT8}: ssa.OpAdd8, 987 opAndType{OADD, TINT16}: ssa.OpAdd16, 988 opAndType{OADD, TUINT16}: ssa.OpAdd16, 989 opAndType{OADD, TINT32}: ssa.OpAdd32, 990 opAndType{OADD, TUINT32}: ssa.OpAdd32, 991 opAndType{OADD, TPTR32}: ssa.OpAdd32, 992 opAndType{OADD, TINT64}: ssa.OpAdd64, 993 opAndType{OADD, TUINT64}: ssa.OpAdd64, 994 opAndType{OADD, TPTR64}: ssa.OpAdd64, 995 opAndType{OADD, TFLOAT32}: ssa.OpAdd32F, 996 opAndType{OADD, TFLOAT64}: ssa.OpAdd64F, 997 998 opAndType{OSUB, TINT8}: ssa.OpSub8, 999 opAndType{OSUB, TUINT8}: ssa.OpSub8, 1000 opAndType{OSUB, TINT16}: ssa.OpSub16, 1001 opAndType{OSUB, TUINT16}: ssa.OpSub16, 1002 opAndType{OSUB, TINT32}: ssa.OpSub32, 1003 opAndType{OSUB, TUINT32}: ssa.OpSub32, 1004 opAndType{OSUB, TINT64}: ssa.OpSub64, 1005 opAndType{OSUB, TUINT64}: ssa.OpSub64, 1006 opAndType{OSUB, TFLOAT32}: ssa.OpSub32F, 1007 opAndType{OSUB, TFLOAT64}: ssa.OpSub64F, 1008 1009 opAndType{ONOT, TBOOL}: ssa.OpNot, 1010 1011 opAndType{OMINUS, TINT8}: ssa.OpNeg8, 1012 opAndType{OMINUS, TUINT8}: ssa.OpNeg8, 1013 opAndType{OMINUS, TINT16}: ssa.OpNeg16, 1014 opAndType{OMINUS, TUINT16}: ssa.OpNeg16, 1015 opAndType{OMINUS, TINT32}: ssa.OpNeg32, 1016 opAndType{OMINUS, TUINT32}: ssa.OpNeg32, 1017 opAndType{OMINUS, TINT64}: ssa.OpNeg64, 1018 opAndType{OMINUS, TUINT64}: ssa.OpNeg64, 1019 opAndType{OMINUS, TFLOAT32}: ssa.OpNeg32F, 1020 opAndType{OMINUS, TFLOAT64}: ssa.OpNeg64F, 1021 1022 opAndType{OCOM, TINT8}: ssa.OpCom8, 1023 opAndType{OCOM, TUINT8}: ssa.OpCom8, 1024 opAndType{OCOM, TINT16}: ssa.OpCom16, 1025 opAndType{OCOM, TUINT16}: ssa.OpCom16, 1026 opAndType{OCOM, TINT32}: ssa.OpCom32, 1027 opAndType{OCOM, TUINT32}: ssa.OpCom32, 1028 opAndType{OCOM, TINT64}: ssa.OpCom64, 1029 opAndType{OCOM, TUINT64}: ssa.OpCom64, 1030 1031 opAndType{OIMAG, TCOMPLEX64}: ssa.OpComplexImag, 1032 opAndType{OIMAG, TCOMPLEX128}: ssa.OpComplexImag, 1033 opAndType{OREAL, TCOMPLEX64}: ssa.OpComplexReal, 1034 opAndType{OREAL, TCOMPLEX128}: ssa.OpComplexReal, 1035 1036 opAndType{OMUL, TINT8}: ssa.OpMul8, 1037 opAndType{OMUL, TUINT8}: ssa.OpMul8, 1038 opAndType{OMUL, TINT16}: ssa.OpMul16, 1039 opAndType{OMUL, TUINT16}: ssa.OpMul16, 1040 opAndType{OMUL, TINT32}: ssa.OpMul32, 1041 opAndType{OMUL, TUINT32}: ssa.OpMul32, 1042 opAndType{OMUL, TINT64}: ssa.OpMul64, 1043 opAndType{OMUL, TUINT64}: ssa.OpMul64, 1044 opAndType{OMUL, TFLOAT32}: ssa.OpMul32F, 1045 opAndType{OMUL, TFLOAT64}: ssa.OpMul64F, 1046 1047 opAndType{ODIV, TFLOAT32}: ssa.OpDiv32F, 1048 opAndType{ODIV, TFLOAT64}: ssa.OpDiv64F, 1049 1050 opAndType{ODIV, TINT8}: ssa.OpDiv8, 1051 opAndType{ODIV, TUINT8}: ssa.OpDiv8u, 1052 opAndType{ODIV, TINT16}: ssa.OpDiv16, 1053 opAndType{ODIV, TUINT16}: ssa.OpDiv16u, 1054 opAndType{ODIV, TINT32}: ssa.OpDiv32, 1055 opAndType{ODIV, TUINT32}: ssa.OpDiv32u, 1056 opAndType{ODIV, TINT64}: ssa.OpDiv64, 1057 opAndType{ODIV, TUINT64}: ssa.OpDiv64u, 1058 1059 opAndType{OMOD, TINT8}: ssa.OpMod8, 1060 opAndType{OMOD, TUINT8}: ssa.OpMod8u, 1061 opAndType{OMOD, TINT16}: ssa.OpMod16, 1062 opAndType{OMOD, TUINT16}: ssa.OpMod16u, 1063 opAndType{OMOD, TINT32}: ssa.OpMod32, 1064 opAndType{OMOD, TUINT32}: ssa.OpMod32u, 1065 opAndType{OMOD, TINT64}: ssa.OpMod64, 1066 opAndType{OMOD, TUINT64}: ssa.OpMod64u, 1067 1068 opAndType{OAND, TINT8}: ssa.OpAnd8, 1069 opAndType{OAND, TUINT8}: ssa.OpAnd8, 1070 opAndType{OAND, TINT16}: ssa.OpAnd16, 1071 opAndType{OAND, TUINT16}: ssa.OpAnd16, 1072 opAndType{OAND, TINT32}: ssa.OpAnd32, 1073 opAndType{OAND, TUINT32}: ssa.OpAnd32, 1074 opAndType{OAND, TINT64}: ssa.OpAnd64, 1075 opAndType{OAND, TUINT64}: ssa.OpAnd64, 1076 1077 opAndType{OOR, TINT8}: ssa.OpOr8, 1078 opAndType{OOR, TUINT8}: ssa.OpOr8, 1079 opAndType{OOR, TINT16}: ssa.OpOr16, 1080 opAndType{OOR, TUINT16}: ssa.OpOr16, 1081 opAndType{OOR, TINT32}: ssa.OpOr32, 1082 opAndType{OOR, TUINT32}: ssa.OpOr32, 1083 opAndType{OOR, TINT64}: ssa.OpOr64, 1084 opAndType{OOR, TUINT64}: ssa.OpOr64, 1085 1086 opAndType{OXOR, TINT8}: ssa.OpXor8, 1087 opAndType{OXOR, TUINT8}: ssa.OpXor8, 1088 opAndType{OXOR, TINT16}: ssa.OpXor16, 1089 opAndType{OXOR, TUINT16}: ssa.OpXor16, 1090 opAndType{OXOR, TINT32}: ssa.OpXor32, 1091 opAndType{OXOR, TUINT32}: ssa.OpXor32, 1092 opAndType{OXOR, TINT64}: ssa.OpXor64, 1093 opAndType{OXOR, TUINT64}: ssa.OpXor64, 1094 1095 opAndType{OEQ, TBOOL}: ssa.OpEqB, 1096 opAndType{OEQ, TINT8}: ssa.OpEq8, 1097 opAndType{OEQ, TUINT8}: ssa.OpEq8, 1098 opAndType{OEQ, TINT16}: ssa.OpEq16, 1099 opAndType{OEQ, TUINT16}: ssa.OpEq16, 1100 opAndType{OEQ, TINT32}: ssa.OpEq32, 1101 opAndType{OEQ, TUINT32}: ssa.OpEq32, 1102 opAndType{OEQ, TINT64}: ssa.OpEq64, 1103 opAndType{OEQ, TUINT64}: ssa.OpEq64, 1104 opAndType{OEQ, TINTER}: ssa.OpEqInter, 1105 opAndType{OEQ, TSLICE}: ssa.OpEqSlice, 1106 opAndType{OEQ, TFUNC}: ssa.OpEqPtr, 1107 opAndType{OEQ, TMAP}: ssa.OpEqPtr, 1108 opAndType{OEQ, TCHAN}: ssa.OpEqPtr, 1109 opAndType{OEQ, TPTR32}: ssa.OpEqPtr, 1110 opAndType{OEQ, TPTR64}: ssa.OpEqPtr, 1111 opAndType{OEQ, TUINTPTR}: ssa.OpEqPtr, 1112 opAndType{OEQ, TUNSAFEPTR}: ssa.OpEqPtr, 1113 opAndType{OEQ, TFLOAT64}: ssa.OpEq64F, 1114 opAndType{OEQ, TFLOAT32}: ssa.OpEq32F, 1115 1116 opAndType{ONE, TBOOL}: ssa.OpNeqB, 1117 opAndType{ONE, TINT8}: ssa.OpNeq8, 1118 opAndType{ONE, TUINT8}: ssa.OpNeq8, 1119 opAndType{ONE, TINT16}: ssa.OpNeq16, 1120 opAndType{ONE, TUINT16}: ssa.OpNeq16, 1121 opAndType{ONE, TINT32}: ssa.OpNeq32, 1122 opAndType{ONE, TUINT32}: ssa.OpNeq32, 1123 opAndType{ONE, TINT64}: ssa.OpNeq64, 1124 opAndType{ONE, TUINT64}: ssa.OpNeq64, 1125 opAndType{ONE, TINTER}: ssa.OpNeqInter, 1126 opAndType{ONE, TSLICE}: ssa.OpNeqSlice, 1127 opAndType{ONE, TFUNC}: ssa.OpNeqPtr, 1128 opAndType{ONE, TMAP}: ssa.OpNeqPtr, 1129 opAndType{ONE, TCHAN}: ssa.OpNeqPtr, 1130 opAndType{ONE, TPTR32}: ssa.OpNeqPtr, 1131 opAndType{ONE, TPTR64}: ssa.OpNeqPtr, 1132 opAndType{ONE, TUINTPTR}: ssa.OpNeqPtr, 1133 opAndType{ONE, TUNSAFEPTR}: ssa.OpNeqPtr, 1134 opAndType{ONE, TFLOAT64}: ssa.OpNeq64F, 1135 opAndType{ONE, TFLOAT32}: ssa.OpNeq32F, 1136 1137 opAndType{OLT, TINT8}: ssa.OpLess8, 1138 opAndType{OLT, TUINT8}: ssa.OpLess8U, 1139 opAndType{OLT, TINT16}: ssa.OpLess16, 1140 opAndType{OLT, TUINT16}: ssa.OpLess16U, 1141 opAndType{OLT, TINT32}: ssa.OpLess32, 1142 opAndType{OLT, TUINT32}: ssa.OpLess32U, 1143 opAndType{OLT, TINT64}: ssa.OpLess64, 1144 opAndType{OLT, TUINT64}: ssa.OpLess64U, 1145 opAndType{OLT, TFLOAT64}: ssa.OpLess64F, 1146 opAndType{OLT, TFLOAT32}: ssa.OpLess32F, 1147 1148 opAndType{OGT, TINT8}: ssa.OpGreater8, 1149 opAndType{OGT, TUINT8}: ssa.OpGreater8U, 1150 opAndType{OGT, TINT16}: ssa.OpGreater16, 1151 opAndType{OGT, TUINT16}: ssa.OpGreater16U, 1152 opAndType{OGT, TINT32}: ssa.OpGreater32, 1153 opAndType{OGT, TUINT32}: ssa.OpGreater32U, 1154 opAndType{OGT, TINT64}: ssa.OpGreater64, 1155 opAndType{OGT, TUINT64}: ssa.OpGreater64U, 1156 opAndType{OGT, TFLOAT64}: ssa.OpGreater64F, 1157 opAndType{OGT, TFLOAT32}: ssa.OpGreater32F, 1158 1159 opAndType{OLE, TINT8}: ssa.OpLeq8, 1160 opAndType{OLE, TUINT8}: ssa.OpLeq8U, 1161 opAndType{OLE, TINT16}: ssa.OpLeq16, 1162 opAndType{OLE, TUINT16}: ssa.OpLeq16U, 1163 opAndType{OLE, TINT32}: ssa.OpLeq32, 1164 opAndType{OLE, TUINT32}: ssa.OpLeq32U, 1165 opAndType{OLE, TINT64}: ssa.OpLeq64, 1166 opAndType{OLE, TUINT64}: ssa.OpLeq64U, 1167 opAndType{OLE, TFLOAT64}: ssa.OpLeq64F, 1168 opAndType{OLE, TFLOAT32}: ssa.OpLeq32F, 1169 1170 opAndType{OGE, TINT8}: ssa.OpGeq8, 1171 opAndType{OGE, TUINT8}: ssa.OpGeq8U, 1172 opAndType{OGE, TINT16}: ssa.OpGeq16, 1173 opAndType{OGE, TUINT16}: ssa.OpGeq16U, 1174 opAndType{OGE, TINT32}: ssa.OpGeq32, 1175 opAndType{OGE, TUINT32}: ssa.OpGeq32U, 1176 opAndType{OGE, TINT64}: ssa.OpGeq64, 1177 opAndType{OGE, TUINT64}: ssa.OpGeq64U, 1178 opAndType{OGE, TFLOAT64}: ssa.OpGeq64F, 1179 opAndType{OGE, TFLOAT32}: ssa.OpGeq32F, 1180 } 1181 1182 func (s *state) concreteEtype(t *types.Type) types.EType { 1183 e := t.Etype 1184 switch e { 1185 default: 1186 return e 1187 case TINT: 1188 if s.config.PtrSize == 8 { 1189 return TINT64 1190 } 1191 return TINT32 1192 case TUINT: 1193 if s.config.PtrSize == 8 { 1194 return TUINT64 1195 } 1196 return TUINT32 1197 case TUINTPTR: 1198 if s.config.PtrSize == 8 { 1199 return TUINT64 1200 } 1201 return TUINT32 1202 } 1203 } 1204 1205 func (s *state) ssaOp(op Op, t *types.Type) ssa.Op { 1206 etype := s.concreteEtype(t) 1207 x, ok := opToSSA[opAndType{op, etype}] 1208 if !ok { 1209 s.Fatalf("unhandled binary op %v %s", op, etype) 1210 } 1211 return x 1212 } 1213 1214 func floatForComplex(t *types.Type) *types.Type { 1215 if t.Size() == 8 { 1216 return types.Types[TFLOAT32] 1217 } else { 1218 return types.Types[TFLOAT64] 1219 } 1220 } 1221 1222 type opAndTwoTypes struct { 1223 op Op 1224 etype1 types.EType 1225 etype2 types.EType 1226 } 1227 1228 type twoTypes struct { 1229 etype1 types.EType 1230 etype2 types.EType 1231 } 1232 1233 type twoOpsAndType struct { 1234 op1 ssa.Op 1235 op2 ssa.Op 1236 intermediateType types.EType 1237 } 1238 1239 var fpConvOpToSSA = map[twoTypes]twoOpsAndType{ 1240 1241 twoTypes{TINT8, TFLOAT32}: twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to32F, TINT32}, 1242 twoTypes{TINT16, TFLOAT32}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to32F, TINT32}, 1243 twoTypes{TINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to32F, TINT32}, 1244 twoTypes{TINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to32F, TINT64}, 1245 1246 twoTypes{TINT8, TFLOAT64}: twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to64F, TINT32}, 1247 twoTypes{TINT16, TFLOAT64}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to64F, TINT32}, 1248 twoTypes{TINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to64F, TINT32}, 1249 twoTypes{TINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to64F, TINT64}, 1250 1251 twoTypes{TFLOAT32, TINT8}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32}, 1252 twoTypes{TFLOAT32, TINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32}, 1253 twoTypes{TFLOAT32, TINT32}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpCopy, TINT32}, 1254 twoTypes{TFLOAT32, TINT64}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpCopy, TINT64}, 1255 1256 twoTypes{TFLOAT64, TINT8}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32}, 1257 twoTypes{TFLOAT64, TINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32}, 1258 twoTypes{TFLOAT64, TINT32}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpCopy, TINT32}, 1259 twoTypes{TFLOAT64, TINT64}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpCopy, TINT64}, 1260 // unsigned 1261 twoTypes{TUINT8, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to32F, TINT32}, 1262 twoTypes{TUINT16, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to32F, TINT32}, 1263 twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to32F, TINT64}, // go wide to dodge unsigned 1264 twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64}, // Cvt64Uto32F, branchy code expansion instead 1265 1266 twoTypes{TUINT8, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to64F, TINT32}, 1267 twoTypes{TUINT16, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to64F, TINT32}, 1268 twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to64F, TINT64}, // go wide to dodge unsigned 1269 twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64}, // Cvt64Uto64F, branchy code expansion instead 1270 1271 twoTypes{TFLOAT32, TUINT8}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32}, 1272 twoTypes{TFLOAT32, TUINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32}, 1273 twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned 1274 twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64}, // Cvt32Fto64U, branchy code expansion instead 1275 1276 twoTypes{TFLOAT64, TUINT8}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32}, 1277 twoTypes{TFLOAT64, TUINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32}, 1278 twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned 1279 twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64}, // Cvt64Fto64U, branchy code expansion instead 1280 1281 // float 1282 twoTypes{TFLOAT64, TFLOAT32}: twoOpsAndType{ssa.OpCvt64Fto32F, ssa.OpCopy, TFLOAT32}, 1283 twoTypes{TFLOAT64, TFLOAT64}: twoOpsAndType{ssa.OpRound64F, ssa.OpCopy, TFLOAT64}, 1284 twoTypes{TFLOAT32, TFLOAT32}: twoOpsAndType{ssa.OpRound32F, ssa.OpCopy, TFLOAT32}, 1285 twoTypes{TFLOAT32, TFLOAT64}: twoOpsAndType{ssa.OpCvt32Fto64F, ssa.OpCopy, TFLOAT64}, 1286 } 1287 1288 // this map is used only for 32-bit arch, and only includes the difference 1289 // on 32-bit arch, don't use int64<->float conversion for uint32 1290 var fpConvOpToSSA32 = map[twoTypes]twoOpsAndType{ 1291 twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto32F, TUINT32}, 1292 twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto64F, TUINT32}, 1293 twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto32U, ssa.OpCopy, TUINT32}, 1294 twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto32U, ssa.OpCopy, TUINT32}, 1295 } 1296 1297 // uint64<->float conversions, only on machines that have intructions for that 1298 var uint64fpConvOpToSSA = map[twoTypes]twoOpsAndType{ 1299 twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto32F, TUINT64}, 1300 twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto64F, TUINT64}, 1301 twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpCvt32Fto64U, ssa.OpCopy, TUINT64}, 1302 twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpCvt64Fto64U, ssa.OpCopy, TUINT64}, 1303 } 1304 1305 var shiftOpToSSA = map[opAndTwoTypes]ssa.Op{ 1306 opAndTwoTypes{OLSH, TINT8, TUINT8}: ssa.OpLsh8x8, 1307 opAndTwoTypes{OLSH, TUINT8, TUINT8}: ssa.OpLsh8x8, 1308 opAndTwoTypes{OLSH, TINT8, TUINT16}: ssa.OpLsh8x16, 1309 opAndTwoTypes{OLSH, TUINT8, TUINT16}: ssa.OpLsh8x16, 1310 opAndTwoTypes{OLSH, TINT8, TUINT32}: ssa.OpLsh8x32, 1311 opAndTwoTypes{OLSH, TUINT8, TUINT32}: ssa.OpLsh8x32, 1312 opAndTwoTypes{OLSH, TINT8, TUINT64}: ssa.OpLsh8x64, 1313 opAndTwoTypes{OLSH, TUINT8, TUINT64}: ssa.OpLsh8x64, 1314 1315 opAndTwoTypes{OLSH, TINT16, TUINT8}: ssa.OpLsh16x8, 1316 opAndTwoTypes{OLSH, TUINT16, TUINT8}: ssa.OpLsh16x8, 1317 opAndTwoTypes{OLSH, TINT16, TUINT16}: ssa.OpLsh16x16, 1318 opAndTwoTypes{OLSH, TUINT16, TUINT16}: ssa.OpLsh16x16, 1319 opAndTwoTypes{OLSH, TINT16, TUINT32}: ssa.OpLsh16x32, 1320 opAndTwoTypes{OLSH, TUINT16, TUINT32}: ssa.OpLsh16x32, 1321 opAndTwoTypes{OLSH, TINT16, TUINT64}: ssa.OpLsh16x64, 1322 opAndTwoTypes{OLSH, TUINT16, TUINT64}: ssa.OpLsh16x64, 1323 1324 opAndTwoTypes{OLSH, TINT32, TUINT8}: ssa.OpLsh32x8, 1325 opAndTwoTypes{OLSH, TUINT32, TUINT8}: ssa.OpLsh32x8, 1326 opAndTwoTypes{OLSH, TINT32, TUINT16}: ssa.OpLsh32x16, 1327 opAndTwoTypes{OLSH, TUINT32, TUINT16}: ssa.OpLsh32x16, 1328 opAndTwoTypes{OLSH, TINT32, TUINT32}: ssa.OpLsh32x32, 1329 opAndTwoTypes{OLSH, TUINT32, TUINT32}: ssa.OpLsh32x32, 1330 opAndTwoTypes{OLSH, TINT32, TUINT64}: ssa.OpLsh32x64, 1331 opAndTwoTypes{OLSH, TUINT32, TUINT64}: ssa.OpLsh32x64, 1332 1333 opAndTwoTypes{OLSH, TINT64, TUINT8}: ssa.OpLsh64x8, 1334 opAndTwoTypes{OLSH, TUINT64, TUINT8}: ssa.OpLsh64x8, 1335 opAndTwoTypes{OLSH, TINT64, TUINT16}: ssa.OpLsh64x16, 1336 opAndTwoTypes{OLSH, TUINT64, TUINT16}: ssa.OpLsh64x16, 1337 opAndTwoTypes{OLSH, TINT64, TUINT32}: ssa.OpLsh64x32, 1338 opAndTwoTypes{OLSH, TUINT64, TUINT32}: ssa.OpLsh64x32, 1339 opAndTwoTypes{OLSH, TINT64, TUINT64}: ssa.OpLsh64x64, 1340 opAndTwoTypes{OLSH, TUINT64, TUINT64}: ssa.OpLsh64x64, 1341 1342 opAndTwoTypes{ORSH, TINT8, TUINT8}: ssa.OpRsh8x8, 1343 opAndTwoTypes{ORSH, TUINT8, TUINT8}: ssa.OpRsh8Ux8, 1344 opAndTwoTypes{ORSH, TINT8, TUINT16}: ssa.OpRsh8x16, 1345 opAndTwoTypes{ORSH, TUINT8, TUINT16}: ssa.OpRsh8Ux16, 1346 opAndTwoTypes{ORSH, TINT8, TUINT32}: ssa.OpRsh8x32, 1347 opAndTwoTypes{ORSH, TUINT8, TUINT32}: ssa.OpRsh8Ux32, 1348 opAndTwoTypes{ORSH, TINT8, TUINT64}: ssa.OpRsh8x64, 1349 opAndTwoTypes{ORSH, TUINT8, TUINT64}: ssa.OpRsh8Ux64, 1350 1351 opAndTwoTypes{ORSH, TINT16, TUINT8}: ssa.OpRsh16x8, 1352 opAndTwoTypes{ORSH, TUINT16, TUINT8}: ssa.OpRsh16Ux8, 1353 opAndTwoTypes{ORSH, TINT16, TUINT16}: ssa.OpRsh16x16, 1354 opAndTwoTypes{ORSH, TUINT16, TUINT16}: ssa.OpRsh16Ux16, 1355 opAndTwoTypes{ORSH, TINT16, TUINT32}: ssa.OpRsh16x32, 1356 opAndTwoTypes{ORSH, TUINT16, TUINT32}: ssa.OpRsh16Ux32, 1357 opAndTwoTypes{ORSH, TINT16, TUINT64}: ssa.OpRsh16x64, 1358 opAndTwoTypes{ORSH, TUINT16, TUINT64}: ssa.OpRsh16Ux64, 1359 1360 opAndTwoTypes{ORSH, TINT32, TUINT8}: ssa.OpRsh32x8, 1361 opAndTwoTypes{ORSH, TUINT32, TUINT8}: ssa.OpRsh32Ux8, 1362 opAndTwoTypes{ORSH, TINT32, TUINT16}: ssa.OpRsh32x16, 1363 opAndTwoTypes{ORSH, TUINT32, TUINT16}: ssa.OpRsh32Ux16, 1364 opAndTwoTypes{ORSH, TINT32, TUINT32}: ssa.OpRsh32x32, 1365 opAndTwoTypes{ORSH, TUINT32, TUINT32}: ssa.OpRsh32Ux32, 1366 opAndTwoTypes{ORSH, TINT32, TUINT64}: ssa.OpRsh32x64, 1367 opAndTwoTypes{ORSH, TUINT32, TUINT64}: ssa.OpRsh32Ux64, 1368 1369 opAndTwoTypes{ORSH, TINT64, TUINT8}: ssa.OpRsh64x8, 1370 opAndTwoTypes{ORSH, TUINT64, TUINT8}: ssa.OpRsh64Ux8, 1371 opAndTwoTypes{ORSH, TINT64, TUINT16}: ssa.OpRsh64x16, 1372 opAndTwoTypes{ORSH, TUINT64, TUINT16}: ssa.OpRsh64Ux16, 1373 opAndTwoTypes{ORSH, TINT64, TUINT32}: ssa.OpRsh64x32, 1374 opAndTwoTypes{ORSH, TUINT64, TUINT32}: ssa.OpRsh64Ux32, 1375 opAndTwoTypes{ORSH, TINT64, TUINT64}: ssa.OpRsh64x64, 1376 opAndTwoTypes{ORSH, TUINT64, TUINT64}: ssa.OpRsh64Ux64, 1377 } 1378 1379 func (s *state) ssaShiftOp(op Op, t *types.Type, u *types.Type) ssa.Op { 1380 etype1 := s.concreteEtype(t) 1381 etype2 := s.concreteEtype(u) 1382 x, ok := shiftOpToSSA[opAndTwoTypes{op, etype1, etype2}] 1383 if !ok { 1384 s.Fatalf("unhandled shift op %v etype=%s/%s", op, etype1, etype2) 1385 } 1386 return x 1387 } 1388 1389 // expr converts the expression n to ssa, adds it to s and returns the ssa result. 1390 func (s *state) expr(n *Node) *ssa.Value { 1391 if !(n.Op == ONAME || n.Op == OLITERAL && n.Sym != nil) { 1392 // ONAMEs and named OLITERALs have the line number 1393 // of the decl, not the use. See issue 14742. 