github.com/zebozhuang/go@v0.0.0-20200207033046-f8a98f6f5c5d/src/cmd/compile/internal/ssa/check.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssa
     6  
     7  // checkFunc checks invariants of f.
     8  func checkFunc(f *Func) {
     9  	blockMark := make([]bool, f.NumBlocks())
    10  	valueMark := make([]bool, f.NumValues())
    11  
    12  	for _, b := range f.Blocks {
    13  		if blockMark[b.ID] {
    14  			f.Fatalf("block %s appears twice in %s!", b, f.Name)
    15  		}
    16  		blockMark[b.ID] = true
    17  		if b.Func != f {
    18  			f.Fatalf("%s.Func=%s, want %s", b, b.Func.Name, f.Name)
    19  		}
    20  
    21  		for i, e := range b.Preds {
    22  			if se := e.b.Succs[e.i]; se.b != b || se.i != i {
    23  				f.Fatalf("block pred/succ not crosslinked correctly %d:%s %d:%s", i, b, se.i, se.b)
    24  			}
    25  		}
    26  		for i, e := range b.Succs {
    27  			if pe := e.b.Preds[e.i]; pe.b != b || pe.i != i {
    28  				f.Fatalf("block succ/pred not crosslinked correctly %d:%s %d:%s", i, b, pe.i, pe.b)
    29  			}
    30  		}
    31  
    32  		switch b.Kind {
    33  		case BlockExit:
    34  			if len(b.Succs) != 0 {
    35  				f.Fatalf("exit block %s has successors", b)
    36  			}
    37  			if b.Control == nil {
    38  				f.Fatalf("exit block %s has no control value", b)
    39  			}
    40  			if !b.Control.Type.IsMemory() {
    41  				f.Fatalf("exit block %s has non-memory control value %s", b, b.Control.LongString())
    42  			}
    43  		case BlockRet:
    44  			if len(b.Succs) != 0 {
    45  				f.Fatalf("ret block %s has successors", b)
    46  			}
    47  			if b.Control == nil {
    48  				f.Fatalf("ret block %s has nil control", b)
    49  			}
    50  			if !b.Control.Type.IsMemory() {
    51  				f.Fatalf("ret block %s has non-memory control value %s", b, b.Control.LongString())
    52  			}
    53  		case BlockRetJmp:
    54  			if len(b.Succs) != 0 {
    55  				f.Fatalf("retjmp block %s len(Succs)==%d, want 0", b, len(b.Succs))
    56  			}
    57  			if b.Control == nil {
    58  				f.Fatalf("retjmp block %s has nil control", b)
    59  			}
    60  			if !b.Control.Type.IsMemory() {
    61  				f.Fatalf("retjmp block %s has non-memory control value %s", b, b.Control.LongString())
    62  			}
    63  			if b.Aux == nil {
    64  				f.Fatalf("retjmp block %s has nil Aux field", b)
    65  			}
    66  		case BlockPlain:
    67  			if len(b.Succs) != 1 {
    68  				f.Fatalf("plain block %s len(Succs)==%d, want 1", b, len(b.Succs))
    69  			}
    70  			if b.Control != nil {
    71  				f.Fatalf("plain block %s has non-nil control %s", b, b.Control.LongString())
    72  			}
    73  		case BlockIf:
    74  			if len(b.Succs) != 2 {
    75  				f.Fatalf("if block %s len(Succs)==%d, want 2", b, len(b.Succs))
    76  			}
    77  			if b.Control == nil {
    78  				f.Fatalf("if block %s has no control value", b)
    79  			}
    80  			if !b.Control.Type.IsBoolean() {
    81  				f.Fatalf("if block %s has non-bool control value %s", b, b.Control.LongString())
    82  			}
    83  		case BlockDefer:
    84  			if len(b.Succs) != 2 {
    85  				f.Fatalf("defer block %s len(Succs)==%d, want 2", b, len(b.Succs))
    86  			}
    87  			if b.Control == nil {
    88  				f.Fatalf("defer block %s has no control value", b)
    89  			}
    90  			if !b.Control.Type.IsMemory() {
    91  				f.Fatalf("defer block %s has non-memory control value %s", b, b.Control.LongString())
