github.com/zebozhuang/go@v0.0.0-20200207033046-f8a98f6f5c5d/src/cmd/internal/obj/s390x/asmz.go (about)

     1  // Based on cmd/internal/obj/ppc64/asm9.go.
     2  //
     3  //    Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
     4  //    Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
     5  //    Portions Copyright © 1997-1999 Vita Nuova Limited
     6  //    Portions Copyright © 2000-2008 Vita Nuova Holdings Limited (www.vitanuova.com)
     7  //    Portions Copyright © 2004,2006 Bruce Ellis
     8  //    Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
     9  //    Revisions Copyright © 2000-2008 Lucent Technologies Inc. and others
    10  //    Portions Copyright © 2009 The Go Authors. All rights reserved.
    11  //
    12  // Permission is hereby granted, free of charge, to any person obtaining a copy
    13  // of this software and associated documentation files (the "Software"), to deal
    14  // in the Software without restriction, including without limitation the rights
    15  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    16  // copies of the Software, and to permit persons to whom the Software is
    17  // furnished to do so, subject to the following conditions:
    18  //
    19  // The above copyright notice and this permission notice shall be included in
    20  // all copies or substantial portions of the Software.
    21  //
    22  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    23  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    24  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    25  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    26  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    27  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    28  // THE SOFTWARE.
    29  
    30  package s390x
    31  
    32  import (
    33  	"cmd/internal/obj"
    34  	"cmd/internal/objabi"
    35  	"log"
    36  	"math"
    37  	"sort"
    38  )
    39  
    40  // ctxtz holds state while assembling a single function.
    41  // Each function gets a fresh ctxtz.
    42  // This allows for multiple functions to be safely concurrently assembled.
    43  type ctxtz struct {
    44  	ctxt       *obj.Link
    45  	newprog    obj.ProgAlloc
    46  	cursym     *obj.LSym
    47  	autosize   int32
    48  	instoffset int64
    49  	pc         int64
    50  }
    51  
    52  // instruction layout.
    53  const (
    54  	funcAlign = 16
    55  )
    56  
    57  type Optab struct {
    58  	as    obj.As // opcode
    59  	a1    uint8  // From
    60  	a2    uint8  // Reg
    61  	a3    uint8  // From3
    62  	a4    uint8  // To
    63  	type_ int8
    64  	param int16 // REGSP for auto variables
    65  }
    66  
    67  var optab = []Optab{
    68  	// instruction,  From,   Reg,    From3,  To, type, param
    69  	Optab{obj.ATEXT, C_ADDR, C_NONE, C_NONE, C_TEXTSIZE, 0, 0},
    70  	Optab{obj.ATEXT, C_ADDR, C_NONE, C_LCON, C_TEXTSIZE, 0, 0},
    71  
    72  	// move register
    73  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    74  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    75  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    76  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    77  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    78  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_FREG, 1, 0},
    79  	Optab{AMOVDBR, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    80  
    81  	// load constant
    82  	Optab{AMOVD, C_LACON, C_NONE, C_NONE, C_REG, 26, REGSP},
    83  	Optab{AMOVW, C_LACON, C_NONE, C_NONE, C_REG, 26, REGSP},
    84  	Optab{AMOVWZ, C_LACON, C_NONE, C_NONE, C_REG, 26, REGSP},
    85  	Optab{AMOVD, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    86  	Optab{AMOVW, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    87  	Optab{AMOVWZ, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    88  	Optab{AMOVB, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    89  	Optab{AMOVBZ, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    90  
    91  	// store constant
    92  	Optab{AMOVD, C_SCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    93  	Optab{AMOVD, C_ADDCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    94  	Optab{AMOVW, C_SCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    95  	Optab{AMOVW, C_ADDCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    96  	Optab{AMOVWZ, C_SCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    97  	Optab{AMOVWZ, C_ADDCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    98  	Optab{AMOVB, C_SCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    99  	Optab{AMOVB, C_ADDCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
   100  	Optab{AMOVBZ, C_SCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
   101  	Optab{AMOVBZ, C_ADDCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
   102  	Optab{AMOVD, C_SCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   103  	Optab{AMOVD, C_ADDCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   104  	Optab{AMOVW, C_SCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   105  	Optab{AMOVW, C_ADDCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   106  	Optab{AMOVWZ, C_SCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   107  	Optab{AMOVWZ, C_ADDCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   108  	Optab{AMOVB, C_SCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   109  	Optab{AMOVB, C_ADDCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   110  	Optab{AMOVBZ, C_SCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   111  	Optab{AMOVBZ, C_ADDCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   112  
   113  	// store
   114  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   115  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   116  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   117  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   118  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   119  	Optab{AMOVDBR, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   120  	Optab{AMOVHBR, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   121  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   122  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   123  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   124  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   125  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   126  	Optab{AMOVDBR, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   127  	Optab{AMOVHBR, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   128  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   129  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   130  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   131  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   132  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   133  
   134  	// load
   135  	Optab{AMOVD, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   136  	Optab{AMOVW, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   137  	Optab{AMOVWZ, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   138  	Optab{AMOVBZ, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   139  	Optab{AMOVB, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   140  	Optab{AMOVDBR, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   141  	Optab{AMOVHBR, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   142  	Optab{AMOVD, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   143  	Optab{AMOVW, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   144  	Optab{AMOVWZ, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   145  	Optab{AMOVBZ, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   146  	Optab{AMOVB, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   147  	Optab{AMOVDBR, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   148  	Optab{AMOVHBR, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   149  	Optab{AMOVD, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   150  	Optab{AMOVW, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   151  	Optab{AMOVWZ, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   152  	Optab{AMOVBZ, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   153  	Optab{AMOVB, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   154  
   155  	// interlocked load and op
   156  	Optab{ALAAG, C_REG, C_REG, C_NONE, C_LOREG, 99, 0},
   157  
   158  	// integer arithmetic
   159  	Optab{AADD, C_REG, C_REG, C_NONE, C_REG, 2, 0},
   160  	Optab{AADD, C_REG, C_NONE, C_NONE, C_REG, 2, 0},
   161  	Optab{AADD, C_LCON, C_REG, C_NONE, C_REG, 22, 0},
   162  	Optab{AADD, C_LCON, C_NONE, C_NONE, C_REG, 22, 0},
   163  	Optab{AADD, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   164  	Optab{AADD, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   165  	Optab{ASUB, C_LCON, C_REG, C_NONE, C_REG, 21, 0},
   166  	Optab{ASUB, C_LCON, C_NONE, C_NONE, C_REG, 21, 0},
   167  	Optab{ASUB, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   168  	Optab{ASUB, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   169  	Optab{AMULHD, C_REG, C_NONE, C_NONE, C_REG, 4, 0},
   170  	Optab{AMULHD, C_REG, C_REG, C_NONE, C_REG, 4, 0},
   171  	Optab{ADIVW, C_REG, C_REG, C_NONE, C_REG, 2, 0},
   172  	Optab{ADIVW, C_REG, C_NONE, C_NONE, C_REG, 2, 0},
   173  	Optab{ASUB, C_REG, C_REG, C_NONE, C_REG, 10, 0},
   174  	Optab{ASUB, C_REG, C_NONE, C_NONE, C_REG, 10, 0},
   175  	Optab{ANEG, C_REG, C_NONE, C_NONE, C_REG, 47, 0},
   176  	Optab{ANEG, C_NONE, C_NONE, C_NONE, C_REG, 47, 0},
   177  
   178  	// integer logical
   179  	Optab{AAND, C_REG, C_REG, C_NONE, C_REG, 6, 0},
   180  	Optab{AAND, C_REG, C_NONE, C_NONE, C_REG, 6, 0},
   181  	Optab{AAND, C_LCON, C_NONE, C_NONE, C_REG, 23, 0},
   182  	Optab{AAND, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   183  	Optab{AAND, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   184  	Optab{AANDW, C_REG, C_REG, C_NONE, C_REG, 6, 0},
   185  	Optab{AANDW, C_REG, C_NONE, C_NONE, C_REG, 6, 0},
   186  	Optab{AANDW, C_LCON, C_NONE, C_NONE, C_REG, 24, 0},
   187  	Optab{AANDW, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   188  	Optab{AANDW, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   189  	Optab{ASLD, C_REG, C_NONE, C_NONE, C_REG, 7, 0},
   190  	Optab{ASLD, C_REG, C_REG, C_NONE, C_REG, 7, 0},
   191  	Optab{ASLD, C_SCON, C_REG, C_NONE, C_REG, 7, 0},
   192  	Optab{ASLD, C_SCON, C_NONE, C_NONE, C_REG, 7, 0},
   193  
   194  	// compare and swap
   195  	Optab{ACSG, C_REG, C_REG, C_NONE, C_SOREG, 79, 0},
   196  
   197  	// floating point
   198  	Optab{AFADD, C_FREG, C_NONE, C_NONE, C_FREG, 32, 0},
   199  	Optab{AFABS, C_FREG, C_NONE, C_NONE, C_FREG, 33, 0},
   200  	Optab{AFABS, C_NONE, C_NONE, C_NONE, C_FREG, 33, 0},
   201  	Optab{AFMADD, C_FREG, C_FREG, C_NONE, C_FREG, 34, 0},
   202  	Optab{AFMUL, C_FREG, C_NONE, C_NONE, C_FREG, 32, 0},
   203  	Optab{AFMOVD, C_LAUTO, C_NONE, C_NONE, C_FREG, 36, REGSP},
   204  	Optab{AFMOVD, C_LOREG, C_NONE, C_NONE, C_FREG, 36, 0},
   205  	Optab{AFMOVD, C_ADDR, C_NONE, C_NONE, C_FREG, 75, 0},
   206  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   207  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_LOREG, 35, 0},
   208  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_ADDR, 74, 0},
   209  	Optab{AFMOVD, C_ZCON, C_NONE, C_NONE, C_FREG, 67, 0},
   210  	Optab{ALDGR, C_REG, C_NONE, C_NONE, C_FREG, 81, 0},
   211  	Optab{ALGDR, C_FREG, C_NONE, C_NONE, C_REG, 81, 0},
   212  	Optab{ACEFBRA, C_REG, C_NONE, C_NONE, C_FREG, 82, 0},
   213  	Optab{ACFEBRA, C_FREG, C_NONE, C_NONE, C_REG, 83, 0},
   214  	Optab{AFIEBR, C_SCON, C_FREG, C_NONE, C_FREG, 48, 0},
   215  
   216  	// load symbol address (plus offset)
   217  	Optab{AMOVD, C_SYMADDR, C_NONE, C_NONE, C_REG, 19, 0},
   218  	Optab{AMOVD, C_GOTADDR, C_NONE, C_NONE, C_REG, 93, 0},
   219  	Optab{AMOVD, C_TLS_LE, C_NONE, C_NONE, C_REG, 94, 0},
   220  	Optab{AMOVD, C_TLS_IE, C_NONE, C_NONE, C_REG, 95, 0},
   221  
   222  	// system call
   223  	Optab{ASYSCALL, C_NONE, C_NONE, C_NONE, C_NONE, 5, 0},
   224  	Optab{ASYSCALL, C_SCON, C_NONE, C_NONE, C_NONE, 77, 0},
   225  
   226  	// branch
   227  	Optab{ABEQ, C_NONE, C_NONE, C_NONE, C_SBRA, 16, 0},
   228  	Optab{ABR, C_NONE, C_NONE, C_NONE, C_LBRA, 11, 0},
   229  	Optab{ABC, C_SCON, C_REG, C_NONE, C_LBRA, 16, 0},
   230  	Optab{ABR, C_NONE, C_NONE, C_NONE, C_REG, 18, 0},
   231  	Optab{ABR, C_REG, C_NONE, C_NONE, C_REG, 18, 0},
   232  	Optab{ABR, C_NONE, C_NONE, C_NONE, C_ZOREG, 15, 0},
   233  	Optab{ABC, C_NONE, C_NONE, C_NONE, C_ZOREG, 15, 0},
   234  	Optab{ACMPBEQ, C_REG, C_REG, C_NONE, C_SBRA, 89, 0},
   235  	Optab{ACMPBEQ, C_REG, C_NONE, C_ADDCON, C_SBRA, 90, 0},
   236  	Optab{ACMPBEQ, C_REG, C_NONE, C_SCON, C_SBRA, 90, 0},
   237  	Optab{ACMPUBEQ, C_REG, C_REG, C_NONE, C_SBRA, 89, 0},
   238  	Optab{ACMPUBEQ, C_REG, C_NONE, C_ANDCON, C_SBRA, 90, 0},
   239  
   240  	// move on condition
   241  	Optab{AMOVDEQ, C_REG, C_NONE, C_NONE, C_REG, 17, 0},
   242  
   243  	// find leftmost one
   244  	Optab{AFLOGR, C_REG, C_NONE, C_NONE, C_REG, 8, 0},
   245  
   246  	// compare
   247  	Optab{ACMP, C_REG, C_NONE, C_NONE, C_REG, 70, 0},
   248  	Optab{ACMP, C_REG, C_NONE, C_NONE, C_LCON, 71, 0},
   249  	Optab{ACMPU, C_REG, C_NONE, C_NONE, C_REG, 70, 0},
   250  	Optab{ACMPU, C_REG, C_NONE, C_NONE, C_LCON, 71, 0},
   251  	Optab{AFCMPO, C_FREG, C_NONE, C_NONE, C_FREG, 70, 0},
   252  	Optab{AFCMPO, C_FREG, C_REG, C_NONE, C_FREG, 70, 0},
   253  
   254  	// 32-bit access registers
   255  	Optab{AMOVW, C_AREG, C_NONE, C_NONE, C_REG, 68, 0},
   256  	Optab{AMOVWZ, C_AREG, C_NONE, C_NONE, C_REG, 68, 0},
   257  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_AREG, 69, 0},
   258  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_AREG, 69, 0},
   259  
   260  	// macros
   261  	Optab{ACLEAR, C_LCON, C_NONE, C_NONE, C_LOREG, 96, 0},
   262  	Optab{ACLEAR, C_LCON, C_NONE, C_NONE, C_LAUTO, 96, REGSP},
   263  
   264  	// load/store multiple
   265  	Optab{ASTMG, C_REG, C_REG, C_NONE, C_LOREG, 97, 0},
   266  	Optab{ASTMG, C_REG, C_REG, C_NONE, C_LAUTO, 97, REGSP},
   267  	Optab{ALMG, C_LOREG, C_REG, C_NONE, C_REG, 98, 0},
   268  	Optab{ALMG, C_LAUTO, C_REG, C_NONE, C_REG, 98, REGSP},
   269  
   270  	// bytes
   271  	Optab{ABYTE, C_SCON, C_NONE, C_NONE, C_NONE, 40, 0},
   272  	Optab{AWORD, C_LCON, C_NONE, C_NONE, C_NONE, 40, 0},
   273  	Optab{ADWORD, C_LCON, C_NONE, C_NONE, C_NONE, 31, 0},
   274  	Optab{ADWORD, C_DCON, C_NONE, C_NONE, C_NONE, 31, 0},
   275  
   276  	// fast synchronization
   277  	Optab{ASYNC, C_NONE, C_NONE, C_NONE, C_NONE, 80, 0},
   278  
   279  	// store clock
   280  	Optab{ASTCK, C_NONE, C_NONE, C_NONE, C_SAUTO, 88, REGSP},
   281  	Optab{ASTCK, C_NONE, C_NONE, C_NONE, C_SOREG, 88, 0},
   282  
   283  	// storage and storage
   284  	Optab{AMVC, C_SCON, C_NONE, C_LOREG, C_LOREG, 84, 0},
   285  	Optab{AMVC, C_SCON, C_NONE, C_LOREG, C_LAUTO, 84, REGSP},
   286  	Optab{AMVC, C_SCON, C_NONE, C_LAUTO, C_LAUTO, 84, REGSP},
   287  
   288  	// address
   289  	Optab{ALARL, C_LCON, C_NONE, C_NONE, C_REG, 85, 0},
   290  	Optab{ALARL, C_SYMADDR, C_NONE, C_NONE, C_REG, 85, 0},
   291  	Optab{ALA, C_SOREG, C_NONE, C_NONE, C_REG, 86, 0},
   292  	Optab{ALA, C_SAUTO, C_NONE, C_NONE, C_REG, 86, REGSP},
   293  	Optab{AEXRL, C_SYMADDR, C_NONE, C_NONE, C_REG, 87, 0},
   294  
   295  	// misc
   296  	Optab{obj.AUNDEF, C_NONE, C_NONE, C_NONE, C_NONE, 78, 0},
   297  	Optab{obj.APCDATA, C_LCON, C_NONE, C_NONE, C_LCON, 0, 0},
   298  	Optab{obj.AFUNCDATA, C_SCON, C_NONE, C_NONE, C_ADDR, 0, 0},
   299  	Optab{obj.ANOP, C_NONE, C_NONE, C_NONE, C_NONE, 0, 0},
   300  	Optab{obj.ANOP, C_SAUTO, C_NONE, C_NONE, C_NONE, 0, 0},
   301  
   302  	// vector instructions
   303  
   304  	// VRX store
   305  	Optab{AVST, C_VREG, C_NONE, C_NONE, C_SOREG, 100, 0},
   306  	Optab{AVST, C_VREG, C_NONE, C_NONE, C_SAUTO, 100, REGSP},
   307  	Optab{AVSTEG, C_SCON, C_VREG, C_NONE, C_SOREG, 100, 0},
   308  	Optab{AVSTEG, C_SCON, C_VREG, C_NONE, C_SAUTO, 100, REGSP},
   309  
   310  	// VRX load
   311  	Optab{AVL, C_SOREG, C_NONE, C_NONE, C_VREG, 101, 0},
   312  	Optab{AVL, C_SAUTO, C_NONE, C_NONE, C_VREG, 101, REGSP},
   313  	Optab{AVLEG, C_SCON, C_NONE, C_SOREG, C_VREG, 101, 0},
   314  	Optab{AVLEG, C_SCON, C_NONE, C_SAUTO, C_VREG, 101, REGSP},
   315  
   316  	// VRV scatter
   317  	Optab{AVSCEG, C_SCON, C_VREG, C_NONE, C_SOREG, 102, 0},
   318  	Optab{AVSCEG, C_SCON, C_VREG, C_NONE, C_SAUTO, 102, REGSP},
   319  
   320  	// VRV gather
   321  	Optab{AVGEG, C_SCON, C_NONE, C_SOREG, C_VREG, 103, 0},
   322  	Optab{AVGEG, C_SCON, C_NONE, C_SAUTO, C_VREG, 103, REGSP},
   323  
   324  	// VRS element shift/rotate and load gr to/from vr element
   325  	Optab{AVESLG, C_SCON, C_VREG, C_NONE, C_VREG, 104, 0},
   326  	Optab{AVESLG, C_REG, C_VREG, C_NONE, C_VREG, 104, 0},
   327  	Optab{AVESLG, C_SCON, C_NONE, C_NONE, C_VREG, 104, 0},
   328  	Optab{AVESLG, C_REG, C_NONE, C_NONE, C_VREG, 104, 0},
   329  	Optab{AVLGVG, C_SCON, C_VREG, C_NONE, C_REG, 104, 0},
   330  	Optab{AVLGVG, C_REG, C_VREG, C_NONE, C_REG, 104, 0},
   331  	Optab{AVLVGG, C_SCON, C_REG, C_NONE, C_VREG, 104, 0},
   332  	Optab{AVLVGG, C_REG, C_REG, C_NONE, C_VREG, 104, 0},
   333  
   334  	// VRS store multiple
   335  	Optab{AVSTM, C_VREG, C_VREG, C_NONE, C_SOREG, 105, 0},
   336  	Optab{AVSTM, C_VREG, C_VREG, C_NONE, C_SAUTO, 105, REGSP},
   337  
   338  	// VRS load multiple
   339  	Optab{AVLM, C_SOREG, C_VREG, C_NONE, C_VREG, 106, 0},
   340  	Optab{AVLM, C_SAUTO, C_VREG, C_NONE, C_VREG, 106, REGSP},
   341  
   342  	// VRS store with length
   343  	Optab{AVSTL, C_REG, C_VREG, C_NONE, C_SOREG, 107, 0},
   344  	Optab{AVSTL, C_REG, C_VREG, C_NONE, C_SAUTO, 107, REGSP},
   345  
   346  	// VRS load with length
   347  	Optab{AVLL, C_REG, C_NONE, C_SOREG, C_VREG, 108, 0},
   348  	Optab{AVLL, C_REG, C_NONE, C_SAUTO, C_VREG, 108, REGSP},
   349  
   350  	// VRI-a
   351  	Optab{AVGBM, C_ANDCON, C_NONE, C_NONE, C_VREG, 109, 0},
   352  	Optab{AVZERO, C_NONE, C_NONE, C_NONE, C_VREG, 109, 0},
   353  	Optab{AVREPIG, C_ADDCON, C_NONE, C_NONE, C_VREG, 109, 0},
   354  	Optab{AVREPIG, C_SCON, C_NONE, C_NONE, C_VREG, 109, 0},
   355  	Optab{AVLEIG, C_SCON, C_NONE, C_ADDCON, C_VREG, 109, 0},
   356  	Optab{AVLEIG, C_SCON, C_NONE, C_SCON, C_VREG, 109, 0},
   357  
   358  	// VRI-b generate mask
   359  	Optab{AVGMG, C_SCON, C_NONE, C_SCON, C_VREG, 110, 0},
   360  
   361  	// VRI-c replicate
   362  	Optab{AVREPG, C_UCON, C_VREG, C_NONE, C_VREG, 111, 0},
   363  
   364  	// VRI-d element rotate and insert under mask and
   365  	// shift left double by byte
   366  	Optab{AVERIMG, C_SCON, C_VREG, C_VREG, C_VREG, 112, 0},
   367  	Optab{AVSLDB, C_SCON, C_VREG, C_VREG, C_VREG, 112, 0},
   368  
   369  	// VRI-d fp test data class immediate
   370  	Optab{AVFTCIDB, C_SCON, C_VREG, C_NONE, C_VREG, 113, 0},
   371  
   372  	// VRR-a load reg
   373  	Optab{AVLR, C_VREG, C_NONE, C_NONE, C_VREG, 114, 0},
   374  
   375  	// VRR-a compare
   376  	Optab{AVECG, C_VREG, C_NONE, C_NONE, C_VREG, 115, 0},
   377  
   378  	// VRR-b
   379  	Optab{AVCEQG, C_VREG, C_VREG, C_NONE, C_VREG, 117, 0},
   380  	Optab{AVFAEF, C_VREG, C_VREG, C_NONE, C_VREG, 117, 0},
   381  	Optab{AVPKSG, C_VREG, C_VREG, C_NONE, C_VREG, 117, 0},
   382  
   383  	// VRR-c
   384  	Optab{AVAQ, C_VREG, C_VREG, C_NONE, C_VREG, 118, 0},
   385  	Optab{AVAQ, C_VREG, C_NONE, C_NONE, C_VREG, 118, 0},
   386  	Optab{AVNOT, C_VREG, C_NONE, C_NONE, C_VREG, 118, 0},
   387  	Optab{AVPDI, C_SCON, C_VREG, C_VREG, C_VREG, 123, 0},
   388  
   389  	// VRR-c shifts
   390  	Optab{AVERLLVG, C_VREG, C_VREG, C_NONE, C_VREG, 119, 0},
   391  	Optab{AVERLLVG, C_VREG, C_NONE, C_NONE, C_VREG, 119, 0},
   392  
   393  	// VRR-d
   394  	//             2       3       1       4
   395  	Optab{AVACQ, C_VREG, C_VREG, C_VREG, C_VREG, 120, 0},
   396  
   397  	// VRR-e
   398  	Optab{AVSEL, C_VREG, C_VREG, C_VREG, C_VREG, 121, 0},
   399  
   400  	// VRR-f
   401  	Optab{AVLVGP, C_REG, C_REG, C_NONE, C_VREG, 122, 0},
   402  }
   403  
   404  var oprange [ALAST & obj.AMask][]Optab
   405  
   406  var xcmp [C_NCLASS][C_NCLASS]bool
   407  
   408  func spanz(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) {
   409  	p := cursym.Func.Text
   410  	if p == nil || p.Link == nil { // handle external functions and ELF section symbols
   411  		return
   412  	}
   413  
   414  	if oprange[AORW&obj.AMask] == nil {
   415  		ctxt.Diag("s390x ops not initialized, call s390x.buildop first")
   416  	}
   417  
   418  	c := ctxtz{ctxt: ctxt, newprog: newprog, cursym: cursym, autosize: int32(p.To.Offset)}
   419  
   420  	buffer := make([]byte, 0)
   421  	changed := true
   422  	loop := 0
   423  	for changed {
   424  		if loop > 10 {
   425  			c.ctxt.Diag("stuck in spanz loop")
   426  			break
   427  		}
   428  		changed = false
   429  		buffer = buffer[:0]
   430  		c.cursym.R = make([]obj.Reloc, 0)
   431  		for p := c.cursym.Func.Text; p != nil; p = p.Link {
   432  			pc := int64(len(buffer))
   433  			if pc != p.Pc {
   434  				changed = true
   435  			}
   436  			p.Pc = pc
   437  			c.pc = p.Pc
   438  			c.asmout(p, &buffer)
   439  			if pc == int64(len(buffer)) {
   440  				switch p.As {
   441  				case obj.ANOP, obj.AFUNCDATA, obj.APCDATA, obj.ATEXT:
   442  					// ok
   443  				default:
   444  					c.ctxt.Diag("zero-width instruction\n%v", p)
   445  				}
   446  			}
   447  		}
   448  		loop++
   449  	}
   450  
   451  	c.cursym.Size = int64(len(buffer))
   452  	if c.cursym.Size%funcAlign != 0 {
   453  		c.cursym.Size += funcAlign - (c.cursym.Size % funcAlign)
   454  	}
   455  	c.cursym.Grow(c.cursym.Size)
   456  	copy(c.cursym.P, buffer)
   457  }
   458  
   459  func isint32(v int64) bool {
   460  	return int64(int32(v)) == v
   461  }
   462  
   463  func isuint32(v uint64) bool {
   464  	return uint64(uint32(v)) == v
   465  }
   466  
   467  func (c *ctxtz) aclass(a *obj.Addr) int {
   468  	switch a.Type {
   469  	case obj.TYPE_NONE:
   470  		return C_NONE
   471  
   472  	case obj.TYPE_REG:
   473  		if REG_R0 <= a.Reg && a.Reg <= REG_R15 {
   474  			return C_REG
   475  		}
   476  		if REG_F0 <= a.Reg && a.Reg <= REG_F15 {
   477  			return C_FREG
   478  		}
   479  		if REG_AR0 <= a.Reg && a.Reg <= REG_AR15 {
   480  			return C_AREG
   481  		}
   482  		if REG_V0 <= a.Reg && a.Reg <= REG_V31 {
   483  			return C_VREG
   484  		}
   485  		return C_GOK
   486  
   487  	case obj.TYPE_MEM:
   488  		switch a.Name {
   489  		case obj.NAME_EXTERN,
   490  			obj.NAME_STATIC:
   491  			if a.Sym == nil {
   492  				// must have a symbol
   493  				break
   494  			}
   495  			c.instoffset = a.Offset
   496  			if a.Sym.Type == objabi.STLSBSS {
   497  				if c.ctxt.Flag_shared {
   498  					return C_TLS_IE // initial exec model
   499  				}
   500  				return C_TLS_LE // local exec model
   501  			}
   502  			return C_ADDR
   503  
   504  		case obj.NAME_GOTREF:
   505  			return C_GOTADDR
   506  
   507  		case obj.NAME_AUTO:
   508  			if a.Reg == REGSP {
   509  				// unset base register for better printing, since
   510  				// a.Offset is still relative to pseudo-SP.