1394 s.pushLine(n.Pos) 1395 defer s.popLine() 1396 } 1397 1398 s.stmtList(n.Ninit) 1399 switch n.Op { 1400 case OARRAYBYTESTRTMP: 1401 slice := s.expr(n.Left) 1402 ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, slice) 1403 len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice) 1404 return s.newValue2(ssa.OpStringMake, n.Type, ptr, len) 1405 case OSTRARRAYBYTETMP: 1406 str := s.expr(n.Left) 1407 ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, str) 1408 len := s.newValue1(ssa.OpStringLen, types.Types[TINT], str) 1409 return s.newValue3(ssa.OpSliceMake, n.Type, ptr, len, len) 1410 case OCFUNC: 1411 aux := s.lookupSymbol(n, &ssa.ExternSymbol{Sym: n.Left.Sym.Linksym()}) 1412 return s.entryNewValue1A(ssa.OpAddr, n.Type, aux, s.sb) 1413 case ONAME: 1414 if n.Class() == PFUNC { 1415 // "value" of a function is the address of the function's closure 1416 sym := funcsym(n.Sym).Linksym() 1417 aux := s.lookupSymbol(n, &ssa.ExternSymbol{Sym: sym}) 1418 return s.entryNewValue1A(ssa.OpAddr, types.NewPtr(n.Type), aux, s.sb) 1419 } 1420 if s.canSSA(n) { 1421 return s.variable(n, n.Type) 1422 } 1423 addr := s.addr(n, false) 1424 return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem()) 1425 case OCLOSUREVAR: 1426 addr := s.addr(n, false) 1427 return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem()) 1428 case OLITERAL: 1429 switch u := n.Val().U.(type) { 1430 case *Mpint: 1431 i := u.Int64() 1432 switch n.Type.Size() { 1433 case 1: 1434 return s.constInt8(n.Type, int8(i)) 1435 case 2: 1436 return s.constInt16(n.Type, int16(i)) 1437 case 4: 1438 return s.constInt32(n.Type, int32(i)) 1439 case 8: 1440 return s.constInt64(n.Type, i) 1441 default: 1442 s.Fatalf("bad integer size %d", n.Type.Size()) 1443 return nil 1444 } 1445 case string: 1446 if u == "" { 1447 return s.constEmptyString(n.Type) 1448 } 1449 return s.entryNewValue0A(ssa.OpConstString, n.Type, u) 1450 case bool: 1451 return s.constBool(u) 1452 case *NilVal: 1453 t := n.Type 1454 switch { 1455 case t.IsSlice(): 1456 return s.constSlice(t) 1457 case t.IsInterface(): 1458 return s.constInterface(t) 1459 default: 1460 return s.constNil(t) 1461 } 1462 case *Mpflt: 1463 switch n.Type.Size() { 1464 case 4: 1465 return s.constFloat32(n.Type, u.Float32()) 1466 case 8: 1467 return s.constFloat64(n.Type, u.Float64()) 1468 default: 1469 s.Fatalf("bad float size %d", n.Type.Size()) 1470 return nil 1471 } 1472 case *Mpcplx: 1473 r := &u.Real 1474 i := &u.Imag 1475 switch n.Type.Size() { 1476 case 8: 1477 pt := types.Types[TFLOAT32] 1478 return s.newValue2(ssa.OpComplexMake, n.Type, 1479 s.constFloat32(pt, r.Float32()), 1480 s.constFloat32(pt, i.Float32())) 1481 case 16: 1482 pt := types.Types[TFLOAT64] 1483 return s.newValue2(ssa.OpComplexMake, n.Type, 1484 s.constFloat64(pt, r.Float64()), 1485 s.constFloat64(pt, i.Float64())) 1486 default: 1487 s.Fatalf("bad float size %d", n.Type.Size()) 1488 return nil 1489 } 1490 1491 default: 1492 s.Fatalf("unhandled OLITERAL %v", n.Val().Ctype()) 1493 return nil 1494 } 1495 case OCONVNOP: 1496 to := n.Type 1497 from := n.Left.Type 1498 1499 // Assume everything will work out, so set up our return value. 1500 // Anything interesting that happens from here is a fatal. 1501 x := s.expr(n.Left) 1502 1503 // Special case for not confusing GC and liveness. 1504 // We don't want pointers accidentally classified 1505 // as not-pointers or vice-versa because of copy 1506 // elision. 1507 if to.IsPtrShaped() != from.IsPtrShaped() { 1508 return s.newValue2(ssa.OpConvert, to, x, s.mem()) 1509 } 1510 1511 v := s.newValue1(ssa.OpCopy, to, x) // ensure that v has the right type 1512 1513 // CONVNOP closure 1514 if to.Etype == TFUNC && from.IsPtrShaped() { 1515 return v 1516 } 1517 1518 // named <--> unnamed type or typed <--> untyped const 1519 if from.Etype == to.Etype { 1520 return v 1521 } 1522 1523 // unsafe.Pointer <--> *T 1524 if to.Etype == TUNSAFEPTR && from.IsPtr() || from.Etype == TUNSAFEPTR && to.IsPtr() { 1525 return v 1526 } 1527 1528 dowidth(from) 1529 dowidth(to) 1530 if from.Width != to.Width { 1531 s.Fatalf("CONVNOP width mismatch %v (%d) -> %v (%d)\n", from, from.Width, to, to.Width) 1532 return nil 1533 } 1534 if etypesign(from.Etype) != etypesign(to.Etype) { 1535 s.Fatalf("CONVNOP sign mismatch %v (%s) -> %v (%s)\n", from, from.Etype, to, to.Etype) 1536 return nil 1537 } 1538 1539 if instrumenting { 1540 // These appear to be fine, but they fail the 1541 // integer constraint below, so okay them here. 1542 // Sample non-integer conversion: map[string]string -> *uint8 1543 return v 1544 } 1545 1546 if etypesign(from.Etype) == 0 { 1547 s.Fatalf("CONVNOP unrecognized non-integer %v -> %v\n", from, to) 1548 return nil 1549 } 1550 1551 // integer, same width, same sign 1552 return v 1553 1554 case OCONV: 1555 x := s.expr(n.Left) 1556 ft := n.Left.Type // from type 1557 tt := n.Type // to type 1558 if ft.IsBoolean() && tt.IsKind(TUINT8) { 1559 // Bool -> uint8 is generated internally when indexing into runtime.staticbyte. 1560 return s.newValue1(ssa.OpCopy, n.Type, x) 1561 } 1562 if ft.IsInteger() && tt.IsInteger() { 1563 var op ssa.Op 1564 if tt.Size() == ft.Size() { 1565 op = ssa.OpCopy 1566 } else if tt.Size() < ft.Size() { 1567 // truncation 1568 switch 10*ft.Size() + tt.Size() { 1569 case 21: 1570 op = ssa.OpTrunc16to8 1571 case 41: 1572 op = ssa.OpTrunc32to8 1573 case 42: 1574 op = ssa.OpTrunc32to16 1575 case 81: 1576 op = ssa.OpTrunc64to8 1577 case 82: 1578 op = ssa.OpTrunc64to16 1579 case 84: 1580 op = ssa.OpTrunc64to32 1581 default: 1582 s.Fatalf("weird integer truncation %v -> %v", ft, tt) 1583 } 1584 } else if ft.IsSigned() { 1585 // sign extension 1586 switch 10*ft.Size() + tt.Size() { 1587 case 12: 1588 op = ssa.OpSignExt8to16 1589 case 14: 1590 op = ssa.OpSignExt8to32 1591 case 18: 1592 op = ssa.OpSignExt8to64 1593 case 24: 1594 op = ssa.OpSignExt16to32 1595 case 28: 1596 op = ssa.OpSignExt16to64 1597 case 48: 1598 op = ssa.OpSignExt32to64 1599 default: 1600 s.Fatalf("bad integer sign extension %v -> %v", ft, tt) 1601 } 1602 } else { 1603 // zero extension 1604 switch 10*ft.Size() + tt.Size() { 1605 case 12: 1606 op = ssa.OpZeroExt8to16 1607 case 14: 1608 op = ssa.OpZeroExt8to32 1609 case 18: 1610 op = ssa.OpZeroExt8to64 1611 case 24: 1612 op = ssa.OpZeroExt16to32 1613 case 28: 1614 op = ssa.OpZeroExt16to64 1615 case 48: 1616 op = ssa.OpZeroExt32to64 1617 default: 1618 s.Fatalf("weird integer sign extension %v -> %v", ft, tt) 1619 } 1620 } 1621 return s.newValue1(op, n.Type, x) 1622 } 1623 1624 if ft.IsFloat() || tt.IsFloat() { 1625 conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}] 1626 if s.config.RegSize == 4 && thearch.LinkArch.Family != sys.MIPS { 1627 if conv1, ok1 := fpConvOpToSSA32[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 { 1628 conv = conv1 1629 } 1630 } 1631 if thearch.LinkArch.Family == sys.ARM64 { 1632 if conv1, ok1 := uint64fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 { 1633 conv = conv1 1634 } 1635 } 1636 1637 if thearch.LinkArch.Family == sys.MIPS { 1638 if ft.Size() == 4 && ft.IsInteger() && !ft.IsSigned() { 1639 // tt is float32 or float64, and ft is also unsigned 1640 if tt.Size() == 4 { 1641 return s.uint32Tofloat32(n, x, ft, tt) 1642 } 1643 if tt.Size() == 8 { 1644 return s.uint32Tofloat64(n, x, ft, tt) 1645 } 1646 } else if tt.Size() == 4 && tt.IsInteger() && !tt.IsSigned() { 1647 // ft is float32 or float64, and tt is unsigned integer 1648 if ft.Size() == 4 { 1649 return s.float32ToUint32(n, x, ft, tt) 1650 } 1651 if ft.Size() == 8 { 1652 return s.float64ToUint32(n, x, ft, tt) 1653 } 1654 } 1655 } 1656 1657 if !ok { 1658 s.Fatalf("weird float conversion %v -> %v", ft, tt) 1659 } 1660 op1, op2, it := conv.op1, conv.op2, conv.intermediateType 1661 1662 if op1 != ssa.OpInvalid && op2 != ssa.OpInvalid { 1663 // normal case, not tripping over unsigned 64 1664 if op1 == ssa.OpCopy { 1665 if op2 == ssa.OpCopy { 1666 return x 1667 } 1668 return s.newValue1(op2, n.Type, x) 1669 } 1670 if op2 == ssa.OpCopy { 1671 return s.newValue1(op1, n.Type, x) 1672 } 1673 return s.newValue1(op2, n.Type, s.newValue1(op1, types.Types[it], x)) 1674 } 1675 // Tricky 64-bit unsigned cases. 1676 if ft.IsInteger() { 1677 // tt is float32 or float64, and ft is also unsigned 1678 if tt.Size() == 4 { 1679 return s.uint64Tofloat32(n, x, ft, tt) 1680 } 1681 if tt.Size() == 8 { 1682 return s.uint64Tofloat64(n, x, ft, tt) 1683 } 1684 s.Fatalf("weird unsigned integer to float conversion %v -> %v", ft, tt) 1685 } 1686 // ft is float32 or float64, and tt is unsigned integer 1687 if ft.Size() == 4 { 1688 return s.float32ToUint64(n, x, ft, tt) 1689 } 1690 if ft.Size() == 8 { 1691 return s.float64ToUint64(n, x, ft, tt) 1692 } 1693 s.Fatalf("weird float to unsigned integer conversion %v -> %v", ft, tt) 1694 return nil 1695 } 1696 1697 if ft.IsComplex() && tt.IsComplex() { 1698 var op ssa.Op 1699 if ft.Size() == tt.Size() { 1700 switch ft.Size() { 1701 case 8: 1702 op = ssa.OpRound32F 1703 case 16: 1704 op = ssa.OpRound64F 1705 default: 1706 s.Fatalf("weird complex conversion %v -> %v", ft, tt) 1707 } 1708 } else if ft.Size() == 8 && tt.Size() == 16 { 1709 op = ssa.OpCvt32Fto64F 1710 } else if ft.Size() == 16 && tt.Size() == 8 { 1711 op = ssa.OpCvt64Fto32F 1712 } else { 1713 s.Fatalf("weird complex conversion %v -> %v", ft, tt) 1714 } 1715 ftp := floatForComplex(ft) 1716 ttp := floatForComplex(tt) 1717 return s.newValue2(ssa.OpComplexMake, tt, 1718 s.newValue1(op, ttp, s.newValue1(ssa.OpComplexReal, ftp, x)), 1719 s.newValue1(op, ttp, s.newValue1(ssa.OpComplexImag, ftp, x))) 1720 } 1721 1722 s.Fatalf("unhandled OCONV %s -> %s", n.Left.Type.Etype, n.Type.Etype) 1723 return nil 1724 1725 case ODOTTYPE: 1726 res, _ := s.dottype(n, false) 1727 return res 1728 1729 // binary ops 1730 case OLT, OEQ, ONE, OLE, OGE, OGT: 1731 a := s.expr(n.Left) 1732 b := s.expr(n.Right) 1733 if n.Left.Type.IsComplex() { 1734 pt := floatForComplex(n.Left.Type) 1735 op := s.ssaOp(OEQ, pt) 1736 r := s.newValue2(op, types.Types[TBOOL], s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)) 1737 i := s.newValue2(op, types.Types[TBOOL], s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b)) 1738 c := s.newValue2(ssa.OpAndB, types.Types[TBOOL], r, i) 1739 switch n.Op { 1740 case OEQ: 1741 return c 1742 case ONE: 1743 return s.newValue1(ssa.OpNot, types.Types[TBOOL], c) 1744 default: 1745 s.Fatalf("ordered complex compare %v", n.Op) 1746 } 1747 } 1748 return s.newValue2(s.ssaOp(n.Op, n.Left.Type), types.Types[TBOOL], a, b) 1749 case OMUL: 1750 a := s.expr(n.Left) 1751 b := s.expr(n.Right) 1752 if n.Type.IsComplex() { 1753 mulop := ssa.OpMul64F 1754 addop := ssa.OpAdd64F 1755 subop := ssa.OpSub64F 1756 pt := floatForComplex(n.Type) // Could be Float32 or Float64 1757 wt := types.Types[TFLOAT64] // Compute in Float64 to minimize cancelation error 1758 1759 areal := s.newValue1(ssa.OpComplexReal, pt, a) 1760 breal := s.newValue1(ssa.OpComplexReal, pt, b) 1761 aimag := s.newValue1(ssa.OpComplexImag, pt, a) 1762 bimag := s.newValue1(ssa.OpComplexImag, pt, b) 1763 1764 if pt != wt { // Widen for calculation 1765 areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal) 1766 breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal) 1767 aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag) 1768 bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag) 1769 } 1770 1771 xreal := s.newValue2(subop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag)) 1772 ximag := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, bimag), s.newValue2(mulop, wt, aimag, breal)) 1773 1774 if pt != wt { // Narrow to store back 1775 xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal) 1776 ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag) 1777 } 1778 1779 return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag) 1780 } 1781 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 1782 1783 case ODIV: 1784 a := s.expr(n.Left) 1785 b := s.expr(n.Right) 1786 if n.Type.IsComplex() { 1787 // TODO this is not executed because the front-end substitutes a runtime call. 1788 // That probably ought to change; with modest optimization the widen/narrow 1789 // conversions could all be elided in larger expression trees. 1790 mulop := ssa.OpMul64F 1791 addop := ssa.OpAdd64F 1792 subop := ssa.OpSub64F 1793 divop := ssa.OpDiv64F 1794 pt := floatForComplex(n.Type) // Could be Float32 or Float64 1795 wt := types.Types[TFLOAT64] // Compute in Float64 to minimize cancelation error 1796 1797 areal := s.newValue1(ssa.OpComplexReal, pt, a) 1798 breal := s.newValue1(ssa.OpComplexReal, pt, b) 1799 aimag := s.newValue1(ssa.OpComplexImag, pt, a) 1800 bimag := s.newValue1(ssa.OpComplexImag, pt, b) 1801 1802 if pt != wt { // Widen for calculation 1803 areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal) 1804 breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal) 1805 aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag) 1806 bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag) 1807 } 1808 1809 denom := s.newValue2(addop, wt, s.newValue2(mulop, wt, breal, breal), s.newValue2(mulop, wt, bimag, bimag)) 1810 xreal := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag)) 1811 ximag := s.newValue2(subop, wt, s.newValue2(mulop, wt, aimag, breal), s.newValue2(mulop, wt, areal, bimag)) 1812 1813 // TODO not sure if this is best done in wide precision or narrow 1814 // Double-rounding might be an issue. 1815 // Note that the pre-SSA implementation does the entire calculation 1816 // in wide format, so wide is compatible. 1817 xreal = s.newValue2(divop, wt, xreal, denom) 1818 ximag = s.newValue2(divop, wt, ximag, denom) 1819 1820 if pt != wt { // Narrow to store back 1821 xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal) 1822 ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag) 1823 } 1824 return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag) 1825 } 1826 if n.Type.IsFloat() { 1827 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 1828 } 1829 return s.intDivide(n, a, b) 1830 case OMOD: 1831 a := s.expr(n.Left) 1832 b := s.expr(n.Right) 1833 return s.intDivide(n, a, b) 1834 case OADD, OSUB: 1835 a := s.expr(n.Left) 1836 b := s.expr(n.Right) 1837 if n.Type.IsComplex() { 1838 pt := floatForComplex(n.Type) 1839 op := s.ssaOp(n.Op, pt) 1840 return s.newValue2(ssa.OpComplexMake, n.Type, 1841 s.newValue2(op, pt, s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)), 1842 s.newValue2(op, pt, s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b))) 1843 } 1844 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 1845 case OAND, OOR, OXOR: 1846 a := s.expr(n.Left) 1847 b := s.expr(n.Right) 1848 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 1849 case OLSH, ORSH: 1850 a := s.expr(n.Left) 1851 b := s.expr(n.Right) 1852 return s.newValue2(s.ssaShiftOp(n.Op, n.Type, n.Right.Type), a.Type, a, b) 1853 case OANDAND, OOROR: 1854 // To implement OANDAND (and OOROR), we introduce a 1855 // new temporary variable to hold the result. The 1856 // variable is associated with the OANDAND node in the 1857 // s.vars table (normally variables are only 1858 // associated with ONAME nodes). We convert 1859 // A && B 1860 // to 1861 // var = A 1862 // if var { 1863 // var = B 1864 // } 1865 // Using var in the subsequent block introduces the 1866 // necessary phi variable. 1867 el := s.expr(n.Left) 1868 s.vars[n] = el 1869 1870 b := s.endBlock() 1871 b.Kind = ssa.BlockIf 1872 b.SetControl(el) 1873 // In theory, we should set b.Likely here based on context. 1874 // However, gc only gives us likeliness hints 1875 // in a single place, for plain OIF statements, 1876 // and passing around context is finnicky, so don't bother for now. 1877 1878 bRight := s.f.NewBlock(ssa.BlockPlain) 1879 bResult := s.f.NewBlock(ssa.BlockPlain) 1880 if n.Op == OANDAND { 1881 b.AddEdgeTo(bRight) 1882 b.AddEdgeTo(bResult) 1883 } else if n.Op == OOROR { 1884 b.AddEdgeTo(bResult) 1885 b.AddEdgeTo(bRight) 1886 } 1887 1888 s.startBlock(bRight) 1889 er := s.expr(n.Right) 1890 s.vars[n] = er 1891 1892 b = s.endBlock() 1893 b.AddEdgeTo(bResult) 1894 1895 s.startBlock(bResult) 1896 return s.variable(n, types.Types[TBOOL]) 1897 case OCOMPLEX: 1898 r := s.expr(n.Left) 1899 i := s.expr(n.Right) 1900 return s.newValue2(ssa.OpComplexMake, n.Type, r, i) 1901 1902 // unary ops 1903 case OMINUS: 1904 a := s.expr(n.Left) 1905 if n.Type.IsComplex() { 1906 tp := floatForComplex(n.Type) 1907 negop := s.ssaOp(n.Op, tp) 1908 return s.newValue2(ssa.OpComplexMake, n.Type, 1909 s.newValue1(negop, tp, s.newValue1(ssa.OpComplexReal, tp, a)), 1910 s.newValue1(negop, tp, s.newValue1(ssa.OpComplexImag, tp, a))) 1911 } 1912 return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a) 1913 case ONOT, OCOM: 1914 a := s.expr(n.Left) 1915 return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a) 1916 case OIMAG, OREAL: 1917 a := s.expr(n.Left) 1918 return s.newValue1(s.ssaOp(n.Op, n.Left.Type), n.Type, a) 1919 case OPLUS: 1920 return s.expr(n.Left) 1921 1922 case OADDR: 1923 return s.addr(n.Left, n.Bounded()) 1924 1925 case OINDREGSP: 1926 addr := s.constOffPtrSP(types.NewPtr(n.Type), n.Xoffset) 1927 return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem()) 1928 1929 case OIND: 1930 p := s.exprPtr(n.Left, false, n.Pos) 1931 return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()) 1932 1933 case ODOT: 1934 t := n.Left.Type 1935 if canSSAType(t) { 1936 v := s.expr(n.Left) 1937 return s.newValue1I(ssa.OpStructSelect, n.Type, int64(fieldIdx(n)), v) 1938 } 1939 if n.Left.Op == OSTRUCTLIT { 1940 // All literals with nonzero fields have already been 1941 // rewritten during walk. Any that remain are just T{} 1942 // or equivalents. Use the zero value. 1943 if !iszero(n.Left) { 1944 Fatalf("literal with nonzero value in SSA: %v", n.Left) 1945 } 1946 return s.zeroVal(n.Type) 1947 } 1948 p := s.addr(n, false) 1949 return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()) 1950 1951 case ODOTPTR: 1952 p := s.exprPtr(n.Left, false, n.Pos) 1953 p = s.newValue1I(ssa.OpOffPtr, types.NewPtr(n.Type), n.Xoffset, p) 1954 return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()) 1955 1956 case OINDEX: 1957 switch { 1958 case n.Left.Type.IsString(): 1959 if n.Bounded() && Isconst(n.Left, CTSTR) && Isconst(n.Right, CTINT) { 1960 // Replace "abc"[1] with 'b'. 1961 // Delayed until now because "abc"[1] is not an ideal constant. 1962 // See test/fixedbugs/issue11370.go. 1963 return s.newValue0I(ssa.OpConst8, types.Types[TUINT8], int64(int8(n.Left.Val().U.