    92  			}
    93  		case BlockFirst:
    94  			if len(b.Succs) != 2 {
    95  				f.Fatalf("plain/dead block %s len(Succs)==%d, want 2", b, len(b.Succs))
    96  			}
    97  			if b.Control != nil {
    98  				f.Fatalf("plain/dead block %s has a control value", b)
    99  			}
   100  		}
   101  		if len(b.Succs) > 2 && b.Likely != BranchUnknown {
   102  			f.Fatalf("likeliness prediction %d for block %s with %d successors", b.Likely, b, len(b.Succs))
   103  		}
   104  
   105  		for _, v := range b.Values {
   106  			// Check to make sure argument count makes sense (argLen of -1 indicates
   107  			// variable length args)
   108  			nArgs := opcodeTable[v.Op].argLen
   109  			if nArgs != -1 && int32(len(v.Args)) != nArgs {
   110  				f.Fatalf("value %s has %d args, expected %d", v.LongString(),
   111  					len(v.Args), nArgs)
   112  			}
   113  
   114  			// Check to make sure aux values make sense.
   115  			canHaveAux := false
   116  			canHaveAuxInt := false
   117  			switch opcodeTable[v.Op].auxType {
   118  			case auxNone:
   119  			case auxBool:
   120  				if v.AuxInt < 0 || v.AuxInt > 1 {
   121  					f.Fatalf("bad bool AuxInt value for %v", v)
   122  				}
   123  				canHaveAuxInt = true
   124  			case auxInt8:
   125  				if v.AuxInt != int64(int8(v.AuxInt)) {
   126  					f.Fatalf("bad int8 AuxInt value for %v", v)
   127  				}
   128  				canHaveAuxInt = true
   129  			case auxInt16:
   130  				if v.AuxInt != int64(int16(v.AuxInt)) {
   131  					f.Fatalf("bad int16 AuxInt value for %v", v)
   132  				}
   133  				canHaveAuxInt = true
   134  			case auxInt32:
   135  				if v.AuxInt != int64(int32(v.AuxInt)) {
   136  					f.Fatalf("bad int32 AuxInt value for %v", v)
   137  				}
   138  				canHaveAuxInt = true
   139  			case auxInt64, auxFloat64:
   140  				canHaveAuxInt = true
   141  			case auxInt128:
   142  				// AuxInt must be zero, so leave canHaveAuxInt set to false.
   143  			case auxFloat32:
   144  				canHaveAuxInt = true
   145  				if !isExactFloat32(v) {
   146  					f.Fatalf("value %v has an AuxInt value that is not an exact float32", v)
   147  				}
   148  			case auxString, auxSym, auxTyp:
   149  				canHaveAux = true
   150  			case auxSymOff, auxSymValAndOff, auxTypSize:
   151  				canHaveAuxInt = true
   152  				canHaveAux = true
   153  			case auxSymInt32:
   154  				if v.AuxInt != int64(int32(v.AuxInt)) {
   155  					f.Fatalf("bad int32 AuxInt value for %v", v)
   156  				}
   157  				canHaveAuxInt = true
   158  				canHaveAux = true
   159  			default:
   160  				f.Fatalf("unknown aux type for %s", v.Op)
   161  			}
   162  			if !canHaveAux && v.Aux != nil {
   163  				f.Fatalf("value %s has an Aux value %v but shouldn't", v.LongString(), v.Aux)
   164  			}
   165  			if !canHaveAuxInt && v.AuxInt != 0 {
   166  				f.Fatalf("value %s has an AuxInt value %d but shouldn't", v.LongString(), v.AuxInt)
   167  			}
   168  
   169  			for i, arg := range v.Args {
   170  				if arg == nil {
   171  					f.Fatalf("value %s has nil arg", v.LongString())
   172  				}
   173  				if v.Op != OpPhi {
   174  					// For non-Phi ops, memory args must be last, if present
   175  					if arg.Type.IsMemory() && i != len(v.Args)-1 {
   176  						f.Fatalf("value %s has non-final memory arg (%d < %d)", v.LongString(), i, len(v.Args)-1)
   177  					}
   178  				}
   179  			}
   180  
   181  			if valueMark[v.ID] {