   511  				a.Reg = obj.REG_NONE
   512  			}
   513  			c.instoffset = int64(c.autosize) + a.Offset
   514  			if c.instoffset >= -BIG && c.instoffset < BIG {
   515  				return C_SAUTO
   516  			}
   517  			return C_LAUTO
   518  
   519  		case obj.NAME_PARAM:
   520  			if a.Reg == REGSP {
   521  				// unset base register for better printing, since
   522  				// a.Offset is still relative to pseudo-FP.
   523  				a.Reg = obj.REG_NONE
   524  			}
   525  			c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.FixedFrameSize()
   526  			if c.instoffset >= -BIG && c.instoffset < BIG {
   527  				return C_SAUTO
   528  			}
   529  			return C_LAUTO
   530  
   531  		case obj.NAME_NONE:
   532  			c.instoffset = a.Offset
   533  			if c.instoffset == 0 {
   534  				return C_ZOREG
   535  			}
   536  			if c.instoffset >= -BIG && c.instoffset < BIG {
   537  				return C_SOREG
   538  			}
   539  			return C_LOREG
   540  		}
   541  
   542  		return C_GOK
   543  
   544  	case obj.TYPE_TEXTSIZE:
   545  		return C_TEXTSIZE
   546  
   547  	case obj.TYPE_FCONST:
   548  		if f64, ok := a.Val.(float64); ok && math.Float64bits(f64) == 0 {
   549  			return C_ZCON
   550  		}
   551  		c.ctxt.Diag("cannot handle the floating point constant %v", a.Val)
   552  
   553  	case obj.TYPE_CONST,
   554  		obj.TYPE_ADDR:
   555  		switch a.Name {
   556  		case obj.NAME_NONE:
   557  			c.instoffset = a.Offset
   558  			if a.Reg != 0 {
   559  				if -BIG <= c.instoffset && c.instoffset <= BIG {
   560  					return C_SACON
   561  				}
   562  				if isint32(c.instoffset) {
   563  					return C_LACON
   564  				}
   565  				return C_DACON
   566  			}
   567  			goto consize
   568  
   569  		case obj.NAME_EXTERN,
   570  			obj.NAME_STATIC:
   571  			s := a.Sym
   572  			if s == nil {
   573  				break
   574  			}
   575  			c.instoffset = a.Offset
   576  
   577  			return C_SYMADDR
   578  
   579  		case obj.NAME_AUTO:
   580  			if a.Reg == REGSP {
   581  				// unset base register for better printing, since
   582  				// a.Offset is still relative to pseudo-SP.
   583  				a.Reg = obj.REG_NONE
   584  			}
   585  			c.instoffset = int64(c.autosize) + a.Offset
   586  			if c.instoffset >= -BIG && c.instoffset < BIG {
   587  				return C_SACON
   588  			}
   589  			return C_LACON
   590  
   591  		case obj.NAME_PARAM:
   592  			if a.Reg == REGSP {
   593  				// unset base register for better printing, since
   594  				// a.Offset is still relative to pseudo-FP.
   595  				a.Reg = obj.REG_NONE
   596  			}
   597  			c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.FixedFrameSize()
   598  			if c.instoffset >= -BIG && c.instoffset < BIG {
   599  				return C_SACON
   600  			}
   601  			return C_LACON
   602  		}
   603  
   604  		return C_GOK
   605  
   606  	consize:
   607  		if c.instoffset == 0 {
   608  			return C_ZCON
   609  		}
   610  		if c.instoffset >= 0 {
   611  			if c.instoffset <= 0x7fff {
   612  				return C_SCON
   613  			}
   614  			if c.instoffset <= 0xffff {
   615  				return C_ANDCON
   616  			}
   617  			if c.instoffset&0xffff == 0 && isuint32(uint64(c.instoffset)) { /* && (instoffset & (1<<31)) == 0) */
   618  				return C_UCON
   619  			}
   620  			if isint32(c.instoffset) || isuint32(uint64(c.instoffset)) {
   621  				return C_LCON
   622  			}
   623  			return C_DCON
   624  		}
   625  
   626  		if c.instoffset >= -0x8000 {
   627  			return C_ADDCON
   628  		}
   629  		if c.instoffset&0xffff == 0 && isint32(c.instoffset) {
   630  			return C_UCON
   631  		}
   632  		if isint32(c.instoffset) {
   633  			return C_LCON
   634  		}
   635  		return C_DCON
   636  
   637  	case obj.TYPE_BRANCH:
   638  		return C_SBRA
   639  	}
   640  
   641  	return C_GOK
   642  }
   643  
   644  func (c *ctxtz) oplook(p *obj.Prog) *Optab {
   645  	a1 := int(p.Optab)
   646  	if a1 != 0 {
   647  		return &optab[a1-1]
   648  	}
   649  	a1 = int(p.From.Class)
   650  	if a1 == 0 {
   651  		a1 = c.aclass(&p.From) + 1
   652  		p.From.Class = int8(a1)
   653  	}
   654  
   655  	a1--
   656  	a3 := C_NONE + 1
   657  	if p.From3 != nil {
   658  		a3 = int(p.From3.Class)
   659  		if a3 == 0 {
   660  			a3 = c.aclass(p.From3) + 1
   661  			p.From3.Class = int8(a3)
   662  		}
   663  	}
   664  
   665  	a3--
   666  	a4 := int(p.To.Class)
   667  	if a4 == 0 {
   668  		a4 = c.aclass(&p.To) + 1
   669  		p.To.Class = int8(a4)
   670  	}
   671  
   672  	a4--
   673  	a2 := C_NONE
   674  	if p.Reg != 0 {
   675  		if REG_R0 <= p.Reg && p.Reg <= REG_R15 {
   676  			a2 = C_REG
   677  		} else if REG_V0 <= p.Reg && p.Reg <= REG_V31 {
   678  			a2 = C_VREG
   679  		} else if REG_F0 <= p.Reg && p.Reg <= REG_F15 {
   680  			a2 = C_FREG
   681  		} else if REG_AR0 <= p.Reg && p.Reg <= REG_AR15 {
   682  			a2 = C_AREG
   683  		}
   684  	}
   685  
   686  	ops := oprange[p.As&obj.AMask]
   687  	c1 := &xcmp[a1]
   688  	c2 := &xcmp[a2]
   689  	c3 := &xcmp[a3]
   690  	c4 := &xcmp[a4]
   691  	for i := range ops {
   692  		op := &ops[i]
   693  		if (int(op.a2) == a2 || c2[op.a2]) && c4[op.a4] && c1[op.a1] && c3[op.a3] {
   694  			p.Optab = uint16(cap(optab) - cap(ops) + i + 1)
   695  			return op
   696  		}
   697  	}
   698  
   699  	// cannot find a case; abort
   700  	c.ctxt.Diag("illegal combination %v %v %v %v %v\n", p.As, DRconv(a1), DRconv(a2), DRconv(a3), DRconv(a4))
   701  	c.ctxt.Diag("prog: %v\n", p)
   702  	return nil
   703  }
   704  
   705  func cmp(a int, b int) bool {
   706  	if a == b {
   707  		return true
   708  	}
   709  	switch a {
   710  	case C_DCON:
   711  		if b == C_LCON {
   712  			return true
   713  		}
   714  		fallthrough
   715  	case C_LCON:
   716  		if b == C_ZCON || b == C_SCON || b == C_UCON || b == C_ADDCON || b == C_ANDCON {
   717  			return true
   718  		}
   719  
   720  	case C_ADDCON:
   721  		if b == C_ZCON || b == C_SCON {
   722  			return true
   723  		}
   724  
   725  	case C_ANDCON:
   726  		if b == C_ZCON || b == C_SCON {
   727  			return true
   728  		}
   729  
   730  	case C_UCON:
   731  		if b == C_ZCON || b == C_SCON {
   732  			return true
   733  		}
   734  
   735  	case C_SCON:
   736  		if b == C_ZCON {
   737  			return true
   738  		}
   739  
   740  	case C_LACON:
   741  		if b == C_SACON {
   742  			return true
   743  		}
   744  
   745  	case C_LBRA:
   746  		if b == C_SBRA {
   747  			return true
   748  		}
   749  
   750  	case C_LAUTO:
   751  		if b == C_SAUTO {
   752  			return true
   753  		}
   754  
   755  	case C_LOREG:
   756  		if b == C_ZOREG || b == C_SOREG {
   757  			return true
   758  		}
   759  
   760  	case C_SOREG:
   761  		if b == C_ZOREG {
   762  			return true
   763  		}
   764  
   765  	case C_ANY:
   766  		return true
   767  	}
   768  
   769  	return false
   770  }
   771  
   772  type ocmp []Optab
   773  
   774  func (x ocmp) Len() int {
   775  	return len(x)
   776  }
   777  
   778  func (x ocmp) Swap(i, j int) {
   779  	x[i], x[j] = x[j], x[i]
   780  }
   781  
   782  func (x ocmp) Less(i, j int) bool {
   783  	p1 := &x[i]
   784  	p2 := &x[j]
   785  	n := int(p1.as) - int(p2.as)
   786  	if n != 0 {
   787  		return n < 0
   788  	}
   789  	n = int(p1.a1) - int(p2.a1)
   790  	if n != 0 {
   791  		return n < 0
   792  	}
   793  	n = int(p1.a2) - int(p2.a2)
   794  	if n != 0 {
   795  		return n < 0
   796  	}
   797  	n = int(p1.a3) - int(p2.a3)
   798  	if n != 0 {
   799  		return n < 0
   800  	}
   801  	n = int(p1.a4) - int(p2.a4)
   802  	if n != 0 {
   803  		return n < 0
   804  	}
   805  	return false
   806  }
   807  func opset(a, b obj.As) {
   808  	oprange[a&obj.AMask] = oprange[b&obj.AMask]
   809  }
   810  
   811  func buildop(ctxt *obj.Link) {
   812  	if oprange[AORW&obj.AMask] != nil {
   813  		// Already initialized; stop now.
   814  		// This happens in the cmd/asm tests,
   815  		// each of which re-initializes the arch.
   816  		return
   817  	}
   818  
   819  	for i := 0; i < C_NCLASS; i++ {
   820  		for n := 0; n < C_NCLASS; n++ {
   821  			if cmp(n, i) {
   822  				xcmp[i][n] = true
   823  			}
   824  		}
   825  	}
   826  	sort.Sort(ocmp(optab))
   827  	for i := 0; i < len(optab); i++ {
   828  		r := optab[i].as
   829  		start := i
   830  		for ; i+1 < len(optab); i++ {
   831  			if optab[i+1].as != r {
   832  				break
   833  			}
   834  		}
   835  		oprange[r&obj.AMask] = optab[start : i+1]
   836  
   837  		// opset() aliases optab ranges for similar instructions, to reduce the number of optabs in the array.
   838  		// oprange[] is used by oplook() to find the Optab entry that applies to a given Prog.
   839  		switch r {
   840  		case AADD:
   841  			opset(AADDC, r)
   842  			opset(AADDW, r)
   843  			opset(AMULLD, r)
   844  			opset(AMULLW, r)
   845  		case ADIVW:
   846  			opset(AADDE, r)
   847  			opset(ADIVD, r)
   848  			opset(ADIVDU, r)
   849  			opset(ADIVWU, r)
   850  			opset(AMODD, r)
   851  			opset(AMODDU, r)
   852  			opset(AMODW, r)
   853  			opset(AMODWU, r)
   854  		case AMULHD:
   855  			opset(AMULHDU, r)
   856  		case AMOVBZ:
   857  			opset(AMOVH, r)
   858  			opset(AMOVHZ, r)
   859  		case ALA:
   860  			opset(ALAY, r)
   861  		case AMVC:
   862  			opset(ACLC, r)
   863  			opset(AXC, r)
   864  			opset(AOC, r)
   865  			opset(ANC, r)
   866  		case ASTCK:
   867  			opset(ASTCKC, r)
   868  			opset(ASTCKE, r)
   869  			opset(ASTCKF, r)
   870  		case ALAAG:
   871  			opset(ALAA, r)
   872  			opset(ALAAL, r)
   873  			opset(ALAALG, r)
   874  			opset(ALAN, r)
   875  			opset(ALANG, r)
   876  			opset(ALAX, r)
   877  			opset(ALAXG, r)
   878  			opset(ALAO, r)
   879  			opset(ALAOG, r)
   880  		case ASTMG:
   881  			opset(ASTMY, r)
   882  		case ALMG:
   883  			opset(ALMY, r)
   884  		case ABEQ:
   885  			opset(ABGE, r)
   886  			opset(ABGT, r)
   887  			opset(ABLE, r)
   888  			opset(ABLT, r)
   889  			opset(ABNE, r)
   890  			opset(ABVC, r)
   891  			opset(ABVS, r)
   892  			opset(ABLEU, r)
   893  			opset(ABLTU, r)
   894  		case ABR:
   895  			opset(ABL, r)
   896  		case ABC:
   897  			opset(ABCL, r)
   898  		case AFABS:
   899  			opset(AFNABS, r)
   900  			opset(AFNEG, r)
   901  			opset(AFNEGS, r)
   902  			opset(ALEDBR, r)
   903  			opset(ALDEBR, r)
   904  			opset(AFSQRT, r)
   905  			opset(AFSQRTS, r)
   906  		case AFADD:
   907  			opset(AFADDS, r)
   908  			opset(AFDIV, r)
   909  			opset(AFDIVS, r)
   910  			opset(AFSUB, r)
   911  			opset(AFSUBS, r)
   912  		case AFMADD:
   913  			opset(AFMADDS, r)
   914  			opset(AFMSUB, r)
   915  			opset(AFMSUBS, r)
   916  		case AFMUL:
   917  			opset(AFMULS, r)
   918  		case AFCMPO:
   919  			opset(AFCMPU, r)
   920  			opset(ACEBR, r)
   921  		case AAND:
   922  			opset(AOR, r)
   923  			opset(AXOR, r)
   924  		case AANDW:
   925  			opset(AORW, r)
   926  			opset(AXORW, r)
   927  		case ASLD:
   928  			opset(ASRD, r)
   929  			opset(ASLW, r)
   930  			opset(ASRW, r)
   931  			opset(ASRAD, r)
   932  			opset(ASRAW, r)
   933  			opset(ARLL, r)
   934  			opset(ARLLG, r)
   935  		case ACSG:
   936  			opset(ACS, r)
   937  		case ASUB:
   938  			opset(ASUBC, r)
   939  			opset(ASUBE, r)
   940  			opset(ASUBW, r)
   941  		case ANEG:
   942  			opset(ANEGW, r)
   943  		case AFMOVD:
   944  			opset(AFMOVS, r)
   945  		case AMOVDBR:
   946  			opset(AMOVWBR, r)
   947  		case ACMP:
   948  			opset(ACMPW, r)
   949  		case ACMPU:
   950  			opset(ACMPWU, r)
   951  		case ACEFBRA:
   952  			opset(ACDFBRA, r)
   953  			opset(ACEGBRA, r)
   954  			opset(ACDGBRA, r)
   955  			opset(ACELFBR, r)
   956  			opset(ACDLFBR, r)
   957  			opset(ACELGBR, r)
   958  			opset(ACDLGBR, r)
   959  		case ACFEBRA:
   960  			opset(ACFDBRA, r)
   961  			opset(ACGEBRA, r)
   962  			opset(ACGDBRA, r)
   963  			opset(ACLFEBR, r)
   964  			opset(ACLFDBR, r)
   965  			opset(ACLGEBR, r)
   966  			opset(ACLGDBR, r)
   967  		case AFIEBR:
   968  			opset(AFIDBR, r)
   969  		case ACMPBEQ:
   970  			opset(ACMPBGE, r)
   971  			opset(ACMPBGT, r)
   972  			opset(ACMPBLE, r)
   973  			opset(ACMPBLT, r)
   974  			opset(ACMPBNE, r)
   975  		case ACMPUBEQ:
   976  			opset(ACMPUBGE, r)
   977  			opset(ACMPUBGT, r)
   978  			opset(ACMPUBLE, r)
   979  			opset(ACMPUBLT, r)
   980  			opset(ACMPUBNE, r)
   981  		case AMOVDEQ:
   982  			opset(AMOVDGE, r)
   983  			opset(AMOVDGT, r)
   984  			opset(AMOVDLE, r)
   985  			opset(AMOVDLT, r)
   986  			opset(AMOVDNE, r)
   987  		case AVL:
   988  			opset(AVLLEZB, r)
   989  			opset(AVLLEZH, r)
   990  			opset(AVLLEZF, r)
   991  			opset(AVLLEZG, r)
   992  			opset(AVLREPB, r)
   993  			opset(AVLREPH, r)
   994  			opset(AVLREPF, r)
   995  			opset(AVLREPG, r)
   996  		case AVLEG:
   997  			opset(AVLBB, r)
   998  			opset(AVLEB, r)
   999  			opset(AVLEH, r)
  1000  			opset(AVLEF, r)
  1001  			opset(AVLEG, r)
  1002  			opset(AVLREP, r)
  1003  		case AVSTEG:
  1004  			opset(AVSTEB, r)
  1005  			opset(AVSTEH, r)
  1006  			opset(AVSTEF, r)
  1007  		case AVSCEG:
  1008  			opset(AVSCEF, r)
  1009  		case AVGEG:
  1010  			opset(AVGEF, r)
  1011  		case AVESLG:
  1012  			opset(AVESLB, r)
  1013  			opset(AVESLH, r)
  1014  			opset(AVESLF, r)
  1015  			opset(AVERLLB, r)
  1016  			opset(AVERLLH, r)
  1017  			opset(AVERLLF, r)
  1018  			opset(AVERLLG, r)
  1019  			opset(AVESRAB, r)
  1020  			opset(AVESRAH, r)
  1021  			opset(AVESRAF, r)
  1022  			opset(AVESRAG, r)
  1023  			opset(AVESRLB, r)
  1024  			opset(AVESRLH, r)
  1025  			opset(AVESRLF, r)
  1026  			opset(AVESRLG, r)
  1027  		case AVLGVG:
  1028  			opset(AVLGVB, r)
  1029  			opset(AVLGVH, r)
  1030  			opset(AVLGVF, r)
  1031  		case AVLVGG:
  1032  			opset(AVLVGB, r)
  1033  			opset(AVLVGH, r)
  1034  			opset(AVLVGF, r)
  1035  		case AVZERO:
  1036  			opset(AVONE, r)
  1037  		case AVREPIG:
  1038  			opset(AVREPIB, r)
  1039  			opset(AVREPIH, r)
  1040  			opset(AVREPIF, r)
  1041  		case AVLEIG:
  1042  			opset(AVLEIB, r)
  1043  			opset(AVLEIH, r)
  1044  			opset(AVLEIF, r)
  1045  		case AVGMG:
  1046  			opset(AVGMB, r)
  1047  			opset(AVGMH, r)
  1048  			opset(AVGMF, r)
  1049  		case AVREPG:
  1050  			opset(AVREPB, r)
  1051  			opset(AVREPH, r)
  1052  			opset(AVREPF, r)
  1053  		case AVERIMG:
  1054  			opset(AVERIMB, r)
  1055  			opset(AVERIMH, r)
  1056  			opset(AVERIMF, r)
  1057  		case AVFTCIDB:
  1058  			opset(AWFTCIDB, r)
  1059  		case AVLR:
  1060  			opset(AVUPHB, r)
  1061  			opset(AVUPHH, r)
  1062  			opset(AVUPHF, r)
  1063  			opset(AVUPLHB, r)
  1064  			opset(AVUPLHH, r)
  1065  			opset(AVUPLHF, r)
  1066  			opset(AVUPLB, r)
  1067  			opset(AVUPLHW, r)
  1068  			opset(AVUPLF, r)
  1069  			opset(AVUPLLB, r)
  1070  			opset(AVUPLLH, r)
  1071  			opset(AVUPLLF, r)
  1072  			opset(AVCLZB, r)
  1073  			opset(AVCLZH, r)
  1074  			opset(AVCLZF, r)
  1075  			opset(AVCLZG, r)
  1076  			opset(AVCTZB, r)
  1077  			opset(AVCTZH, r)
  1078  			opset(AVCTZF, r)
  1079  			opset(AVCTZG, r)
  1080  			opset(AVLDEB, r)
  1081  			opset(AWLDEB, r)
  1082  			opset(AVFLCDB, r)
  1083  			opset(AWFLCDB, r)
  1084  			opset(AVFLNDB, r)
  1085  			opset(AWFLNDB, r)
  1086  			opset(AVFLPDB, r)
  1087  			opset(AWFLPDB, r)
  1088  			opset(AVFSQDB, r)
  1089  			opset(AWFSQDB, r)
  1090  			opset(AVISTRB, r)
  1091  			opset(AVISTRH, r)
  1092  			opset(AVISTRF, r)
  1093  			opset(AVISTRBS, r)
  1094  			opset(AVISTRHS, r)
  1095  			opset(AVISTRFS, r)
  1096  			opset(AVLCB, r)
  1097  			opset(AVLCH, r)
  1098  			opset(AVLCF, r)
  1099  			opset(AVLCG, r)
  1100  			opset(AVLPB, r)
  1101  			opset(AVLPH, r)
  1102  			opset(AVLPF, r)
  1103  			opset(AVLPG, r)
  1104  			opset(AVPOPCT, r)
  1105  			opset(AVSEGB, r)
  1106  			opset(AVSEGH, r)
  1107  			opset(AVSEGF, r)
  1108  		case AVECG:
  1109  			opset(AVECB, r)
  1110  			opset(AVECH, r)
  1111  			opset(AVECF, r)
  1112  			opset(AVECLB, r)
  1113  			opset(AVECLH, r)
  1114  			opset(AVECLF, r)
  1115  			opset(AVECLG, r)
  1116  			opset(AWFCDB, r)
  1117  			opset(AWFKDB, r)
  1118  		case AVCEQG:
  1119  			opset(AVCEQB, r)
  1120  			opset(AVCEQH, r)
  1121  			opset(AVCEQF, r)
  1122  			opset(AVCEQBS, r)
  1123  			opset(AVCEQHS, r)
  1124  			opset(AVCEQFS, r)
  1125  			opset(AVCEQGS, r)
  1126  			opset(AVCHB, r)
  1127  			opset(AVCHH, r)
  1128  			opset(AVCHF, r)
  1129  			opset(AVCHG, r)
  1130  			opset(AVCHBS, r)
  1131  			opset(AVCHHS, r)
  1132  			opset(AVCHFS, r)
  1133  			opset(AVCHGS, r)
  1134  			opset(AVCHLB, r)
  1135  			opset(AVCHLH, r)
  1136  			opset(AVCHLF, r)
  1137  			opset(AVCHLG, r)
  1138  			opset(AVCHLBS, r)
  1139  			opset(AVCHLHS, r)
  1140  			opset(AVCHLFS, r)
  1141  			opset(AVCHLGS, r)
  1142  		case AVFAEF:
  1143  			opset(AVFAEB, r)
  1144  			opset(AVFAEH, r)
  1145  			opset(AVFAEBS, r)
  1146  			opset(AVFAEHS, r)
  1147  			opset(AVFAEFS, r)
  1148  			opset(AVFAEZB, r)
  1149  			opset(AVFAEZH, r)
  1150  			opset(AVFAEZF, r)
  1151  			opset(AVFAEZBS, r)
  1152  			opset(AVFAEZHS, r)
  1153  			opset(AVFAEZFS, r)
  1154  			opset(AVFEEB, r)
  1155  			opset(AVFEEH, r)