(string)[n.Right.Int64()]))) 1964 } 1965 a := s.expr(n.Left) 1966 i := s.expr(n.Right) 1967 i = s.extendIndex(i, panicindex) 1968 if !n.Bounded() { 1969 len := s.newValue1(ssa.OpStringLen, types.Types[TINT], a) 1970 s.boundsCheck(i, len) 1971 } 1972 ptrtyp := s.f.Config.Types.BytePtr 1973 ptr := s.newValue1(ssa.OpStringPtr, ptrtyp, a) 1974 if Isconst(n.Right, CTINT) { 1975 ptr = s.newValue1I(ssa.OpOffPtr, ptrtyp, n.Right.Int64(), ptr) 1976 } else { 1977 ptr = s.newValue2(ssa.OpAddPtr, ptrtyp, ptr, i) 1978 } 1979 return s.newValue2(ssa.OpLoad, types.Types[TUINT8], ptr, s.mem()) 1980 case n.Left.Type.IsSlice(): 1981 p := s.addr(n, false) 1982 return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem()) 1983 case n.Left.Type.IsArray(): 1984 if bound := n.Left.Type.NumElem(); bound <= 1 { 1985 // SSA can handle arrays of length at most 1. 1986 a := s.expr(n.Left) 1987 i := s.expr(n.Right) 1988 if bound == 0 { 1989 // Bounds check will never succeed. Might as well 1990 // use constants for the bounds check. 1991 z := s.constInt(types.Types[TINT], 0) 1992 s.boundsCheck(z, z) 1993 // The return value won't be live, return junk. 1994 return s.newValue0(ssa.OpUnknown, n.Type) 1995 } 1996 i = s.extendIndex(i, panicindex) 1997 if !n.Bounded() { 1998 s.boundsCheck(i, s.constInt(types.Types[TINT], bound)) 1999 } 2000 return s.newValue1I(ssa.OpArraySelect, n.Type, 0, a) 2001 } 2002 p := s.addr(n, false) 2003 return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem()) 2004 default: 2005 s.Fatalf("bad type for index %v", n.Left.Type) 2006 return nil 2007 } 2008 2009 case OLEN, OCAP: 2010 switch { 2011 case n.Left.Type.IsSlice(): 2012 op := ssa.OpSliceLen 2013 if n.Op == OCAP { 2014 op = ssa.OpSliceCap 2015 } 2016 return s.newValue1(op, types.Types[TINT], s.expr(n.Left)) 2017 case n.Left.Type.IsString(): // string; not reachable for OCAP 2018 return s.newValue1(ssa.OpStringLen, types.Types[TINT], s.expr(n.Left)) 2019 case n.Left.Type.IsMap(), n.Left.Type.IsChan(): 2020 return s.referenceTypeBuiltin(n, s.expr(n.Left)) 2021 default: // array 2022 return s.constInt(types.Types[TINT], n.Left.Type.NumElem()) 2023 } 2024 2025 case OSPTR: 2026 a := s.expr(n.Left) 2027 if n.Left.Type.IsSlice() { 2028 return s.newValue1(ssa.OpSlicePtr, n.Type, a) 2029 } else { 2030 return s.newValue1(ssa.OpStringPtr, n.Type, a) 2031 } 2032 2033 case OITAB: 2034 a := s.expr(n.Left) 2035 return s.newValue1(ssa.OpITab, n.Type, a) 2036 2037 case OIDATA: 2038 a := s.expr(n.Left) 2039 return s.newValue1(ssa.OpIData, n.Type, a) 2040 2041 case OEFACE: 2042 tab := s.expr(n.Left) 2043 data := s.expr(n.Right) 2044 return s.newValue2(ssa.OpIMake, n.Type, tab, data) 2045 2046 case OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR: 2047 v := s.expr(n.Left) 2048 var i, j, k *ssa.Value 2049 low, high, max := n.SliceBounds() 2050 if low != nil { 2051 i = s.extendIndex(s.expr(low), panicslice) 2052 } 2053 if high != nil { 2054 j = s.extendIndex(s.expr(high), panicslice) 2055 } 2056 if max != nil { 2057 k = s.extendIndex(s.expr(max), panicslice) 2058 } 2059 p, l, c := s.slice(n.Left.Type, v, i, j, k) 2060 return s.newValue3(ssa.OpSliceMake, n.Type, p, l, c) 2061 2062 case OSLICESTR: 2063 v := s.expr(n.Left) 2064 var i, j *ssa.Value 2065 low, high, _ := n.SliceBounds() 2066 if low != nil { 2067 i = s.extendIndex(s.expr(low), panicslice) 2068 } 2069 if high != nil { 2070 j = s.extendIndex(s.expr(high), panicslice) 2071 } 2072 p, l, _ := s.slice(n.Left.Type, v, i, j, nil) 2073 return s.newValue2(ssa.OpStringMake, n.Type, p, l) 2074 2075 case OCALLFUNC: 2076 if isIntrinsicCall(n) { 2077 return s.intrinsicCall(n) 2078 } 2079 fallthrough 2080 2081 case OCALLINTER, OCALLMETH: 2082 a := s.call(n, callNormal) 2083 return s.newValue2(ssa.OpLoad, n.Type, a, s.mem()) 2084 2085 case OGETG: 2086 return s.newValue1(ssa.OpGetG, n.Type, s.mem()) 2087 2088 case OAPPEND: 2089 return s.append(n, false) 2090 2091 case OSTRUCTLIT, OARRAYLIT: 2092 // All literals with nonzero fields have already been 2093 // rewritten during walk. Any that remain are just T{} 2094 // or equivalents. Use the zero value. 2095 if !iszero(n) { 2096 Fatalf("literal with nonzero value in SSA: %v", n) 2097 } 2098 return s.zeroVal(n.Type) 2099 2100 default: 2101 s.Fatalf("unhandled expr %v", n.Op) 2102 return nil 2103 } 2104 } 2105 2106 // append converts an OAPPEND node to SSA. 2107 // If inplace is false, it converts the OAPPEND expression n to an ssa.Value, 2108 // adds it to s, and returns the Value. 2109 // If inplace is true, it writes the result of the OAPPEND expression n 2110 // back to the slice being appended to, and returns nil. 2111 // inplace MUST be set to false if the slice can be SSA'd. 2112 func (s *state) append(n *Node, inplace bool) *ssa.Value { 2113 // If inplace is false, process as expression "append(s, e1, e2, e3)": 2114 // 2115 // ptr, len, cap := s 2116 // newlen := len + 3 2117 // if newlen > cap { 2118 // ptr, len, cap = growslice(s, newlen) 2119 // newlen = len + 3 // recalculate to avoid a spill 2120 // } 2121 // // with write barriers, if needed: 2122 // *(ptr+len) = e1 2123 // *(ptr+len+1) = e2 2124 // *(ptr+len+2) = e3 2125 // return makeslice(ptr, newlen, cap) 2126 // 2127 // 2128 // If inplace is true, process as statement "s = append(s, e1, e2, e3)": 2129 // 2130 // a := &s 2131 // ptr, len, cap := s 2132 // newlen := len + 3 2133 // if newlen > cap { 2134 // newptr, len, newcap = growslice(ptr, len, cap, newlen) 2135 // vardef(a) // if necessary, advise liveness we are writing a new a 2136 // *a.cap = newcap // write before ptr to avoid a spill 2137 // *a.ptr = newptr // with write barrier 2138 // } 2139 // newlen = len + 3 // recalculate to avoid a spill 2140 // *a.len = newlen 2141 // // with write barriers, if needed: 2142 // *(ptr+len) = e1 2143 // *(ptr+len+1) = e2 2144 // *(ptr+len+2) = e3 2145 2146 et := n.Type.Elem() 2147 pt := types.NewPtr(et) 2148 2149 // Evaluate slice 2150 sn := n.List.First() // the slice node is the first in the list 2151 2152 var slice, addr *ssa.Value 2153 if inplace { 2154 addr = s.addr(sn, false) 2155 slice = s.newValue2(ssa.OpLoad, n.Type, addr, s.mem()) 2156 } else { 2157 slice = s.expr(sn) 2158 } 2159 2160 // Allocate new blocks 2161 grow := s.f.NewBlock(ssa.BlockPlain) 2162 assign := s.f.NewBlock(ssa.BlockPlain) 2163 2164 // Decide if we need to grow 2165 nargs := int64(n.List.Len() - 1) 2166 p := s.newValue1(ssa.OpSlicePtr, pt, slice) 2167 l := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice) 2168 c := s.newValue1(ssa.OpSliceCap, types.Types[TINT], slice) 2169 nl := s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], l, s.constInt(types.Types[TINT], nargs)) 2170 2171 cmp := s.newValue2(s.ssaOp(OGT, types.Types[TINT]), types.Types[TBOOL], nl, c) 2172 s.vars[&ptrVar] = p 2173 2174 if !inplace { 2175 s.vars[&newlenVar] = nl 2176 s.vars[&capVar] = c 2177 } else { 2178 s.vars[&lenVar] = l 2179 } 2180 2181 b := s.endBlock() 2182 b.Kind = ssa.BlockIf 2183 b.Likely = ssa.BranchUnlikely 2184 b.SetControl(cmp) 2185 b.AddEdgeTo(grow) 2186 b.AddEdgeTo(assign) 2187 2188 // Call growslice 2189 s.startBlock(grow) 2190 taddr := s.expr(n.Left) 2191 r := s.rtcall(growslice, true, []*types.Type{pt, types.Types[TINT], types.Types[TINT]}, taddr, p, l, c, nl) 2192 2193 if inplace { 2194 if sn.Op == ONAME { 2195 // Tell liveness we're about to build a new slice 2196 s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, sn, s.mem()) 2197 } 2198 capaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, int64(array_cap), addr) 2199 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TINT], capaddr, r[2], s.mem()) 2200 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, pt, addr, r[0], s.mem()) 2201 // load the value we just stored to avoid having to spill it 2202 s.vars[&ptrVar] = s.newValue2(ssa.OpLoad, pt, addr, s.mem()) 2203 s.vars[&lenVar] = r[1] // avoid a spill in the fast path 2204 } else { 2205 s.vars[&ptrVar] = r[0] 2206 s.vars[&newlenVar] = s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], r[1], s.constInt(types.Types[TINT], nargs)) 2207 s.vars[&capVar] = r[2] 2208 } 2209 2210 b = s.endBlock() 2211 b.AddEdgeTo(assign) 2212 2213 // assign new elements to slots 2214 s.startBlock(assign) 2215 2216 if inplace { 2217 l = s.variable(&lenVar, types.Types[TINT]) // generates phi for len 2218 nl = s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], l, s.constInt(types.Types[TINT], nargs)) 2219 lenaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, int64(array_nel), addr) 2220 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TINT], lenaddr, nl, s.mem()) 2221 } 2222 2223 // Evaluate args 2224 type argRec struct { 2225 // if store is true, we're appending the value v. If false, we're appending the 2226 // value at *v. 2227 v *ssa.Value 2228 store bool 2229 } 2230 args := make([]argRec, 0, nargs) 2231 for _, n := range n.List.Slice()[1:] { 2232 if canSSAType(n.Type) { 2233 args = append(args, argRec{v: s.expr(n), store: true}) 2234 } else { 2235 v := s.addr(n, false) 2236 args = append(args, argRec{v: v}) 2237 } 2238 } 2239 2240 p = s.variable(&ptrVar, pt) // generates phi for ptr 2241 if !inplace { 2242 nl = s.variable(&newlenVar, types.Types[TINT]) // generates phi for nl 2243 c = s.variable(&capVar, types.Types[TINT]) // generates phi for cap 2244 } 2245 p2 := s.newValue2(ssa.OpPtrIndex, pt, p, l) 2246 for i, arg := range args { 2247 addr := s.newValue2(ssa.OpPtrIndex, pt, p2, s.constInt(types.Types[TINT], int64(i))) 2248 if arg.store { 2249 s.storeType(et, addr, arg.v, 0) 2250 } else { 2251 store := s.newValue3I(ssa.OpMove, types.TypeMem, et.Size(), addr, arg.v, s.mem()) 2252 store.Aux = et 2253 s.vars[&memVar] = store 2254 } 2255 } 2256 2257 delete(s.vars, &ptrVar) 2258 if inplace { 2259 delete(s.vars, &lenVar) 2260 return nil 2261 } 2262 delete(s.vars, &newlenVar) 2263 delete(s.vars, &capVar) 2264 // make result 2265 return s.newValue3(ssa.OpSliceMake, n.Type, p, nl, c) 2266 } 2267 2268 // condBranch evaluates the boolean expression cond and branches to yes 2269 // if cond is true and no if cond is false. 2270 // This function is intended to handle && and || better than just calling 2271 // s.expr(cond) and branching on the result. 2272 func (s *state) condBranch(cond *Node, yes, no *ssa.Block, likely int8) { 2273 if cond.Op == OANDAND { 2274 mid := s.f.NewBlock(ssa.BlockPlain) 2275 s.stmtList(cond.Ninit) 2276 s.condBranch(cond.Left, mid, no, max8(likely, 0)) 2277 s.startBlock(mid) 2278 s.condBranch(cond.Right, yes, no, likely) 2279 return 2280 // Note: if likely==1, then both recursive calls pass 1. 2281 // If likely==-1, then we don't have enough information to decide 2282 // whether the first branch is likely or not. So we pass 0 for 2283 // the likeliness of the first branch. 2284 // TODO: have the frontend give us branch prediction hints for 2285 // OANDAND and OOROR nodes (if it ever has such info). 2286 } 2287 if cond.Op == OOROR { 2288 mid := s.f.NewBlock(ssa.BlockPlain) 2289 s.stmtList(cond.Ninit) 2290 s.condBranch(cond.Left, yes, mid, min8(likely, 0)) 2291 s.startBlock(mid) 2292 s.condBranch(cond.Right, yes, no, likely) 2293 return 2294 // Note: if likely==-1, then both recursive calls pass -1. 2295 // If likely==1, then we don't have enough info to decide 2296 // the likelihood of the first branch. 2297 } 2298 if cond.Op == ONOT { 2299 s.stmtList(cond.Ninit) 2300 s.condBranch(cond.Left, no, yes, -likely) 2301 return 2302 } 2303 c := s.expr(cond) 2304 b := s.endBlock() 2305 b.Kind = ssa.BlockIf 2306 b.SetControl(c) 2307 b.Likely = ssa.BranchPrediction(likely) // gc and ssa both use -1/0/+1 for likeliness 2308 b.AddEdgeTo(yes) 2309 b.AddEdgeTo(no) 2310 } 2311 2312 type skipMask uint8 2313 2314 const ( 2315 skipPtr skipMask = 1 << iota 2316 skipLen 2317 skipCap 2318 ) 2319 2320 // assign does left = right. 2321 // Right has already been evaluated to ssa, left has not. 2322 // If deref is true, then we do left = *right instead (and right has already been nil-checked). 2323 // If deref is true and right == nil, just do left = 0. 2324 // skip indicates assignments (at the top level) that can be avoided. 2325 func (s *state) assign(left *Node, right *ssa.Value, deref bool, skip skipMask) { 2326 if left.Op == ONAME && isblank(left) { 2327 return 2328 } 2329 t := left.Type 2330 dowidth(t) 2331 if s.canSSA(left) { 2332 if deref { 2333 s.Fatalf("can SSA LHS %v but not RHS %s", left, right) 2334 } 2335 if left.Op == ODOT { 2336 // We're assigning to a field of an ssa-able value. 2337 // We need to build a new structure with the new value for the 2338 // field we're assigning and the old values for the other fields. 2339 // For instance: 2340 // type T struct {a, b, c int} 2341 // var T x 2342 // x.b = 5 2343 // For the x.b = 5 assignment we want to generate x = T{x.a, 5, x.c} 2344 2345 // Grab information about the structure type. 2346 t := left.Left.Type 2347 nf := t.NumFields() 2348 idx := fieldIdx(left) 2349 2350 // Grab old value of structure. 2351 old := s.expr(left.Left) 2352 2353 // Make new structure. 2354 new := s.newValue0(ssa.StructMakeOp(t.NumFields()), t) 2355 2356 // Add fields as args. 2357 for i := 0; i < nf; i++ { 2358 if i == idx { 2359 new.AddArg(right) 2360 } else { 2361 new.AddArg(s.newValue1I(ssa.OpStructSelect, t.FieldType(i), int64(i), old)) 2362 } 2363 } 2364 2365 // Recursively assign the new value we've made to the base of the dot op. 2366 s.assign(left.Left, new, false, 0) 2367 // TODO: do we need to update named values here? 2368 return 2369 } 2370 if left.Op == OINDEX && left.Left.Type.IsArray() { 2371 // We're assigning to an element of an ssa-able array. 2372 // a[i] = v 2373 t := left.Left.Type 2374 n := t.NumElem() 2375 2376 i := s.expr(left.Right) // index 2377 if n == 0 { 2378 // The bounds check must fail. Might as well 2379 // ignore the actual index and just use zeros. 2380 z := s.constInt(types.Types[TINT], 0) 2381 s.boundsCheck(z, z) 2382 return 2383 } 2384 if n != 1 { 2385 s.Fatalf("assigning to non-1-length array") 2386 } 2387 // Rewrite to a = [1]{v} 2388 i = s.extendIndex(i, panicindex) 2389 s.boundsCheck(i, s.constInt(types.Types[TINT], 1)) 2390 v := s.newValue1(ssa.OpArrayMake1, t, right) 2391 s.assign(left.Left, v, false, 0) 2392 return 2393 } 2394 // Update variable assignment. 2395 s.vars[left] = right 2396 s.addNamedValue(left, right) 2397 return 2398 } 2399 // Left is not ssa-able. Compute its address. 2400 addr := s.addr(left, false) 2401 if left.Op == ONAME && skip == 0 { 2402 s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, left, s.mem()) 2403 } 2404 if isReflectHeaderDataField(left) { 2405 // Package unsafe's documentation says storing pointers into 2406 // reflect.SliceHeader and reflect.StringHeader's Data fields 2407 // is valid, even though they have type uintptr (#19168). 2408 // Mark it pointer type to signal the writebarrier pass to 2409 // insert a write barrier. 2410 t = types.Types[TUNSAFEPTR] 2411 } 2412 if deref { 2413 // Treat as a mem->mem move. 2414 var store *ssa.Value 2415 if right == nil { 2416 store = s.newValue2I(ssa.OpZero, types.TypeMem, t.Size(), addr, s.mem()) 2417 } else { 2418 store = s.newValue3I(ssa.OpMove, types.TypeMem, t.Size(), addr, right, s.mem()) 2419 } 2420 store.Aux = t 2421 s.vars[&memVar] = store 2422 return 2423 } 2424 // Treat as a store. 2425 s.storeType(t, addr, right, skip) 2426 } 2427 2428 // zeroVal returns the zero value for type t. 2429 func (s *state) zeroVal(t *types.Type) *ssa.Value { 2430 switch { 2431 case t.IsInteger(): 2432 switch t.Size() { 2433 case 1: 2434 return s.constInt8(t, 0) 2435 case 2: 2436 return s.constInt16(t, 0) 2437 case 4: 2438 return s.constInt32(t, 0) 2439 case 8: 2440 return s.constInt64(t, 0) 2441 default: 2442 s.Fatalf("bad sized integer type %v", t) 2443 } 2444 case t.IsFloat(): 2445 switch t.Size() { 2446 case 4: 2447 return s.constFloat32(t, 0) 2448 case 8: 2449 return s.constFloat64(t, 0) 2450 default: 2451 s.Fatalf("bad sized float type %v", t) 2452 } 2453 case t.IsComplex(): 2454 switch t.Size() { 2455 case 8: 2456 z := s.constFloat32(types.Types[TFLOAT32], 0) 2457 return s.entryNewValue2(ssa.OpComplexMake, t, z, z) 2458 case 16: 2459 z := s.constFloat64(types.Types[TFLOAT64], 0) 2460 return s.entryNewValue2(ssa.OpComplexMake, t, z, z) 2461 default: 2462 s.Fatalf("bad sized complex type %v", t) 2463 } 2464 2465 case t.IsString(): 2466 return s.constEmptyString(t) 2467 case t.IsPtrShaped(): 2468 return s.constNil(t) 2469 case t.IsBoolean(): 2470 return s.constBool(false) 2471 case t.IsInterface(): 2472 return s.constInterface(t) 2473 case t.IsSlice(): 2474 return s.constSlice(t) 2475 case t.IsStruct(): 2476 n := t.NumFields() 2477 v := s.entryNewValue0(ssa.StructMakeOp(t.NumFields()), t) 2478 for i := 0; i < n; i++ { 2479 v.AddArg(s.zeroVal(t.FieldType(i))) 2480 } 2481 return v 2482 case t.IsArray(): 2483 switch t.NumElem() { 2484 case 0: 2485 return s.entryNewValue0(ssa.OpArrayMake0, t) 2486 case 1: 2487 return s.entryNewValue1(ssa.OpArrayMake1, t, s.zeroVal(t.Elem())) 2488 } 2489 } 2490 s.Fatalf("zero for type %v not implemented", t) 2491 return nil 2492 } 2493 2494 type callKind int8 2495 2496 const ( 2497 callNormal callKind = iota 2498 callDefer 2499 callGo 2500 ) 2501 2502 var intrinsics map[intrinsicKey]intrinsicBuilder 2503 2504 // An intrinsicBuilder converts a call node n into an ssa value that 2505 // implements that call as an intrinsic. args is a list of arguments to the func. 2506 type intrinsicBuilder func(s *state, n *Node, args []*ssa.Value) *ssa.Value 2507 2508 type intrinsicKey struct { 2509 arch *sys.Arch 2510 pkg string 2511 fn string 2512 } 2513 2514 func init() { 2515 intrinsics = map[intrinsicKey]intrinsicBuilder{} 2516 2517 var all []*sys.Arch 2518 var p4 []*sys.Arch 2519 var p8 []*sys.Arch 2520 for _, a := range sys.Archs { 2521 all = append(all, a) 2522 if a.PtrSize == 4 { 2523 p4 = append(p4, a) 2524 } else { 2525 p8 = append(p8, a) 2526 } 2527 } 2528 2529 // add adds the intrinsic b for pkg.fn for the given list of architectures. 2530 add := func(pkg, fn string, b intrinsicBuilder, archs ...*sys.Arch) { 2531 for _, a := range archs { 2532 intrinsics[intrinsicKey{a, pkg, fn}] = b 2533 } 2534 } 2535 // addF does the same as add but operates on architecture families. 