   182  				f.Fatalf("value %s appears twice!", v.LongString())
   183  			}
   184  			valueMark[v.ID] = true
   185  
   186  			if v.Block != b {
   187  				f.Fatalf("%s.block != %s", v, b)
   188  			}
   189  			if v.Op == OpPhi && len(v.Args) != len(b.Preds) {
   190  				f.Fatalf("phi length %s does not match pred length %d for block %s", v.LongString(), len(b.Preds), b)
   191  			}
   192  
   193  			if v.Op == OpAddr {
   194  				if len(v.Args) == 0 {
   195  					f.Fatalf("no args for OpAddr %s", v.LongString())
   196  				}
   197  				if v.Args[0].Op != OpSP && v.Args[0].Op != OpSB {
   198  					f.Fatalf("bad arg to OpAddr %v", v)
   199  				}
   200  			}
   201  
   202  			// TODO: check for cycles in values
   203  			// TODO: check type
   204  		}
   205  	}
   206  
   207  	// Check to make sure all Blocks referenced are in the function.
   208  	if !blockMark[f.Entry.ID] {
   209  		f.Fatalf("entry block %v is missing", f.Entry)
   210  	}
   211  	for _, b := range f.Blocks {
   212  		for _, c := range b.Preds {
   213  			if !blockMark[c.b.ID] {
   214  				f.Fatalf("predecessor block %v for %v is missing", c, b)
   215  			}
   216  		}
   217  		for _, c := range b.Succs {
   218  			if !blockMark[c.b.ID] {
   219  				f.Fatalf("successor block %v for %v is missing", c, b)
   220  			}
   221  		}
   222  	}
   223  
   224  	if len(f.Entry.Preds) > 0 {
   225  		f.Fatalf("entry block %s of %s has predecessor(s) %v", f.Entry, f.Name, f.Entry.Preds)
   226  	}
   227  
   228  	// Check to make sure all Values referenced are in the function.
   229  	for _, b := range f.Blocks {
   230  		for _, v := range b.Values {
   231  			for i, a := range v.Args {
   232  				if !valueMark[a.ID] {
   233  					f.Fatalf("%v, arg %d of %s, is missing", a, i, v.LongString())
   234  				}
   235  			}
   236  		}
   237  		if b.Control != nil && !valueMark[b.Control.ID] {
   238  			f.Fatalf("control value for %s is missing: %v", b, b.Control)
   239  		}
   240  	}
   241  	for b := f.freeBlocks; b != nil; b = b.succstorage[0].b {
   242  		if blockMark[b.ID] {
   243  			f.Fatalf("used block b%d in free list", b.ID)
   244  		}
   245  	}
   246  	for v := f.freeValues; v != nil; v = v.argstorage[0] {
   247  		if valueMark[v.ID] {
   248  			f.Fatalf("used value v%d in free list", v.ID)
   249  		}
   250  	}
   251  
   252  	// Check to make sure all args dominate uses.
   253  	if f.RegAlloc == nil {
   254  		// Note: regalloc introduces non-dominating args.
   255  		// See TODO in regalloc.go.
   256  		sdom := f.sdom()
   257  		for _, b := range f.Blocks {
   258  			for _, v := range b.Values {
   259  				for i, arg := range v.Args {
   260  					x := arg.Block
   261  					y := b
   262  					if v.Op == OpPhi {
   263  						y = b.Preds[i].b
   264  					}
   265  					if !domCheck(f, sdom, x, y) {
   266  						f.Fatalf("arg %d of value %s does not dominate, arg=%s", i, v.LongString(), arg.LongString())
   267  					}
   268  				}
   269  			}
   270  			if b.Control != nil && !domCheck(f, sdom, b.Control.Block, b) {
   271  				f.Fatalf("control value %s for %s doesn't dominate", b.Control, b)
   272  			}
   273  		}
   274  	}
   275  
   276  	// Check loop construction
   277  	if f.RegAlloc == nil && f.pass != nil { // non-nil pass allows better-targeted debug printing
   278  		ln := f.loopnest()
   279  		po := f.postorder() // use po to avoid unreachable blocks.