  1156  			opset(AVFEEF, r)
  1157  			opset(AVFEEBS, r)
  1158  			opset(AVFEEHS, r)
  1159  			opset(AVFEEFS, r)
  1160  			opset(AVFEEZB, r)
  1161  			opset(AVFEEZH, r)
  1162  			opset(AVFEEZF, r)
  1163  			opset(AVFEEZBS, r)
  1164  			opset(AVFEEZHS, r)
  1165  			opset(AVFEEZFS, r)
  1166  			opset(AVFENEB, r)
  1167  			opset(AVFENEH, r)
  1168  			opset(AVFENEF, r)
  1169  			opset(AVFENEBS, r)
  1170  			opset(AVFENEHS, r)
  1171  			opset(AVFENEFS, r)
  1172  			opset(AVFENEZB, r)
  1173  			opset(AVFENEZH, r)
  1174  			opset(AVFENEZF, r)
  1175  			opset(AVFENEZBS, r)
  1176  			opset(AVFENEZHS, r)
  1177  			opset(AVFENEZFS, r)
  1178  		case AVPKSG:
  1179  			opset(AVPKSH, r)
  1180  			opset(AVPKSF, r)
  1181  			opset(AVPKSHS, r)
  1182  			opset(AVPKSFS, r)
  1183  			opset(AVPKSGS, r)
  1184  			opset(AVPKLSH, r)
  1185  			opset(AVPKLSF, r)
  1186  			opset(AVPKLSG, r)
  1187  			opset(AVPKLSHS, r)
  1188  			opset(AVPKLSFS, r)
  1189  			opset(AVPKLSGS, r)
  1190  		case AVAQ:
  1191  			opset(AVAB, r)
  1192  			opset(AVAH, r)
  1193  			opset(AVAF, r)
  1194  			opset(AVAG, r)
  1195  			opset(AVACCB, r)
  1196  			opset(AVACCH, r)
  1197  			opset(AVACCF, r)
  1198  			opset(AVACCG, r)
  1199  			opset(AVACCQ, r)
  1200  			opset(AVN, r)
  1201  			opset(AVNC, r)
  1202  			opset(AVAVGB, r)
  1203  			opset(AVAVGH, r)
  1204  			opset(AVAVGF, r)
  1205  			opset(AVAVGG, r)
  1206  			opset(AVAVGLB, r)
  1207  			opset(AVAVGLH, r)
  1208  			opset(AVAVGLF, r)
  1209  			opset(AVAVGLG, r)
  1210  			opset(AVCKSM, r)
  1211  			opset(AVX, r)
  1212  			opset(AVFADB, r)
  1213  			opset(AWFADB, r)
  1214  			opset(AVFCEDB, r)
  1215  			opset(AVFCEDBS, r)
  1216  			opset(AWFCEDB, r)
  1217  			opset(AWFCEDBS, r)
  1218  			opset(AVFCHDB, r)
  1219  			opset(AVFCHDBS, r)
  1220  			opset(AWFCHDB, r)
  1221  			opset(AWFCHDBS, r)
  1222  			opset(AVFCHEDB, r)
  1223  			opset(AVFCHEDBS, r)
  1224  			opset(AWFCHEDB, r)
  1225  			opset(AWFCHEDBS, r)
  1226  			opset(AVFMDB, r)
  1227  			opset(AWFMDB, r)
  1228  			opset(AVGFMB, r)
  1229  			opset(AVGFMH, r)
  1230  			opset(AVGFMF, r)
  1231  			opset(AVGFMG, r)
  1232  			opset(AVMXB, r)
  1233  			opset(AVMXH, r)
  1234  			opset(AVMXF, r)
  1235  			opset(AVMXG, r)
  1236  			opset(AVMXLB, r)
  1237  			opset(AVMXLH, r)
  1238  			opset(AVMXLF, r)
  1239  			opset(AVMXLG, r)
  1240  			opset(AVMNB, r)
  1241  			opset(AVMNH, r)
  1242  			opset(AVMNF, r)
  1243  			opset(AVMNG, r)
  1244  			opset(AVMNLB, r)
  1245  			opset(AVMNLH, r)
  1246  			opset(AVMNLF, r)
  1247  			opset(AVMNLG, r)
  1248  			opset(AVMRHB, r)
  1249  			opset(AVMRHH, r)
  1250  			opset(AVMRHF, r)
  1251  			opset(AVMRHG, r)
  1252  			opset(AVMRLB, r)
  1253  			opset(AVMRLH, r)
  1254  			opset(AVMRLF, r)
  1255  			opset(AVMRLG, r)
  1256  			opset(AVMEB, r)
  1257  			opset(AVMEH, r)
  1258  			opset(AVMEF, r)
  1259  			opset(AVMLEB, r)
  1260  			opset(AVMLEH, r)
  1261  			opset(AVMLEF, r)
  1262  			opset(AVMOB, r)
  1263  			opset(AVMOH, r)
  1264  			opset(AVMOF, r)
  1265  			opset(AVMLOB, r)
  1266  			opset(AVMLOH, r)
  1267  			opset(AVMLOF, r)
  1268  			opset(AVMHB, r)
  1269  			opset(AVMHH, r)
  1270  			opset(AVMHF, r)
  1271  			opset(AVMLHB, r)
  1272  			opset(AVMLHH, r)
  1273  			opset(AVMLHF, r)
  1274  			opset(AVMLH, r)
  1275  			opset(AVMLHW, r)
  1276  			opset(AVMLF, r)
  1277  			opset(AVNO, r)
  1278  			opset(AVO, r)
  1279  			opset(AVPKH, r)
  1280  			opset(AVPKF, r)
  1281  			opset(AVPKG, r)
  1282  			opset(AVSUMGH, r)
  1283  			opset(AVSUMGF, r)
  1284  			opset(AVSUMQF, r)
  1285  			opset(AVSUMQG, r)
  1286  			opset(AVSUMB, r)
  1287  			opset(AVSUMH, r)
  1288  		case AVERLLVG:
  1289  			opset(AVERLLVB, r)
  1290  			opset(AVERLLVH, r)
  1291  			opset(AVERLLVF, r)
  1292  			opset(AVESLVB, r)
  1293  			opset(AVESLVH, r)
  1294  			opset(AVESLVF, r)
  1295  			opset(AVESLVG, r)
  1296  			opset(AVESRAVB, r)
  1297  			opset(AVESRAVH, r)
  1298  			opset(AVESRAVF, r)
  1299  			opset(AVESRAVG, r)
  1300  			opset(AVESRLVB, r)
  1301  			opset(AVESRLVH, r)
  1302  			opset(AVESRLVF, r)
  1303  			opset(AVESRLVG, r)
  1304  			opset(AVFDDB, r)
  1305  			opset(AWFDDB, r)
  1306  			opset(AVFSDB, r)
  1307  			opset(AWFSDB, r)
  1308  			opset(AVSL, r)
  1309  			opset(AVSLB, r)
  1310  			opset(AVSRA, r)
  1311  			opset(AVSRAB, r)
  1312  			opset(AVSRL, r)
  1313  			opset(AVSRLB, r)
  1314  			opset(AVSF, r)
  1315  			opset(AVSG, r)
  1316  			opset(AVSQ, r)
  1317  			opset(AVSCBIB, r)
  1318  			opset(AVSCBIH, r)
  1319  			opset(AVSCBIF, r)
  1320  			opset(AVSCBIG, r)
  1321  			opset(AVSCBIQ, r)
  1322  		case AVACQ:
  1323  			opset(AVACCCQ, r)
  1324  			opset(AVGFMAB, r)
  1325  			opset(AVGFMAH, r)
  1326  			opset(AVGFMAF, r)
  1327  			opset(AVGFMAG, r)
  1328  			opset(AVMALB, r)
  1329  			opset(AVMALHW, r)
  1330  			opset(AVMALF, r)
  1331  			opset(AVMAHB, r)
  1332  			opset(AVMAHH, r)
  1333  			opset(AVMAHF, r)
  1334  			opset(AVMALHB, r)
  1335  			opset(AVMALHH, r)
  1336  			opset(AVMALHF, r)
  1337  			opset(AVMAEB, r)
  1338  			opset(AVMAEH, r)
  1339  			opset(AVMAEF, r)
  1340  			opset(AVMALEB, r)
  1341  			opset(AVMALEH, r)
  1342  			opset(AVMALEF, r)
  1343  			opset(AVMAOB, r)
  1344  			opset(AVMAOH, r)
  1345  			opset(AVMAOF, r)
  1346  			opset(AVMALOB, r)
  1347  			opset(AVMALOH, r)
  1348  			opset(AVMALOF, r)
  1349  			opset(AVSTRCB, r)
  1350  			opset(AVSTRCH, r)
  1351  			opset(AVSTRCF, r)
  1352  			opset(AVSTRCBS, r)
  1353  			opset(AVSTRCHS, r)
  1354  			opset(AVSTRCFS, r)
  1355  			opset(AVSTRCZB, r)
  1356  			opset(AVSTRCZH, r)
  1357  			opset(AVSTRCZF, r)
  1358  			opset(AVSTRCZBS, r)
  1359  			opset(AVSTRCZHS, r)
  1360  			opset(AVSTRCZFS, r)
  1361  			opset(AVSBCBIQ, r)
  1362  			opset(AVSBIQ, r)
  1363  		case AVSEL:
  1364  			opset(AVFMADB, r)
  1365  			opset(AWFMADB, r)
  1366  			opset(AVFMSDB, r)
  1367  			opset(AWFMSDB, r)
  1368  			opset(AVPERM, r)
  1369  		}
  1370  	}
  1371  }
  1372  
  1373  const (
  1374  	op_A       uint32 = 0x5A00 // FORMAT_RX1        ADD (32)
  1375  	op_AD      uint32 = 0x6A00 // FORMAT_RX1        ADD NORMALIZED (long HFP)
  1376  	op_ADB     uint32 = 0xED1A // FORMAT_RXE        ADD (long BFP)
  1377  	op_ADBR    uint32 = 0xB31A // FORMAT_RRE        ADD (long BFP)
  1378  	op_ADR     uint32 = 0x2A00 // FORMAT_RR         ADD NORMALIZED (long HFP)
  1379  	op_ADTR    uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
  1380  	op_ADTRA   uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
  1381  	op_AE      uint32 = 0x7A00 // FORMAT_RX1        ADD NORMALIZED (short HFP)
  1382  	op_AEB     uint32 = 0xED0A // FORMAT_RXE        ADD (short BFP)
  1383  	op_AEBR    uint32 = 0xB30A // FORMAT_RRE        ADD (short BFP)
  1384  	op_AER     uint32 = 0x3A00 // FORMAT_RR         ADD NORMALIZED (short HFP)
  1385  	op_AFI     uint32 = 0xC209 // FORMAT_RIL1       ADD IMMEDIATE (32)
  1386  	op_AG      uint32 = 0xE308 // FORMAT_RXY1       ADD (64)
  1387  	op_AGF     uint32 = 0xE318 // FORMAT_RXY1       ADD (64<-32)
  1388  	op_AGFI    uint32 = 0xC208 // FORMAT_RIL1       ADD IMMEDIATE (64<-32)
  1389  	op_AGFR    uint32 = 0xB918 // FORMAT_RRE        ADD (64<-32)
  1390  	op_AGHI    uint32 = 0xA70B // FORMAT_RI1        ADD HALFWORD IMMEDIATE (64)
  1391  	op_AGHIK   uint32 = 0xECD9 // FORMAT_RIE4       ADD IMMEDIATE (64<-16)
  1392  	op_AGR     uint32 = 0xB908 // FORMAT_RRE        ADD (64)
  1393  	op_AGRK    uint32 = 0xB9E8 // FORMAT_RRF1       ADD (64)
  1394  	op_AGSI    uint32 = 0xEB7A // FORMAT_SIY        ADD IMMEDIATE (64<-8)
  1395  	op_AH      uint32 = 0x4A00 // FORMAT_RX1        ADD HALFWORD
  1396  	op_AHHHR   uint32 = 0xB9C8 // FORMAT_RRF1       ADD HIGH (32)
  1397  	op_AHHLR   uint32 = 0xB9D8 // FORMAT_RRF1       ADD HIGH (32)
  1398  	op_AHI     uint32 = 0xA70A // FORMAT_RI1        ADD HALFWORD IMMEDIATE (32)
  1399  	op_AHIK    uint32 = 0xECD8 // FORMAT_RIE4       ADD IMMEDIATE (32<-16)
  1400  	op_AHY     uint32 = 0xE37A // FORMAT_RXY1       ADD HALFWORD
  1401  	op_AIH     uint32 = 0xCC08 // FORMAT_RIL1       ADD IMMEDIATE HIGH (32)
  1402  	op_AL      uint32 = 0x5E00 // FORMAT_RX1        ADD LOGICAL (32)
  1403  	op_ALC     uint32 = 0xE398 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (32)
  1404  	op_ALCG    uint32 = 0xE388 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (64)
  1405  	op_ALCGR   uint32 = 0xB988 // FORMAT_RRE        ADD LOGICAL WITH CARRY (64)
  1406  	op_ALCR    uint32 = 0xB998 // FORMAT_RRE        ADD LOGICAL WITH CARRY (32)
  1407  	op_ALFI    uint32 = 0xC20B // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (32)
  1408  	op_ALG     uint32 = 0xE30A // FORMAT_RXY1       ADD LOGICAL (64)
  1409  	op_ALGF    uint32 = 0xE31A // FORMAT_RXY1       ADD LOGICAL (64<-32)
  1410  	op_ALGFI   uint32 = 0xC20A // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (64<-32)
  1411  	op_ALGFR   uint32 = 0xB91A // FORMAT_RRE        ADD LOGICAL (64<-32)
  1412  	op_ALGHSIK uint32 = 0xECDB // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (64<-16)
  1413  	op_ALGR    uint32 = 0xB90A // FORMAT_RRE        ADD LOGICAL (64)
  1414  	op_ALGRK   uint32 = 0xB9EA // FORMAT_RRF1       ADD LOGICAL (64)
  1415  	op_ALGSI   uint32 = 0xEB7E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (64<-8)
  1416  	op_ALHHHR  uint32 = 0xB9CA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
  1417  	op_ALHHLR  uint32 = 0xB9DA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
  1418  	op_ALHSIK  uint32 = 0xECDA // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (32<-16)
  1419  	op_ALR     uint32 = 0x1E00 // FORMAT_RR         ADD LOGICAL (32)
  1420  	op_ALRK    uint32 = 0xB9FA // FORMAT_RRF1       ADD LOGICAL (32)
  1421  	op_ALSI    uint32 = 0xEB6E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (32<-8)
  1422  	op_ALSIH   uint32 = 0xCC0A // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
  1423  	op_ALSIHN  uint32 = 0xCC0B // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
  1424  	op_ALY     uint32 = 0xE35E // FORMAT_RXY1       ADD LOGICAL (32)
  1425  	op_AP      uint32 = 0xFA00 // FORMAT_SS2        ADD DECIMAL
  1426  	op_AR      uint32 = 0x1A00 // FORMAT_RR         ADD (32)
  1427  	op_ARK     uint32 = 0xB9F8 // FORMAT_RRF1       ADD (32)
  1428  	op_ASI     uint32 = 0xEB6A // FORMAT_SIY        ADD IMMEDIATE (32<-8)
  1429  	op_AU      uint32 = 0x7E00 // FORMAT_RX1        ADD UNNORMALIZED (short HFP)
  1430  	op_AUR     uint32 = 0x3E00 // FORMAT_RR         ADD UNNORMALIZED (short HFP)
  1431  	op_AW      uint32 = 0x6E00 // FORMAT_RX1        ADD UNNORMALIZED (long HFP)
  1432  	op_AWR     uint32 = 0x2E00 // FORMAT_RR         ADD UNNORMALIZED (long HFP)
  1433  	op_AXBR    uint32 = 0xB34A // FORMAT_RRE        ADD (extended BFP)
  1434  	op_AXR     uint32 = 0x3600 // FORMAT_RR         ADD NORMALIZED (extended HFP)
  1435  	op_AXTR    uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
  1436  	op_AXTRA   uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
  1437  	op_AY      uint32 = 0xE35A // FORMAT_RXY1       ADD (32)
  1438  	op_BAKR    uint32 = 0xB240 // FORMAT_RRE        BRANCH AND STACK
  1439  	op_BAL     uint32 = 0x4500 // FORMAT_RX1        BRANCH AND LINK
  1440  	op_BALR    uint32 = 0x0500 // FORMAT_RR         BRANCH AND LINK
  1441  	op_BAS     uint32 = 0x4D00 // FORMAT_RX1        BRANCH AND SAVE
  1442  	op_BASR    uint32 = 0x0D00 // FORMAT_RR         BRANCH AND SAVE
  1443  	op_BASSM   uint32 = 0x0C00 // FORMAT_RR         BRANCH AND SAVE AND SET MODE
  1444  	op_BC      uint32 = 0x4700 // FORMAT_RX2        BRANCH ON CONDITION
  1445  	op_BCR     uint32 = 0x0700 // FORMAT_RR         BRANCH ON CONDITION
  1446  	op_BCT     uint32 = 0x4600 // FORMAT_RX1        BRANCH ON COUNT (32)
  1447  	op_BCTG    uint32 = 0xE346 // FORMAT_RXY1       BRANCH ON COUNT (64)
  1448  	op_BCTGR   uint32 = 0xB946 // FORMAT_RRE        BRANCH ON COUNT (64)
  1449  	op_BCTR    uint32 = 0x0600 // FORMAT_RR         BRANCH ON COUNT (32)
  1450  	op_BPP     uint32 = 0xC700 // FORMAT_SMI        BRANCH PREDICTION PRELOAD
  1451  	op_BPRP    uint32 = 0xC500 // FORMAT_MII        BRANCH PREDICTION RELATIVE PRELOAD
  1452  	op_BRAS    uint32 = 0xA705 // FORMAT_RI2        BRANCH RELATIVE AND SAVE
  1453  	op_BRASL   uint32 = 0xC005 // FORMAT_RIL2       BRANCH RELATIVE AND SAVE LONG
  1454  	op_BRC     uint32 = 0xA704 // FORMAT_RI3        BRANCH RELATIVE ON CONDITION
  1455  	op_BRCL    uint32 = 0xC004 // FORMAT_RIL3       BRANCH RELATIVE ON CONDITION LONG
  1456  	op_BRCT    uint32 = 0xA706 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (32)
  1457  	op_BRCTG   uint32 = 0xA707 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (64)
  1458  	op_BRCTH   uint32 = 0xCC06 // FORMAT_RIL2       BRANCH RELATIVE ON COUNT HIGH (32)
  1459  	op_BRXH    uint32 = 0x8400 // FORMAT_RSI        BRANCH RELATIVE ON INDEX HIGH (32)
  1460  	op_BRXHG   uint32 = 0xEC44 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX HIGH (64)
  1461  	op_BRXLE   uint32 = 0x8500 // FORMAT_RSI        BRANCH RELATIVE ON INDEX LOW OR EQ. (32)
  1462  	op_BRXLG   uint32 = 0xEC45 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX LOW OR EQ. (64)
  1463  	op_BSA     uint32 = 0xB25A // FORMAT_RRE        BRANCH AND SET AUTHORITY
  1464  	op_BSG     uint32 = 0xB258 // FORMAT_RRE        BRANCH IN SUBSPACE GROUP
  1465  	op_BSM     uint32 = 0x0B00 // FORMAT_RR         BRANCH AND SET MODE
  1466  	op_BXH     uint32 = 0x8600 // FORMAT_RS1        BRANCH ON INDEX HIGH (32)
  1467  	op_BXHG    uint32 = 0xEB44 // FORMAT_RSY1       BRANCH ON INDEX HIGH (64)
  1468  	op_BXLE    uint32 = 0x8700 // FORMAT_RS1        BRANCH ON INDEX LOW OR EQUAL (32)
  1469  	op_BXLEG   uint32 = 0xEB45 // FORMAT_RSY1       BRANCH ON INDEX LOW OR EQUAL (64)
  1470  	op_C       uint32 = 0x5900 // FORMAT_RX1        COMPARE (32)
  1471  	op_CD      uint32 = 0x6900 // FORMAT_RX1        COMPARE (long HFP)
  1472  	op_CDB     uint32 = 0xED19 // FORMAT_RXE        COMPARE (long BFP)
  1473  	op_CDBR    uint32 = 0xB319 // FORMAT_RRE        COMPARE (long BFP)
  1474  	op_CDFBR   uint32 = 0xB395 // FORMAT_RRE        CONVERT FROM FIXED (32 to long BFP)
  1475  	op_CDFBRA  uint32 = 0xB395 // FORMAT_RRF5       CONVERT FROM FIXED (32 to long BFP)
  1476  	op_CDFR    uint32 = 0xB3B5 // FORMAT_RRE        CONVERT FROM FIXED (32 to long HFP)
  1477  	op_CDFTR   uint32 = 0xB951 // FORMAT_RRE        CONVERT FROM FIXED (32 to long DFP)
  1478  	op_CDGBR   uint32 = 0xB3A5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long BFP)
  1479  	op_CDGBRA  uint32 = 0xB3A5 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long BFP)
  1480  	op_CDGR    uint32 = 0xB3C5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long HFP)
  1481  	op_CDGTR   uint32 = 0xB3F1 // FORMAT_RRE        CONVERT FROM FIXED (64 to long DFP)
  1482  	op_CDGTRA  uint32 = 0xB3F1 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long DFP)
  1483  	op_CDLFBR  uint32 = 0xB391 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long BFP)
  1484  	op_CDLFTR  uint32 = 0xB953 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long DFP)
  1485  	op_CDLGBR  uint32 = 0xB3A1 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long BFP)
  1486  	op_CDLGTR  uint32 = 0xB952 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long DFP)
  1487  	op_CDR     uint32 = 0x2900 // FORMAT_RR         COMPARE (long HFP)
  1488  	op_CDS     uint32 = 0xBB00 // FORMAT_RS1        COMPARE DOUBLE AND SWAP (32)
  1489  	op_CDSG    uint32 = 0xEB3E // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (64)
  1490  	op_CDSTR   uint32 = 0xB3F3 // FORMAT_RRE        CONVERT FROM SIGNED PACKED (64 to long DFP)
  1491  	op_CDSY    uint32 = 0xEB31 // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (32)
  1492  	op_CDTR    uint32 = 0xB3E4 // FORMAT_RRE        COMPARE (long DFP)
  1493  	op_CDUTR   uint32 = 0xB3F2 // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (64 to long DFP)
  1494  	op_CDZT    uint32 = 0xEDAA // FORMAT_RSL        CONVERT FROM ZONED (to long DFP)
  1495  	op_CE      uint32 = 0x7900 // FORMAT_RX1        COMPARE (short HFP)
  1496  	op_CEB     uint32 = 0xED09 // FORMAT_RXE        COMPARE (short BFP)
  1497  	op_CEBR    uint32 = 0xB309 // FORMAT_RRE        COMPARE (short BFP)
  1498  	op_CEDTR   uint32 = 0xB3F4 // FORMAT_RRE        COMPARE BIASED EXPONENT (long DFP)
  1499  	op_CEFBR   uint32 = 0xB394 // FORMAT_RRE        CONVERT FROM FIXED (32 to short BFP)
  1500  	op_CEFBRA  uint32 = 0xB394 // FORMAT_RRF5       CONVERT FROM FIXED (32 to short BFP)
  1501  	op_CEFR    uint32 = 0xB3B4 // FORMAT_RRE        CONVERT FROM FIXED (32 to short HFP)
  1502  	op_CEGBR   uint32 = 0xB3A4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short BFP)
  1503  	op_CEGBRA  uint32 = 0xB3A4 // FORMAT_RRF5       CONVERT FROM FIXED (64 to short BFP)
  1504  	op_CEGR    uint32 = 0xB3C4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short HFP)
  1505  	op_CELFBR  uint32 = 0xB390 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to short BFP)
  1506  	op_CELGBR  uint32 = 0xB3A0 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to short BFP)
  1507  	op_CER     uint32 = 0x3900 // FORMAT_RR         COMPARE (short HFP)