2536 addF := func(pkg, fn string, b intrinsicBuilder, archFamilies ...sys.ArchFamily) { 2537 m := 0 2538 for _, f := range archFamilies { 2539 if f >= 32 { 2540 panic("too many architecture families") 2541 } 2542 m |= 1 << uint(f) 2543 } 2544 for _, a := range all { 2545 if m>>uint(a.Family)&1 != 0 { 2546 intrinsics[intrinsicKey{a, pkg, fn}] = b 2547 } 2548 } 2549 } 2550 // alias defines pkg.fn = pkg2.fn2 for all architectures in archs for which pkg2.fn2 exists. 2551 alias := func(pkg, fn, pkg2, fn2 string, archs ...*sys.Arch) { 2552 for _, a := range archs { 2553 if b, ok := intrinsics[intrinsicKey{a, pkg2, fn2}]; ok { 2554 intrinsics[intrinsicKey{a, pkg, fn}] = b 2555 } 2556 } 2557 } 2558 2559 /******** runtime ********/ 2560 if !instrumenting { 2561 add("runtime", "slicebytetostringtmp", 2562 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2563 // Compiler frontend optimizations emit OARRAYBYTESTRTMP nodes 2564 // for the backend instead of slicebytetostringtmp calls 2565 // when not instrumenting. 2566 slice := args[0] 2567 ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, slice) 2568 len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice) 2569 return s.newValue2(ssa.OpStringMake, n.Type, ptr, len) 2570 }, 2571 all...) 2572 } 2573 add("runtime", "KeepAlive", 2574 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2575 data := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, args[0]) 2576 s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, types.TypeMem, data, s.mem()) 2577 return nil 2578 }, 2579 all...) 2580 2581 /******** runtime/internal/sys ********/ 2582 addF("runtime/internal/sys", "Ctz32", 2583 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2584 return s.newValue1(ssa.OpCtz32, types.Types[TINT], args[0]) 2585 }, 2586 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS) 2587 addF("runtime/internal/sys", "Ctz64", 2588 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2589 return s.newValue1(ssa.OpCtz64, types.Types[TINT], args[0]) 2590 }, 2591 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS) 2592 addF("runtime/internal/sys", "Bswap32", 2593 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2594 return s.newValue1(ssa.OpBswap32, types.Types[TUINT32], args[0]) 2595 }, 2596 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X) 2597 addF("runtime/internal/sys", "Bswap64", 2598 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2599 return s.newValue1(ssa.OpBswap64, types.Types[TUINT64], args[0]) 2600 }, 2601 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X) 2602 2603 /******** runtime/internal/atomic ********/ 2604 addF("runtime/internal/atomic", "Load", 2605 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2606 v := s.newValue2(ssa.OpAtomicLoad32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], s.mem()) 2607 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 2608 return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v) 2609 }, 2610 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64) 2611 2612 addF("runtime/internal/atomic", "Load64", 2613 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2614 v := s.newValue2(ssa.OpAtomicLoad64, types.NewTuple(types.Types[TUINT64], types.TypeMem), args[0], s.mem()) 2615 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 2616 return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v) 2617 }, 2618 sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64) 2619 addF("runtime/internal/atomic", "Loadp", 2620 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2621 v := s.newValue2(ssa.OpAtomicLoadPtr, types.NewTuple(s.f.Config.Types.BytePtr, types.TypeMem), args[0], s.mem()) 2622 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 2623 return s.newValue1(ssa.OpSelect0, s.f.Config.Types.BytePtr, v) 2624 }, 2625 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64) 2626 2627 addF("runtime/internal/atomic", "Store", 2628 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2629 s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore32, types.TypeMem, args[0], args[1], s.mem()) 2630 return nil 2631 }, 2632 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64) 2633 addF("runtime/internal/atomic", "Store64", 2634 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2635 s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore64, types.TypeMem, args[0], args[1], s.mem()) 2636 return nil 2637 }, 2638 sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64) 2639 addF("runtime/internal/atomic", "StorepNoWB", 2640 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2641 s.vars[&memVar] = s.newValue3(ssa.OpAtomicStorePtrNoWB, types.TypeMem, args[0], args[1], s.mem()) 2642 return nil 2643 }, 2644 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS) 2645 2646 addF("runtime/internal/atomic", "Xchg", 2647 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2648 v := s.newValue3(ssa.OpAtomicExchange32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], args[1], s.mem()) 2649 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 2650 return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v) 2651 }, 2652 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64) 2653 addF("runtime/internal/atomic", "Xchg64", 2654 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2655 v := s.newValue3(ssa.OpAtomicExchange64, types.NewTuple(types.Types[TUINT64], types.TypeMem), args[0], args[1], s.mem()) 2656 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 2657 return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v) 2658 }, 2659 sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64) 2660 2661 addF("runtime/internal/atomic", "Xadd", 2662 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2663 v := s.newValue3(ssa.OpAtomicAdd32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], args[1], s.mem()) 2664 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 2665 return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v) 2666 }, 2667 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64) 2668 addF("runtime/internal/atomic", "Xadd64", 2669 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2670 v := s.newValue3(ssa.OpAtomicAdd64, types.NewTuple(types.Types[TUINT64], types.TypeMem), args[0], args[1], s.mem()) 2671 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 2672 return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v) 2673 }, 2674 sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64) 2675 2676 addF("runtime/internal/atomic", "Cas", 2677 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2678 v := s.newValue4(ssa.OpAtomicCompareAndSwap32, types.NewTuple(types.Types[TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem()) 2679 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 2680 return s.newValue1(ssa.OpSelect0, types.Types[TBOOL], v) 2681 }, 2682 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64) 2683 addF("runtime/internal/atomic", "Cas64", 2684 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2685 v := s.newValue4(ssa.OpAtomicCompareAndSwap64, types.NewTuple(types.Types[TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem()) 2686 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 2687 return s.newValue1(ssa.OpSelect0, types.Types[TBOOL], v) 2688 }, 2689 sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64) 2690 2691 addF("runtime/internal/atomic", "And8", 2692 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2693 s.vars[&memVar] = s.newValue3(ssa.OpAtomicAnd8, types.TypeMem, args[0], args[1], s.mem()) 2694 return nil 2695 }, 2696 sys.AMD64, sys.ARM64, sys.MIPS, sys.PPC64) 2697 addF("runtime/internal/atomic", "Or8", 2698 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2699 s.vars[&memVar] = s.newValue3(ssa.OpAtomicOr8, types.TypeMem, args[0], args[1], s.mem()) 2700 return nil 2701 }, 2702 sys.AMD64, sys.ARM64, sys.MIPS, sys.PPC64) 2703 2704 alias("runtime/internal/atomic", "Loadint64", "runtime/internal/atomic", "Load64", all...) 2705 alias("runtime/internal/atomic", "Xaddint64", "runtime/internal/atomic", "Xadd64", all...) 2706 alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load", p4...) 2707 alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load64", p8...) 2708 alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load", p4...) 2709 alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load64", p8...) 2710 alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store", p4...) 2711 alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store64", p8...) 2712 alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg", p4...) 2713 alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg64", p8...) 2714 alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd", p4...) 2715 alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd64", p8...) 2716 alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas", p4...) 2717 alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas64", p8...) 2718 alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas", p4...) 2719 alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas64", p8...) 2720 2721 /******** math ********/ 2722 addF("math", "Sqrt", 2723 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2724 return s.newValue1(ssa.OpSqrt, types.Types[TFLOAT64], args[0]) 2725 }, 2726 sys.AMD64, sys.ARM, sys.ARM64, sys.MIPS, sys.PPC64, sys.S390X) 2727 2728 /******** math/bits ********/ 2729 addF("math/bits", "TrailingZeros64", 2730 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2731 return s.newValue1(ssa.OpCtz64, types.Types[TINT], args[0]) 2732 }, 2733 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64) 2734 addF("math/bits", "TrailingZeros32", 2735 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2736 return s.newValue1(ssa.OpCtz32, types.Types[TINT], args[0]) 2737 }, 2738 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64) 2739 addF("math/bits", "TrailingZeros16", 2740 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2741 x := s.newValue1(ssa.OpZeroExt16to32, types.Types[TUINT32], args[0]) 2742 c := s.constInt32(types.Types[TUINT32], 1<<16) 2743 y := s.newValue2(ssa.OpOr32, types.Types[TUINT32], x, c) 2744 return s.newValue1(ssa.OpCtz32, types.Types[TINT], y) 2745 }, 2746 sys.ARM, sys.MIPS) 2747 addF("math/bits", "TrailingZeros16", 2748 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2749 x := s.newValue1(ssa.OpZeroExt16to64, types.Types[TUINT64], args[0]) 2750 c := s.constInt64(types.Types[TUINT64], 1<<16) 2751 y := s.newValue2(ssa.OpOr64, types.Types[TUINT64], x, c) 2752 return s.newValue1(ssa.OpCtz64, types.Types[TINT], y) 2753 }, 2754 sys.AMD64, sys.ARM64, sys.S390X) 2755 addF("math/bits", "TrailingZeros8", 2756 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2757 x := s.newValue1(ssa.OpZeroExt8to32, types.Types[TUINT32], args[0]) 2758 c := s.constInt32(types.Types[TUINT32], 1<<8) 2759 y := s.newValue2(ssa.OpOr32, types.Types[TUINT32], x, c) 2760 return s.newValue1(ssa.OpCtz32, types.Types[TINT], y) 2761 }, 2762 sys.ARM, sys.MIPS) 2763 addF("math/bits", "TrailingZeros8", 2764 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2765 x := s.newValue1(ssa.OpZeroExt8to64, types.Types[TUINT64], args[0]) 2766 c := s.constInt64(types.Types[TUINT64], 1<<8) 2767 y := s.newValue2(ssa.OpOr64, types.Types[TUINT64], x, c) 2768 return s.newValue1(ssa.OpCtz64, types.Types[TINT], y) 2769 }, 2770 sys.AMD64, sys.ARM64, sys.S390X) 2771 alias("math/bits", "ReverseBytes64", "runtime/internal/sys", "Bswap64", all...) 2772 alias("math/bits", "ReverseBytes32", "runtime/internal/sys", "Bswap32", all...) 2773 // ReverseBytes inlines correctly, no need to intrinsify it. 2774 // ReverseBytes16 lowers to a rotate, no need for anything special here. 2775 addF("math/bits", "Len64", 2776 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2777 return s.newValue1(ssa.OpBitLen64, types.Types[TINT], args[0]) 2778 }, 2779 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64) 2780 addF("math/bits", "Len32", 2781 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2782 if s.config.PtrSize == 4 { 2783 return s.newValue1(ssa.OpBitLen32, types.Types[TINT], args[0]) 2784 } 2785 x := s.newValue1(ssa.OpZeroExt32to64, types.Types[TUINT64], args[0]) 2786 return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x) 2787 }, 2788 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64) 2789 addF("math/bits", "Len16", 2790 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2791 if s.config.PtrSize == 4 { 2792 x := s.newValue1(ssa.OpZeroExt16to32, types.Types[TUINT32], args[0]) 2793 return s.newValue1(ssa.OpBitLen32, types.Types[TINT], x) 2794 } 2795 x := s.newValue1(ssa.OpZeroExt16to64, types.Types[TUINT64], args[0]) 2796 return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x) 2797 }, 2798 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64) 2799 // Note: disabled on AMD64 because the Go code is faster! 2800 addF("math/bits", "Len8", 2801 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2802 if s.config.PtrSize == 4 { 2803 x := s.newValue1(ssa.OpZeroExt8to32, types.Types[TUINT32], args[0]) 2804 return s.newValue1(ssa.OpBitLen32, types.Types[TINT], x) 2805 } 2806 x := s.newValue1(ssa.OpZeroExt8to64, types.Types[TUINT64], args[0]) 2807 return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x) 2808 }, 2809 sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64) 2810 2811 addF("math/bits", "Len", 2812 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2813 if s.config.PtrSize == 4 { 2814 return s.newValue1(ssa.OpBitLen32, types.Types[TINT], args[0]) 2815 } 2816 return s.newValue1(ssa.OpBitLen64, types.Types[TINT], args[0]) 2817 }, 2818 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64) 2819 // LeadingZeros is handled because it trivially calls Len. 2820 addF("math/bits", "Reverse64", 2821 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2822 return s.newValue1(ssa.OpBitRev64, types.Types[TINT], args[0]) 2823 }, 2824 sys.ARM64) 2825 addF("math/bits", "Reverse32", 2826 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2827 return s.newValue1(ssa.OpBitRev32, types.Types[TINT], args[0]) 2828 }, 2829 sys.ARM64) 2830 addF("math/bits", "Reverse16", 2831 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2832 return s.newValue1(ssa.OpBitRev16, types.Types[TINT], args[0]) 2833 }, 2834 sys.ARM64) 2835 addF("math/bits", "Reverse8", 2836 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2837 return s.newValue1(ssa.OpBitRev8, types.Types[TINT], args[0]) 2838 }, 2839 sys.ARM64) 2840 addF("math/bits", "Reverse", 2841 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2842 if s.config.PtrSize == 4 { 2843 return s.newValue1(ssa.OpBitRev32, types.Types[TINT], args[0]) 2844 } 2845 return s.newValue1(ssa.OpBitRev64, types.Types[TINT], args[0]) 2846 }, 2847 sys.ARM64) 2848 makeOnesCountAMD64 := func(op64 ssa.Op, op32 ssa.Op) func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2849 return func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2850 aux := s.lookupSymbol(n, &ssa.ExternSymbol{Sym: syslook("support_popcnt").Sym.Linksym()}) 2851 addr := s.entryNewValue1A(ssa.OpAddr, types.Types[TBOOL].PtrTo(), aux, s.sb) 2852 v := s.newValue2(ssa.OpLoad, types.Types[TBOOL], addr, s.mem()) 2853 b := s.endBlock() 2854 b.Kind = ssa.BlockIf 2855 b.SetControl(v) 2856 bTrue := s.f.NewBlock(ssa.BlockPlain) 2857 bFalse := s.f.NewBlock(ssa.BlockPlain) 2858 bEnd := s.f.NewBlock(ssa.BlockPlain) 2859 b.AddEdgeTo(bTrue) 2860 b.AddEdgeTo(bFalse) 2861 b.Likely = ssa.BranchLikely // most machines have popcnt nowadays 2862 2863 // We have the intrinsic - use it directly. 2864 s.startBlock(bTrue) 2865 op := op64 2866 if s.config.PtrSize == 4 { 2867 op = op32 2868 } 2869 s.vars[n] = s.newValue1(op, types.Types[TINT], args[0]) 2870 s.endBlock().AddEdgeTo(bEnd) 2871 2872 // Call the pure Go version. 2873 s.startBlock(bFalse) 2874 a := s.call(n, callNormal) 2875 s.vars[n] = s.newValue2(ssa.OpLoad, types.Types[TINT], a, s.mem()) 2876 s.endBlock().AddEdgeTo(bEnd) 2877 2878 // Merge results. 2879 s.startBlock(bEnd) 2880 return s.variable(n, types.Types[TINT]) 2881 } 2882 } 2883 addF("math/bits", "OnesCount64", 2884 makeOnesCountAMD64(ssa.OpPopCount64, ssa.OpPopCount64), 2885 sys.AMD64) 2886 addF("math/bits", "OnesCount64", 2887 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2888 return s.newValue1(ssa.OpPopCount64, types.Types[TINT], args[0]) 2889 }, 2890 sys.PPC64) 2891 addF("math/bits", "OnesCount32", 2892 makeOnesCountAMD64(ssa.OpPopCount32, ssa.OpPopCount32), 2893 sys.AMD64) 2894 addF("math/bits", "OnesCount32", 2895 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2896 return s.newValue1(ssa.OpPopCount32, types.Types[TINT], args[0]) 2897 }, 2898 sys.PPC64) 2899 addF("math/bits", "OnesCount16", 2900 makeOnesCountAMD64(ssa.OpPopCount16, ssa.OpPopCount16), 2901 sys.AMD64) 2902 // Note: no OnesCount8, the Go implementation is faster - just a table load. 2903 addF("math/bits", "OnesCount", 2904 makeOnesCountAMD64(ssa.OpPopCount64, ssa.OpPopCount32), 2905 sys.AMD64) 2906 2907 /******** sync/atomic ********/ 2908 2909 // Note: these are disabled by flag_race in findIntrinsic below. 2910 alias("sync/atomic", "LoadInt32", "runtime/internal/atomic", "Load", all...) 2911 alias("sync/atomic", "LoadInt64", "runtime/internal/atomic", "Load64", all...) 2912 alias("sync/atomic", "LoadPointer", "runtime/internal/atomic", "Loadp", all...) 2913 alias("sync/atomic", "LoadUint32", "runtime/internal/atomic", "Load", all...) 2914 alias("sync/atomic", "LoadUint64", "runtime/internal/atomic", "Load64", all...) 2915 alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load", p4...) 2916 alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load64", p8...) 2917 2918 alias("sync/atomic", "StoreInt32", "runtime/internal/atomic", "Store", all...) 2919 alias("sync/atomic", "StoreInt64", "runtime/internal/atomic", "Store64", all...) 2920 // Note: not StorePointer, that needs a write barrier. Same below for {CompareAnd}Swap. 2921 alias("sync/atomic", "StoreUint32", "runtime/internal/atomic", "Store", all...) 2922 alias("sync/atomic", "StoreUint64", "runtime/internal/atomic", "Store64", all...) 2923 alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store", p4...) 2924 alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store64", p8...) 