   280  		for _, b := range po {
   281  			for _, s := range b.Succs {
   282  				bb := s.Block()
   283  				if ln.b2l[b.ID] == nil && ln.b2l[bb.ID] != nil && bb != ln.b2l[bb.ID].header {
   284  					f.Fatalf("block %s not in loop branches to non-header block %s in loop", b.String(), bb.String())
   285  				}
   286  				if ln.b2l[b.ID] != nil && ln.b2l[bb.ID] != nil && bb != ln.b2l[bb.ID].header && !ln.b2l[b.ID].isWithinOrEq(ln.b2l[bb.ID]) {
   287  					f.Fatalf("block %s in loop branches to non-header block %s in non-containing loop", b.String(), bb.String())
   288  				}
   289  			}
   290  		}
   291  	}
   292  
   293  	// Check use counts
   294  	uses := make([]int32, f.NumValues())
   295  	for _, b := range f.Blocks {
   296  		for _, v := range b.Values {
   297  			for _, a := range v.Args {
   298  				uses[a.ID]++
   299  			}
   300  		}
   301  		if b.Control != nil {
   302  			uses[b.Control.ID]++
   303  		}
   304  	}
   305  	for _, b := range f.Blocks {
   306  		for _, v := range b.Values {
   307  			if v.Uses != uses[v.ID] {
   308  				f.Fatalf("%s has %d uses, but has Uses=%d", v, uses[v.ID], v.Uses)
   309  			}
   310  		}
   311  	}
   312  
   313  	memCheck(f)
   314  }
   315  
   316  func memCheck(f *Func) {
   317  	// Check that if a tuple has a memory type, it is second.
   318  	for _, b := range f.Blocks {
   319  		for _, v := range b.Values {
   320  			if v.Type.IsTuple() && v.Type.FieldType(0).IsMemory() {
   321  				f.Fatalf("memory is first in a tuple: %s\n", v.LongString())
   322  			}
   323  		}
   324  	}
   325  
   326  	// Single live memory checks.
   327  	// These checks only work if there are no memory copies.
   328  	// (Memory copies introduce ambiguity about which mem value is really live.
   329  	// probably fixable, but it's easier to avoid the problem.)
   330  	// For the same reason, disable this check if some memory ops are unused.
   331  	for _, b := range f.Blocks {
   332  		for _, v := range b.Values {
   333  			if (v.Op == OpCopy || v.Uses == 0) && v.Type.IsMemory() {
   334  				return
   335  			}
   336  		}
   337  		if b != f.Entry && len(b.Preds) == 0 {
   338  			return
   339  		}
   340  	}
   341  
   342  	// Compute live memory at the end of each block.
   343  	lastmem := make([]*Value, f.NumBlocks())
   344  	ss := newSparseSet(f.NumValues())
   345  	for _, b := range f.Blocks {
   346  		// Mark overwritten memory values. Those are args of other
   347  		// ops that generate memory values.
   348  		ss.clear()
   349  		for _, v := range b.Values {
   350  			if v.Op == OpPhi || !v.Type.IsMemory() {
   351  				continue
   352  			}
   353  			if m := v.MemoryArg(); m != nil {
   354  				ss.add(m.ID)
   355  			}
   356  		}
   357  		// There should be at most one remaining unoverwritten memory value.
   358  		for _, v := range b.Values {
   359  			if !v.Type.IsMemory() {
   360  				continue
   361  			}
   362  			if ss.contains(v.ID) {
   363  				continue
   364  			}
   365  			if lastmem[b.ID] != nil {
   366  				f.Fatalf("two live memory values in %s: %s and %s", b, lastmem[b.ID], v)
   367  			}
   368  			lastmem[b.ID] = v
   369  		}
   370  		// If there is no remaining memory value, that means there was no memory update.