  1508  	op_CEXTR   uint32 = 0xB3FC // FORMAT_RRE        COMPARE BIASED EXPONENT (extended DFP)
  1509  	op_CFC     uint32 = 0xB21A // FORMAT_S          COMPARE AND FORM CODEWORD
  1510  	op_CFDBR   uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
  1511  	op_CFDBRA  uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
  1512  	op_CFDR    uint32 = 0xB3B9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 32)
  1513  	op_CFDTR   uint32 = 0xB941 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 32)
  1514  	op_CFEBR   uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
  1515  	op_CFEBRA  uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
  1516  	op_CFER    uint32 = 0xB3B8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 32)
  1517  	op_CFI     uint32 = 0xC20D // FORMAT_RIL1       COMPARE IMMEDIATE (32)
  1518  	op_CFXBR   uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
  1519  	op_CFXBRA  uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
  1520  	op_CFXR    uint32 = 0xB3BA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 32)
  1521  	op_CFXTR   uint32 = 0xB949 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 32)
  1522  	op_CG      uint32 = 0xE320 // FORMAT_RXY1       COMPARE (64)
  1523  	op_CGDBR   uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
  1524  	op_CGDBRA  uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
  1525  	op_CGDR    uint32 = 0xB3C9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 64)
  1526  	op_CGDTR   uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
  1527  	op_CGDTRA  uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
  1528  	op_CGEBR   uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
  1529  	op_CGEBRA  uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
  1530  	op_CGER    uint32 = 0xB3C8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 64)
  1531  	op_CGF     uint32 = 0xE330 // FORMAT_RXY1       COMPARE (64<-32)
  1532  	op_CGFI    uint32 = 0xC20C // FORMAT_RIL1       COMPARE IMMEDIATE (64<-32)
  1533  	op_CGFR    uint32 = 0xB930 // FORMAT_RRE        COMPARE (64<-32)
  1534  	op_CGFRL   uint32 = 0xC60C // FORMAT_RIL2       COMPARE RELATIVE LONG (64<-32)
  1535  	op_CGH     uint32 = 0xE334 // FORMAT_RXY1       COMPARE HALFWORD (64<-16)
  1536  	op_CGHI    uint32 = 0xA70F // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (64<-16)
  1537  	op_CGHRL   uint32 = 0xC604 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (64<-16)
  1538  	op_CGHSI   uint32 = 0xE558 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (64<-16)
  1539  	op_CGIB    uint32 = 0xECFC // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (64<-8)
  1540  	op_CGIJ    uint32 = 0xEC7C // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (64<-8)
  1541  	op_CGIT    uint32 = 0xEC70 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (64<-16)
  1542  	op_CGR     uint32 = 0xB920 // FORMAT_RRE        COMPARE (64)
  1543  	op_CGRB    uint32 = 0xECE4 // FORMAT_RRS        COMPARE AND BRANCH (64)
  1544  	op_CGRJ    uint32 = 0xEC64 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (64)
  1545  	op_CGRL    uint32 = 0xC608 // FORMAT_RIL2       COMPARE RELATIVE LONG (64)
  1546  	op_CGRT    uint32 = 0xB960 // FORMAT_RRF3       COMPARE AND TRAP (64)
  1547  	op_CGXBR   uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
  1548  	op_CGXBRA  uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
  1549  	op_CGXR    uint32 = 0xB3CA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 64)
  1550  	op_CGXTR   uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
  1551  	op_CGXTRA  uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
  1552  	op_CH      uint32 = 0x4900 // FORMAT_RX1        COMPARE HALFWORD (32<-16)
  1553  	op_CHF     uint32 = 0xE3CD // FORMAT_RXY1       COMPARE HIGH (32)
  1554  	op_CHHR    uint32 = 0xB9CD // FORMAT_RRE        COMPARE HIGH (32)
  1555  	op_CHHSI   uint32 = 0xE554 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (16)
  1556  	op_CHI     uint32 = 0xA70E // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (32<-16)
  1557  	op_CHLR    uint32 = 0xB9DD // FORMAT_RRE        COMPARE HIGH (32)
  1558  	op_CHRL    uint32 = 0xC605 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (32<-16)
  1559  	op_CHSI    uint32 = 0xE55C // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (32<-16)
  1560  	op_CHY     uint32 = 0xE379 // FORMAT_RXY1       COMPARE HALFWORD (32<-16)
  1561  	op_CIB     uint32 = 0xECFE // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (32<-8)
  1562  	op_CIH     uint32 = 0xCC0D // FORMAT_RIL1       COMPARE IMMEDIATE HIGH (32)
  1563  	op_CIJ     uint32 = 0xEC7E // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (32<-8)
  1564  	op_CIT     uint32 = 0xEC72 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (32<-16)
  1565  	op_CKSM    uint32 = 0xB241 // FORMAT_RRE        CHECKSUM
  1566  	op_CL      uint32 = 0x5500 // FORMAT_RX1        COMPARE LOGICAL (32)
  1567  	op_CLC     uint32 = 0xD500 // FORMAT_SS1        COMPARE LOGICAL (character)
  1568  	op_CLCL    uint32 = 0x0F00 // FORMAT_RR         COMPARE LOGICAL LONG
  1569  	op_CLCLE   uint32 = 0xA900 // FORMAT_RS1        COMPARE LOGICAL LONG EXTENDED
  1570  	op_CLCLU   uint32 = 0xEB8F // FORMAT_RSY1       COMPARE LOGICAL LONG UNICODE
  1571  	op_CLFDBR  uint32 = 0xB39D // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 32)
  1572  	op_CLFDTR  uint32 = 0xB943 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 32)
  1573  	op_CLFEBR  uint32 = 0xB39C // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 32)
  1574  	op_CLFHSI  uint32 = 0xE55D // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (32<-16)
  1575  	op_CLFI    uint32 = 0xC20F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (32)
  1576  	op_CLFIT   uint32 = 0xEC73 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (32<-16)
  1577  	op_CLFXBR  uint32 = 0xB39E // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 32)
  1578  	op_CLFXTR  uint32 = 0xB94B // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 32)
  1579  	op_CLG     uint32 = 0xE321 // FORMAT_RXY1       COMPARE LOGICAL (64)
  1580  	op_CLGDBR  uint32 = 0xB3AD // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 64)
  1581  	op_CLGDTR  uint32 = 0xB942 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 64)
  1582  	op_CLGEBR  uint32 = 0xB3AC // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 64)
  1583  	op_CLGF    uint32 = 0xE331 // FORMAT_RXY1       COMPARE LOGICAL (64<-32)
  1584  	op_CLGFI   uint32 = 0xC20E // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (64<-32)
  1585  	op_CLGFR   uint32 = 0xB931 // FORMAT_RRE        COMPARE LOGICAL (64<-32)
  1586  	op_CLGFRL  uint32 = 0xC60E // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-32)
  1587  	op_CLGHRL  uint32 = 0xC606 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-16)
  1588  	op_CLGHSI  uint32 = 0xE559 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (64<-16)
  1589  	op_CLGIB   uint32 = 0xECFD // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (64<-8)
  1590  	op_CLGIJ   uint32 = 0xEC7D // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (64<-8)
  1591  	op_CLGIT   uint32 = 0xEC71 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (64<-16)
  1592  	op_CLGR    uint32 = 0xB921 // FORMAT_RRE        COMPARE LOGICAL (64)
  1593  	op_CLGRB   uint32 = 0xECE5 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (64)
  1594  	op_CLGRJ   uint32 = 0xEC65 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (64)
  1595  	op_CLGRL   uint32 = 0xC60A // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64)
  1596  	op_CLGRT   uint32 = 0xB961 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (64)
  1597  	op_CLGT    uint32 = 0xEB2B // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (64)
  1598  	op_CLGXBR  uint32 = 0xB3AE // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 64)
  1599  	op_CLGXTR  uint32 = 0xB94A // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 64)
  1600  	op_CLHF    uint32 = 0xE3CF // FORMAT_RXY1       COMPARE LOGICAL HIGH (32)
  1601  	op_CLHHR   uint32 = 0xB9CF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
  1602  	op_CLHHSI  uint32 = 0xE555 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (16)
  1603  	op_CLHLR   uint32 = 0xB9DF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
  1604  	op_CLHRL   uint32 = 0xC607 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32<-16)
  1605  	op_CLI     uint32 = 0x9500 // FORMAT_SI         COMPARE LOGICAL (immediate)
  1606  	op_CLIB    uint32 = 0xECFF // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (32<-8)
  1607  	op_CLIH    uint32 = 0xCC0F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE HIGH (32)
  1608  	op_CLIJ    uint32 = 0xEC7F // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (32<-8)
  1609  	op_CLIY    uint32 = 0xEB55 // FORMAT_SIY        COMPARE LOGICAL (immediate)
  1610  	op_CLM     uint32 = 0xBD00 // FORMAT_RS2        COMPARE LOGICAL CHAR. UNDER MASK (low)
  1611  	op_CLMH    uint32 = 0xEB20 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (high)
  1612  	op_CLMY    uint32 = 0xEB21 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (low)
  1613  	op_CLR     uint32 = 0x1500 // FORMAT_RR         COMPARE LOGICAL (32)
  1614  	op_CLRB    uint32 = 0xECF7 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (32)
  1615  	op_CLRJ    uint32 = 0xEC77 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (32)
  1616  	op_CLRL    uint32 = 0xC60F // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32)
  1617  	op_CLRT    uint32 = 0xB973 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (32)
  1618  	op_CLST    uint32 = 0xB25D // FORMAT_RRE        COMPARE LOGICAL STRING
  1619  	op_CLT     uint32 = 0xEB23 // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (32)
  1620  	op_CLY     uint32 = 0xE355 // FORMAT_RXY1       COMPARE LOGICAL (32)
  1621  	op_CMPSC   uint32 = 0xB263 // FORMAT_RRE        COMPRESSION CALL
  1622  	op_CP      uint32 = 0xF900 // FORMAT_SS2        COMPARE DECIMAL
  1623  	op_CPSDR   uint32 = 0xB372 // FORMAT_RRF2       COPY SIGN (long)
  1624  	op_CPYA    uint32 = 0xB24D // FORMAT_RRE        COPY ACCESS
  1625  	op_CR      uint32 = 0x1900 // FORMAT_RR         COMPARE (32)
  1626  	op_CRB     uint32 = 0xECF6 // FORMAT_RRS        COMPARE AND BRANCH (32)
  1627  	op_CRDTE   uint32 = 0xB98F // FORMAT_RRF2       COMPARE AND REPLACE DAT TABLE ENTRY
  1628  	op_CRJ     uint32 = 0xEC76 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (32)
  1629  	op_CRL     uint32 = 0xC60D // FORMAT_RIL2       COMPARE RELATIVE LONG (32)
  1630  	op_CRT     uint32 = 0xB972 // FORMAT_RRF3       COMPARE AND TRAP (32)
  1631  	op_CS      uint32 = 0xBA00 // FORMAT_RS1        COMPARE AND SWAP (32)
  1632  	op_CSCH    uint32 = 0xB230 // FORMAT_S          CLEAR SUBCHANNEL
  1633  	op_CSDTR   uint32 = 0xB3E3 // FORMAT_RRF4       CONVERT TO SIGNED PACKED (long DFP to 64)
  1634  	op_CSG     uint32 = 0xEB30 // FORMAT_RSY1       COMPARE AND SWAP (64)
  1635  	op_CSP     uint32 = 0xB250 // FORMAT_RRE        COMPARE AND SWAP AND PURGE
  1636  	op_CSPG    uint32 = 0xB98A // FORMAT_RRE        COMPARE AND SWAP AND PURGE
  1637  	op_CSST    uint32 = 0xC802 // FORMAT_SSF        COMPARE AND SWAP AND STORE
  1638  	op_CSXTR   uint32 = 0xB3EB // FORMAT_RRF4       CONVERT TO SIGNED PACKED (extended DFP to 128)
  1639  	op_CSY     uint32 = 0xEB14 // FORMAT_RSY1       COMPARE AND SWAP (32)
  1640  	op_CU12    uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-16
  1641  	op_CU14    uint32 = 0xB9B0 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-32
  1642  	op_CU21    uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-8
  1643  	op_CU24    uint32 = 0xB9B1 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-32
  1644  	op_CU41    uint32 = 0xB9B2 // FORMAT_RRE        CONVERT UTF-32 TO UTF-8
  1645  	op_CU42    uint32 = 0xB9B3 // FORMAT_RRE        CONVERT UTF-32 TO UTF-16
  1646  	op_CUDTR   uint32 = 0xB3E2 // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (long DFP to 64)
  1647  	op_CUSE    uint32 = 0xB257 // FORMAT_RRE        COMPARE UNTIL SUBSTRING EQUAL
  1648  	op_CUTFU   uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UNICODE
  1649  	op_CUUTF   uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UNICODE TO UTF-8
  1650  	op_CUXTR   uint32 = 0xB3EA // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (extended DFP to 128)
  1651  	op_CVB     uint32 = 0x4F00 // FORMAT_RX1        CONVERT TO BINARY (32)
  1652  	op_CVBG    uint32 = 0xE30E // FORMAT_RXY1       CONVERT TO BINARY (64)
  1653  	op_CVBY    uint32 = 0xE306 // FORMAT_RXY1       CONVERT TO BINARY (32)
  1654  	op_CVD     uint32 = 0x4E00 // FORMAT_RX1        CONVERT TO DECIMAL (32)
  1655  	op_CVDG    uint32 = 0xE32E // FORMAT_RXY1       CONVERT TO DECIMAL (64)
  1656  	op_CVDY    uint32 = 0xE326 // FORMAT_RXY1       CONVERT TO DECIMAL (32)
  1657  	op_CXBR    uint32 = 0xB349 // FORMAT_RRE        COMPARE (extended BFP)
  1658  	op_CXFBR   uint32 = 0xB396 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended BFP)
  1659  	op_CXFBRA  uint32 = 0xB396 // FORMAT_RRF5       CONVERT FROM FIXED (32 to extended BFP)
  1660  	op_CXFR    uint32 = 0xB3B6 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended HFP)
  1661  	op_CXFTR   uint32 = 0xB959 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended DFP)
  1662  	op_CXGBR   uint32 = 0xB3A6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended BFP)
  1663  	op_CXGBRA  uint32 = 0xB3A6 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended BFP)
  1664  	op_CXGR    uint32 = 0xB3C6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended HFP)
  1665  	op_CXGTR   uint32 = 0xB3F9 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended DFP)
  1666  	op_CXGTRA  uint32 = 0xB3F9 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended DFP)
  1667  	op_CXLFBR  uint32 = 0xB392 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended BFP)
  1668  	op_CXLFTR  uint32 = 0xB95B // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended DFP)
  1669  	op_CXLGBR  uint32 = 0xB3A2 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended BFP)
  1670  	op_CXLGTR  uint32 = 0xB95A // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended DFP)
  1671  	op_CXR     uint32 = 0xB369 // FORMAT_RRE        COMPARE (extended HFP)
  1672  	op_CXSTR   uint32 = 0xB3FB // FORMAT_RRE        CONVERT FROM SIGNED PACKED (128 to extended DFP)
  1673  	op_CXTR    uint32 = 0xB3EC // FORMAT_RRE        COMPARE (extended DFP)
  1674  	op_CXUTR   uint32 = 0xB3FA // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (128 to ext. DFP)
  1675  	op_CXZT    uint32 = 0xEDAB // FORMAT_RSL        CONVERT FROM ZONED (to extended DFP)
  1676  	op_CY      uint32 = 0xE359 // FORMAT_RXY1       COMPARE (32)
  1677  	op_CZDT    uint32 = 0xEDA8 // FORMAT_RSL        CONVERT TO ZONED (from long DFP)
  1678  	op_CZXT    uint32 = 0xEDA9 // FORMAT_RSL        CONVERT TO ZONED (from extended DFP)
  1679  	op_D       uint32 = 0x5D00 // FORMAT_RX1        DIVIDE (32<-64)
  1680  	op_DD      uint32 = 0x6D00 // FORMAT_RX1        DIVIDE (long HFP)
  1681  	op_DDB     uint32 = 0xED1D // FORMAT_RXE        DIVIDE (long BFP)
  1682  	op_DDBR    uint32 = 0xB31D // FORMAT_RRE        DIVIDE (long BFP)
  1683  	op_DDR     uint32 = 0x2D00 // FORMAT_RR         DIVIDE (long HFP)
  1684  	op_DDTR    uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
  1685  	op_DDTRA   uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
  1686  	op_DE      uint32 = 0x7D00 // FORMAT_RX1        DIVIDE (short HFP)
  1687  	op_DEB     uint32 = 0xED0D // FORMAT_RXE        DIVIDE (short BFP)
  1688  	op_DEBR    uint32 = 0xB30D // FORMAT_RRE        DIVIDE (short BFP)
  1689  	op_DER     uint32 = 0x3D00 // FORMAT_RR         DIVIDE (short HFP)
  1690  	op_DIDBR   uint32 = 0xB35B // FORMAT_RRF2       DIVIDE TO INTEGER (long BFP)
  1691  	op_DIEBR   uint32 = 0xB353 // FORMAT_RRF2       DIVIDE TO INTEGER (short BFP)
  1692  	op_DL      uint32 = 0xE397 // FORMAT_RXY1       DIVIDE LOGICAL (32<-64)
  1693  	op_DLG     uint32 = 0xE387 // FORMAT_RXY1       DIVIDE LOGICAL (64<-128)
  1694  	op_DLGR    uint32 = 0xB987 // FORMAT_RRE        DIVIDE LOGICAL (64<-128)
  1695  	op_DLR     uint32 = 0xB997 // FORMAT_RRE        DIVIDE LOGICAL (32<-64)
  1696  	op_DP      uint32 = 0xFD00 // FORMAT_SS2        DIVIDE DECIMAL
  1697  	op_DR      uint32 = 0x1D00 // FORMAT_RR         DIVIDE (32<-64)
  1698  	op_DSG     uint32 = 0xE30D // FORMAT_RXY1       DIVIDE SINGLE (64)
  1699  	op_DSGF    uint32 = 0xE31D // FORMAT_RXY1       DIVIDE SINGLE (64<-32)
  1700  	op_DSGFR   uint32 = 0xB91D // FORMAT_RRE        DIVIDE SINGLE (64<-32)
  1701  	op_DSGR    uint32 = 0xB90D // FORMAT_RRE        DIVIDE SINGLE (64)
  1702  	op_DXBR    uint32 = 0xB34D // FORMAT_RRE        DIVIDE (extended BFP)
  1703  	op_DXR     uint32 = 0xB22D // FORMAT_RRE        DIVIDE (extended HFP)
  1704  	op_DXTR    uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
  1705  	op_DXTRA   uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
  1706  	op_EAR     uint32 = 0xB24F // FORMAT_RRE        EXTRACT ACCESS
  1707  	op_ECAG    uint32 = 0xEB4C // FORMAT_RSY1       EXTRACT CACHE ATTRIBUTE