2925 2926 alias("sync/atomic", "SwapInt32", "runtime/internal/atomic", "Xchg", all...) 2927 alias("sync/atomic", "SwapInt64", "runtime/internal/atomic", "Xchg64", all...) 2928 alias("sync/atomic", "SwapUint32", "runtime/internal/atomic", "Xchg", all...) 2929 alias("sync/atomic", "SwapUint64", "runtime/internal/atomic", "Xchg64", all...) 2930 alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg", p4...) 2931 alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg64", p8...) 2932 2933 alias("sync/atomic", "CompareAndSwapInt32", "runtime/internal/atomic", "Cas", all...) 2934 alias("sync/atomic", "CompareAndSwapInt64", "runtime/internal/atomic", "Cas64", all...) 2935 alias("sync/atomic", "CompareAndSwapUint32", "runtime/internal/atomic", "Cas", all...) 2936 alias("sync/atomic", "CompareAndSwapUint64", "runtime/internal/atomic", "Cas64", all...) 2937 alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas", p4...) 2938 alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas64", p8...) 2939 2940 alias("sync/atomic", "AddInt32", "runtime/internal/atomic", "Xadd", all...) 2941 alias("sync/atomic", "AddInt64", "runtime/internal/atomic", "Xadd64", all...) 2942 alias("sync/atomic", "AddUint32", "runtime/internal/atomic", "Xadd", all...) 2943 alias("sync/atomic", "AddUint64", "runtime/internal/atomic", "Xadd64", all...) 2944 alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd", p4...) 2945 alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd64", p8...) 2946 2947 /******** math/big ********/ 2948 add("math/big", "mulWW", 2949 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2950 return s.newValue2(ssa.OpMul64uhilo, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1]) 2951 }, 2952 sys.ArchAMD64) 2953 add("math/big", "divWW", 2954 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2955 return s.newValue3(ssa.OpDiv128u, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1], args[2]) 2956 }, 2957 sys.ArchAMD64) 2958 } 2959 2960 // findIntrinsic returns a function which builds the SSA equivalent of the 2961 // function identified by the symbol sym. If sym is not an intrinsic call, returns nil. 2962 func findIntrinsic(sym *types.Sym) intrinsicBuilder { 2963 if ssa.IntrinsicsDisable { 2964 return nil 2965 } 2966 if sym == nil || sym.Pkg == nil { 2967 return nil 2968 } 2969 pkg := sym.Pkg.Path 2970 if sym.Pkg == localpkg { 2971 pkg = myimportpath 2972 } 2973 if flag_race && pkg == "sync/atomic" { 2974 // The race detector needs to be able to intercept these calls. 2975 // We can't intrinsify them. 2976 return nil 2977 } 2978 fn := sym.Name 2979 return intrinsics[intrinsicKey{thearch.LinkArch.Arch, pkg, fn}] 2980 } 2981 2982 func isIntrinsicCall(n *Node) bool { 2983 if n == nil || n.Left == nil { 2984 return false 2985 } 2986 return findIntrinsic(n.Left.Sym) != nil 2987 } 2988 2989 // intrinsicCall converts a call to a recognized intrinsic function into the intrinsic SSA operation. 2990 func (s *state) intrinsicCall(n *Node) *ssa.Value { 2991 v := findIntrinsic(n.Left.Sym)(s, n, s.intrinsicArgs(n)) 2992 if ssa.IntrinsicsDebug > 0 { 2993 x := v 2994 if x == nil { 2995 x = s.mem() 2996 } 2997 if x.Op == ssa.OpSelect0 || x.Op == ssa.OpSelect1 { 2998 x = x.Args[0] 2999 } 3000 Warnl(n.Pos, "intrinsic substitution for %v with %s", n.Left.Sym.Name, x.LongString()) 3001 } 3002 return v 3003 } 3004 3005 type callArg struct { 3006 offset int64 3007 v *ssa.Value 3008 } 3009 type byOffset []callArg 3010 3011 func (x byOffset) Len() int { return len(x) } 3012 func (x byOffset) Swap(i, j int) { x[i], x[j] = x[j], x[i] } 3013 func (x byOffset) Less(i, j int) bool { 3014 return x[i].offset < x[j].offset 3015 } 3016 3017 // intrinsicArgs extracts args from n, evaluates them to SSA values, and returns them. 3018 func (s *state) intrinsicArgs(n *Node) []*ssa.Value { 3019 // This code is complicated because of how walk transforms calls. For a call node, 3020 // each entry in n.List is either an assignment to OINDREGSP which actually 3021 // stores an arg, or an assignment to a temporary which computes an arg 3022 // which is later assigned. 3023 // The args can also be out of order. 3024 // TODO: when walk goes away someday, this code can go away also. 3025 var args []callArg 3026 temps := map[*Node]*ssa.Value{} 3027 for _, a := range n.List.Slice() { 3028 if a.Op != OAS { 3029 s.Fatalf("non-assignment as a function argument %s", opnames[a.Op]) 3030 } 3031 l, r := a.Left, a.Right 3032 switch l.Op { 3033 case ONAME: 3034 // Evaluate and store to "temporary". 3035 // Walk ensures these temporaries are dead outside of n. 3036 temps[l] = s.expr(r) 3037 case OINDREGSP: 3038 // Store a value to an argument slot. 3039 var v *ssa.Value 3040 if x, ok := temps[r]; ok { 3041 // This is a previously computed temporary. 3042 v = x 3043 } else { 3044 // This is an explicit value; evaluate it. 3045 v = s.expr(r) 3046 } 3047 args = append(args, callArg{l.Xoffset, v}) 3048 default: 3049 s.Fatalf("function argument assignment target not allowed: %s", opnames[l.Op]) 3050 } 3051 } 3052 sort.Sort(byOffset(args)) 3053 res := make([]*ssa.Value, len(args)) 3054 for i, a := range args { 3055 res[i] = a.v 3056 } 3057 return res 3058 } 3059 3060 // Calls the function n using the specified call type. 3061 // Returns the address of the return value (or nil if none). 3062 func (s *state) call(n *Node, k callKind) *ssa.Value { 3063 var sym *types.Sym // target symbol (if static) 3064 var closure *ssa.Value // ptr to closure to run (if dynamic) 3065 var codeptr *ssa.Value // ptr to target code (if dynamic) 3066 var rcvr *ssa.Value // receiver to set 3067 fn := n.Left 3068 switch n.Op { 3069 case OCALLFUNC: 3070 if k == callNormal && fn.Op == ONAME && fn.Class() == PFUNC { 3071 sym = fn.Sym 3072 break 3073 } 3074 closure = s.expr(fn) 3075 case OCALLMETH: 3076 if fn.Op != ODOTMETH { 3077 Fatalf("OCALLMETH: n.Left not an ODOTMETH: %v", fn) 3078 } 3079 if k == callNormal { 3080 sym = fn.Sym 3081 break 3082 } 3083 // Make a name n2 for the function. 3084 // fn.Sym might be sync.(*Mutex).Unlock. 3085 // Make a PFUNC node out of that, then evaluate it. 3086 // We get back an SSA value representing &sync.(*Mutex).Unlock·f. 3087 // We can then pass that to defer or go. 3088 n2 := newnamel(fn.Pos, fn.Sym) 3089 n2.Name.Curfn = s.curfn 3090 n2.SetClass(PFUNC) 3091 n2.Pos = fn.Pos 3092 n2.Type = types.Types[TUINT8] // dummy type for a static closure. Could use runtime.funcval if we had it. 3093 closure = s.expr(n2) 3094 // Note: receiver is already assigned in n.List, so we don't 3095 // want to set it here. 3096 case OCALLINTER: 3097 if fn.Op != ODOTINTER { 3098 Fatalf("OCALLINTER: n.Left not an ODOTINTER: %v", fn.Op) 3099 } 3100 i := s.expr(fn.Left) 3101 itab := s.newValue1(ssa.OpITab, types.Types[TUINTPTR], i) 3102 if k != callNormal { 3103 s.nilCheck(itab) 3104 } 3105 itabidx := fn.Xoffset + 3*int64(Widthptr) + 8 // offset of fun field in runtime.itab 3106 itab = s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.UintptrPtr, itabidx, itab) 3107 if k == callNormal { 3108 codeptr = s.newValue2(ssa.OpLoad, types.Types[TUINTPTR], itab, s.mem()) 3109 } else { 3110 closure = itab 3111 } 3112 rcvr = s.newValue1(ssa.OpIData, types.Types[TUINTPTR], i) 3113 } 3114 dowidth(fn.Type) 3115 stksize := fn.Type.ArgWidth() // includes receiver 3116 3117 // Run all argument assignments. The arg slots have already 3118 // been offset by the appropriate amount (+2*widthptr for go/defer, 3119 // +widthptr for interface calls). 3120 // For OCALLMETH, the receiver is set in these statements. 3121 s.stmtList(n.List) 3122 3123 // Set receiver (for interface calls) 3124 if rcvr != nil { 3125 argStart := Ctxt.FixedFrameSize() 3126 if k != callNormal { 3127 argStart += int64(2 * Widthptr) 3128 } 3129 addr := s.constOffPtrSP(s.f.Config.Types.UintptrPtr, argStart) 3130 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TUINTPTR], addr, rcvr, s.mem()) 3131 } 3132 3133 // Defer/go args 3134 if k != callNormal { 3135 // Write argsize and closure (args to Newproc/Deferproc). 3136 argStart := Ctxt.FixedFrameSize() 3137 argsize := s.constInt32(types.Types[TUINT32], int32(stksize)) 3138 addr := s.constOffPtrSP(s.f.Config.Types.UInt32Ptr, argStart) 3139 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TUINT32], addr, argsize, s.mem()) 3140 addr = s.constOffPtrSP(s.f.Config.Types.UintptrPtr, argStart+int64(Widthptr)) 3141 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TUINTPTR], addr, closure, s.mem()) 3142 stksize += 2 * int64(Widthptr) 3143 } 3144 3145 // call target 3146 var call *ssa.Value 3147 switch { 3148 case k == callDefer: 3149 call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, Deferproc, s.mem()) 3150 case k == callGo: 3151 call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, Newproc, s.mem()) 3152 case closure != nil: 3153 codeptr = s.newValue2(ssa.OpLoad, types.Types[TUINTPTR], closure, s.mem()) 3154 call = s.newValue3(ssa.OpClosureCall, types.TypeMem, codeptr, closure, s.mem()) 3155 case codeptr != nil: 3156 call = s.newValue2(ssa.OpInterCall, types.TypeMem, codeptr, s.mem()) 3157 case sym != nil: 3158 call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, sym.Linksym(), s.mem()) 3159 default: 3160 Fatalf("bad call type %v %v", n.Op, n) 3161 } 3162 call.AuxInt = stksize // Call operations carry the argsize of the callee along with them 3163 s.vars[&memVar] = call 3164 3165 // Finish block for defers 3166 if k == callDefer { 3167 b := s.endBlock() 3168 b.Kind = ssa.BlockDefer 3169 b.SetControl(call) 3170 bNext := s.f.NewBlock(ssa.BlockPlain) 3171 b.AddEdgeTo(bNext) 3172 // Add recover edge to exit code. 3173 r := s.f.NewBlock(ssa.BlockPlain) 3174 s.startBlock(r) 3175 s.exit() 3176 b.AddEdgeTo(r) 3177 b.Likely = ssa.BranchLikely 3178 s.startBlock(bNext) 3179 } 3180 3181 res := n.Left.Type.Results() 3182 if res.NumFields() == 0 || k != callNormal { 3183 // call has no return value. Continue with the next statement. 3184 return nil 3185 } 3186 fp := res.Field(0) 3187 return s.constOffPtrSP(types.NewPtr(fp.Type), fp.Offset+Ctxt.FixedFrameSize()) 3188 } 3189 3190 // etypesign returns the signed-ness of e, for integer/pointer etypes. 3191 // -1 means signed, +1 means unsigned, 0 means non-integer/non-pointer. 3192 func etypesign(e types.EType) int8 { 3193 switch e { 3194 case TINT8, TINT16, TINT32, TINT64, TINT: 3195 return -1 3196 case TUINT8, TUINT16, TUINT32, TUINT64, TUINT, TUINTPTR, TUNSAFEPTR: 3197 return +1 3198 } 3199 return 0 3200 } 3201 3202 // lookupSymbol is used to retrieve the symbol (Extern, Arg or Auto) used for a particular node. 3203 // This improves the effectiveness of cse by using the same Aux values for the 3204 // same symbols. 3205 func (s *state) lookupSymbol(n *Node, sym interface{}) interface{} { 3206 switch sym.(type) { 3207 default: 3208 s.Fatalf("sym %v is of unknown type %T", sym, sym) 3209 case *ssa.ExternSymbol, *ssa.ArgSymbol, *ssa.AutoSymbol: 3210 // these are the only valid types 3211 } 3212 3213 if lsym, ok := s.varsyms[n]; ok { 3214 return lsym 3215 } 3216 s.varsyms[n] = sym 3217 return sym 3218 } 3219 3220 // addr converts the address of the expression n to SSA, adds it to s and returns the SSA result. 3221 // The value that the returned Value represents is guaranteed to be non-nil. 3222 // If bounded is true then this address does not require a nil check for its operand 3223 // even if that would otherwise be implied. 3224 func (s *state) addr(n *Node, bounded bool) *ssa.Value { 3225 t := types.NewPtr(n.Type) 3226 switch n.Op { 3227 case ONAME: 3228 switch n.Class() { 3229 case PEXTERN: 3230 // global variable 3231 aux := s.lookupSymbol(n, &ssa.ExternSymbol{Sym: n.Sym.Linksym()}) 3232 v := s.entryNewValue1A(ssa.OpAddr, t, aux, s.sb) 3233 // TODO: Make OpAddr use AuxInt as well as Aux. 3234 if n.Xoffset != 0 { 3235 v = s.entryNewValue1I(ssa.OpOffPtr, v.Type, n.Xoffset, v) 3236 } 3237 return v 3238 case PPARAM: 3239 // parameter slot 3240 v := s.decladdrs[n] 3241 if v != nil { 3242 return v 3243 } 3244 if n == nodfp { 3245 // Special arg that points to the frame pointer (Used by ORECOVER). 3246 aux := s.lookupSymbol(n, &ssa.ArgSymbol{Node: n}) 3247 return s.entryNewValue1A(ssa.OpAddr, t, aux, s.sp) 3248 } 3249 s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs) 3250 return nil 3251 case PAUTO: 3252 aux := s.lookupSymbol(n, &ssa.AutoSymbol{Node: n}) 3253 return s.newValue1A(ssa.OpAddr, t, aux, s.sp) 3254 case PPARAMOUT: // Same as PAUTO -- cannot generate LEA early. 3255 // ensure that we reuse symbols for out parameters so 3256 // that cse works on their addresses 3257 aux := s.lookupSymbol(n, &ssa.ArgSymbol{Node: n}) 3258 return s.newValue1A(ssa.OpAddr, t, aux, s.sp) 3259 default: 3260 s.Fatalf("variable address class %v not implemented", classnames[n.Class()]) 3261 return nil 3262 } 3263 case OINDREGSP: 3264 // indirect off REGSP 3265 // used for storing/loading arguments/returns to/from callees 3266 return s.constOffPtrSP(t, n.Xoffset) 3267 case OINDEX: 3268 if n.Left.Type.IsSlice() { 3269 a := s.expr(n.Left) 3270 i := s.expr(n.Right) 3271 i = s.extendIndex(i, panicindex) 3272 len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], a) 3273 if !n.Bounded() { 3274 s.boundsCheck(i, len) 3275 } 3276 p := s.newValue1(ssa.OpSlicePtr, t, a) 3277 return s.newValue2(ssa.OpPtrIndex, t, p, i) 3278 } else { // array 3279 a := s.addr(n.Left, bounded) 3280 i := s.expr(n.Right) 3281 i = s.extendIndex(i, panicindex) 3282 len := s.constInt(types.Types[TINT], n.Left.Type.NumElem()) 3283 if !n.Bounded() { 3284 s.boundsCheck(i, len) 3285 } 3286 return s.newValue2(ssa.OpPtrIndex, types.NewPtr(n.Left.Type.Elem()), a, i) 3287 } 3288 case OIND: 3289 return s.exprPtr(n.Left, bounded, n.Pos) 3290 case ODOT: 3291 p := s.addr(n.Left, bounded) 3292 return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p) 3293 case ODOTPTR: 3294 p := s.exprPtr(n.Left, bounded, n.Pos) 3295 return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p) 3296 case OCLOSUREVAR: 3297 return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, 3298 s.entryNewValue0(ssa.OpGetClosurePtr, s.f.Config.Types.BytePtr)) 3299 case OCONVNOP: 3300 addr := s.addr(n.Left, bounded) 3301 return s.newValue1(ssa.OpCopy, t, addr) // ensure that addr has the right type 3302 case OCALLFUNC, OCALLINTER, OCALLMETH: 3303 return s.call(n, callNormal) 3304 case ODOTTYPE: 3305 v, _ := s.dottype(n, false) 3306 if v.Op != ssa.OpLoad { 3307 s.Fatalf("dottype of non-load") 3308 } 3309 if v.Args[1] != s.mem() { 3310 s.Fatalf("memory no longer live from dottype load") 3311 } 3312 return v.Args[0] 3313 default: 3314 s.Fatalf("unhandled addr %v", n.Op) 3315 return nil 3316 } 3317 } 3318 3319 // canSSA reports whether n is SSA-able. 3320 // n must be an ONAME (or an ODOT sequence with an ONAME base). 3321 func (s *state) canSSA(n *Node) bool { 3322 if Debug['N'] != 0 { 3323 return false 3324 } 3325 for n.Op == ODOT || (n.Op == OINDEX && n.Left.Type.IsArray()) { 3326 n = n.Left 3327 } 3328 if n.Op != ONAME { 3329 return false 3330 } 3331 if n.Addrtaken() { 3332 return false 3333 } 3334 if n.isParamHeapCopy() { 3335 return false 3336 } 3337 if n.Class() == PAUTOHEAP { 3338 Fatalf("canSSA of PAUTOHEAP %v", n) 3339 } 3340 switch n.Class() { 3341 case PEXTERN: 3342 return false 3343 case PPARAMOUT: 3344 if s.hasdefer { 3345 // TODO: handle this case? Named return values must be 3346 // in memory so that the deferred function can see them. 3347 // Maybe do: if !strings.HasPrefix(n.String(), "~") { return false } 3348 // Or maybe not, see issue 18860. Even unnamed return values 3349 // must be written back so if a defer recovers, the caller can see them. 3350 return false 3351 } 3352 if s.cgoUnsafeArgs { 3353 // Cgo effectively takes the address of all result args, 3354 // but the compiler can't see that. 3355 return false 3356 } 3357 } 3358 if n.Class() == PPARAM && n.Sym != nil && n.Sym.Name == ".this" { 3359 // wrappers generated by genwrapper need to update 3360 // the .this pointer in place. 3361 // TODO: treat as a PPARMOUT? 3362 return false 3363 } 3364 return canSSAType(n.Type) 3365 // TODO: try to make more variables SSAable? 3366 } 3367 3368 // canSSA reports whether variables of type t are SSA-able. 3369 func canSSAType(t *types.Type) bool { 3370 dowidth(t) 3371 if t.Width > int64(4*Widthptr) { 3372 // 4*Widthptr is an arbitrary constant. We want it 3373 // to be at least 3*Widthptr so slices can be registerized. 3374 // Too big and we'll introduce too much register pressure. 3375 return false 3376 } 3377 switch t.Etype { 3378 case TARRAY: 3379 // We can't do larger arrays because dynamic indexing is 3380 // not supported on SSA variables. 3381 // TODO: allow if all indexes are constant. 3382 if t.NumElem() <= 1 { 3383 return canSSAType(t.Elem()) 3384 } 3385 return false 3386 case TSTRUCT: 3387 if t.NumFields() > ssa.MaxStruct { 3388 return false 3389 } 3390 for _, t1 := range t.Fields().Slice() { 3391 if !canSSAType(t1.Type) { 3392 return false 3393 } 3394 } 3395 return true 3396 default: 3397 return true 3398 } 3399 } 3400 3401 // exprPtr evaluates n to a pointer and nil-checks it. 3402 func (s *state) exprPtr(n *Node, bounded bool, lineno src.XPos) *ssa.Value { 3403 p := s.expr(n) 3404 if bounded || n.NonNil() { 3405 if s.f.Frontend().Debug_checknil() && lineno.Line() > 1 { 3406 s.f.Warnl(lineno, "removed nil check") 3407 } 3408 return p 3409 } 3410 s.nilCheck(p) 3411 return p 3412 } 3413 3414 // nilCheck generates nil pointer checking code. 3415 // Used only for automatically inserted nil checks, 3416 // not for user code like 'x != nil'. 3417 func (s *state) nilCheck(ptr *ssa.Value) { 3418 if disable_checknil != 0 || s.curfn.Func.NilCheckDisabled() { 3419 return 3420 } 3421 s.newValue2(ssa.OpNilCheck, types.TypeVoid, ptr, s.mem()) 3422 } 3423 3424 // boundsCheck generates bounds checking code. Checks if 0 <= idx < len, branches to exit if not. 3425 // Starts a new block on return. 3426 // idx is already converted to full int width. 3427 func (s *state) boundsCheck(idx, len *ssa.Value) { 3428 if Debug['B'] != 0 { 3429 return 3430 } 3431 3432 // bounds check 3433 cmp := s.newValue2(ssa.OpIsInBounds, types.Types[TBOOL], idx, len) 3434 s.check(cmp, panicindex) 3435 } 3436 3437 // sliceBoundsCheck generates slice bounds checking code. Checks if 0 <= idx <= len, branches to exit if not. 3438 // Starts a new block on return. 