   371  		// Take any memory arg.
   372  		if lastmem[b.ID] == nil {
   373  			for _, v := range b.Values {
   374  				if v.Op == OpPhi {
   375  					continue
   376  				}
   377  				m := v.MemoryArg()
   378  				if m == nil {
   379  					continue
   380  				}
   381  				if lastmem[b.ID] != nil && lastmem[b.ID] != m {
   382  					f.Fatalf("two live memory values in %s: %s and %s", b, lastmem[b.ID], m)
   383  				}
   384  				lastmem[b.ID] = m
   385  			}
   386  		}
   387  	}
   388  	// Propagate last live memory through storeless blocks.
   389  	for {
   390  		changed := false
   391  		for _, b := range f.Blocks {
   392  			if lastmem[b.ID] != nil {
   393  				continue
   394  			}
   395  			for _, e := range b.Preds {
   396  				p := e.b
   397  				if lastmem[p.ID] != nil {
   398  					lastmem[b.ID] = lastmem[p.ID]
   399  					changed = true
   400  					break
   401  				}
   402  			}
   403  		}
   404  		if !changed {
   405  			break
   406  		}
   407  	}
   408  	// Check merge points.
   409  	for _, b := range f.Blocks {
   410  		for _, v := range b.Values {
   411  			if v.Op == OpPhi && v.Type.IsMemory() {
   412  				for i, a := range v.Args {
   413  					if a != lastmem[b.Preds[i].b.ID] {
   414  						f.Fatalf("inconsistent memory phi %s %d %s %s", v.LongString(), i, a, lastmem[b.Preds[i].b.ID])
   415  					}
   416  				}
   417  			}
   418  		}
   419  	}
   420  
   421  	// Check that only one memory is live at any point.
   422  	if f.scheduled {
   423  		for _, b := range f.Blocks {
   424  			var mem *Value // the current live memory in the block
   425  			for _, v := range b.Values {
   426  				if v.Op == OpPhi {
   427  					if v.Type.IsMemory() {
   428  						mem = v
   429  					}
   430  					continue
   431  				}
   432  				if mem == nil && len(b.Preds) > 0 {
   433  					// If no mem phi, take mem of any predecessor.
   434  					mem = lastmem[b.Preds[0].b.ID]
   435  				}
   436  				for _, a := range v.Args {
   437  					if a.Type.IsMemory() && a != mem {
   438  						f.Fatalf("two live mems @ %s: %s and %s", v, mem, a)
   439  					}
   440  				}
   441  				if v.Type.IsMemory() {
   442  					mem = v
   443  				}
   444  			}
   445  		}
   446  	}
   447  
   448  	// Check that after scheduling, phis are always first in the block.
   449  	if f.scheduled {
   450  		for _, b := range f.Blocks {
   451  			seenNonPhi := false
   452  			for _, v := range b.Values {
   453  				if v.Op == OpPhi {
   454  					if seenNonPhi {
   455  						f.Fatalf("phi after non-phi @ %s: %s", b, v)
   456  					}
   457  				} else {
   458  					seenNonPhi = true
   459  				}
   460  			}
   461  		}
   462  	}
   463  }
   464  
   465  // domCheck reports whether x dominates y (including x==y).
   466  func domCheck(f *Func, sdom SparseTree, x, y *Block) bool {
   467  	if !sdom.isAncestorEq(f.Entry, y) {
   468  		// unreachable - ignore
   469  		return true
   470  	}
   471  	return sdom.isAncestorEq(x, y)
   472  }
   473  
   474  // isExactFloat32 reoprts whether v has an AuxInt that can be exactly represented as a float32.
   475  func isExactFloat32(v *Value) bool {
   476  	return v.AuxFloat() == float64(float32(v.AuxFloat()))
   477  }