  1708  	op_ECTG    uint32 = 0xC801 // FORMAT_SSF        EXTRACT CPU TIME
  1709  	op_ED      uint32 = 0xDE00 // FORMAT_SS1        EDIT
  1710  	op_EDMK    uint32 = 0xDF00 // FORMAT_SS1        EDIT AND MARK
  1711  	op_EEDTR   uint32 = 0xB3E5 // FORMAT_RRE        EXTRACT BIASED EXPONENT (long DFP to 64)
  1712  	op_EEXTR   uint32 = 0xB3ED // FORMAT_RRE        EXTRACT BIASED EXPONENT (extended DFP to 64)
  1713  	op_EFPC    uint32 = 0xB38C // FORMAT_RRE        EXTRACT FPC
  1714  	op_EPAIR   uint32 = 0xB99A // FORMAT_RRE        EXTRACT PRIMARY ASN AND INSTANCE
  1715  	op_EPAR    uint32 = 0xB226 // FORMAT_RRE        EXTRACT PRIMARY ASN
  1716  	op_EPSW    uint32 = 0xB98D // FORMAT_RRE        EXTRACT PSW
  1717  	op_EREG    uint32 = 0xB249 // FORMAT_RRE        EXTRACT STACKED REGISTERS (32)
  1718  	op_EREGG   uint32 = 0xB90E // FORMAT_RRE        EXTRACT STACKED REGISTERS (64)
  1719  	op_ESAIR   uint32 = 0xB99B // FORMAT_RRE        EXTRACT SECONDARY ASN AND INSTANCE
  1720  	op_ESAR    uint32 = 0xB227 // FORMAT_RRE        EXTRACT SECONDARY ASN
  1721  	op_ESDTR   uint32 = 0xB3E7 // FORMAT_RRE        EXTRACT SIGNIFICANCE (long DFP)
  1722  	op_ESEA    uint32 = 0xB99D // FORMAT_RRE        EXTRACT AND SET EXTENDED AUTHORITY
  1723  	op_ESTA    uint32 = 0xB24A // FORMAT_RRE        EXTRACT STACKED STATE
  1724  	op_ESXTR   uint32 = 0xB3EF // FORMAT_RRE        EXTRACT SIGNIFICANCE (extended DFP)
  1725  	op_ETND    uint32 = 0xB2EC // FORMAT_RRE        EXTRACT TRANSACTION NESTING DEPTH
  1726  	op_EX      uint32 = 0x4400 // FORMAT_RX1        EXECUTE
  1727  	op_EXRL    uint32 = 0xC600 // FORMAT_RIL2       EXECUTE RELATIVE LONG
  1728  	op_FIDBR   uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
  1729  	op_FIDBRA  uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
  1730  	op_FIDR    uint32 = 0xB37F // FORMAT_RRE        LOAD FP INTEGER (long HFP)
  1731  	op_FIDTR   uint32 = 0xB3D7 // FORMAT_RRF5       LOAD FP INTEGER (long DFP)
  1732  	op_FIEBR   uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
  1733  	op_FIEBRA  uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
  1734  	op_FIER    uint32 = 0xB377 // FORMAT_RRE        LOAD FP INTEGER (short HFP)
  1735  	op_FIXBR   uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
  1736  	op_FIXBRA  uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
  1737  	op_FIXR    uint32 = 0xB367 // FORMAT_RRE        LOAD FP INTEGER (extended HFP)
  1738  	op_FIXTR   uint32 = 0xB3DF // FORMAT_RRF5       LOAD FP INTEGER (extended DFP)
  1739  	op_FLOGR   uint32 = 0xB983 // FORMAT_RRE        FIND LEFTMOST ONE
  1740  	op_HDR     uint32 = 0x2400 // FORMAT_RR         HALVE (long HFP)
  1741  	op_HER     uint32 = 0x3400 // FORMAT_RR         HALVE (short HFP)
  1742  	op_HSCH    uint32 = 0xB231 // FORMAT_S          HALT SUBCHANNEL
  1743  	op_IAC     uint32 = 0xB224 // FORMAT_RRE        INSERT ADDRESS SPACE CONTROL
  1744  	op_IC      uint32 = 0x4300 // FORMAT_RX1        INSERT CHARACTER
  1745  	op_ICM     uint32 = 0xBF00 // FORMAT_RS2        INSERT CHARACTERS UNDER MASK (low)
  1746  	op_ICMH    uint32 = 0xEB80 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (high)
  1747  	op_ICMY    uint32 = 0xEB81 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (low)
  1748  	op_ICY     uint32 = 0xE373 // FORMAT_RXY1       INSERT CHARACTER
  1749  	op_IDTE    uint32 = 0xB98E // FORMAT_RRF2       INVALIDATE DAT TABLE ENTRY
  1750  	op_IEDTR   uint32 = 0xB3F6 // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to long DFP)
  1751  	op_IEXTR   uint32 = 0xB3FE // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to extended DFP)
  1752  	op_IIHF    uint32 = 0xC008 // FORMAT_RIL1       INSERT IMMEDIATE (high)
  1753  	op_IIHH    uint32 = 0xA500 // FORMAT_RI1        INSERT IMMEDIATE (high high)
  1754  	op_IIHL    uint32 = 0xA501 // FORMAT_RI1        INSERT IMMEDIATE (high low)
  1755  	op_IILF    uint32 = 0xC009 // FORMAT_RIL1       INSERT IMMEDIATE (low)
  1756  	op_IILH    uint32 = 0xA502 // FORMAT_RI1        INSERT IMMEDIATE (low high)
  1757  	op_IILL    uint32 = 0xA503 // FORMAT_RI1        INSERT IMMEDIATE (low low)
  1758  	op_IPK     uint32 = 0xB20B // FORMAT_S          INSERT PSW KEY
  1759  	op_IPM     uint32 = 0xB222 // FORMAT_RRE        INSERT PROGRAM MASK
  1760  	op_IPTE    uint32 = 0xB221 // FORMAT_RRF1       INVALIDATE PAGE TABLE ENTRY
  1761  	op_ISKE    uint32 = 0xB229 // FORMAT_RRE        INSERT STORAGE KEY EXTENDED
  1762  	op_IVSK    uint32 = 0xB223 // FORMAT_RRE        INSERT VIRTUAL STORAGE KEY
  1763  	op_KDB     uint32 = 0xED18 // FORMAT_RXE        COMPARE AND SIGNAL (long BFP)
  1764  	op_KDBR    uint32 = 0xB318 // FORMAT_RRE        COMPARE AND SIGNAL (long BFP)
  1765  	op_KDTR    uint32 = 0xB3E0 // FORMAT_RRE        COMPARE AND SIGNAL (long DFP)
  1766  	op_KEB     uint32 = 0xED08 // FORMAT_RXE        COMPARE AND SIGNAL (short BFP)
  1767  	op_KEBR    uint32 = 0xB308 // FORMAT_RRE        COMPARE AND SIGNAL (short BFP)
  1768  	op_KIMD    uint32 = 0xB93E // FORMAT_RRE        COMPUTE INTERMEDIATE MESSAGE DIGEST
  1769  	op_KLMD    uint32 = 0xB93F // FORMAT_RRE        COMPUTE LAST MESSAGE DIGEST
  1770  	op_KM      uint32 = 0xB92E // FORMAT_RRE        CIPHER MESSAGE
  1771  	op_KMAC    uint32 = 0xB91E // FORMAT_RRE        COMPUTE MESSAGE AUTHENTICATION CODE
  1772  	op_KMC     uint32 = 0xB92F // FORMAT_RRE        CIPHER MESSAGE WITH CHAINING
  1773  	op_KMCTR   uint32 = 0xB92D // FORMAT_RRF2       CIPHER MESSAGE WITH COUNTER
  1774  	op_KMF     uint32 = 0xB92A // FORMAT_RRE        CIPHER MESSAGE WITH CFB
  1775  	op_KMO     uint32 = 0xB92B // FORMAT_RRE        CIPHER MESSAGE WITH OFB
  1776  	op_KXBR    uint32 = 0xB348 // FORMAT_RRE        COMPARE AND SIGNAL (extended BFP)
  1777  	op_KXTR    uint32 = 0xB3E8 // FORMAT_RRE        COMPARE AND SIGNAL (extended DFP)
  1778  	op_L       uint32 = 0x5800 // FORMAT_RX1        LOAD (32)
  1779  	op_LA      uint32 = 0x4100 // FORMAT_RX1        LOAD ADDRESS
  1780  	op_LAA     uint32 = 0xEBF8 // FORMAT_RSY1       LOAD AND ADD (32)
  1781  	op_LAAG    uint32 = 0xEBE8 // FORMAT_RSY1       LOAD AND ADD (64)
  1782  	op_LAAL    uint32 = 0xEBFA // FORMAT_RSY1       LOAD AND ADD LOGICAL (32)
  1783  	op_LAALG   uint32 = 0xEBEA // FORMAT_RSY1       LOAD AND ADD LOGICAL (64)
  1784  	op_LAE     uint32 = 0x5100 // FORMAT_RX1        LOAD ADDRESS EXTENDED
  1785  	op_LAEY    uint32 = 0xE375 // FORMAT_RXY1       LOAD ADDRESS EXTENDED
  1786  	op_LAM     uint32 = 0x9A00 // FORMAT_RS1        LOAD ACCESS MULTIPLE
  1787  	op_LAMY    uint32 = 0xEB9A // FORMAT_RSY1       LOAD ACCESS MULTIPLE
  1788  	op_LAN     uint32 = 0xEBF4 // FORMAT_RSY1       LOAD AND AND (32)
  1789  	op_LANG    uint32 = 0xEBE4 // FORMAT_RSY1       LOAD AND AND (64)
  1790  	op_LAO     uint32 = 0xEBF6 // FORMAT_RSY1       LOAD AND OR (32)
  1791  	op_LAOG    uint32 = 0xEBE6 // FORMAT_RSY1       LOAD AND OR (64)
  1792  	op_LARL    uint32 = 0xC000 // FORMAT_RIL2       LOAD ADDRESS RELATIVE LONG
  1793  	op_LASP    uint32 = 0xE500 // FORMAT_SSE        LOAD ADDRESS SPACE PARAMETERS
  1794  	op_LAT     uint32 = 0xE39F // FORMAT_RXY1       LOAD AND TRAP (32L<-32)
  1795  	op_LAX     uint32 = 0xEBF7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (32)
  1796  	op_LAXG    uint32 = 0xEBE7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (64)
  1797  	op_LAY     uint32 = 0xE371 // FORMAT_RXY1       LOAD ADDRESS
  1798  	op_LB      uint32 = 0xE376 // FORMAT_RXY1       LOAD BYTE (32)
  1799  	op_LBH     uint32 = 0xE3C0 // FORMAT_RXY1       LOAD BYTE HIGH (32<-8)
  1800  	op_LBR     uint32 = 0xB926 // FORMAT_RRE        LOAD BYTE (32)
  1801  	op_LCDBR   uint32 = 0xB313 // FORMAT_RRE        LOAD COMPLEMENT (long BFP)
  1802  	op_LCDFR   uint32 = 0xB373 // FORMAT_RRE        LOAD COMPLEMENT (long)
  1803  	op_LCDR    uint32 = 0x2300 // FORMAT_RR         LOAD COMPLEMENT (long HFP)
  1804  	op_LCEBR   uint32 = 0xB303 // FORMAT_RRE        LOAD COMPLEMENT (short BFP)
  1805  	op_LCER    uint32 = 0x3300 // FORMAT_RR         LOAD COMPLEMENT (short HFP)
  1806  	op_LCGFR   uint32 = 0xB913 // FORMAT_RRE        LOAD COMPLEMENT (64<-32)
  1807  	op_LCGR    uint32 = 0xB903 // FORMAT_RRE        LOAD COMPLEMENT (64)
  1808  	op_LCR     uint32 = 0x1300 // FORMAT_RR         LOAD COMPLEMENT (32)
  1809  	op_LCTL    uint32 = 0xB700 // FORMAT_RS1        LOAD CONTROL (32)
  1810  	op_LCTLG   uint32 = 0xEB2F // FORMAT_RSY1       LOAD CONTROL (64)
  1811  	op_LCXBR   uint32 = 0xB343 // FORMAT_RRE        LOAD COMPLEMENT (extended BFP)
  1812  	op_LCXR    uint32 = 0xB363 // FORMAT_RRE        LOAD COMPLEMENT (extended HFP)
  1813  	op_LD      uint32 = 0x6800 // FORMAT_RX1        LOAD (long)
  1814  	op_LDE     uint32 = 0xED24 // FORMAT_RXE        LOAD LENGTHENED (short to long HFP)
  1815  	op_LDEB    uint32 = 0xED04 // FORMAT_RXE        LOAD LENGTHENED (short to long BFP)
  1816  	op_LDEBR   uint32 = 0xB304 // FORMAT_RRE        LOAD LENGTHENED (short to long BFP)
  1817  	op_LDER    uint32 = 0xB324 // FORMAT_RRE        LOAD LENGTHENED (short to long HFP)
  1818  	op_LDETR   uint32 = 0xB3D4 // FORMAT_RRF4       LOAD LENGTHENED (short to long DFP)
  1819  	op_LDGR    uint32 = 0xB3C1 // FORMAT_RRE        LOAD FPR FROM GR (64 to long)
  1820  	op_LDR     uint32 = 0x2800 // FORMAT_RR         LOAD (long)
  1821  	op_LDXBR   uint32 = 0xB345 // FORMAT_RRE        LOAD ROUNDED (extended to long BFP)
  1822  	op_LDXBRA  uint32 = 0xB345 // FORMAT_RRF5       LOAD ROUNDED (extended to long BFP)
  1823  	op_LDXR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
  1824  	op_LDXTR   uint32 = 0xB3DD // FORMAT_RRF5       LOAD ROUNDED (extended to long DFP)
  1825  	op_LDY     uint32 = 0xED65 // FORMAT_RXY1       LOAD (long)
  1826  	op_LE      uint32 = 0x7800 // FORMAT_RX1        LOAD (short)
  1827  	op_LEDBR   uint32 = 0xB344 // FORMAT_RRE        LOAD ROUNDED (long to short BFP)
  1828  	op_LEDBRA  uint32 = 0xB344 // FORMAT_RRF5       LOAD ROUNDED (long to short BFP)
  1829  	op_LEDR    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
  1830  	op_LEDTR   uint32 = 0xB3D5 // FORMAT_RRF5       LOAD ROUNDED (long to short DFP)
  1831  	op_LER     uint32 = 0x3800 // FORMAT_RR         LOAD (short)
  1832  	op_LEXBR   uint32 = 0xB346 // FORMAT_RRE        LOAD ROUNDED (extended to short BFP)
  1833  	op_LEXBRA  uint32 = 0xB346 // FORMAT_RRF5       LOAD ROUNDED (extended to short BFP)
  1834  	op_LEXR    uint32 = 0xB366 // FORMAT_RRE        LOAD ROUNDED (extended to short HFP)
  1835  	op_LEY     uint32 = 0xED64 // FORMAT_RXY1       LOAD (short)
  1836  	op_LFAS    uint32 = 0xB2BD // FORMAT_S          LOAD FPC AND SIGNAL
  1837  	op_LFH     uint32 = 0xE3CA // FORMAT_RXY1       LOAD HIGH (32)
  1838  	op_LFHAT   uint32 = 0xE3C8 // FORMAT_RXY1       LOAD HIGH AND TRAP (32H<-32)
  1839  	op_LFPC    uint32 = 0xB29D // FORMAT_S          LOAD FPC
  1840  	op_LG      uint32 = 0xE304 // FORMAT_RXY1       LOAD (64)
  1841  	op_LGAT    uint32 = 0xE385 // FORMAT_RXY1       LOAD AND TRAP (64)
  1842  	op_LGB     uint32 = 0xE377 // FORMAT_RXY1       LOAD BYTE (64)
  1843  	op_LGBR    uint32 = 0xB906 // FORMAT_RRE        LOAD BYTE (64)
  1844  	op_LGDR    uint32 = 0xB3CD // FORMAT_RRE        LOAD GR FROM FPR (long to 64)
  1845  	op_LGF     uint32 = 0xE314 // FORMAT_RXY1       LOAD (64<-32)
  1846  	op_LGFI    uint32 = 0xC001 // FORMAT_RIL1       LOAD IMMEDIATE (64<-32)
  1847  	op_LGFR    uint32 = 0xB914 // FORMAT_RRE        LOAD (64<-32)
  1848  	op_LGFRL   uint32 = 0xC40C // FORMAT_RIL2       LOAD RELATIVE LONG (64<-32)
  1849  	op_LGH     uint32 = 0xE315 // FORMAT_RXY1       LOAD HALFWORD (64)
  1850  	op_LGHI    uint32 = 0xA709 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (64)
  1851  	op_LGHR    uint32 = 0xB907 // FORMAT_RRE        LOAD HALFWORD (64)
  1852  	op_LGHRL   uint32 = 0xC404 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (64<-16)
  1853  	op_LGR     uint32 = 0xB904 // FORMAT_RRE        LOAD (64)
  1854  	op_LGRL    uint32 = 0xC408 // FORMAT_RIL2       LOAD RELATIVE LONG (64)
  1855  	op_LH      uint32 = 0x4800 // FORMAT_RX1        LOAD HALFWORD (32)
  1856  	op_LHH     uint32 = 0xE3C4 // FORMAT_RXY1       LOAD HALFWORD HIGH (32<-16)
  1857  	op_LHI     uint32 = 0xA708 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (32)
  1858  	op_LHR     uint32 = 0xB927 // FORMAT_RRE        LOAD HALFWORD (32)
  1859  	op_LHRL    uint32 = 0xC405 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (32<-16)
  1860  	op_LHY     uint32 = 0xE378 // FORMAT_RXY1       LOAD HALFWORD (32)
  1861  	op_LLC     uint32 = 0xE394 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (32)
  1862  	op_LLCH    uint32 = 0xE3C2 // FORMAT_RXY1       LOAD LOGICAL CHARACTER HIGH (32<-8)
  1863  	op_LLCR    uint32 = 0xB994 // FORMAT_RRE        LOAD LOGICAL CHARACTER (32)
  1864  	op_LLGC    uint32 = 0xE390 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (64)
  1865  	op_LLGCR   uint32 = 0xB984 // FORMAT_RRE        LOAD LOGICAL CHARACTER (64)
  1866  	op_LLGF    uint32 = 0xE316 // FORMAT_RXY1       LOAD LOGICAL (64<-32)
  1867  	op_LLGFAT  uint32 = 0xE39D // FORMAT_RXY1       LOAD LOGICAL AND TRAP (64<-32)
  1868  	op_LLGFR   uint32 = 0xB916 // FORMAT_RRE        LOAD LOGICAL (64<-32)
  1869  	op_LLGFRL  uint32 = 0xC40E // FORMAT_RIL2       LOAD LOGICAL RELATIVE LONG (64<-32)
  1870  	op_LLGH    uint32 = 0xE391 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (64)
  1871  	op_LLGHR   uint32 = 0xB985 // FORMAT_RRE        LOAD LOGICAL HALFWORD (64)
  1872  	op_LLGHRL  uint32 = 0xC406 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (64<-16)
  1873  	op_LLGT    uint32 = 0xE317 // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS
  1874  	op_LLGTAT  uint32 = 0xE39C // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS AND TRAP (64<-31)
  1875  	op_LLGTR   uint32 = 0xB917 // FORMAT_RRE        LOAD LOGICAL THIRTY ONE BITS
  1876  	op_LLH     uint32 = 0xE395 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (32)
  1877  	op_LLHH    uint32 = 0xE3C6 // FORMAT_RXY1       LOAD LOGICAL HALFWORD HIGH (32<-16)
  1878  	op_LLHR    uint32 = 0xB995 // FORMAT_RRE        LOAD LOGICAL HALFWORD (32)
  1879  	op_LLHRL   uint32 = 0xC402 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (32<-16)
  1880  	op_LLIHF   uint32 = 0xC00E // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (high)
  1881  	op_LLIHH   uint32 = 0xA50C // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high high)
  1882  	op_LLIHL   uint32 = 0xA50D // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high low)
  1883  	op_LLILF   uint32 = 0xC00F // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (low)
  1884  	op_LLILH   uint32 = 0xA50E // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low high)
  1885  	op_LLILL   uint32 = 0xA50F // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low low)
  1886  	op_LM      uint32 = 0x9800 // FORMAT_RS1        LOAD MULTIPLE (32)
  1887  	op_LMD     uint32 = 0xEF00 // FORMAT_SS5        LOAD MULTIPLE DISJOINT
  1888  	op_LMG     uint32 = 0xEB04 // FORMAT_RSY1       LOAD MULTIPLE (64)
  1889  	op_LMH     uint32 = 0xEB96 // FORMAT_RSY1       LOAD MULTIPLE HIGH
  1890  	op_LMY     uint32 = 0xEB98 // FORMAT_RSY1       LOAD MULTIPLE (32)
  1891  	op_LNDBR   uint32 = 0xB311 // FORMAT_RRE        LOAD NEGATIVE (long BFP)
  1892  	op_LNDFR   uint32 = 0xB371 // FORMAT_RRE        LOAD NEGATIVE (long)
  1893  	op_LNDR    uint32 = 0x2100 // FORMAT_RR         LOAD NEGATIVE (long HFP)
  1894  	op_LNEBR   uint32 = 0xB301 // FORMAT_RRE        LOAD NEGATIVE (short BFP)
  1895  	op_LNER    uint32 = 0x3100 // FORMAT_RR         LOAD NEGATIVE (short HFP)
  1896  	op_LNGFR   uint32 = 0xB911 // FORMAT_RRE        LOAD NEGATIVE (64<-32)
  1897  	op_LNGR    uint32 = 0xB901 // FORMAT_RRE        LOAD NEGATIVE (64)
  1898  	op_LNR     uint32 = 0x1100 // FORMAT_RR         LOAD NEGATIVE (32)
  1899  	op_LNXBR   uint32 = 0xB341 // FORMAT_RRE        LOAD NEGATIVE (extended BFP)
  1900  	op_LNXR    uint32 = 0xB361 // FORMAT_RRE        LOAD NEGATIVE (extended HFP)
  1901  	op_LOC     uint32 = 0xEBF2 // FORMAT_RSY2       LOAD ON CONDITION (32)
  1902  	op_LOCG    uint32 = 0xEBE2 // FORMAT_RSY2       LOAD ON CONDITION (64)
  1903  	op_LOCGR   uint32 = 0xB9E2 // FORMAT_RRF3       LOAD ON CONDITION (64)
  1904  	op_LOCR    uint32 = 0xB9F2 // FORMAT_RRF3       LOAD ON CONDITION (32)
  1905  	op_LPD     uint32 = 0xC804 // FORMAT_SSF        LOAD PAIR DISJOINT (32)
  1906  	op_LPDBR   uint32 = 0xB310 // FORMAT_RRE        LOAD POSITIVE (long BFP)
  1907  	op_LPDFR   uint32 = 0xB370 // FORMAT_RRE        LOAD POSITIVE (long)
  1908  	op_LPDG    uint32 = 0xC805 // FORMAT_SSF        LOAD PAIR DISJOINT (64)
  1909  	op_LPDR    uint32 = 0x2000 // FORMAT_RR         LOAD POSITIVE (long HFP)
  1910  	op_LPEBR   uint32 = 0xB300 // FORMAT_RRE        LOAD POSITIVE (short BFP)
  1911  	op_LPER    uint32 = 0x3000 // FORMAT_RR         LOAD POSITIVE (short HFP)
  1912  	op_LPGFR   uint32 = 0xB910 // FORMAT_RRE        LOAD POSITIVE (64<-32)
  1913  	op_LPGR    uint32 = 0xB900 // FORMAT_RRE        LOAD POSITIVE (64)
  1914  	op_LPQ     uint32 = 0xE38F // FORMAT_RXY1       LOAD PAIR FROM QUADWORD
  1915  	op_LPR     uint32 = 0x1000 // FORMAT_RR         LOAD POSITIVE (32)
  1916  	op_LPSW    uint32 = 0x8200 // FORMAT_S          LOAD PSW