3439 // idx and len are already converted to full int width. 3440 func (s *state) sliceBoundsCheck(idx, len *ssa.Value) { 3441 if Debug['B'] != 0 { 3442 return 3443 } 3444 3445 // bounds check 3446 cmp := s.newValue2(ssa.OpIsSliceInBounds, types.Types[TBOOL], idx, len) 3447 s.check(cmp, panicslice) 3448 } 3449 3450 // If cmp (a bool) is false, panic using the given function. 3451 func (s *state) check(cmp *ssa.Value, fn *obj.LSym) { 3452 b := s.endBlock() 3453 b.Kind = ssa.BlockIf 3454 b.SetControl(cmp) 3455 b.Likely = ssa.BranchLikely 3456 bNext := s.f.NewBlock(ssa.BlockPlain) 3457 line := s.peekPos() 3458 pos := Ctxt.PosTable.Pos(line) 3459 fl := funcLine{f: fn, base: pos.Base(), line: pos.Line()} 3460 bPanic := s.panics[fl] 3461 if bPanic == nil { 3462 bPanic = s.f.NewBlock(ssa.BlockPlain) 3463 s.panics[fl] = bPanic 3464 s.startBlock(bPanic) 3465 // The panic call takes/returns memory to ensure that the right 3466 // memory state is observed if the panic happens. 3467 s.rtcall(fn, false, nil) 3468 } 3469 b.AddEdgeTo(bNext) 3470 b.AddEdgeTo(bPanic) 3471 s.startBlock(bNext) 3472 } 3473 3474 func (s *state) intDivide(n *Node, a, b *ssa.Value) *ssa.Value { 3475 needcheck := true 3476 switch b.Op { 3477 case ssa.OpConst8, ssa.OpConst16, ssa.OpConst32, ssa.OpConst64: 3478 if b.AuxInt != 0 { 3479 needcheck = false 3480 } 3481 } 3482 if needcheck { 3483 // do a size-appropriate check for zero 3484 cmp := s.newValue2(s.ssaOp(ONE, n.Type), types.Types[TBOOL], b, s.zeroVal(n.Type)) 3485 s.check(cmp, panicdivide) 3486 } 3487 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 3488 } 3489 3490 // rtcall issues a call to the given runtime function fn with the listed args. 3491 // Returns a slice of results of the given result types. 3492 // The call is added to the end of the current block. 3493 // If returns is false, the block is marked as an exit block. 3494 func (s *state) rtcall(fn *obj.LSym, returns bool, results []*types.Type, args ...*ssa.Value) []*ssa.Value { 3495 // Write args to the stack 3496 off := Ctxt.FixedFrameSize() 3497 for _, arg := range args { 3498 t := arg.Type 3499 off = Rnd(off, t.Alignment()) 3500 ptr := s.constOffPtrSP(t.PtrTo(), off) 3501 size := t.Size() 3502 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, ptr, arg, s.mem()) 3503 off += size 3504 } 3505 off = Rnd(off, int64(Widthreg)) 3506 3507 // Issue call 3508 call := s.newValue1A(ssa.OpStaticCall, types.TypeMem, fn, s.mem()) 3509 s.vars[&memVar] = call 3510 3511 if !returns { 3512 // Finish block 3513 b := s.endBlock() 3514 b.Kind = ssa.BlockExit 3515 b.SetControl(call) 3516 call.AuxInt = off - Ctxt.FixedFrameSize() 3517 if len(results) > 0 { 3518 Fatalf("panic call can't have results") 3519 } 3520 return nil 3521 } 3522 3523 // Load results 3524 res := make([]*ssa.Value, len(results)) 3525 for i, t := range results { 3526 off = Rnd(off, t.Alignment()) 3527 ptr := s.constOffPtrSP(types.NewPtr(t), off) 3528 res[i] = s.newValue2(ssa.OpLoad, t, ptr, s.mem()) 3529 off += t.Size() 3530 } 3531 off = Rnd(off, int64(Widthptr)) 3532 3533 // Remember how much callee stack space we needed. 3534 call.AuxInt = off 3535 3536 return res 3537 } 3538 3539 // do *left = right for type t. 3540 func (s *state) storeType(t *types.Type, left, right *ssa.Value, skip skipMask) { 3541 if skip == 0 && (!types.Haspointers(t) || ssa.IsStackAddr(left)) { 3542 // Known to not have write barrier. Store the whole type. 3543 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, left, right, s.mem()) 3544 return 3545 } 3546 3547 // store scalar fields first, so write barrier stores for 3548 // pointer fields can be grouped together, and scalar values 3549 // don't need to be live across the write barrier call. 3550 // TODO: if the writebarrier pass knows how to reorder stores, 3551 // we can do a single store here as long as skip==0. 3552 s.storeTypeScalars(t, left, right, skip) 3553 if skip&skipPtr == 0 && types.Haspointers(t) { 3554 s.storeTypePtrs(t, left, right) 3555 } 3556 } 3557 3558 // do *left = right for all scalar (non-pointer) parts of t. 3559 func (s *state) storeTypeScalars(t *types.Type, left, right *ssa.Value, skip skipMask) { 3560 switch { 3561 case t.IsBoolean() || t.IsInteger() || t.IsFloat() || t.IsComplex(): 3562 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, left, right, s.mem()) 3563 case t.IsPtrShaped(): 3564 // no scalar fields. 3565 case t.IsString(): 3566 if skip&skipLen != 0 { 3567 return 3568 } 3569 len := s.newValue1(ssa.OpStringLen, types.Types[TINT], right) 3570 lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left) 3571 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TINT], lenAddr, len, s.mem()) 3572 case t.IsSlice(): 3573 if skip&skipLen == 0 { 3574 len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], right) 3575 lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left) 3576 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TINT], lenAddr, len, s.mem()) 3577 } 3578 if skip&skipCap == 0 { 3579 cap := s.newValue1(ssa.OpSliceCap, types.Types[TINT], right) 3580 capAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, 2*s.config.PtrSize, left) 3581 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TINT], capAddr, cap, s.mem()) 3582 } 3583 case t.IsInterface(): 3584 // itab field doesn't need a write barrier (even though it is a pointer). 3585 itab := s.newValue1(ssa.OpITab, s.f.Config.Types.BytePtr, right) 3586 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, types.Types[TUINTPTR], left, itab, s.mem()) 3587 case t.IsStruct(): 3588 n := t.NumFields() 3589 for i := 0; i < n; i++ { 3590 ft := t.FieldType(i) 3591 addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left) 3592 val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right) 3593 s.storeTypeScalars(ft, addr, val, 0) 3594 } 3595 case t.IsArray() && t.NumElem() == 0: 3596 // nothing 3597 case t.IsArray() && t.NumElem() == 1: 3598 s.storeTypeScalars(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right), 0) 3599 default: 3600 s.Fatalf("bad write barrier type %v", t) 3601 } 3602 } 3603 3604 // do *left = right for all pointer parts of t. 3605 func (s *state) storeTypePtrs(t *types.Type, left, right *ssa.Value) { 3606 switch { 3607 case t.IsPtrShaped(): 3608 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, left, right, s.mem()) 3609 case t.IsString(): 3610 ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, right) 3611 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, s.f.Config.Types.BytePtr, left, ptr, s.mem()) 3612 case t.IsSlice(): 3613 ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, right) 3614 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, s.f.Config.Types.BytePtr, left, ptr, s.mem()) 3615 case t.IsInterface(): 3616 // itab field is treated as a scalar. 3617 idata := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, right) 3618 idataAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.BytePtrPtr, s.config.PtrSize, left) 3619 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, s.f.Config.Types.BytePtr, idataAddr, idata, s.mem()) 3620 case t.IsStruct(): 3621 n := t.NumFields() 3622 for i := 0; i < n; i++ { 3623 ft := t.FieldType(i) 3624 if !types.Haspointers(ft) { 3625 continue 3626 } 3627 addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left) 3628 val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right) 3629 s.storeTypePtrs(ft, addr, val) 3630 } 3631 case t.IsArray() && t.NumElem() == 0: 3632 // nothing 3633 case t.IsArray() && t.NumElem() == 1: 3634 s.storeTypePtrs(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right)) 3635 default: 3636 s.Fatalf("bad write barrier type %v", t) 3637 } 3638 } 3639 3640 // slice computes the slice v[i:j:k] and returns ptr, len, and cap of result. 3641 // i,j,k may be nil, in which case they are set to their default value. 3642 // t is a slice, ptr to array, or string type. 3643 func (s *state) slice(t *types.Type, v, i, j, k *ssa.Value) (p, l, c *ssa.Value) { 3644 var elemtype *types.Type 3645 var ptrtype *types.Type 3646 var ptr *ssa.Value 3647 var len *ssa.Value 3648 var cap *ssa.Value 3649 zero := s.constInt(types.Types[TINT], 0) 3650 switch { 3651 case t.IsSlice(): 3652 elemtype = t.Elem() 3653 ptrtype = types.NewPtr(elemtype) 3654 ptr = s.newValue1(ssa.OpSlicePtr, ptrtype, v) 3655 len = s.newValue1(ssa.OpSliceLen, types.Types[TINT], v) 3656 cap = s.newValue1(ssa.OpSliceCap, types.Types[TINT], v) 3657 case t.IsString(): 3658 elemtype = types.Types[TUINT8] 3659 ptrtype = types.NewPtr(elemtype) 3660 ptr = s.newValue1(ssa.OpStringPtr, ptrtype, v) 3661 len = s.newValue1(ssa.OpStringLen, types.Types[TINT], v) 3662 cap = len 3663 case t.IsPtr(): 3664 if !t.Elem().IsArray() { 3665 s.Fatalf("bad ptr to array in slice %v\n", t) 3666 } 3667 elemtype = t.Elem().Elem() 3668 ptrtype = types.NewPtr(elemtype) 3669 s.nilCheck(v) 3670 ptr = v 3671 len = s.constInt(types.Types[TINT], t.Elem().NumElem()) 3672 cap = len 3673 default: 3674 s.Fatalf("bad type in slice %v\n", t) 3675 } 3676 3677 // Set default values 3678 if i == nil { 3679 i = zero 3680 } 3681 if j == nil { 3682 j = len 3683 } 3684 if k == nil { 3685 k = cap 3686 } 3687 3688 // Panic if slice indices are not in bounds. 3689 s.sliceBoundsCheck(i, j) 3690 if j != k { 3691 s.sliceBoundsCheck(j, k) 3692 } 3693 if k != cap { 3694 s.sliceBoundsCheck(k, cap) 3695 } 3696 3697 // Generate the following code assuming that indexes are in bounds. 3698 // The masking is to make sure that we don't generate a slice 3699 // that points to the next object in memory. 3700 // rlen = j - i 3701 // rcap = k - i 3702 // delta = i * elemsize 3703 // rptr = p + delta&mask(rcap) 3704 // result = (SliceMake rptr rlen rcap) 3705 // where mask(x) is 0 if x==0 and -1 if x>0. 3706 subOp := s.ssaOp(OSUB, types.Types[TINT]) 3707 mulOp := s.ssaOp(OMUL, types.Types[TINT]) 3708 andOp := s.ssaOp(OAND, types.Types[TINT]) 3709 rlen := s.newValue2(subOp, types.Types[TINT], j, i) 3710 var rcap *ssa.Value 3711 switch { 3712 case t.IsString(): 3713 // Capacity of the result is unimportant. However, we use 3714 // rcap to test if we've generated a zero-length slice. 3715 // Use length of strings for that. 3716 rcap = rlen 3717 case j == k: 3718 rcap = rlen 3719 default: 3720 rcap = s.newValue2(subOp, types.Types[TINT], k, i) 3721 } 3722 3723 var rptr *ssa.Value 3724 if (i.Op == ssa.OpConst64 || i.Op == ssa.OpConst32) && i.AuxInt == 0 { 3725 // No pointer arithmetic necessary. 3726 rptr = ptr 3727 } else { 3728 // delta = # of bytes to offset pointer by. 3729 delta := s.newValue2(mulOp, types.Types[TINT], i, s.constInt(types.Types[TINT], elemtype.Width)) 3730 // If we're slicing to the point where the capacity is zero, 3731 // zero out the delta. 3732 mask := s.newValue1(ssa.OpSlicemask, types.Types[TINT], rcap) 3733 delta = s.newValue2(andOp, types.Types[TINT], delta, mask) 3734 // Compute rptr = ptr + delta 3735 rptr = s.newValue2(ssa.OpAddPtr, ptrtype, ptr, delta) 3736 } 3737 3738 return rptr, rlen, rcap 3739 } 3740 3741 type u642fcvtTab struct { 3742 geq, cvt2F, and, rsh, or, add ssa.Op 3743 one func(*state, *types.Type, int64) *ssa.Value 3744 } 3745 3746 var u64_f64 u642fcvtTab = u642fcvtTab{ 3747 geq: ssa.OpGeq64, 3748 cvt2F: ssa.OpCvt64to64F, 3749 and: ssa.OpAnd64, 3750 rsh: ssa.OpRsh64Ux64, 3751 or: ssa.OpOr64, 3752 add: ssa.OpAdd64F, 3753 one: (*state).constInt64, 3754 } 3755 3756 var u64_f32 u642fcvtTab = u642fcvtTab{ 3757 geq: ssa.OpGeq64, 3758 cvt2F: ssa.OpCvt64to32F, 3759 and: ssa.OpAnd64, 3760 rsh: ssa.OpRsh64Ux64, 3761 or: ssa.OpOr64, 3762 add: ssa.OpAdd32F, 3763 one: (*state).constInt64, 3764 } 3765 3766 func (s *state) uint64Tofloat64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 3767 return s.uint64Tofloat(&u64_f64, n, x, ft, tt) 3768 } 3769 3770 func (s *state) uint64Tofloat32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 3771 return s.uint64Tofloat(&u64_f32, n, x, ft, tt) 3772 } 3773 3774 func (s *state) uint64Tofloat(cvttab *u642fcvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 3775 // if x >= 0 { 3776 // result = (floatY) x 3777 // } else { 3778 // y = uintX(x) ; y = x & 1 3779 // z = uintX(x) ; z = z >> 1 3780 // z = z >> 1 3781 // z = z | y 3782 // result = floatY(z) 3783 // result = result + result 3784 // } 3785 // 3786 // Code borrowed from old code generator. 3787 // What's going on: large 64-bit "unsigned" looks like 3788 // negative number to hardware's integer-to-float 3789 // conversion. However, because the mantissa is only 3790 // 63 bits, we don't need the LSB, so instead we do an 3791 // unsigned right shift (divide by two), convert, and 3792 // double. However, before we do that, we need to be 3793 // sure that we do not lose a "1" if that made the 3794 // difference in the resulting rounding. Therefore, we 3795 // preserve it, and OR (not ADD) it back in. The case 3796 // that matters is when the eleven discarded bits are 3797 // equal to 10000000001; that rounds up, and the 1 cannot 3798 // be lost else it would round down if the LSB of the 3799 // candidate mantissa is 0. 3800 cmp := s.newValue2(cvttab.geq, types.Types[TBOOL], x, s.zeroVal(ft)) 3801 b := s.endBlock() 3802 b.Kind = ssa.BlockIf 3803 b.SetControl(cmp) 3804 b.Likely = ssa.BranchLikely 3805 3806 bThen := s.f.NewBlock(ssa.BlockPlain) 3807 bElse := s.f.NewBlock(ssa.BlockPlain) 3808 bAfter := s.f.NewBlock(ssa.BlockPlain) 3809 3810 b.AddEdgeTo(bThen) 3811 s.startBlock(bThen) 3812 a0 := s.newValue1(cvttab.cvt2F, tt, x) 3813 s.vars[n] = a0 3814 s.endBlock() 3815 bThen.AddEdgeTo(bAfter) 3816 3817 b.AddEdgeTo(bElse) 3818 s.startBlock(bElse) 3819 one := cvttab.one(s, ft, 1) 3820 y := s.newValue2(cvttab.and, ft, x, one) 3821 z := s.newValue2(cvttab.rsh, ft, x, one) 3822 z = s.newValue2(cvttab.or, ft, z, y) 3823 a := s.newValue1(cvttab.cvt2F, tt, z) 3824 a1 := s.newValue2(cvttab.add, tt, a, a) 3825 s.vars[n] = a1 3826 s.endBlock() 3827 bElse.AddEdgeTo(bAfter) 3828 3829 s.startBlock(bAfter) 3830 return s.variable(n, n.Type) 3831 } 3832 3833 type u322fcvtTab struct { 3834 cvtI2F, cvtF2F ssa.Op 3835 } 3836 3837 var u32_f64 u322fcvtTab = u322fcvtTab{ 3838 cvtI2F: ssa.OpCvt32to64F, 3839 cvtF2F: ssa.OpCopy, 3840 } 3841 3842 var u32_f32 u322fcvtTab = u322fcvtTab{ 3843 cvtI2F: ssa.OpCvt32to32F, 3844 cvtF2F: ssa.OpCvt64Fto32F, 3845 } 3846 3847 func (s *state) uint32Tofloat64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 3848 return s.uint32Tofloat(&u32_f64, n, x, ft, tt) 3849 } 3850 3851 func (s *state) uint32Tofloat32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 3852 return s.uint32Tofloat(&u32_f32, n, x, ft, tt) 3853 } 3854 3855 func (s *state) uint32Tofloat(cvttab *u322fcvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 3856 // if x >= 0 { 3857 // result = floatY(x) 3858 // } else { 3859 // result = floatY(float64(x) + (1<<32)) 3860 // } 3861 cmp := s.newValue2(ssa.OpGeq32, types.Types[TBOOL], x, s.zeroVal(ft)) 3862 b := s.endBlock() 3863 b.Kind = ssa.BlockIf 3864 b.SetControl(cmp) 3865 b.Likely = ssa.BranchLikely 3866 3867 bThen := s.f.NewBlock(ssa.BlockPlain) 3868 bElse := s.f.NewBlock(ssa.BlockPlain) 3869 bAfter := s.f.NewBlock(ssa.BlockPlain) 3870 3871 b.AddEdgeTo(bThen) 3872 s.startBlock(bThen) 3873 a0 := s.newValue1(cvttab.cvtI2F, tt, x) 3874 s.vars[n] = a0 3875 s.endBlock() 3876 bThen.AddEdgeTo(bAfter) 3877 3878 b.AddEdgeTo(bElse) 3879 s.startBlock(bElse) 3880 a1 := s.newValue1(ssa.OpCvt32to64F, types.Types[TFLOAT64], x) 3881 twoToThe32 := s.constFloat64(types.Types[TFLOAT64], float64(1<<32)) 3882 a2 := s.newValue2(ssa.OpAdd64F, types.Types[TFLOAT64], a1, twoToThe32) 3883 a3 := s.newValue1(cvttab.cvtF2F, tt, a2) 3884 3885 s.vars[n] = a3 3886 s.endBlock() 3887 bElse.AddEdgeTo(bAfter) 3888 3889 s.startBlock(bAfter) 3890 return s.variable(n, n.Type) 3891 } 3892 3893 // referenceTypeBuiltin generates code for the len/cap builtins for maps and channels. 3894 func (s *state) referenceTypeBuiltin(n *Node, x *ssa.Value) *ssa.Value { 3895 if !n.Left.Type.IsMap() && !n.Left.Type.IsChan() { 3896 s.Fatalf("node must be a map or a channel") 3897 } 3898 // if n == nil { 3899 // return 0 3900 // } else { 3901 // // len 3902 // return *((*int)n) 3903 // // cap 3904 // return *(((*int)n)+1) 3905 // } 3906 lenType := n.Type 3907 nilValue := s.constNil(types.Types[TUINTPTR]) 3908 cmp := s.newValue2(ssa.OpEqPtr, types.Types[TBOOL], x, nilValue) 3909 b := s.endBlock() 3910 b.Kind = ssa.BlockIf 3911 b.SetControl(cmp) 3912 b.Likely = ssa.BranchUnlikely 3913 3914 bThen := s.f.NewBlock(ssa.BlockPlain) 3915 bElse := s.f.NewBlock(ssa.BlockPlain) 3916 bAfter := s.f.NewBlock(ssa.BlockPlain) 3917 3918 // length/capacity of a nil map/chan is zero 3919 b.AddEdgeTo(bThen) 3920 s.startBlock(bThen) 3921 s.vars[n] = s.zeroVal(lenType) 3922 s.endBlock() 3923 bThen.AddEdgeTo(bAfter) 3924 3925 b.AddEdgeTo(bElse) 3926 s.startBlock(bElse) 3927 if n.Op == OLEN { 3928 // length is stored in the first word for map/chan 3929 s.vars[n] = s.newValue2(ssa.OpLoad, lenType, x, s.mem()) 3930 } else if n.Op == OCAP { 3931 // capacity is stored in the second word for chan 3932 sw := s.newValue1I(ssa.OpOffPtr, lenType.PtrTo(), lenType.Width, x) 3933 s.vars[n] = s.newValue2(ssa.OpLoad, lenType, sw, s.mem()) 3934 } else { 3935 s.Fatalf("op must be OLEN or OCAP") 3936 } 3937 s.endBlock() 3938 bElse.AddEdgeTo(bAfter) 3939 3940 s.startBlock(bAfter) 3941 return s.variable(n, lenType) 3942 } 3943 3944 type f2uCvtTab struct { 3945 ltf, cvt2U, subf, or ssa.Op 3946 floatValue func(*state, *types.Type, float64) *ssa.Value 3947 intValue func(*state, *types.Type, int64) *ssa.Value 3948 cutoff uint64 3949 } 3950 3951 var f32_u64 f2uCvtTab = f2uCvtTab{ 3952 ltf: ssa.OpLess32F, 3953 cvt2U: ssa.OpCvt32Fto64, 3954 subf: ssa.OpSub32F, 3955 or: ssa.OpOr64, 3956 floatValue: (*state).constFloat32, 3957 intValue: (*state).constInt64, 3958 cutoff: 9223372036854775808, 3959 } 3960 3961 var f64_u64 f2uCvtTab = f2uCvtTab{ 3962 ltf: ssa.OpLess64F, 3963 cvt2U: ssa.OpCvt64Fto64, 3964 subf: ssa.OpSub64F, 3965 or: ssa.OpOr64, 3966 floatValue: (*state).constFloat64, 3967 intValue: (*state).constInt64, 3968 cutoff: 9223372036854775808, 3969 } 3970 3971 var f32_u32 f2uCvtTab = f2uCvtTab{ 3972 ltf: ssa.OpLess32F, 3973 cvt2U: ssa.OpCvt32Fto32, 3974 subf: ssa.OpSub32F, 3975 or: ssa.OpOr32, 3976 floatValue: (*state).constFloat32, 3977 intValue: func(s *state, t *types.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) }, 3978 cutoff: 2147483648, 3979 } 3980 3981 var f64_u32 f2uCvtTab = f2uCvtTab{ 3982 ltf: ssa.OpLess64F, 3983 cvt2U: ssa.OpCvt64Fto32, 3984 subf: ssa.OpSub64F, 3985 or: ssa.OpOr32, 3986 floatValue: (*state).constFloat64, 3987 intValue: func(s *state, t *types.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) }, 3988 cutoff: 2147483648, 3989 } 3990 3991 func (s *state) float32ToUint64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 3992 return s.floatToUint(&f32_u64, n, x, ft, tt) 3993 } 3994 func (s *state) float64ToUint64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 3995 return s.floatToUint(&f64_u64, n, x, ft, tt) 3996 } 3997 3998 func (s *state) float32ToUint32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 3999 return s.floatToUint(&f32_u32, n, x, ft, tt) 4000 } 4001 4002 func (s *state) float64ToUint32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 4003 return s.floatToUint(&f64_u32, n, x, ft, tt) 4004 } 4005 4006 func (s *state) floatToUint(cvttab *f2uCvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 4007 // cutoff:=1<<(intY_Size-1) 4008 // if x < floatX(cutoff) { 4009 // result = uintY(x) 4010 // } else { 4011 // y = x - floatX(cutoff) 4012 // z = uintY(y) 4013 // result = z | -(cutoff) 4014 // } 4015 cutoff := cvttab.floatValue(s, ft, float64(cvttab.cutoff)) 4016 cmp := s.newValue2(cvttab.ltf, types.Types[TBOOL], x, cutoff) 4017 b := s.endBlock() 4018 b.Kind = ssa.BlockIf 4019 b.SetControl(cmp) 4020 b.Likely = ssa.BranchLikely 4021 4022 bThen := s.f.NewBlock(ssa.BlockPlain) 4023 bElse := s.f.NewBlock(ssa.BlockPlain) 4024 bAfter := s.f.NewBlock(ssa.BlockPlain) 4025 4026 b.AddEdgeTo(bThen) 4027 s.startBlock(bThen) 4028 a0 := s.newValue1(cvttab.cvt2U, tt, x) 4029 s.vars[n] = a0 4030 s.endBlock() 4031 bThen.AddEdgeTo(bAfter) 4032 4033 b.AddEdgeTo(bElse) 4034 s.startBlock(bElse) 4035 y := s.newValue2(cvttab.subf, ft, x, cutoff) 4036 y = s.newValue1(cvttab.cvt2U, tt, y) 4037 z := cvttab.intValue(s, tt, int64(-cvttab.cutoff)) 4038 a1 := s.newValue2(cvttab.or, tt, y, z) 4039 s.vars[n] = a1 4040 s.endBlock() 4041 bElse.AddEdgeTo(bAfter) 4042 4043 s.startBlock(bAfter) 4044 return s.variable(n, n.Type) 4045 } 4046 4047 // dottype generates SSA for a type assertion node. 4048 // commaok indicates whether to panic or return a bool. 4049 // If commaok is false, resok will be nil. 4050 func (s *state) dottype(n *Node, commaok bool) (res, resok *ssa.Value) { 4051 iface := s.expr(n.Left) // input interface 4052 target := s.expr(n.Right) // target type 4053 byteptr := s.f.Config.Types.BytePtr 4054 4055 if n.Type.IsInterface() { 4056 if n.Type.IsEmptyInterface() { 4057 // Converting to an empty interface. 4058 // Input could be an empty or nonempty interface. 4059 if Debug_typeassert > 0 { 4060 Warnl(n.Pos, "type assertion inlined") 4061 } 4062 4063 // Get itab/type field from input. 4064 itab := s.newValue1(ssa.OpITab, byteptr, iface) 4065 // Conversion succeeds iff that field is not nil. 4066 cond := s.newValue2(ssa.OpNeqPtr, types.Types[TBOOL], itab, s.constNil(byteptr)) 4067 4068 if n.Left.Type.IsEmptyInterface() && commaok { 4069 // Converting empty interface to empty interface with ,ok is just a nil check. 4070 return iface, cond 4071 } 4072 4073 // Branch on nilness. 4074 b := s.endBlock() 4075 b.Kind = ssa.BlockIf 4076 b.SetControl(cond) 4077 b.Likely = ssa.BranchLikely 4078 bOk := s.f.NewBlock(ssa.BlockPlain) 4079 bFail := s.f.NewBlock(ssa.BlockPlain) 4080 b.AddEdgeTo(bOk) 4081 b.AddEdgeTo(bFail) 4082 4083 if !commaok { 4084 // On failure, panic by calling panicnildottype. 4085 s.startBlock(bFail) 4086 s.rtcall(panicnildottype, false, nil, target) 4087 4088 // On success, return (perhaps modified) input interface. 4089 s.startBlock(bOk) 4090 if n.Left.Type.IsEmptyInterface() { 4091 res = iface // Use input interface unchanged. 4092 return 4093 } 4094 // Load type out of itab, build interface with existing idata. 4095 off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab) 4096 typ := s.newValue2(ssa.OpLoad, byteptr, off, s.mem()) 4097 idata := s.newValue1(ssa.OpIData, n.Type, iface) 4098 res = s.newValue2(ssa.OpIMake, n.Type, typ, idata) 4099 return 4100 } 4101 4102 s.startBlock(bOk) 4103 // nonempty -> empty 4104 // Need to load type from itab 4105 off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab) 4106 s.vars[&typVar] = s.newValue2(ssa.OpLoad, byteptr, off, s.mem()) 4107 s.endBlock() 4108 4109 // itab is nil, might as well use that as the nil result. 4110 s.startBlock(bFail) 4111 s.vars[&typVar] = itab 4112 s.endBlock() 4113 4114 // Merge point. 4115 bEnd := s.f.NewBlock(ssa.BlockPlain) 4116 bOk.AddEdgeTo(bEnd) 4117 bFail.AddEdgeTo(bEnd) 4118 s.startBlock(bEnd) 4119 idata := s.newValue1(ssa.OpIData, n.Type, iface) 4120 res = s.newValue2(ssa.OpIMake, n.Type, s.variable(&typVar, byteptr), idata) 4121 resok = cond 4122 delete(s.vars, &typVar) 4123 return 4124 } 4125 // converting to a nonempty interface needs a runtime call. 4126 if Debug_typeassert > 0 { 4127 Warnl(n.Pos, "type assertion not inlined") 4128 } 4129 if n.Left.Type.IsEmptyInterface() { 4130 if commaok { 4131 call := s.rtcall(assertE2I2, true, []*types.Type{n.Type, types.Types[TBOOL]}, target, iface) 4132 return call[0], call[1] 4133 } 4134 return s.rtcall(assertE2I, true, []*types.Type{n.Type}, target, iface)[0], nil 4135 } 4136 if commaok { 4137 call := s.rtcall(assertI2I2, true, []*types.Type{n.Type, types.Types[TBOOL]}, target, iface) 4138 return call[0], call[1] 4139 } 4140 return s.rtcall(assertI2I, true, []*types.Type{n.Type}, target, iface)[0], nil 4141 } 4142 4143 if Debug_typeassert > 0 { 4144 Warnl(n.Pos, "type assertion inlined") 4145 } 4146 4147 // Converting to a concrete type. 4148 direct := isdirectiface(n.Type) 4149 itab := s.newValue1(ssa.OpITab, byteptr, iface) // type word of interface 4150 if Debug_typeassert > 0 { 4151 Warnl(n.Pos, "type assertion inlined") 4152 } 4153 var targetITab *ssa.Value 4154 if n.Left.Type.IsEmptyInterface() { 4155 // Looking for pointer to target type. 4156 targetITab = target 4157 } else { 4158 // Looking for pointer to itab for target type and source interface. 4159 targetITab = s.expr(n.List.First()) 4160 } 4161 4162 var tmp *Node // temporary for use with large types 4163 var addr *ssa.Value // address of tmp 4164 if commaok && !canSSAType(n.Type) { 4165 // unSSAable type, use temporary. 4166 // TODO: get rid of some of these temporaries. 4167 tmp = tempAt(n.Pos, s.curfn, n.Type) 4168 addr = s.addr(tmp, false) 4169 s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, tmp, s.mem()) 4170 } 4171 4172 cond := s.newValue2(ssa.OpEqPtr, types.Types[TBOOL], itab, targetITab) 4173 b := s.endBlock() 4174 b.Kind = ssa.BlockIf 4175 b.SetControl(cond) 4176 b.Likely = ssa.BranchLikely 4177 4178 bOk := s.f.NewBlock(ssa.BlockPlain) 4179 bFail := s.f.NewBlock(ssa.BlockPlain) 4180 b.AddEdgeTo(bOk) 4181 b.AddEdgeTo(bFail) 4182 4183 if !commaok { 4184 // on failure, panic by calling panicdottype 4185 s.startBlock(bFail) 4186 taddr := s.expr(n.Right.Right) 4187 if n.Left.Type.IsEmptyInterface() { 4188 s.rtcall(panicdottypeE, false, nil, itab, target, taddr) 4189 } else { 4190 s.rtcall(panicdottypeI, false, nil, itab, target, taddr) 4191 } 4192 4193 // on success, return data from interface 4194 s.startBlock(bOk) 4195 if direct { 4196 return s.newValue1(ssa.OpIData, n.Type, iface), nil 4197 } 4198 p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface) 4199 return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()), nil 4200 } 4201 4202 // commaok is the more complicated case because we have 4203 // a control flow merge point. 4204 bEnd := s.f.NewBlock(ssa.BlockPlain) 4205 // Note that we need a new valVar each time (unlike okVar where we can 4206 // reuse the variable) because it might have a different type every time. 4207 valVar := &Node{Op: ONAME, Sym: &types.Sym{Name: "val"}} 4208 4209 // type assertion succeeded 4210 s.startBlock(bOk) 4211 if tmp == nil { 4212 if direct { 4213 s.vars[valVar] = s.newValue1(ssa.OpIData, n.Type, iface) 4214 } else { 4215 p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface) 4216 s.vars[valVar] = s.newValue2(ssa.OpLoad, n.Type, p, s.mem()) 4217 } 4218 } else { 4219 p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface) 4220 store := s.newValue3I(ssa.OpMove, types.TypeMem, n.Type.Size(), addr, p, s.mem()) 4221 store.Aux = n.Type 4222 s.vars[&memVar] = store 4223 } 4224 s.vars[&okVar] = s.constBool(true) 4225 s.endBlock() 4226 bOk.AddEdgeTo(bEnd) 4227 4228 // type assertion failed 4229 s.startBlock(bFail) 4230 if tmp == nil { 4231 s.vars[valVar] = s.zeroVal(n.Type) 4232 } else { 4233 store := s.newValue2I(ssa.OpZero, types.TypeMem, n.Type.Size(), addr, s.mem()) 4234 store.Aux = n.Type 4235 s.vars[&memVar] = store 4236 } 4237 s.vars[&okVar] = s.constBool(false) 4238 s.endBlock() 4239 bFail.AddEdgeTo(bEnd) 4240 4241 // merge point 4242 s.startBlock(bEnd) 4243 if tmp == nil { 4244 res = s.variable(valVar, n.Type) 4245 delete(s.vars, valVar) 4246 } else { 4247 res = s.newValue2(ssa.OpLoad, n.Type, addr, s.mem()) 4248 s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, types.TypeMem, tmp, s.mem()) 4249 } 4250 resok = s.variable(&okVar, types.Types[TBOOL]) 4251 delete(s.vars, &okVar) 4252 return res, resok 4253 } 4254 4255 // variable returns the value of a variable at the current location. 4256 func (s *state) variable(name *Node, t *types.Type) *ssa.Value { 4257 v := s.vars[name] 4258 if v != nil { 4259 return v 4260 } 4261 v = s.fwdVars[name] 4262 if v != nil { 4263 return v 4264 } 4265 4266 if s.curBlock == s.f.Entry { 4267 // No variable should be live at entry. 4268 s.Fatalf("Value live at entry. It shouldn't be. func %s, node %v, value %v", s.f.Name, name, v) 4269 } 4270 // Make a FwdRef, which records a value that's live on block input. 4271 // We'll find the matching definition as part of insertPhis. 4272 v = s.newValue0A(ssa.OpFwdRef, t, name) 4273 s.fwdVars[name] = v 4274 s.addNamedValue(name, v) 4275 return v 4276 } 4277 4278 func (s *state) mem() *ssa.Value { 4279 return s.variable(&memVar, types.TypeMem) 4280 } 4281 4282 func (s *state) addNamedValue(n *Node, v *ssa.Value) { 4283 if n.Class() == Pxxx { 4284 // Don't track our dummy nodes (&memVar etc.). 4285 return 4286 } 4287 if n.IsAutoTmp() { 4288 // Don't track temporary variables. 4289 return 4290 } 4291 if n.Class() == PPARAMOUT { 4292 // Don't track named output values. This prevents return values 4293 // from being assigned too early. See #14591 and #14762. TODO: allow this. 4294 return 4295 } 4296 if n.Class() == PAUTO && n.Xoffset != 0 { 4297 s.Fatalf("AUTO var with offset %v %d", n, n.Xoffset) 4298 } 4299 loc := ssa.LocalSlot{N: n, Type: n.Type, Off: 0} 4300 values, ok := s.f.NamedValues[loc] 4301 if !ok { 4302 s.f.Names = append(s.f.Names, loc) 4303 } 4304 s.f.NamedValues[loc] = append(values, v) 4305 } 4306 4307 // Branch is an unresolved branch. 4308 type Branch struct { 4309 P *obj.Prog // branch instruction 4310 B *ssa.Block // target 4311 } 4312 4313 // SSAGenState contains state needed during Prog generation. 4314 type SSAGenState struct { 4315 pp *Progs 4316 4317 // Branches remembers all the branch instructions we've seen 4318 // and where they would like to go. 4319 Branches []Branch 4320 4321 // bstart remembers where each block starts (indexed by block ID) 4322 bstart []*obj.Prog 4323 4324 // 387 port: maps from SSE registers (REG_X?) to 387 registers (REG_F?) 4325 SSEto387 map[int16]int16 4326 // Some architectures require a 64-bit temporary for FP-related register shuffling. Examples include x86-387, PPC, and Sparc V8. 4327 ScratchFpMem *Node 4328 4329 maxarg int64 // largest frame size for arguments to calls made by the function 4330 4331 // Map from GC safe points to stack map index, generated by 4332 // liveness analysis. 4333 stackMapIndex map[*ssa.Value]int 4334 } 4335 4336 // Prog appends a new Prog. 4337 func (s *SSAGenState) Prog(as obj.As) *obj.Prog { 4338 return s.pp.Prog(as) 4339 } 4340 4341 // Pc returns the current Prog. 4342 func (s *SSAGenState) Pc() *obj.Prog { 4343 return s.pp.next 4344 } 4345 4346 // SetPos sets the current source position. 4347 func (s *SSAGenState) SetPos(pos src.XPos) { 4348 s.pp.pos = pos 4349 } 4350 4351 // DebugFriendlySetPos sets the position subject to heuristics 4352 // that reduce "jumpy" line number churn when debugging. 4353 // Spill/fill/copy instructions from the register allocator, 4354 // phi functions, and instructions with a no-pos position 4355 // are examples of instructions that can cause churn. 4356 func (s *SSAGenState) DebugFriendlySetPosFrom(v *ssa.Value) { 4357 // The two choices here are either to leave lineno unchanged, 4358 // or to explicitly set it to src.NoXPos. Leaving it unchanged 4359 // (reusing the preceding line number) produces slightly better- 4360 // looking assembly language output from the compiler, and is 4361 // expected by some already-existing tests. 4362 // The debug information appears to be the same in either case 4363 switch v.Op { 4364 case ssa.OpPhi, ssa.OpCopy, ssa.OpLoadReg, ssa.OpStoreReg: 4365 // leave the position unchanged from beginning of block 4366 // or previous line number. 4367 default: 4368 if v.Pos != src.NoXPos { 4369 s.SetPos(v.Pos) 4370 } 4371 } 4372 } 4373 4374 // genssa appends entries to pp for each instruction in f. 4375 func genssa(f *ssa.Func, pp *Progs) { 4376 var s SSAGenState 4377 4378 e := f.Frontend().(*ssafn) 4379 4380 // Generate GC bitmaps, except if the stack is too large, 4381 // in which compilation will fail later anyway (issue 20529). 4382 if e.stksize < maxStackSize { 4383 s.stackMapIndex = liveness(e, f) 4384 } 4385 4386 // Remember where each block starts. 4387 s.bstart = make([]*obj.Prog, f.NumBlocks()) 4388 s.pp = pp 4389 var valueProgs map[*obj.Prog]*ssa.Value 4390 var blockProgs map[*obj.Prog]*ssa.Block 4391 var logProgs = e.log 4392 if logProgs { 4393 valueProgs = make(map[*obj.Prog]*ssa.Value, f.NumValues()) 4394 blockProgs = make(map[*obj.Prog]*ssa.Block, f.NumBlocks()) 4395 f.Logf("genssa %s\n", f.Name) 4396 blockProgs[s.pp.next] = f.Blocks[0] 4397 } 4398 4399 if thearch.Use387 { 4400 s.SSEto387 = map[int16]int16{} 4401 } 4402 4403 s.ScratchFpMem = e.scratchFpMem 4404 4405 // Emit basic blocks 4406 for i, b := range f.Blocks { 4407 s.bstart[b.ID] = s.pp.next 4408 // Emit values in block 4409 thearch.SSAMarkMoves(&s, b) 4410 for _, v := range b.Values { 4411 x := s.pp.next 4412 s.DebugFriendlySetPosFrom(v) 4413 switch v.Op { 4414 case ssa.OpInitMem: 4415 // memory arg needs no code 4416 case ssa.OpArg: 4417 // input args need no code 4418 case ssa.OpSP, ssa.OpSB: 4419 // nothing to do 4420 case ssa.OpSelect0, ssa.OpSelect1: 4421 // nothing to do 4422 case ssa.OpGetG: 4423 // nothing to do when there's a g register, 4424 // and checkLower complains if there's not 4425 case ssa.OpVarDef, ssa.OpVarLive, ssa.OpKeepAlive: 4426 // nothing to do; already used by liveness 4427 case ssa.OpVarKill: 4428 // Zero variable if it is ambiguously live. 4429 // After the VARKILL anything this variable references 4430 // might be collected. If it were to become live again later, 4431 // the GC will see references to already-collected objects. 4432 // See issue 20029. 4433 n := v.Aux.(*Node) 4434 if n.Name.Needzero() { 4435 if n.Class() != PAUTO { 4436 v.Fatalf("zero of variable which isn't PAUTO %v", n) 4437 } 4438 if n.Type.Size()%int64(Widthptr) != 0 { 4439 v.Fatalf("zero of variable not a multiple of ptr size %v", n) 4440 } 4441 thearch.ZeroAuto(s.pp, n) 4442 } 4443 case ssa.OpPhi: 4444 CheckLoweredPhi(v) 4445 4446 default: 4447 // let the backend handle it 4448 thearch.SSAGenValue(&s, v) 4449 } 4450 4451 if logProgs { 4452 for ; x != s.pp.next; x = x.Link { 4453 valueProgs[x] = v 4454 } 4455 } 4456 } 4457 // Emit control flow instructions for block 4458 var next *ssa.Block 4459 if i < len(f.Blocks)-1 && Debug['N'] == 0 { 4460 // If -N, leave next==nil so every block with successors 4461 // ends in a JMP (except call blocks - plive doesn't like 4462 // select{send,recv} followed by a JMP call). Helps keep 4463 // line numbers for otherwise empty blocks. 4464 next = f.Blocks[i+1] 4465 } 4466 x := s.pp.next 4467 s.SetPos(b.Pos) 4468 thearch.SSAGenBlock(&s, b, next) 4469 if logProgs { 4470 for ; x != s.pp.next; x = x.Link { 4471 blockProgs[x] = b 4472 } 4473 } 4474 } 4475 4476 // Resolve branches 4477 for _, br := range s.Branches { 4478 br.P.To.Val = s.bstart[br.B.ID] 4479 } 4480 4481 if logProgs { 4482 for p := pp.Text; p != nil; p = p.Link { 4483 var s string 4484 if v, ok := valueProgs[p]; ok { 4485 s = v.String() 4486 } else if b, ok := blockProgs[p]; ok { 4487 s = b.String() 4488 } else { 4489 s = " " // most value and branch strings are 2-3 characters long 4490 } 4491 f.Logf("%s\t%s\n", s, p) 4492 } 4493 if f.HTMLWriter != nil { 4494 // LineHist is defunct now - this code won't do 4495 // anything. 4496 // TODO: fix this (ideally without a global variable) 4497 // saved := pp.Text.Ctxt.LineHist.PrintFilenameOnly 4498 // pp.Text.Ctxt.LineHist.PrintFilenameOnly = true 4499 var buf bytes.Buffer 4500 buf.WriteString("<code>") 4501 buf.WriteString("<dl class=\"ssa-gen\">") 4502 for p := pp.Text; p != nil; p = p.Link { 4503 buf.WriteString("<dt class=\"ssa-prog-src\">") 4504 if v, ok := valueProgs[p]; ok { 4505 buf.WriteString(v.HTML()) 4506 } else if b, ok := blockProgs[p]; ok { 4507 buf.WriteString(b.HTML()) 4508 } 4509 buf.WriteString("</dt>") 4510 buf.WriteString("<dd class=\"ssa-prog\">") 4511 buf.WriteString(html.EscapeString(p.String())) 4512 buf.WriteString("</dd>") 4513 buf.WriteString("</li>") 4514 } 4515 buf.WriteString("</dl>") 4516 buf.WriteString("</code>") 4517 f.HTMLWriter.WriteColumn("genssa", buf.String()) 4518 // pp.Text.Ctxt.LineHist.PrintFilenameOnly = saved 4519 } 4520 } 4521 4522 defframe(&s, e) 4523 if Debug['f'] != 0 { 4524 frame(0) 4525 } 4526 4527 f.HTMLWriter.Close() 4528 f.HTMLWriter = nil 4529 } 4530 4531 func defframe(s *SSAGenState, e *ssafn) { 4532 pp := s.pp 4533 4534 frame := Rnd(s.maxarg+e.stksize, int64(Widthreg)) 4535 if thearch.PadFrame != nil { 4536 frame = thearch.PadFrame(frame) 4537 } 4538 4539 // Fill in argument and frame size. 4540 pp.Text.To.Type = obj.TYPE_TEXTSIZE 4541 pp.Text.To.Val = int32(Rnd(e.curfn.Type.ArgWidth(), int64(Widthreg))) 4542 pp.Text.To.Offset = frame 4543 4544 // Insert code to zero ambiguously live variables so that the 4545 // garbage collector only sees initialized values when it 4546 // looks for pointers. 