  1917  	op_LPSWE   uint32 = 0xB2B2 // FORMAT_S          LOAD PSW EXTENDED
  1918  	op_LPTEA   uint32 = 0xB9AA // FORMAT_RRF2       LOAD PAGE TABLE ENTRY ADDRESS
  1919  	op_LPXBR   uint32 = 0xB340 // FORMAT_RRE        LOAD POSITIVE (extended BFP)
  1920  	op_LPXR    uint32 = 0xB360 // FORMAT_RRE        LOAD POSITIVE (extended HFP)
  1921  	op_LR      uint32 = 0x1800 // FORMAT_RR         LOAD (32)
  1922  	op_LRA     uint32 = 0xB100 // FORMAT_RX1        LOAD REAL ADDRESS (32)
  1923  	op_LRAG    uint32 = 0xE303 // FORMAT_RXY1       LOAD REAL ADDRESS (64)
  1924  	op_LRAY    uint32 = 0xE313 // FORMAT_RXY1       LOAD REAL ADDRESS (32)
  1925  	op_LRDR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
  1926  	op_LRER    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
  1927  	op_LRL     uint32 = 0xC40D // FORMAT_RIL2       LOAD RELATIVE LONG (32)
  1928  	op_LRV     uint32 = 0xE31E // FORMAT_RXY1       LOAD REVERSED (32)
  1929  	op_LRVG    uint32 = 0xE30F // FORMAT_RXY1       LOAD REVERSED (64)
  1930  	op_LRVGR   uint32 = 0xB90F // FORMAT_RRE        LOAD REVERSED (64)
  1931  	op_LRVH    uint32 = 0xE31F // FORMAT_RXY1       LOAD REVERSED (16)
  1932  	op_LRVR    uint32 = 0xB91F // FORMAT_RRE        LOAD REVERSED (32)
  1933  	op_LT      uint32 = 0xE312 // FORMAT_RXY1       LOAD AND TEST (32)
  1934  	op_LTDBR   uint32 = 0xB312 // FORMAT_RRE        LOAD AND TEST (long BFP)
  1935  	op_LTDR    uint32 = 0x2200 // FORMAT_RR         LOAD AND TEST (long HFP)
  1936  	op_LTDTR   uint32 = 0xB3D6 // FORMAT_RRE        LOAD AND TEST (long DFP)
  1937  	op_LTEBR   uint32 = 0xB302 // FORMAT_RRE        LOAD AND TEST (short BFP)
  1938  	op_LTER    uint32 = 0x3200 // FORMAT_RR         LOAD AND TEST (short HFP)
  1939  	op_LTG     uint32 = 0xE302 // FORMAT_RXY1       LOAD AND TEST (64)
  1940  	op_LTGF    uint32 = 0xE332 // FORMAT_RXY1       LOAD AND TEST (64<-32)
  1941  	op_LTGFR   uint32 = 0xB912 // FORMAT_RRE        LOAD AND TEST (64<-32)
  1942  	op_LTGR    uint32 = 0xB902 // FORMAT_RRE        LOAD AND TEST (64)
  1943  	op_LTR     uint32 = 0x1200 // FORMAT_RR         LOAD AND TEST (32)
  1944  	op_LTXBR   uint32 = 0xB342 // FORMAT_RRE        LOAD AND TEST (extended BFP)
  1945  	op_LTXR    uint32 = 0xB362 // FORMAT_RRE        LOAD AND TEST (extended HFP)
  1946  	op_LTXTR   uint32 = 0xB3DE // FORMAT_RRE        LOAD AND TEST (extended DFP)
  1947  	op_LURA    uint32 = 0xB24B // FORMAT_RRE        LOAD USING REAL ADDRESS (32)
  1948  	op_LURAG   uint32 = 0xB905 // FORMAT_RRE        LOAD USING REAL ADDRESS (64)
  1949  	op_LXD     uint32 = 0xED25 // FORMAT_RXE        LOAD LENGTHENED (long to extended HFP)
  1950  	op_LXDB    uint32 = 0xED05 // FORMAT_RXE        LOAD LENGTHENED (long to extended BFP)
  1951  	op_LXDBR   uint32 = 0xB305 // FORMAT_RRE        LOAD LENGTHENED (long to extended BFP)
  1952  	op_LXDR    uint32 = 0xB325 // FORMAT_RRE        LOAD LENGTHENED (long to extended HFP)
  1953  	op_LXDTR   uint32 = 0xB3DC // FORMAT_RRF4       LOAD LENGTHENED (long to extended DFP)
  1954  	op_LXE     uint32 = 0xED26 // FORMAT_RXE        LOAD LENGTHENED (short to extended HFP)
  1955  	op_LXEB    uint32 = 0xED06 // FORMAT_RXE        LOAD LENGTHENED (short to extended BFP)
  1956  	op_LXEBR   uint32 = 0xB306 // FORMAT_RRE        LOAD LENGTHENED (short to extended BFP)
  1957  	op_LXER    uint32 = 0xB326 // FORMAT_RRE        LOAD LENGTHENED (short to extended HFP)
  1958  	op_LXR     uint32 = 0xB365 // FORMAT_RRE        LOAD (extended)
  1959  	op_LY      uint32 = 0xE358 // FORMAT_RXY1       LOAD (32)
  1960  	op_LZDR    uint32 = 0xB375 // FORMAT_RRE        LOAD ZERO (long)
  1961  	op_LZER    uint32 = 0xB374 // FORMAT_RRE        LOAD ZERO (short)
  1962  	op_LZXR    uint32 = 0xB376 // FORMAT_RRE        LOAD ZERO (extended)
  1963  	op_M       uint32 = 0x5C00 // FORMAT_RX1        MULTIPLY (64<-32)
  1964  	op_MAD     uint32 = 0xED3E // FORMAT_RXF        MULTIPLY AND ADD (long HFP)
  1965  	op_MADB    uint32 = 0xED1E // FORMAT_RXF        MULTIPLY AND ADD (long BFP)
  1966  	op_MADBR   uint32 = 0xB31E // FORMAT_RRD        MULTIPLY AND ADD (long BFP)
  1967  	op_MADR    uint32 = 0xB33E // FORMAT_RRD        MULTIPLY AND ADD (long HFP)
  1968  	op_MAE     uint32 = 0xED2E // FORMAT_RXF        MULTIPLY AND ADD (short HFP)
  1969  	op_MAEB    uint32 = 0xED0E // FORMAT_RXF        MULTIPLY AND ADD (short BFP)
  1970  	op_MAEBR   uint32 = 0xB30E // FORMAT_RRD        MULTIPLY AND ADD (short BFP)
  1971  	op_MAER    uint32 = 0xB32E // FORMAT_RRD        MULTIPLY AND ADD (short HFP)
  1972  	op_MAY     uint32 = 0xED3A // FORMAT_RXF        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
  1973  	op_MAYH    uint32 = 0xED3C // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
  1974  	op_MAYHR   uint32 = 0xB33C // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
  1975  	op_MAYL    uint32 = 0xED38 // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
  1976  	op_MAYLR   uint32 = 0xB338 // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
  1977  	op_MAYR    uint32 = 0xB33A // FORMAT_RRD        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
  1978  	op_MC      uint32 = 0xAF00 // FORMAT_SI         MONITOR CALL
  1979  	op_MD      uint32 = 0x6C00 // FORMAT_RX1        MULTIPLY (long HFP)
  1980  	op_MDB     uint32 = 0xED1C // FORMAT_RXE        MULTIPLY (long BFP)
  1981  	op_MDBR    uint32 = 0xB31C // FORMAT_RRE        MULTIPLY (long BFP)
  1982  	op_MDE     uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
  1983  	op_MDEB    uint32 = 0xED0C // FORMAT_RXE        MULTIPLY (short to long BFP)
  1984  	op_MDEBR   uint32 = 0xB30C // FORMAT_RRE        MULTIPLY (short to long BFP)
  1985  	op_MDER    uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
  1986  	op_MDR     uint32 = 0x2C00 // FORMAT_RR         MULTIPLY (long HFP)
  1987  	op_MDTR    uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
  1988  	op_MDTRA   uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
  1989  	op_ME      uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
  1990  	op_MEE     uint32 = 0xED37 // FORMAT_RXE        MULTIPLY (short HFP)
  1991  	op_MEEB    uint32 = 0xED17 // FORMAT_RXE        MULTIPLY (short BFP)
  1992  	op_MEEBR   uint32 = 0xB317 // FORMAT_RRE        MULTIPLY (short BFP)
  1993  	op_MEER    uint32 = 0xB337 // FORMAT_RRE        MULTIPLY (short HFP)
  1994  	op_MER     uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
  1995  	op_MFY     uint32 = 0xE35C // FORMAT_RXY1       MULTIPLY (64<-32)
  1996  	op_MGHI    uint32 = 0xA70D // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (64)
  1997  	op_MH      uint32 = 0x4C00 // FORMAT_RX1        MULTIPLY HALFWORD (32)
  1998  	op_MHI     uint32 = 0xA70C // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (32)
  1999  	op_MHY     uint32 = 0xE37C // FORMAT_RXY1       MULTIPLY HALFWORD (32)
  2000  	op_ML      uint32 = 0xE396 // FORMAT_RXY1       MULTIPLY LOGICAL (64<-32)
  2001  	op_MLG     uint32 = 0xE386 // FORMAT_RXY1       MULTIPLY LOGICAL (128<-64)
  2002  	op_MLGR    uint32 = 0xB986 // FORMAT_RRE        MULTIPLY LOGICAL (128<-64)
  2003  	op_MLR     uint32 = 0xB996 // FORMAT_RRE        MULTIPLY LOGICAL (64<-32)
  2004  	op_MP      uint32 = 0xFC00 // FORMAT_SS2        MULTIPLY DECIMAL
  2005  	op_MR      uint32 = 0x1C00 // FORMAT_RR         MULTIPLY (64<-32)
  2006  	op_MS      uint32 = 0x7100 // FORMAT_RX1        MULTIPLY SINGLE (32)
  2007  	op_MSCH    uint32 = 0xB232 // FORMAT_S          MODIFY SUBCHANNEL
  2008  	op_MSD     uint32 = 0xED3F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long HFP)
  2009  	op_MSDB    uint32 = 0xED1F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long BFP)
  2010  	op_MSDBR   uint32 = 0xB31F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long BFP)
  2011  	op_MSDR    uint32 = 0xB33F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long HFP)
  2012  	op_MSE     uint32 = 0xED2F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short HFP)
  2013  	op_MSEB    uint32 = 0xED0F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short BFP)
  2014  	op_MSEBR   uint32 = 0xB30F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short BFP)
  2015  	op_MSER    uint32 = 0xB32F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short HFP)
  2016  	op_MSFI    uint32 = 0xC201 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (32)
  2017  	op_MSG     uint32 = 0xE30C // FORMAT_RXY1       MULTIPLY SINGLE (64)
  2018  	op_MSGF    uint32 = 0xE31C // FORMAT_RXY1       MULTIPLY SINGLE (64<-32)
  2019  	op_MSGFI   uint32 = 0xC200 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (64<-32)
  2020  	op_MSGFR   uint32 = 0xB91C // FORMAT_RRE        MULTIPLY SINGLE (64<-32)
  2021  	op_MSGR    uint32 = 0xB90C // FORMAT_RRE        MULTIPLY SINGLE (64)
  2022  	op_MSR     uint32 = 0xB252 // FORMAT_RRE        MULTIPLY SINGLE (32)
  2023  	op_MSTA    uint32 = 0xB247 // FORMAT_RRE        MODIFY STACKED STATE
  2024  	op_MSY     uint32 = 0xE351 // FORMAT_RXY1       MULTIPLY SINGLE (32)
  2025  	op_MVC     uint32 = 0xD200 // FORMAT_SS1        MOVE (character)
  2026  	op_MVCDK   uint32 = 0xE50F // FORMAT_SSE        MOVE WITH DESTINATION KEY
  2027  	op_MVCIN   uint32 = 0xE800 // FORMAT_SS1        MOVE INVERSE
  2028  	op_MVCK    uint32 = 0xD900 // FORMAT_SS4        MOVE WITH KEY
  2029  	op_MVCL    uint32 = 0x0E00 // FORMAT_RR         MOVE LONG
  2030  	op_MVCLE   uint32 = 0xA800 // FORMAT_RS1        MOVE LONG EXTENDED
  2031  	op_MVCLU   uint32 = 0xEB8E // FORMAT_RSY1       MOVE LONG UNICODE
  2032  	op_MVCOS   uint32 = 0xC800 // FORMAT_SSF        MOVE WITH OPTIONAL SPECIFICATIONS
  2033  	op_MVCP    uint32 = 0xDA00 // FORMAT_SS4        MOVE TO PRIMARY
  2034  	op_MVCS    uint32 = 0xDB00 // FORMAT_SS4        MOVE TO SECONDARY
  2035  	op_MVCSK   uint32 = 0xE50E // FORMAT_SSE        MOVE WITH SOURCE KEY
  2036  	op_MVGHI   uint32 = 0xE548 // FORMAT_SIL        MOVE (64<-16)
  2037  	op_MVHHI   uint32 = 0xE544 // FORMAT_SIL        MOVE (16<-16)
  2038  	op_MVHI    uint32 = 0xE54C // FORMAT_SIL        MOVE (32<-16)
  2039  	op_MVI     uint32 = 0x9200 // FORMAT_SI         MOVE (immediate)
  2040  	op_MVIY    uint32 = 0xEB52 // FORMAT_SIY        MOVE (immediate)
  2041  	op_MVN     uint32 = 0xD100 // FORMAT_SS1        MOVE NUMERICS
  2042  	op_MVO     uint32 = 0xF100 // FORMAT_SS2        MOVE WITH OFFSET
  2043  	op_MVPG    uint32 = 0xB254 // FORMAT_RRE        MOVE PAGE
  2044  	op_MVST    uint32 = 0xB255 // FORMAT_RRE        MOVE STRING
  2045  	op_MVZ     uint32 = 0xD300 // FORMAT_SS1        MOVE ZONES
  2046  	op_MXBR    uint32 = 0xB34C // FORMAT_RRE        MULTIPLY (extended BFP)
  2047  	op_MXD     uint32 = 0x6700 // FORMAT_RX1        MULTIPLY (long to extended HFP)
  2048  	op_MXDB    uint32 = 0xED07 // FORMAT_RXE        MULTIPLY (long to extended BFP)
  2049  	op_MXDBR   uint32 = 0xB307 // FORMAT_RRE        MULTIPLY (long to extended BFP)
  2050  	op_MXDR    uint32 = 0x2700 // FORMAT_RR         MULTIPLY (long to extended HFP)
  2051  	op_MXR     uint32 = 0x2600 // FORMAT_RR         MULTIPLY (extended HFP)
  2052  	op_MXTR    uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
  2053  	op_MXTRA   uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
  2054  	op_MY      uint32 = 0xED3B // FORMAT_RXF        MULTIPLY UNNORMALIZED (long to ext. HFP)
  2055  	op_MYH     uint32 = 0xED3D // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. high HFP)
  2056  	op_MYHR    uint32 = 0xB33D // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. high HFP)
  2057  	op_MYL     uint32 = 0xED39 // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. low HFP)
  2058  	op_MYLR    uint32 = 0xB339 // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. low HFP)
  2059  	op_MYR     uint32 = 0xB33B // FORMAT_RRD        MULTIPLY UNNORMALIZED (long to ext. HFP)
  2060  	op_N       uint32 = 0x5400 // FORMAT_RX1        AND (32)
  2061  	op_NC      uint32 = 0xD400 // FORMAT_SS1        AND (character)
  2062  	op_NG      uint32 = 0xE380 // FORMAT_RXY1       AND (64)
  2063  	op_NGR     uint32 = 0xB980 // FORMAT_RRE        AND (64)
  2064  	op_NGRK    uint32 = 0xB9E4 // FORMAT_RRF1       AND (64)
  2065  	op_NI      uint32 = 0x9400 // FORMAT_SI         AND (immediate)
  2066  	op_NIAI    uint32 = 0xB2FA // FORMAT_IE         NEXT INSTRUCTION ACCESS INTENT
  2067  	op_NIHF    uint32 = 0xC00A // FORMAT_RIL1       AND IMMEDIATE (high)
  2068  	op_NIHH    uint32 = 0xA504 // FORMAT_RI1        AND IMMEDIATE (high high)
  2069  	op_NIHL    uint32 = 0xA505 // FORMAT_RI1        AND IMMEDIATE (high low)
  2070  	op_NILF    uint32 = 0xC00B // FORMAT_RIL1       AND IMMEDIATE (low)
  2071  	op_NILH    uint32 = 0xA506 // FORMAT_RI1        AND IMMEDIATE (low high)
  2072  	op_NILL    uint32 = 0xA507 // FORMAT_RI1        AND IMMEDIATE (low low)
  2073  	op_NIY     uint32 = 0xEB54 // FORMAT_SIY        AND (immediate)
  2074  	op_NR      uint32 = 0x1400 // FORMAT_RR         AND (32)
  2075  	op_NRK     uint32 = 0xB9F4 // FORMAT_RRF1       AND (32)
  2076  	op_NTSTG   uint32 = 0xE325 // FORMAT_RXY1       NONTRANSACTIONAL STORE
  2077  	op_NY      uint32 = 0xE354 // FORMAT_RXY1       AND (32)
  2078  	op_O       uint32 = 0x5600 // FORMAT_RX1        OR (32)
  2079  	op_OC      uint32 = 0xD600 // FORMAT_SS1        OR (character)
  2080  	op_OG      uint32 = 0xE381 // FORMAT_RXY1       OR (64)
  2081  	op_OGR     uint32 = 0xB981 // FORMAT_RRE        OR (64)
  2082  	op_OGRK    uint32 = 0xB9E6 // FORMAT_RRF1       OR (64)
  2083  	op_OI      uint32 = 0x9600 // FORMAT_SI         OR (immediate)
  2084  	op_OIHF    uint32 = 0xC00C // FORMAT_RIL1       OR IMMEDIATE (high)
  2085  	op_OIHH    uint32 = 0xA508 // FORMAT_RI1        OR IMMEDIATE (high high)
  2086  	op_OIHL    uint32 = 0xA509 // FORMAT_RI1        OR IMMEDIATE (high low)
  2087  	op_OILF    uint32 = 0xC00D // FORMAT_RIL1       OR IMMEDIATE (low)
  2088  	op_OILH    uint32 = 0xA50A // FORMAT_RI1        OR IMMEDIATE (low high)
  2089  	op_OILL    uint32 = 0xA50B // FORMAT_RI1        OR IMMEDIATE (low low)
  2090  	op_OIY     uint32 = 0xEB56 // FORMAT_SIY        OR (immediate)
  2091  	op_OR      uint32 = 0x1600 // FORMAT_RR         OR (32)
  2092  	op_ORK     uint32 = 0xB9F6 // FORMAT_RRF1       OR (32)
  2093  	op_OY      uint32 = 0xE356 // FORMAT_RXY1       OR (32)
  2094  	op_PACK    uint32 = 0xF200 // FORMAT_SS2        PACK
  2095  	op_PALB    uint32 = 0xB248 // FORMAT_RRE        PURGE ALB
  2096  	op_PC      uint32 = 0xB218 // FORMAT_S          PROGRAM CALL
  2097  	op_PCC     uint32 = 0xB92C // FORMAT_RRE        PERFORM CRYPTOGRAPHIC COMPUTATION
  2098  	op_PCKMO   uint32 = 0xB928 // FORMAT_RRE        PERFORM CRYPTOGRAPHIC KEY MGMT. OPERATIONS
  2099  	op_PFD     uint32 = 0xE336 // FORMAT_RXY2       PREFETCH DATA
  2100  	op_PFDRL   uint32 = 0xC602 // FORMAT_RIL3       PREFETCH DATA RELATIVE LONG
  2101  	op_PFMF    uint32 = 0xB9AF // FORMAT_RRE        PERFORM FRAME MANAGEMENT FUNCTION
  2102  	op_PFPO    uint32 = 0x010A // FORMAT_E          PERFORM FLOATING-POINT OPERATION
  2103  	op_PGIN    uint32 = 0xB22E // FORMAT_RRE        PAGE IN
  2104  	op_PGOUT   uint32 = 0xB22F // FORMAT_RRE        PAGE OUT
  2105  	op_PKA     uint32 = 0xE900 // FORMAT_SS6        PACK ASCII
  2106  	op_PKU     uint32 = 0xE100 // FORMAT_SS6        PACK UNICODE
  2107  	op_PLO     uint32 = 0xEE00 // FORMAT_SS5        PERFORM LOCKED OPERATION
  2108  	op_POPCNT  uint32 = 0xB9E1 // FORMAT_RRE        POPULATION COUNT
  2109  	op_PPA     uint32 = 0xB2E8 // FORMAT_RRF3       PERFORM PROCESSOR ASSIST
  2110  	op_PR      uint32 = 0x0101 // FORMAT_E          PROGRAM RETURN
  2111  	op_PT      uint32 = 0xB228 // FORMAT_RRE        PROGRAM TRANSFER
  2112  	op_PTF     uint32 = 0xB9A2 // FORMAT_RRE        PERFORM TOPOLOGY FUNCTION
  2113  	op_PTFF    uint32 = 0x0104 // FORMAT_E          PERFORM TIMING FACILITY FUNCTION
  2114  	op_PTI     uint32 = 0xB99E // FORMAT_RRE        PROGRAM TRANSFER WITH INSTANCE
  2115  	op_PTLB    uint32 = 0xB20D // FORMAT_S          PURGE TLB
  2116  	op_QADTR   uint32 = 0xB3F5 // FORMAT_RRF2       QUANTIZE (long DFP)
  2117  	op_QAXTR   uint32 = 0xB3FD // FORMAT_RRF2       QUANTIZE (extended DFP)
  2118  	op_RCHP    uint32 = 0xB23B // FORMAT_S          RESET CHANNEL PATH
  2119  	op_RISBG   uint32 = 0xEC55 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
  2120  	op_RISBGN  uint32 = 0xEC59 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
  2121  	op_RISBHG  uint32 = 0xEC5D // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS HIGH
  2122  	op_RISBLG  uint32 = 0xEC51 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS LOW
  2123  	op_RLL     uint32 = 0xEB1D // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (32)
  2124  	op_RLLG    uint32 = 0xEB1C // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (64)
  2125  	op_RNSBG   uint32 = 0xEC54 // FORMAT_RIE6       ROTATE THEN AND SELECTED BITS
  2126  	op_ROSBG   uint32 = 0xEC56 // FORMAT_RIE6       ROTATE THEN OR SELECTED BITS
  2127  	op_RP      uint32 = 0xB277 // FORMAT_S          RESUME PROGRAM
  2128  	op_RRBE    uint32 = 0xB22A // FORMAT_RRE        RESET REFERENCE BIT EXTENDED
  2129  	op_RRBM    uint32 = 0xB9AE // FORMAT_RRE        RESET REFERENCE BITS MULTIPLE
  2130  	op_RRDTR   uint32 = 0xB3F7 // FORMAT_RRF2       REROUND (long DFP)