4547 p := pp.Text 4548 var lo, hi int64 4549 4550 // Opaque state for backend to use. Current backends use it to 4551 // keep track of which helper registers have been zeroed. 4552 var state uint32 4553 4554 // Iterate through declarations. They are sorted in decreasing Xoffset order. 4555 for _, n := range e.curfn.Func.Dcl { 4556 if !n.Name.Needzero() { 4557 continue 4558 } 4559 if n.Class() != PAUTO { 4560 Fatalf("needzero class %d", n.Class()) 4561 } 4562 if n.Type.Size()%int64(Widthptr) != 0 || n.Xoffset%int64(Widthptr) != 0 || n.Type.Size() == 0 { 4563 Fatalf("var %L has size %d offset %d", n, n.Type.Size(), n.Xoffset) 4564 } 4565 4566 if lo != hi && n.Xoffset+n.Type.Size() >= lo-int64(2*Widthreg) { 4567 // Merge with range we already have. 4568 lo = n.Xoffset 4569 continue 4570 } 4571 4572 // Zero old range 4573 p = thearch.ZeroRange(pp, p, frame+lo, hi-lo, &state) 4574 4575 // Set new range. 4576 lo = n.Xoffset 4577 hi = lo + n.Type.Size() 4578 } 4579 4580 // Zero final range. 4581 thearch.ZeroRange(pp, p, frame+lo, hi-lo, &state) 4582 } 4583 4584 type FloatingEQNEJump struct { 4585 Jump obj.As 4586 Index int 4587 } 4588 4589 func (s *SSAGenState) oneFPJump(b *ssa.Block, jumps *FloatingEQNEJump) { 4590 p := s.Prog(jumps.Jump) 4591 p.To.Type = obj.TYPE_BRANCH 4592 to := jumps.Index 4593 s.Branches = append(s.Branches, Branch{p, b.Succs[to].Block()}) 4594 } 4595 4596 func (s *SSAGenState) FPJump(b, next *ssa.Block, jumps *[2][2]FloatingEQNEJump) { 4597 switch next { 4598 case b.Succs[0].Block(): 4599 s.oneFPJump(b, &jumps[0][0]) 4600 s.oneFPJump(b, &jumps[0][1]) 4601 case b.Succs[1].Block(): 4602 s.oneFPJump(b, &jumps[1][0]) 4603 s.oneFPJump(b, &jumps[1][1]) 4604 default: 4605 s.oneFPJump(b, &jumps[1][0]) 4606 s.oneFPJump(b, &jumps[1][1]) 4607 q := s.Prog(obj.AJMP) 4608 q.To.Type = obj.TYPE_BRANCH 4609 s.Branches = append(s.Branches, Branch{q, b.Succs[1].Block()}) 4610 } 4611 } 4612 4613 func AuxOffset(v *ssa.Value) (offset int64) { 4614 if v.Aux == nil { 4615 return 0 4616 } 4617 switch sym := v.Aux.(type) { 4618 4619 case *ssa.AutoSymbol: 4620 n := sym.Node.(*Node) 4621 return n.Xoffset 4622 } 4623 return 0 4624 } 4625 4626 // AddAux adds the offset in the aux fields (AuxInt and Aux) of v to a. 4627 func AddAux(a *obj.Addr, v *ssa.Value) { 4628 AddAux2(a, v, v.AuxInt) 4629 } 4630 func AddAux2(a *obj.Addr, v *ssa.Value, offset int64) { 4631 if a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR { 4632 v.Fatalf("bad AddAux addr %v", a) 4633 } 4634 // add integer offset 4635 a.Offset += offset 4636 4637 // If no additional symbol offset, we're done. 4638 if v.Aux == nil { 4639 return 4640 } 4641 // Add symbol's offset from its base register. 4642 switch sym := v.Aux.(type) { 4643 case *ssa.ExternSymbol: 4644 a.Name = obj.NAME_EXTERN 4645 a.Sym = sym.Sym 4646 case *ssa.ArgSymbol: 4647 n := sym.Node.(*Node) 4648 a.Name = obj.NAME_PARAM 4649 a.Sym = n.Orig.Sym.Linksym() 4650 a.Offset += n.Xoffset 4651 case *ssa.AutoSymbol: 4652 n := sym.Node.(*Node) 4653 a.Name = obj.NAME_AUTO 4654 a.Sym = n.Sym.Linksym() 4655 a.Offset += n.Xoffset 4656 default: 4657 v.Fatalf("aux in %s not implemented %#v", v, v.Aux) 4658 } 4659 } 4660 4661 // extendIndex extends v to a full int width. 4662 // panic using the given function if v does not fit in an int (only on 32-bit archs). 4663 func (s *state) extendIndex(v *ssa.Value, panicfn *obj.LSym) *ssa.Value { 4664 size := v.Type.Size() 4665 if size == s.config.PtrSize { 4666 return v 4667 } 4668 if size > s.config.PtrSize { 4669 // truncate 64-bit indexes on 32-bit pointer archs. Test the 4670 // high word and branch to out-of-bounds failure if it is not 0. 4671 if Debug['B'] == 0 { 4672 hi := s.newValue1(ssa.OpInt64Hi, types.Types[TUINT32], v) 4673 cmp := s.newValue2(ssa.OpEq32, types.Types[TBOOL], hi, s.constInt32(types.Types[TUINT32], 0)) 4674 s.check(cmp, panicfn) 4675 } 4676 return s.newValue1(ssa.OpTrunc64to32, types.Types[TINT], v) 4677 } 4678 4679 // Extend value to the required size 4680 var op ssa.Op 4681 if v.Type.IsSigned() { 4682 switch 10*size + s.config.PtrSize { 4683 case 14: 4684 op = ssa.OpSignExt8to32 4685 case 18: 4686 op = ssa.OpSignExt8to64 4687 case 24: 4688 op = ssa.OpSignExt16to32 4689 case 28: 4690 op = ssa.OpSignExt16to64 4691 case 48: 4692 op = ssa.OpSignExt32to64 4693 default: 4694 s.Fatalf("bad signed index extension %s", v.Type) 4695 } 4696 } else { 4697 switch 10*size + s.config.PtrSize { 4698 case 14: 4699 op = ssa.OpZeroExt8to32 4700 case 18: 4701 op = ssa.OpZeroExt8to64 4702 case 24: 4703 op = ssa.OpZeroExt16to32 4704 case 28: 4705 op = ssa.OpZeroExt16to64 4706 case 48: 4707 op = ssa.OpZeroExt32to64 4708 default: 4709 s.Fatalf("bad unsigned index extension %s", v.Type) 4710 } 4711 } 4712 return s.newValue1(op, types.Types[TINT], v) 4713 } 4714 4715 // CheckLoweredPhi checks that regalloc and stackalloc correctly handled phi values. 4716 // Called during ssaGenValue. 4717 func CheckLoweredPhi(v *ssa.Value) { 4718 if v.Op != ssa.OpPhi { 4719 v.Fatalf("CheckLoweredPhi called with non-phi value: %v", v.LongString()) 4720 } 4721 if v.Type.IsMemory() { 4722 return 4723 } 4724 f := v.Block.Func 4725 loc := f.RegAlloc[v.ID] 4726 for _, a := range v.Args { 4727 if aloc := f.RegAlloc[a.ID]; aloc != loc { // TODO: .Equal() instead? 4728 v.Fatalf("phi arg at different location than phi: %v @ %v, but arg %v @ %v\n%s\n", v, loc, a, aloc, v.Block.Func) 4729 } 4730 } 4731 } 4732 4733 // CheckLoweredGetClosurePtr checks that v is the first instruction in the function's entry block. 4734 // The output of LoweredGetClosurePtr is generally hardwired to the correct register. 4735 // That register contains the closure pointer on closure entry. 4736 func CheckLoweredGetClosurePtr(v *ssa.Value) { 4737 entry := v.Block.Func.Entry 4738 if entry != v.Block || entry.Values[0] != v { 4739 Fatalf("in %s, badly placed LoweredGetClosurePtr: %v %v", v.Block.Func.Name, v.Block, v) 4740 } 4741 } 4742 4743 // AutoVar returns a *Node and int64 representing the auto variable and offset within it 4744 // where v should be spilled. 4745 func AutoVar(v *ssa.Value) (*Node, int64) { 4746 loc := v.Block.Func.RegAlloc[v.ID].(ssa.LocalSlot) 4747 if v.Type.Size() > loc.Type.Size() { 4748 v.Fatalf("spill/restore type %s doesn't fit in slot type %s", v.Type, loc.Type) 4749 } 4750 return loc.N.(*Node), loc.Off 4751 } 4752 4753 func AddrAuto(a *obj.Addr, v *ssa.Value) { 4754 n, off := AutoVar(v) 4755 a.Type = obj.TYPE_MEM 4756 a.Sym = n.Sym.Linksym() 4757 a.Reg = int16(thearch.REGSP) 4758 a.Offset = n.Xoffset + off 4759 if n.Class() == PPARAM || n.Class() == PPARAMOUT { 4760 a.Name = obj.NAME_PARAM 4761 } else { 4762 a.Name = obj.NAME_AUTO 4763 } 4764 } 4765 4766 func (s *SSAGenState) AddrScratch(a *obj.Addr) { 4767 if s.ScratchFpMem == nil { 4768 panic("no scratch memory available; forgot to declare usesScratch for Op?") 4769 } 4770 a.Type = obj.TYPE_MEM 4771 a.Name = obj.NAME_AUTO 4772 a.Sym = s.ScratchFpMem.Sym.Linksym() 4773 a.Reg = int16(thearch.REGSP) 4774 a.Offset = s.ScratchFpMem.Xoffset 4775 } 4776 4777 func (s *SSAGenState) Call(v *ssa.Value) *obj.Prog { 4778 idx, ok := s.stackMapIndex[v] 4779 if !ok { 4780 Fatalf("missing stack map index for %v", v.LongString()) 4781 } 4782 p := s.Prog(obj.APCDATA) 4783 Addrconst(&p.From, objabi.PCDATA_StackMapIndex) 4784 Addrconst(&p.To, int64(idx)) 4785 4786 if sym, _ := v.Aux.(*obj.LSym); sym == Deferreturn { 4787 // Deferred calls will appear to be returning to 4788 // the CALL deferreturn(SB) that we are about to emit. 4789 // However, the stack trace code will show the line 4790 // of the instruction byte before the return PC. 4791 // To avoid that being an unrelated instruction, 4792 // insert an actual hardware NOP that will have the right line number. 4793 // This is different from obj.ANOP, which is a virtual no-op 4794 // that doesn't make it into the instruction stream. 4795 thearch.Ginsnop(s.pp) 4796 } 4797 4798 p = s.Prog(obj.ACALL) 4799 if sym, ok := v.Aux.(*obj.LSym); ok { 4800 p.To.Type = obj.TYPE_MEM 4801 p.To.Name = obj.NAME_EXTERN 4802 p.To.Sym = sym 4803 } else { 4804 // TODO(mdempsky): Can these differences be eliminated? 4805 switch thearch.LinkArch.Family { 4806 case sys.AMD64, sys.I386, sys.PPC64, sys.S390X: 4807 p.To.Type = obj.TYPE_REG 4808 case sys.ARM, sys.ARM64, sys.MIPS, sys.MIPS64: 4809 p.To.Type = obj.TYPE_MEM 4810 default: 4811 Fatalf("unknown indirect call family") 4812 } 4813 p.To.Reg = v.Args[0].Reg() 4814 } 4815 if s.maxarg < v.AuxInt { 4816 s.maxarg = v.AuxInt 4817 } 4818 return p 4819 } 4820 4821 // fieldIdx finds the index of the field referred to by the ODOT node n. 4822 func fieldIdx(n *Node) int { 4823 t := n.Left.Type 4824 f := n.Sym 4825 if !t.IsStruct() { 4826 panic("ODOT's LHS is not a struct") 4827 } 4828 4829 var i int 4830 for _, t1 := range t.Fields().Slice() { 4831 if t1.Sym != f { 4832 i++ 4833 continue 4834 } 4835 if t1.Offset != n.Xoffset { 4836 panic("field offset doesn't match") 4837 } 4838 return i 4839 } 4840 panic(fmt.Sprintf("can't find field in expr %v\n", n)) 4841 4842 // TODO: keep the result of this function somewhere in the ODOT Node 4843 // so we don't have to recompute it each time we need it. 4844 } 4845 4846 // ssafn holds frontend information about a function that the backend is processing. 4847 // It also exports a bunch of compiler services for the ssa backend. 4848 type ssafn struct { 4849 curfn *Node 4850 strings map[string]interface{} // map from constant string to data symbols 4851 scratchFpMem *Node // temp for floating point register / memory moves on some architectures 4852 stksize int64 // stack size for current frame 4853 stkptrsize int64 // prefix of stack containing pointers 4854 log bool 4855 } 4856 4857 // StringData returns a symbol (a *types.Sym wrapped in an interface) which 4858 // is the data component of a global string constant containing s. 4859 func (e *ssafn) StringData(s string) interface{} { 4860 if aux, ok := e.strings[s]; ok { 4861 return aux 4862 } 4863 if e.strings == nil { 4864 e.strings = make(map[string]interface{}) 4865 } 4866 data := stringsym(s) 4867 aux := &ssa.ExternSymbol{Sym: data} 4868 e.strings[s] = aux 4869 return aux 4870 } 4871 4872 func (e *ssafn) Auto(pos src.XPos, t *types.Type) ssa.GCNode { 4873 n := tempAt(pos, e.curfn, t) // Note: adds new auto to e.curfn.Func.Dcl list 4874 return n 4875 } 4876 4877 func (e *ssafn) SplitString(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) { 4878 n := name.N.(*Node) 4879 ptrType := types.NewPtr(types.Types[TUINT8]) 4880 lenType := types.Types[TINT] 4881 if n.Class() == PAUTO && !n.Addrtaken() { 4882 // Split this string up into two separate variables. 4883 p := e.namedAuto(n.Sym.Name+".ptr", ptrType, n.Pos) 4884 l := e.namedAuto(n.Sym.Name+".len", lenType, n.Pos) 4885 return ssa.LocalSlot{N: p, Type: ptrType, Off: 0}, ssa.LocalSlot{N: l, Type: lenType, Off: 0} 4886 } 4887 // Return the two parts of the larger variable. 4888 return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off}, ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)} 4889 } 4890 4891 func (e *ssafn) SplitInterface(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) { 4892 n := name.N.(*Node) 4893 t := types.NewPtr(types.Types[TUINT8]) 4894 if n.Class() == PAUTO && !n.Addrtaken() { 4895 // Split this interface up into two separate variables. 4896 f := ".itab" 4897 if n.Type.IsEmptyInterface() { 4898 f = ".type" 4899 } 4900 c := e.namedAuto(n.Sym.Name+f, t, n.Pos) 4901 d := e.namedAuto(n.Sym.Name+".data", t, n.Pos) 4902 return ssa.LocalSlot{N: c, Type: t, Off: 0}, ssa.LocalSlot{N: d, Type: t, Off: 0} 4903 } 4904 // Return the two parts of the larger variable. 4905 return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + int64(Widthptr)} 4906 } 4907 4908 func (e *ssafn) SplitSlice(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot, ssa.LocalSlot) { 4909 n := name.N.(*Node) 4910 ptrType := types.NewPtr(name.Type.ElemType()) 4911 lenType := types.Types[TINT] 4912 if n.Class() == PAUTO && !n.Addrtaken() { 4913 // Split this slice up into three separate variables. 4914 p := e.namedAuto(n.Sym.Name+".ptr", ptrType, n.Pos) 4915 l := e.namedAuto(n.Sym.Name+".len", lenType, n.Pos) 4916 c := e.namedAuto(n.Sym.Name+".cap", lenType, n.Pos) 4917 return ssa.LocalSlot{N: p, Type: ptrType, Off: 0}, ssa.LocalSlot{N: l, Type: lenType, Off: 0}, ssa.LocalSlot{N: c, Type: lenType, Off: 0} 4918 } 4919 // Return the three parts of the larger variable. 4920 return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off}, 4921 ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)}, 4922 ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(2*Widthptr)} 4923 } 4924 4925 func (e *ssafn) SplitComplex(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) { 4926 n := name.N.(*Node) 4927 s := name.Type.Size() / 2 4928 var t *types.Type 4929 if s == 8 { 4930 t = types.Types[TFLOAT64] 4931 } else { 4932 t = types.Types[TFLOAT32] 4933 } 4934 if n.Class() == PAUTO && !n.Addrtaken() { 4935 // Split this complex up into two separate variables. 4936 c := e.namedAuto(n.Sym.Name+".real", t, n.Pos) 4937 d := e.namedAuto(n.Sym.Name+".imag", t, n.Pos) 4938 return ssa.LocalSlot{N: c, Type: t, Off: 0}, ssa.LocalSlot{N: d, Type: t, Off: 0} 4939 } 4940 // Return the two parts of the larger variable. 4941 return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + s} 4942 } 4943 4944 func (e *ssafn) SplitInt64(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) { 4945 n := name.N.(*Node) 4946 var t *types.Type 4947 if name.Type.IsSigned() { 4948 t = types.Types[TINT32] 4949 } else { 4950 t = types.Types[TUINT32] 4951 } 4952 if n.Class() == PAUTO && !n.Addrtaken() { 4953 // Split this int64 up into two separate variables. 4954 h := e.namedAuto(n.Sym.Name+".hi", t, n.Pos) 4955 l := e.namedAuto(n.Sym.Name+".lo", types.Types[TUINT32], n.Pos) 4956 return ssa.LocalSlot{N: h, Type: t, Off: 0}, ssa.LocalSlot{N: l, Type: types.Types[TUINT32], Off: 0} 4957 } 4958 // Return the two parts of the larger variable. 4959 if thearch.LinkArch.ByteOrder == binary.BigEndian { 4960 return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: types.Types[TUINT32], Off: name.Off + 4} 4961 } 4962 return ssa.LocalSlot{N: n, Type: t, Off: name.Off + 4}, ssa.LocalSlot{N: n, Type: types.Types[TUINT32], Off: name.Off} 4963 } 4964 4965 func (e *ssafn) SplitStruct(name ssa.LocalSlot, i int) ssa.LocalSlot { 4966 n := name.N.(*Node) 4967 st := name.Type 4968 ft := st.FieldType(i) 4969 if n.Class() == PAUTO && !n.Addrtaken() { 4970 // Note: the _ field may appear several times. But 4971 // have no fear, identically-named but distinct Autos are 4972 // ok, albeit maybe confusing for a debugger. 4973 x := e.namedAuto(n.Sym.Name+"."+st.FieldName(i), ft, n.Pos) 4974 return ssa.LocalSlot{N: x, Type: ft, Off: 0} 4975 } 4976 return ssa.LocalSlot{N: n, Type: ft, Off: name.Off + st.FieldOff(i)} 4977 } 4978 4979 func (e *ssafn) SplitArray(name ssa.LocalSlot) ssa.LocalSlot { 4980 n := name.N.(*Node) 4981 at := name.Type 4982 if at.NumElem() != 1 { 4983 Fatalf("bad array size") 4984 } 4985 et := at.ElemType() 4986 if n.Class() == PAUTO && !n.Addrtaken() { 4987 x := e.namedAuto(n.Sym.Name+"[0]", et, n.Pos) 4988 return ssa.LocalSlot{N: x, Type: et, Off: 0} 4989 } 4990 return ssa.LocalSlot{N: n, Type: et, Off: name.Off} 4991 } 4992 4993 func (e *ssafn) DerefItab(it *obj.LSym, offset int64) *obj.LSym { 4994 return itabsym(it, offset) 4995 } 4996 4997 // namedAuto returns a new AUTO variable with the given name and type. 4998 // These are exposed to the debugger. 4999 func (e *ssafn) namedAuto(name string, typ *types.Type, pos src.XPos) ssa.GCNode { 5000 t := typ 5001 s := &types.Sym{Name: name, Pkg: localpkg} 5002 5003 n := new(Node) 5004 n.Name = new(Name) 5005 n.Op = ONAME 5006 n.Pos = pos 5007 n.Orig = n 5008 5009 s.Def = asTypesNode(n) 5010 asNode(s.Def).Name.SetUsed(true) 5011 n.Sym = s 5012 n.Type = t 5013 n.SetClass(PAUTO) 5014 n.SetAddable(true) 5015 n.Esc = EscNever 5016 n.Name.Curfn = e.curfn 5017 e.curfn.Func.Dcl = append(e.curfn.Func.Dcl, n) 5018 dowidth(t) 5019 return n 5020 } 5021 5022 func (e *ssafn) CanSSA(t *types.Type) bool { 5023 return canSSAType(t) 5024 } 5025 5026 func (e *ssafn) Line(pos src.XPos) string { 5027 return linestr(pos) 5028 } 5029 5030 // Log logs a message from the compiler. 5031 func (e *ssafn) Logf(msg string, args ...interface{}) { 5032 if e.log { 5033 fmt.Printf(msg, args...) 5034 } 5035 } 5036 5037 func (e *ssafn) Log() bool { 5038 return e.log 5039 } 5040 5041 // Fatal reports a compiler error and exits. 5042 func (e *ssafn) Fatalf(pos src.XPos, msg string, args ...interface{}) { 5043 lineno = pos 5044 Fatalf(msg, args...) 5045 } 5046 5047 // Warnl reports a "warning", which is usually flag-triggered 5048 // logging output for the benefit of tests. 5049 func (e *ssafn) Warnl(pos src.XPos, fmt_ string, args ...interface{}) { 5050 Warnl(pos, fmt_, args...) 5051 } 5052 5053 func (e *ssafn) Debug_checknil() bool { 5054 return Debug_checknil != 0 5055 } 5056 5057 func (e *ssafn) Debug_wb() bool { 5058 return Debug_wb != 0 5059 } 5060 5061 func (e *ssafn) UseWriteBarrier() bool { 5062 return use_writebarrier 5063 } 5064 5065 func (e *ssafn) Syslook(name string) *obj.LSym { 5066 switch name { 5067 case "goschedguarded": 5068 return goschedguarded 5069 case "writeBarrier": 5070 return writeBarrier 5071 case "writebarrierptr": 5072 return writebarrierptr 5073 case "typedmemmove": 5074 return typedmemmove 5075 case "typedmemclr": 5076 return typedmemclr 5077 } 5078 Fatalf("unknown Syslook func %v", name) 5079 return nil 5080 } 5081 5082 func (n *Node) Typ() *types.Type { 5083 return n.Type 5084 }