  2131  	op_RRXTR   uint32 = 0xB3FF // FORMAT_RRF2       REROUND (extended DFP)
  2132  	op_RSCH    uint32 = 0xB238 // FORMAT_S          RESUME SUBCHANNEL
  2133  	op_RXSBG   uint32 = 0xEC57 // FORMAT_RIE6       ROTATE THEN EXCLUSIVE OR SELECTED BITS
  2134  	op_S       uint32 = 0x5B00 // FORMAT_RX1        SUBTRACT (32)
  2135  	op_SAC     uint32 = 0xB219 // FORMAT_S          SET ADDRESS SPACE CONTROL
  2136  	op_SACF    uint32 = 0xB279 // FORMAT_S          SET ADDRESS SPACE CONTROL FAST
  2137  	op_SAL     uint32 = 0xB237 // FORMAT_S          SET ADDRESS LIMIT
  2138  	op_SAM24   uint32 = 0x010C // FORMAT_E          SET ADDRESSING MODE (24)
  2139  	op_SAM31   uint32 = 0x010D // FORMAT_E          SET ADDRESSING MODE (31)
  2140  	op_SAM64   uint32 = 0x010E // FORMAT_E          SET ADDRESSING MODE (64)
  2141  	op_SAR     uint32 = 0xB24E // FORMAT_RRE        SET ACCESS
  2142  	op_SCHM    uint32 = 0xB23C // FORMAT_S          SET CHANNEL MONITOR
  2143  	op_SCK     uint32 = 0xB204 // FORMAT_S          SET CLOCK
  2144  	op_SCKC    uint32 = 0xB206 // FORMAT_S          SET CLOCK COMPARATOR
  2145  	op_SCKPF   uint32 = 0x0107 // FORMAT_E          SET CLOCK PROGRAMMABLE FIELD
  2146  	op_SD      uint32 = 0x6B00 // FORMAT_RX1        SUBTRACT NORMALIZED (long HFP)
  2147  	op_SDB     uint32 = 0xED1B // FORMAT_RXE        SUBTRACT (long BFP)
  2148  	op_SDBR    uint32 = 0xB31B // FORMAT_RRE        SUBTRACT (long BFP)
  2149  	op_SDR     uint32 = 0x2B00 // FORMAT_RR         SUBTRACT NORMALIZED (long HFP)
  2150  	op_SDTR    uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
  2151  	op_SDTRA   uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
  2152  	op_SE      uint32 = 0x7B00 // FORMAT_RX1        SUBTRACT NORMALIZED (short HFP)
  2153  	op_SEB     uint32 = 0xED0B // FORMAT_RXE        SUBTRACT (short BFP)
  2154  	op_SEBR    uint32 = 0xB30B // FORMAT_RRE        SUBTRACT (short BFP)
  2155  	op_SER     uint32 = 0x3B00 // FORMAT_RR         SUBTRACT NORMALIZED (short HFP)
  2156  	op_SFASR   uint32 = 0xB385 // FORMAT_RRE        SET FPC AND SIGNAL
  2157  	op_SFPC    uint32 = 0xB384 // FORMAT_RRE        SET FPC
  2158  	op_SG      uint32 = 0xE309 // FORMAT_RXY1       SUBTRACT (64)
  2159  	op_SGF     uint32 = 0xE319 // FORMAT_RXY1       SUBTRACT (64<-32)
  2160  	op_SGFR    uint32 = 0xB919 // FORMAT_RRE        SUBTRACT (64<-32)
  2161  	op_SGR     uint32 = 0xB909 // FORMAT_RRE        SUBTRACT (64)
  2162  	op_SGRK    uint32 = 0xB9E9 // FORMAT_RRF1       SUBTRACT (64)
  2163  	op_SH      uint32 = 0x4B00 // FORMAT_RX1        SUBTRACT HALFWORD
  2164  	op_SHHHR   uint32 = 0xB9C9 // FORMAT_RRF1       SUBTRACT HIGH (32)
  2165  	op_SHHLR   uint32 = 0xB9D9 // FORMAT_RRF1       SUBTRACT HIGH (32)
  2166  	op_SHY     uint32 = 0xE37B // FORMAT_RXY1       SUBTRACT HALFWORD
  2167  	op_SIGP    uint32 = 0xAE00 // FORMAT_RS1        SIGNAL PROCESSOR
  2168  	op_SL      uint32 = 0x5F00 // FORMAT_RX1        SUBTRACT LOGICAL (32)
  2169  	op_SLA     uint32 = 0x8B00 // FORMAT_RS1        SHIFT LEFT SINGLE (32)
  2170  	op_SLAG    uint32 = 0xEB0B // FORMAT_RSY1       SHIFT LEFT SINGLE (64)
  2171  	op_SLAK    uint32 = 0xEBDD // FORMAT_RSY1       SHIFT LEFT SINGLE (32)
  2172  	op_SLB     uint32 = 0xE399 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (32)
  2173  	op_SLBG    uint32 = 0xE389 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (64)
  2174  	op_SLBGR   uint32 = 0xB989 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (64)
  2175  	op_SLBR    uint32 = 0xB999 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (32)
  2176  	op_SLDA    uint32 = 0x8F00 // FORMAT_RS1        SHIFT LEFT DOUBLE
  2177  	op_SLDL    uint32 = 0x8D00 // FORMAT_RS1        SHIFT LEFT DOUBLE LOGICAL
  2178  	op_SLDT    uint32 = 0xED40 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (long DFP)
  2179  	op_SLFI    uint32 = 0xC205 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (32)
  2180  	op_SLG     uint32 = 0xE30B // FORMAT_RXY1       SUBTRACT LOGICAL (64)
  2181  	op_SLGF    uint32 = 0xE31B // FORMAT_RXY1       SUBTRACT LOGICAL (64<-32)
  2182  	op_SLGFI   uint32 = 0xC204 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (64<-32)
  2183  	op_SLGFR   uint32 = 0xB91B // FORMAT_RRE        SUBTRACT LOGICAL (64<-32)
  2184  	op_SLGR    uint32 = 0xB90B // FORMAT_RRE        SUBTRACT LOGICAL (64)
  2185  	op_SLGRK   uint32 = 0xB9EB // FORMAT_RRF1       SUBTRACT LOGICAL (64)
  2186  	op_SLHHHR  uint32 = 0xB9CB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
  2187  	op_SLHHLR  uint32 = 0xB9DB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
  2188  	op_SLL     uint32 = 0x8900 // FORMAT_RS1        SHIFT LEFT SINGLE LOGICAL (32)
  2189  	op_SLLG    uint32 = 0xEB0D // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (64)
  2190  	op_SLLK    uint32 = 0xEBDF // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (32)
  2191  	op_SLR     uint32 = 0x1F00 // FORMAT_RR         SUBTRACT LOGICAL (32)
  2192  	op_SLRK    uint32 = 0xB9FB // FORMAT_RRF1       SUBTRACT LOGICAL (32)
  2193  	op_SLXT    uint32 = 0xED48 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (extended DFP)
  2194  	op_SLY     uint32 = 0xE35F // FORMAT_RXY1       SUBTRACT LOGICAL (32)
  2195  	op_SP      uint32 = 0xFB00 // FORMAT_SS2        SUBTRACT DECIMAL
  2196  	op_SPKA    uint32 = 0xB20A // FORMAT_S          SET PSW KEY FROM ADDRESS
  2197  	op_SPM     uint32 = 0x0400 // FORMAT_RR         SET PROGRAM MASK
  2198  	op_SPT     uint32 = 0xB208 // FORMAT_S          SET CPU TIMER
  2199  	op_SPX     uint32 = 0xB210 // FORMAT_S          SET PREFIX
  2200  	op_SQD     uint32 = 0xED35 // FORMAT_RXE        SQUARE ROOT (long HFP)
  2201  	op_SQDB    uint32 = 0xED15 // FORMAT_RXE        SQUARE ROOT (long BFP)
  2202  	op_SQDBR   uint32 = 0xB315 // FORMAT_RRE        SQUARE ROOT (long BFP)
  2203  	op_SQDR    uint32 = 0xB244 // FORMAT_RRE        SQUARE ROOT (long HFP)
  2204  	op_SQE     uint32 = 0xED34 // FORMAT_RXE        SQUARE ROOT (short HFP)
  2205  	op_SQEB    uint32 = 0xED14 // FORMAT_RXE        SQUARE ROOT (short BFP)
  2206  	op_SQEBR   uint32 = 0xB314 // FORMAT_RRE        SQUARE ROOT (short BFP)
  2207  	op_SQER    uint32 = 0xB245 // FORMAT_RRE        SQUARE ROOT (short HFP)
  2208  	op_SQXBR   uint32 = 0xB316 // FORMAT_RRE        SQUARE ROOT (extended BFP)
  2209  	op_SQXR    uint32 = 0xB336 // FORMAT_RRE        SQUARE ROOT (extended HFP)
  2210  	op_SR      uint32 = 0x1B00 // FORMAT_RR         SUBTRACT (32)
  2211  	op_SRA     uint32 = 0x8A00 // FORMAT_RS1        SHIFT RIGHT SINGLE (32)
  2212  	op_SRAG    uint32 = 0xEB0A // FORMAT_RSY1       SHIFT RIGHT SINGLE (64)
  2213  	op_SRAK    uint32 = 0xEBDC // FORMAT_RSY1       SHIFT RIGHT SINGLE (32)
  2214  	op_SRDA    uint32 = 0x8E00 // FORMAT_RS1        SHIFT RIGHT DOUBLE
  2215  	op_SRDL    uint32 = 0x8C00 // FORMAT_RS1        SHIFT RIGHT DOUBLE LOGICAL
  2216  	op_SRDT    uint32 = 0xED41 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (long DFP)
  2217  	op_SRK     uint32 = 0xB9F9 // FORMAT_RRF1       SUBTRACT (32)
  2218  	op_SRL     uint32 = 0x8800 // FORMAT_RS1        SHIFT RIGHT SINGLE LOGICAL (32)
  2219  	op_SRLG    uint32 = 0xEB0C // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (64)
  2220  	op_SRLK    uint32 = 0xEBDE // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (32)
  2221  	op_SRNM    uint32 = 0xB299 // FORMAT_S          SET BFP ROUNDING MODE (2 bit)
  2222  	op_SRNMB   uint32 = 0xB2B8 // FORMAT_S          SET BFP ROUNDING MODE (3 bit)
  2223  	op_SRNMT   uint32 = 0xB2B9 // FORMAT_S          SET DFP ROUNDING MODE
  2224  	op_SRP     uint32 = 0xF000 // FORMAT_SS3        SHIFT AND ROUND DECIMAL
  2225  	op_SRST    uint32 = 0xB25E // FORMAT_RRE        SEARCH STRING
  2226  	op_SRSTU   uint32 = 0xB9BE // FORMAT_RRE        SEARCH STRING UNICODE
  2227  	op_SRXT    uint32 = 0xED49 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (extended DFP)
  2228  	op_SSAIR   uint32 = 0xB99F // FORMAT_RRE        SET SECONDARY ASN WITH INSTANCE
  2229  	op_SSAR    uint32 = 0xB225 // FORMAT_RRE        SET SECONDARY ASN
  2230  	op_SSCH    uint32 = 0xB233 // FORMAT_S          START SUBCHANNEL
  2231  	op_SSKE    uint32 = 0xB22B // FORMAT_RRF3       SET STORAGE KEY EXTENDED
  2232  	op_SSM     uint32 = 0x8000 // FORMAT_S          SET SYSTEM MASK
  2233  	op_ST      uint32 = 0x5000 // FORMAT_RX1        STORE (32)
  2234  	op_STAM    uint32 = 0x9B00 // FORMAT_RS1        STORE ACCESS MULTIPLE
  2235  	op_STAMY   uint32 = 0xEB9B // FORMAT_RSY1       STORE ACCESS MULTIPLE
  2236  	op_STAP    uint32 = 0xB212 // FORMAT_S          STORE CPU ADDRESS
  2237  	op_STC     uint32 = 0x4200 // FORMAT_RX1        STORE CHARACTER
  2238  	op_STCH    uint32 = 0xE3C3 // FORMAT_RXY1       STORE CHARACTER HIGH (8)
  2239  	op_STCK    uint32 = 0xB205 // FORMAT_S          STORE CLOCK
  2240  	op_STCKC   uint32 = 0xB207 // FORMAT_S          STORE CLOCK COMPARATOR
  2241  	op_STCKE   uint32 = 0xB278 // FORMAT_S          STORE CLOCK EXTENDED
  2242  	op_STCKF   uint32 = 0xB27C // FORMAT_S          STORE CLOCK FAST
  2243  	op_STCM    uint32 = 0xBE00 // FORMAT_RS2        STORE CHARACTERS UNDER MASK (low)
  2244  	op_STCMH   uint32 = 0xEB2C // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (high)
  2245  	op_STCMY   uint32 = 0xEB2D // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (low)
  2246  	op_STCPS   uint32 = 0xB23A // FORMAT_S          STORE CHANNEL PATH STATUS
  2247  	op_STCRW   uint32 = 0xB239 // FORMAT_S          STORE CHANNEL REPORT WORD
  2248  	op_STCTG   uint32 = 0xEB25 // FORMAT_RSY1       STORE CONTROL (64)
  2249  	op_STCTL   uint32 = 0xB600 // FORMAT_RS1        STORE CONTROL (32)
  2250  	op_STCY    uint32 = 0xE372 // FORMAT_RXY1       STORE CHARACTER
  2251  	op_STD     uint32 = 0x6000 // FORMAT_RX1        STORE (long)
  2252  	op_STDY    uint32 = 0xED67 // FORMAT_RXY1       STORE (long)
  2253  	op_STE     uint32 = 0x7000 // FORMAT_RX1        STORE (short)
  2254  	op_STEY    uint32 = 0xED66 // FORMAT_RXY1       STORE (short)
  2255  	op_STFH    uint32 = 0xE3CB // FORMAT_RXY1       STORE HIGH (32)
  2256  	op_STFL    uint32 = 0xB2B1 // FORMAT_S          STORE FACILITY LIST
  2257  	op_STFLE   uint32 = 0xB2B0 // FORMAT_S          STORE FACILITY LIST EXTENDED
  2258  	op_STFPC   uint32 = 0xB29C // FORMAT_S          STORE FPC
  2259  	op_STG     uint32 = 0xE324 // FORMAT_RXY1       STORE (64)
  2260  	op_STGRL   uint32 = 0xC40B // FORMAT_RIL2       STORE RELATIVE LONG (64)
  2261  	op_STH     uint32 = 0x4000 // FORMAT_RX1        STORE HALFWORD
  2262  	op_STHH    uint32 = 0xE3C7 // FORMAT_RXY1       STORE HALFWORD HIGH (16)
  2263  	op_STHRL   uint32 = 0xC407 // FORMAT_RIL2       STORE HALFWORD RELATIVE LONG
  2264  	op_STHY    uint32 = 0xE370 // FORMAT_RXY1       STORE HALFWORD
  2265  	op_STIDP   uint32 = 0xB202 // FORMAT_S          STORE CPU ID
  2266  	op_STM     uint32 = 0x9000 // FORMAT_RS1        STORE MULTIPLE (32)
  2267  	op_STMG    uint32 = 0xEB24 // FORMAT_RSY1       STORE MULTIPLE (64)
  2268  	op_STMH    uint32 = 0xEB26 // FORMAT_RSY1       STORE MULTIPLE HIGH
  2269  	op_STMY    uint32 = 0xEB90 // FORMAT_RSY1       STORE MULTIPLE (32)
  2270  	op_STNSM   uint32 = 0xAC00 // FORMAT_SI         STORE THEN AND SYSTEM MASK
  2271  	op_STOC    uint32 = 0xEBF3 // FORMAT_RSY2       STORE ON CONDITION (32)
  2272  	op_STOCG   uint32 = 0xEBE3 // FORMAT_RSY2       STORE ON CONDITION (64)
  2273  	op_STOSM   uint32 = 0xAD00 // FORMAT_SI         STORE THEN OR SYSTEM MASK
  2274  	op_STPQ    uint32 = 0xE38E // FORMAT_RXY1       STORE PAIR TO QUADWORD
  2275  	op_STPT    uint32 = 0xB209 // FORMAT_S          STORE CPU TIMER
  2276  	op_STPX    uint32 = 0xB211 // FORMAT_S          STORE PREFIX
  2277  	op_STRAG   uint32 = 0xE502 // FORMAT_SSE        STORE REAL ADDRESS
  2278  	op_STRL    uint32 = 0xC40F // FORMAT_RIL2       STORE RELATIVE LONG (32)
  2279  	op_STRV    uint32 = 0xE33E // FORMAT_RXY1       STORE REVERSED (32)
  2280  	op_STRVG   uint32 = 0xE32F // FORMAT_RXY1       STORE REVERSED (64)
  2281  	op_STRVH   uint32 = 0xE33F // FORMAT_RXY1       STORE REVERSED (16)
  2282  	op_STSCH   uint32 = 0xB234 // FORMAT_S          STORE SUBCHANNEL
  2283  	op_STSI    uint32 = 0xB27D // FORMAT_S          STORE SYSTEM INFORMATION
  2284  	op_STURA   uint32 = 0xB246 // FORMAT_RRE        STORE USING REAL ADDRESS (32)
  2285  	op_STURG   uint32 = 0xB925 // FORMAT_RRE        STORE USING REAL ADDRESS (64)
  2286  	op_STY     uint32 = 0xE350 // FORMAT_RXY1       STORE (32)
  2287  	op_SU      uint32 = 0x7F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (short HFP)
  2288  	op_SUR     uint32 = 0x3F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (short HFP)
  2289  	op_SVC     uint32 = 0x0A00 // FORMAT_I          SUPERVISOR CALL
  2290  	op_SW      uint32 = 0x6F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (long HFP)
  2291  	op_SWR     uint32 = 0x2F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (long HFP)
  2292  	op_SXBR    uint32 = 0xB34B // FORMAT_RRE        SUBTRACT (extended BFP)
  2293  	op_SXR     uint32 = 0x3700 // FORMAT_RR         SUBTRACT NORMALIZED (extended HFP)
  2294  	op_SXTR    uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
  2295  	op_SXTRA   uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
  2296  	op_SY      uint32 = 0xE35B // FORMAT_RXY1       SUBTRACT (32)
  2297  	op_TABORT  uint32 = 0xB2FC // FORMAT_S          TRANSACTION ABORT
  2298  	op_TAM     uint32 = 0x010B // FORMAT_E          TEST ADDRESSING MODE
  2299  	op_TAR     uint32 = 0xB24C // FORMAT_RRE        TEST ACCESS
  2300  	op_TB      uint32 = 0xB22C // FORMAT_RRE        TEST BLOCK
  2301  	op_TBDR    uint32 = 0xB351 // FORMAT_RRF5       CONVERT HFP TO BFP (long)
  2302  	op_TBEDR   uint32 = 0xB350 // FORMAT_RRF5       CONVERT HFP TO BFP (long to short)
  2303  	op_TBEGIN  uint32 = 0xE560 // FORMAT_SIL        TRANSACTION BEGIN
  2304  	op_TBEGINC uint32 = 0xE561 // FORMAT_SIL        TRANSACTION BEGIN
  2305  	op_TCDB    uint32 = 0xED11 // FORMAT_RXE        TEST DATA CLASS (long BFP)
  2306  	op_TCEB    uint32 = 0xED10 // FORMAT_RXE        TEST DATA CLASS (short BFP)
  2307  	op_TCXB    uint32 = 0xED12 // FORMAT_RXE        TEST DATA CLASS (extended BFP)
  2308  	op_TDCDT   uint32 = 0xED54 // FORMAT_RXE        TEST DATA CLASS (long DFP)
  2309  	op_TDCET   uint32 = 0xED50 // FORMAT_RXE        TEST DATA CLASS (short DFP)
  2310  	op_TDCXT   uint32 = 0xED58 // FORMAT_RXE        TEST DATA CLASS (extended DFP)
  2311  	op_TDGDT   uint32 = 0xED55 // FORMAT_RXE        TEST DATA GROUP (long DFP)
  2312  	op_TDGET   uint32 = 0xED51 // FORMAT_RXE        TEST DATA GROUP (short DFP)
  2313  	op_TDGXT   uint32 = 0xED59 // FORMAT_RXE        TEST DATA GROUP (extended DFP)
  2314  	op_TEND    uint32 = 0xB2F8 // FORMAT_S          TRANSACTION END
  2315  	op_THDER   uint32 = 0xB358 // FORMAT_RRE        CONVERT BFP TO HFP (short to long)
  2316  	op_THDR    uint32 = 0xB359 // FORMAT_RRE        CONVERT BFP TO HFP (long)
  2317  	op_TM      uint32 = 0x9100 // FORMAT_SI         TEST UNDER MASK
  2318  	op_TMH     uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK HIGH
  2319  	op_TMHH    uint32 = 0xA702 // FORMAT_RI1        TEST UNDER MASK (high high)
  2320  	op_TMHL    uint32 = 0xA703 // FORMAT_RI1        TEST UNDER MASK (high low)
  2321  	op_TML     uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK LOW
  2322  	op_TMLH    uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK (low high)
  2323  	op_TMLL    uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK (low low)
  2324  	op_TMY     uint32 = 0xEB51 // FORMAT_SIY        TEST UNDER MASK
  2325  	op_TP      uint32 = 0xEBC0 // FORMAT_RSL        TEST DECIMAL
  2326  	op_TPI     uint32 = 0xB236 // FORMAT_S          TEST PENDING INTERRUPTION
  2327  	op_TPROT   uint32 = 0xE501 // FORMAT_SSE        TEST PROTECTION
  2328  	op_TR      uint32 = 0xDC00 // FORMAT_SS1        TRANSLATE
  2329  	op_TRACE   uint32 = 0x9900 // FORMAT_RS1        TRACE (32)
  2330  	op_TRACG   uint32 = 0xEB0F // FORMAT_RSY1       TRACE (64)
  2331  	op_TRAP2   uint32 = 0x01FF // FORMAT_E          TRAP
  2332  	op_TRAP4   uint32 = 0xB2FF // FORMAT_S          TRAP
  2333  	op_TRE     uint32 = 0xB2A5 // FORMAT_RRE        TRANSLATE EXTENDED
  2334  	op_TROO    uint32 = 0xB993 // FORMAT_RRF3       TRANSLATE ONE TO ONE
  2335  	op_TROT    uint32 = 0xB992 // FORMAT_RRF3       TRANSLATE ONE TO TWO
  2336  	op_TRT     uint32 = 0xDD00 // FORMAT_SS1        TRANSLATE AND TEST
  2337  	op_TRTE    uint32 = 0xB9BF // FORMAT_RRF3       TRANSLATE AND TEST EXTENDED
  2338  	op_TRTO    uint32 = 0xB991 // FORMAT_RRF3       TRANSLATE TWO TO ONE
  2339  	op_TRTR    uint32 = 0xD000 // FORMAT_SS1        TRANSLATE AND TEST REVERSE
  2340  	op_TRTRE   uint32 = 0xB9BD // FORMAT_RRF3       TRANSLATE AND TEST REVERSE EXTENDED
  2341  	op_TRTT    uint32 = 0xB990 // FORMAT_RRF3       TRANSLATE TWO TO TWO
  2342  	op_TS      uint32 = 0x9300 // FORMAT_S          TEST AND SET
  2343  	op_TSCH    uint32 = 0xB235 // FORMAT_S          TEST SUBCHANNEL
  2344  	op_UNPK    uint32 = 0xF300 // FORMAT_SS2        UNPACK
  2345  	op_UNPKA   uint32 = 0xEA00 // FORMAT_SS1        UNPACK ASCII
  2346  	op_UNPKU   uint32 = 0xE200 // FORMAT_SS1        UNPACK UNICODE
  2347  	op_UPT     uint32 = 0x0102 // FORMAT_E          UPDATE TREE
  2348  	op_X       uint32 = 0x5700 // FORMAT_RX1        EXCLUSIVE OR (32)
  2349  	op_XC      uint32 = 0xD700 // FORMAT_SS1        EXCLUSIVE OR (character)
  2350  	op_XG      uint32 = 0xE382 // FORMAT_RXY1       EXCLUSIVE OR (64)
  2351  	op_XGR     uint32 = 0xB982 // FORMAT_RRE        EXCLUSIVE OR (64)
  2352  	op_XGRK    uint32 = 0xB9E7 // FORMAT_RRF1       EXCLUSIVE OR (64)
  2353  	op_XI      uint32 = 0x9700 // FORMAT_SI         EXCLUSIVE OR (immediate)
  2354  	op_XIHF    uint32 = 0xC006 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (high)
  2355  	op_XILF    uint32 = 0xC007 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (low)
  2356  	op_XIY     uint32 = 0xEB57 // FORMAT_SIY        EXCLUSIVE OR (immediate)
  2357  	op_XR      uint32 = 0x1700 // FORMAT_RR         EXCLUSIVE OR (32)
  2358  	op_XRK     uint32 = 0xB9F7 // FORMAT_RRF1       EXCLUSIVE OR (32)
  2359  	op_XSCH    uint32 = 0xB276 // FORMAT_S          CANCEL SUBCHANNEL
  2360  	op_XY      uint32 = 0xE357 // FORMAT_RXY1       EXCLUSIVE OR (32)
  2361  	op_ZAP     uint32 = 0xF800 // FORMAT_SS2        ZERO AND ADD
  2362  
  2363  	// added in z13
  2364  	op_CXPT   uint32 = 0xEDAF // 	RSL-b	CONVERT FROM PACKED (to extended DFP)
  2365  	op_CDPT   uint32 = 0xEDAE // 	RSL-b	CONVERT FROM PACKED (to long DFP)
  2366  	op_CPXT   uint32 = 0xEDAD // 	RSL-b	CONVERT TO PACKED (from extended DFP)
  2367  	op_CPDT   uint32 = 0xEDAC // 	RSL-b	CONVERT TO PACKED (from long DFP)
  2368  	op_LZRF   uint32 = 0xE33B // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (32)
  2369  	op_LZRG   uint32 = 0xE32A // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (64)
  2370  	op_LCCB   uint32 = 0xE727 // 	RXE	LOAD COUNT TO BLOCK BOUNDARY
  2371  	op_LOCHHI uint32 = 0xEC4E // 	RIE-g	LOAD HALFWORD HIGH IMMEDIATE ON CONDITION (32←16)
  2372  	op_LOCHI  uint32 = 0xEC42 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (32←16)
  2373  	op_LOCGHI uint32 = 0xEC46 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (64←16)
  2374  	op_LOCFH  uint32 = 0xEBE0 // 	RSY-b	LOAD HIGH ON CONDITION (32)
  2375  	op_LOCFHR uint32 = 0xB9E0 // 	RRF-c	LOAD HIGH ON CONDITION (32)
  2376  	op_LLZRGF uint32 = 0xE33A // 	RXY-a	LOAD LOGICAL AND ZERO RIGHTMOST BYTE (64←32)
  2377  	op_STOCFH uint32 = 0xEBE1 // 	RSY-b	STORE HIGH ON CONDITION
  2378  	op_VA     uint32 = 0xE7F3 // 	VRR-c	VECTOR ADD
  2379  	op_VACC   uint32 = 0xE7F1 // 	VRR-c	VECTOR ADD COMPUTE CARRY
  2380  	op_VAC    uint32 = 0xE7BB // 	VRR-d	VECTOR ADD WITH CARRY
  2381  	op_VACCC  uint32 = 0xE7B9 // 	VRR-d	VECTOR ADD WITH CARRY COMPUTE CARRY
  2382  	op_VN     uint32 = 0xE768 // 	VRR-c	VECTOR AND
  2383  	op_VNC    uint32 = 0xE769 // 	VRR-c	VECTOR AND WITH COMPLEMENT
  2384  	op_VAVG   uint32 = 0xE7F2 // 	VRR-c	VECTOR AVERAGE
  2385  	op_VAVGL  uint32 = 0xE7F0 // 	VRR-c	VECTOR AVERAGE LOGICAL
  2386  	op_VCKSM  uint32 = 0xE766 // 	VRR-c	VECTOR CHECKSUM
  2387  	op_VCEQ   uint32 = 0xE7F8 // 	VRR-b	VECTOR COMPARE EQUAL
  2388  	op_VCH    uint32 = 0xE7FB // 	VRR-b	VECTOR COMPARE HIGH
  2389  	op_VCHL   uint32 = 0xE7F9 // 	VRR-b	VECTOR COMPARE HIGH LOGICAL
  2390  	op_VCLZ   uint32 = 0xE753 // 	VRR-a	VECTOR COUNT LEADING ZEROS
  2391  	op_VCTZ   uint32 = 0xE752 // 	VRR-a	VECTOR COUNT TRAILING ZEROS
  2392  	op_VEC    uint32 = 0xE7DB // 	VRR-a	VECTOR ELEMENT COMPARE
  2393  	op_VECL   uint32 = 0xE7D9 // 	VRR-a	VECTOR ELEMENT COMPARE LOGICAL
  2394  	op_VERIM  uint32 = 0xE772 // 	VRI-d	VECTOR ELEMENT ROTATE AND INSERT UNDER MASK
  2395  	op_VERLL  uint32 = 0xE733 // 	VRS-a	VECTOR ELEMENT ROTATE LEFT LOGICAL
  2396  	op_VERLLV uint32 = 0xE773 // 	VRR-c	VECTOR ELEMENT ROTATE LEFT LOGICAL
  2397  	op_VESLV  uint32 = 0xE770 // 	VRR-c	VECTOR ELEMENT SHIFT LEFT
  2398  	op_VESL   uint32 = 0xE730 // 	VRS-a	VECTOR ELEMENT SHIFT LEFT
  2399  	op_VESRA  uint32 = 0xE73A // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
  2400  	op_VESRAV uint32 = 0xE77A // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
  2401  	op_VESRL  uint32 = 0xE738 // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT LOGICAL
  2402  	op_VESRLV uint32 = 0xE778 // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT LOGICAL
  2403  	op_VX     uint32 = 0xE76D // 	VRR-c	VECTOR EXCLUSIVE OR
  2404  	op_VFAE   uint32 = 0xE782 // 	VRR-b	VECTOR FIND ANY ELEMENT EQUAL
  2405  	op_VFEE   uint32 = 0xE780 // 	VRR-b	VECTOR FIND ELEMENT EQUAL
  2406  	op_VFENE  uint32 = 0xE781 // 	VRR-b	VECTOR FIND ELEMENT NOT EQUAL
  2407  	op_VFA    uint32 = 0xE7E3 // 	VRR-c	VECTOR FP ADD
  2408  	op_WFK    uint32 = 0xE7CA // 	VRR-a	VECTOR FP COMPARE AND SIGNAL SCALAR
  2409  	op_VFCE   uint32 = 0xE7E8 // 	VRR-c	VECTOR FP COMPARE EQUAL
  2410  	op_VFCH   uint32 = 0xE7EB // 	VRR-c	VECTOR FP COMPARE HIGH
  2411  	op_VFCHE  uint32 = 0xE7EA // 	VRR-c	VECTOR FP COMPARE HIGH OR EQUAL
  2412  	op_WFC    uint32 = 0xE7CB // 	VRR-a	VECTOR FP COMPARE SCALAR
  2413  	op_VCDG   uint32 = 0xE7C3 // 	VRR-a	VECTOR FP CONVERT FROM FIXED 64-BIT
  2414  	op_VCDLG  uint32 = 0xE7C1 // 	VRR-a	VECTOR FP CONVERT FROM LOGICAL 64-BIT
  2415  	op_VCGD   uint32 = 0xE7C2 // 	VRR-a	VECTOR FP CONVERT TO FIXED 64-BIT
  2416  	op_VCLGD  uint32 = 0xE7C0 // 	VRR-a	VECTOR FP CONVERT TO LOGICAL 64-BIT
  2417  	op_VFD    uint32 = 0xE7E5 // 	VRR-c	VECTOR FP DIVIDE
  2418  	op_VLDE   uint32 = 0xE7C4 // 	VRR-a	VECTOR FP LOAD LENGTHENED
  2419  	op_VLED   uint32 = 0xE7C5 // 	VRR-a	VECTOR FP LOAD ROUNDED
  2420  	op_VFM    uint32 = 0xE7E7 // 	VRR-c	VECTOR FP MULTIPLY
  2421  	op_VFMA   uint32 = 0xE78F // 	VRR-e	VECTOR FP MULTIPLY AND ADD
  2422  	op_VFMS   uint32 = 0xE78E // 	VRR-e	VECTOR FP MULTIPLY AND SUBTRACT
  2423  	op_VFPSO  uint32 = 0xE7CC // 	VRR-a	VECTOR FP PERFORM SIGN OPERATION
  2424  	op_VFSQ   uint32 = 0xE7CE // 	VRR-a	VECTOR FP SQUARE ROOT
  2425  	op_VFS    uint32 = 0xE7E2 // 	VRR-c	VECTOR FP SUBTRACT
  2426  	op_VFTCI  uint32 = 0xE74A // 	VRI-e	VECTOR FP TEST DATA CLASS IMMEDIATE
  2427  	op_VGFM   uint32 = 0xE7B4 // 	VRR-c	VECTOR GALOIS FIELD MULTIPLY SUM
  2428  	op_VGFMA  uint32 = 0xE7BC // 	VRR-d	VECTOR GALOIS FIELD MULTIPLY SUM AND ACCUMULATE
  2429  	op_VGEF   uint32 = 0xE713 // 	VRV	VECTOR GATHER ELEMENT (32)
  2430  	op_VGEG   uint32 = 0xE712 // 	VRV	VECTOR GATHER ELEMENT (64)
  2431  	op_VGBM   uint32 = 0xE744 // 	VRI-a	VECTOR GENERATE BYTE MASK
  2432  	op_VGM    uint32 = 0xE746 // 	VRI-b	VECTOR GENERATE MASK
  2433  	op_VISTR  uint32 = 0xE75C // 	VRR-a	VECTOR ISOLATE STRING
  2434  	op_VL     uint32 = 0xE706 // 	VRX	VECTOR LOAD
  2435  	op_VLR    uint32 = 0xE756 // 	VRR-a	VECTOR LOAD
  2436  	op_VLREP  uint32 = 0xE705 // 	VRX	VECTOR LOAD AND REPLICATE
  2437  	op_VLC    uint32 = 0xE7DE // 	VRR-a	VECTOR LOAD COMPLEMENT
  2438  	op_VLEH   uint32 = 0xE701 // 	VRX	VECTOR LOAD ELEMENT (16)
  2439  	op_VLEF   uint32 = 0xE703 // 	VRX	VECTOR LOAD ELEMENT (32)
  2440  	op_VLEG   uint32 = 0xE702 // 	VRX	VECTOR LOAD ELEMENT (64)
  2441  	op_VLEB   uint32 = 0xE700 // 	VRX	VECTOR LOAD ELEMENT (8)
  2442  	op_VLEIH  uint32 = 0xE741 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (16)
  2443  	op_VLEIF  uint32 = 0xE743 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (32)
  2444  	op_VLEIG  uint32 = 0xE742 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (64)
  2445  	op_VLEIB  uint32 = 0xE740 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (8)
  2446  	op_VFI    uint32 = 0xE7C7 // 	VRR-a	VECTOR LOAD FP INTEGER
  2447  	op_VLGV   uint32 = 0xE721 // 	VRS-c	VECTOR LOAD GR FROM VR ELEMENT
  2448  	op_VLLEZ  uint32 = 0xE704 // 	VRX	VECTOR LOAD LOGICAL ELEMENT AND ZERO
  2449  	op_VLM    uint32 = 0xE736 // 	VRS-a	VECTOR LOAD MULTIPLE
  2450  	op_VLP    uint32 = 0xE7DF // 	VRR-a	VECTOR LOAD POSITIVE
  2451  	op_VLBB   uint32 = 0xE707 // 	VRX	VECTOR LOAD TO BLOCK BOUNDARY
  2452  	op_VLVG   uint32 = 0xE722 // 	VRS-b	VECTOR LOAD VR ELEMENT FROM GR
  2453  	op_VLVGP  uint32 = 0xE762 // 	VRR-f	VECTOR LOAD VR FROM GRS DISJOINT
  2454  	op_VLL    uint32 = 0xE737 // 	VRS-b	VECTOR LOAD WITH LENGTH
  2455  	op_VMX    uint32 = 0xE7FF // 	VRR-c	VECTOR MAXIMUM
  2456  	op_VMXL   uint32 = 0xE7FD // 	VRR-c	VECTOR MAXIMUM LOGICAL
  2457  	op_VMRH   uint32 = 0xE761 // 	VRR-c	VECTOR MERGE HIGH
  2458  	op_VMRL   uint32 = 0xE760 // 	VRR-c	VECTOR MERGE LOW
  2459  	op_VMN    uint32 = 0xE7FE // 	VRR-c	VECTOR MINIMUM
  2460  	op_VMNL   uint32 = 0xE7FC // 	VRR-c	VECTOR MINIMUM LOGICAL
  2461  	op_VMAE   uint32 = 0xE7AE // 	VRR-d	VECTOR MULTIPLY AND ADD EVEN
  2462  	op_VMAH   uint32 = 0xE7AB // 	VRR-d	VECTOR MULTIPLY AND ADD HIGH
  2463  	op_VMALE  uint32 = 0xE7AC // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL EVEN
  2464  	op_VMALH  uint32 = 0xE7A9 // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL HIGH
  2465  	op_VMALO  uint32 = 0xE7AD // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL ODD
  2466  	op_VMAL   uint32 = 0xE7AA // 	VRR-d	VECTOR MULTIPLY AND ADD LOW
  2467  	op_VMAO   uint32 = 0xE7AF // 	VRR-d	VECTOR MULTIPLY AND ADD ODD
  2468  	op_VME    uint32 = 0xE7A6 // 	VRR-c	VECTOR MULTIPLY EVEN
  2469  	op_VMH    uint32 = 0xE7A3 // 	VRR-c	VECTOR MULTIPLY HIGH
  2470  	op_VMLE   uint32 = 0xE7A4 // 	VRR-c	VECTOR MULTIPLY EVEN LOGICAL
  2471  	op_VMLH   uint32 = 0xE7A1 // 	VRR-c	VECTOR MULTIPLY HIGH LOGICAL
  2472  	op_VMLO   uint32 = 0xE7A5 // 	VRR-c	VECTOR MULTIPLY ODD LOGICAL
  2473  	op_VML    uint32 = 0xE7A2 // 	VRR-c	VECTOR MULTIPLY LOW
  2474  	op_VMO    uint32 = 0xE7A7 // 	VRR-c	VECTOR MULTIPLY ODD
  2475  	op_VNO    uint32 = 0xE76B // 	VRR-c	VECTOR NOR
  2476  	op_VO     uint32 = 0xE76A // 	VRR-c	VECTOR OR
  2477  	op_VPK    uint32 = 0xE794 // 	VRR-c	VECTOR PACK
  2478  	op_VPKLS  uint32 = 0xE795 // 	VRR-b	VECTOR PACK LOGICAL SATURATE
  2479  	op_VPKS   uint32 = 0xE797 // 	VRR-b	VECTOR PACK SATURATE
  2480  	op_VPERM  uint32 = 0xE78C // 	VRR-e	VECTOR PERMUTE
  2481  	op_VPDI   uint32 = 0xE784 // 	VRR-c	VECTOR PERMUTE DOUBLEWORD IMMEDIATE
  2482  	op_VPOPCT uint32 = 0xE750 // 	VRR-a	VECTOR POPULATION COUNT
  2483  	op_VREP   uint32 = 0xE74D // 	VRI-c	VECTOR REPLICATE
  2484  	op_VREPI  uint32 = 0xE745 // 	VRI-a	VECTOR REPLICATE IMMEDIATE
  2485  	op_VSCEF  uint32 = 0xE71B // 	VRV	VECTOR SCATTER ELEMENT (32)
  2486  	op_VSCEG  uint32 = 0xE71A // 	VRV	VECTOR SCATTER ELEMENT (64)
  2487  	op_VSEL   uint32 = 0xE78D // 	VRR-e	VECTOR SELECT
  2488  	op_VSL    uint32 = 0xE774 // 	VRR-c	VECTOR SHIFT LEFT
  2489  	op_VSLB   uint32 = 0xE775 // 	VRR-c	VECTOR SHIFT LEFT BY BYTE
  2490  	op_VSLDB  uint32 = 0xE777 // 	VRI-d	VECTOR SHIFT LEFT DOUBLE BY BYTE
  2491  	op_VSRA   uint32 = 0xE77E // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC
  2492  	op_VSRAB  uint32 = 0xE77F // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC BY BYTE
  2493  	op_VSRL   uint32 = 0xE77C // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL
  2494  	op_VSRLB  uint32 = 0xE77D // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL BY BYTE
  2495  	op_VSEG   uint32 = 0xE75F // 	VRR-a	VECTOR SIGN EXTEND TO DOUBLEWORD
  2496  	op_VST    uint32 = 0xE70E // 	VRX	VECTOR STORE
  2497  	op_VSTEH  uint32 = 0xE709 // 	VRX	VECTOR STORE ELEMENT (16)
  2498  	op_VSTEF  uint32 = 0xE70B // 	VRX	VECTOR STORE ELEMENT (32)
  2499  	op_VSTEG  uint32 = 0xE70A // 	VRX	VECTOR STORE ELEMENT (64)
  2500  	op_VSTEB  uint32 = 0xE708 // 	VRX	VECTOR STORE ELEMENT (8)
  2501  	op_VSTM   uint32 = 0xE73E // 	VRS-a	VECTOR STORE MULTIPLE
  2502  	op_VSTL   uint32 = 0xE73F // 	VRS-b	VECTOR STORE WITH LENGTH
  2503  	op_VSTRC  uint32 = 0xE78A // 	VRR-d	VECTOR STRING RANGE COMPARE
  2504  	op_VS     uint32 = 0xE7F7 // 	VRR-c	VECTOR SUBTRACT
  2505  	op_VSCBI  uint32 = 0xE7F5 // 	VRR-c	VECTOR SUBTRACT COMPUTE BORROW INDICATION
  2506  	op_VSBCBI uint32 = 0xE7BD // 	VRR-d	VECTOR SUBTRACT WITH BORROW COMPUTE BORROW INDICATION
  2507  	op_VSBI   uint32 = 0xE7BF // 	VRR-d	VECTOR SUBTRACT WITH BORROW INDICATION
  2508  	op_VSUMG  uint32 = 0xE765 // 	VRR-c	VECTOR SUM ACROSS DOUBLEWORD
  2509  	op_VSUMQ  uint32 = 0xE767 // 	VRR-c	VECTOR SUM ACROSS QUADWORD
  2510  	op_VSUM   uint32 = 0xE764 // 	VRR-c	VECTOR SUM ACROSS WORD
  2511  	op_VTM    uint32 = 0xE7D8 // 	VRR-a	VECTOR TEST UNDER MASK
  2512  	op_VUPH   uint32 = 0xE7D7 // 	VRR-a	VECTOR UNPACK HIGH
  2513  	op_VUPLH  uint32 = 0xE7D5 // 	VRR-a	VECTOR UNPACK LOGICAL HIGH
  2514  	op_VUPLL  uint32 = 0xE7D4 // 	VRR-a	VECTOR UNPACK LOGICAL LOW
  2515  	op_VUPL   uint32 = 0xE7D6 // 	VRR-a	VECTOR UNPACK LOW
  2516  )
  2517  
  2518  func oclass(a *obj.Addr) int {
  2519  	return int(a.Class) - 1
  2520  }
  2521  
  2522  // Add a relocation for the immediate in a RIL style instruction.
  2523  // The addend will be adjusted as required.
  2524  func (c *ctxtz) addrilreloc(sym *obj.LSym, add int64) *obj.Reloc {
  2525  	if sym == nil {
  2526  		c.ctxt.Diag("require symbol to apply relocation")
  2527  	}
  2528  	offset := int64(2) // relocation offset from start of instruction
  2529  	rel := obj.Addrel(c.cursym)
  2530  	rel.Off = int32(c.pc + offset)
  2531  	rel.Siz = 4
  2532  	rel.Sym = sym
  2533  	rel.Add = add + offset + int64(rel.Siz)
  2534  	rel.Type = objabi.R_PCRELDBL
  2535  	return rel
  2536  }
  2537  
  2538  func (c *ctxtz) addrilrelocoffset(sym *obj.LSym, add, offset int64) *obj.Reloc {
  2539  	if sym == nil {
  2540  		c.ctxt.Diag("require symbol to apply relocation")
  2541  	}
  2542  	offset += int64(2) // relocation offset from start of instruction
  2543  	rel := obj.Addrel(c.cursym)
  2544  	rel.Off = int32(c.pc + offset)
  2545  	rel.Siz = 4
  2546  	rel.Sym = sym
  2547  	rel.Add = add + offset + int64(rel.Siz)
  2548  	rel.Type = objabi.R_PCRELDBL
  2549  	return rel
  2550  }
  2551  
  2552  // Add a CALL relocation for the immediate in a RIL style instruction.
  2553  // The addend will be adjusted as required.
  2554  func (c *ctxtz) addcallreloc(sym *obj.LSym, add int64) *obj.Reloc {
  2555  	if sym == nil {
  2556  		c.ctxt.Diag("require symbol to apply relocation")
  2557  	}
  2558  	offset := int64(2) // relocation offset from start of instruction
  2559  	rel := obj.Addrel(c.cursym)
  2560  	rel.Off = int32(c.pc + offset)
  2561  	rel.Siz = 4
  2562  	rel.Sym = sym
  2563  	rel.Add = add + offset + int64(rel.Siz)
  2564  	rel.Type = objabi.R_CALL
  2565  	return rel
  2566  }
  2567  
  2568  func (c *ctxtz) branchMask(p *obj.Prog) uint32 {
  2569  	switch p.As {
  2570  	case ABEQ, ACMPBEQ, ACMPUBEQ, AMOVDEQ:
  2571  		return 0x8
  2572  	case ABGE, ACMPBGE, ACMPUBGE, AMOVDGE:
  2573  		return 0xA
  2574  	case ABGT, ACMPBGT, ACMPUBGT, AMOVDGT:
  2575  		return 0x2
  2576  	case ABLE, ACMPBLE, ACMPUBLE, AMOVDLE:
  2577  		return 0xC
  2578  	case ABLT, ACMPBLT, ACMPUBLT, AMOVDLT:
  2579  		return 0x4
  2580  	case ABNE, ACMPBNE, ACMPUBNE, AMOVDNE:
  2581  		return 0x7
  2582  	case ABLEU: // LE or unordered
  2583  		return 0xD
  2584  	case ABLTU: // LT or unordered
  2585  		return 0x5
  2586  	case ABVC:
  2587  		return 0x0 // needs extra instruction
  2588  	case ABVS:
  2589  		return 0x1 // unordered
  2590  	}
  2591  	c.ctxt.Diag("unknown conditional branch %v", p.As)
  2592  	return 0xF
  2593  }
  2594  
  2595  func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
  2596  	o := c.oplook(p)
  2597  
  2598  	switch o.type_ {
  2599  	default:
  2600  		c.ctxt.Diag("unknown type %d", o.type_)
  2601  
  2602  	case 0: // PSEUDO OPS
  2603  		break
  2604  
  2605  	case 1: // mov reg reg
  2606  		switch p.As {
  2607  		default:
  2608  			c.ctxt.Diag("unhandled operation: %v", p.As)
  2609  		case AMOVD:
  2610  			zRRE(op_LGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2611  		// sign extend
  2612  		case AMOVW:
  2613  			zRRE(op_LGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2614  		case AMOVH:
  2615  			zRRE(op_LGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2616  		case AMOVB:
  2617  			zRRE(op_LGBR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2618  		// zero extend
  2619  		case AMOVWZ:
  2620  			zRRE(op_LLGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2621  		case AMOVHZ:
  2622  			zRRE(op_LLGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2623  		case AMOVBZ:
  2624  			zRRE(op_LLGCR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2625  		// reverse bytes
  2626  		case AMOVDBR:
  2627  			zRRE(op_LRVGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2628  		case AMOVWBR:
  2629  			zRRE(op_LRVR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2630  		// floating point
  2631  		case AFMOVD, AFMOVS:
  2632  			zRR(op_LDR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2633  		}
  2634  
  2635  	case 2: // arithmetic op reg [reg] reg
  2636  		r := p.Reg
  2637  		if r == 0 {
  2638  			r = p.To.Reg
  2639  		}
  2640  
  2641  		var opcode uint32
  2642  
  2643  		switch p.As {
  2644  		default:
  2645  			c.ctxt.Diag("invalid opcode")
  2646  		case AADD:
  2647  			opcode = op_AGRK
  2648  		case AADDC:
  2649  			opcode = op_ALGRK
  2650  		case AADDE:
  2651  			opcode = op_ALCGR
  2652  		case AADDW:
  2653  			opcode = op_ARK
  2654  		case AMULLW:
  2655  			opcode = op_MSGFR
  2656  		case AMULLD:
  2657  			opcode = op_MSGR
  2658  		case ADIVW, AMODW:
  2659  			opcode = op_DSGFR
  2660  		case ADIVWU, AMODWU:
  2661  			opcode = op_DLR
  2662  		case ADIVD, AMODD:
  2663  			opcode = op_DSGR
  2664  		case ADIVDU, AMODDU:
  2665  			opcode = op_DLGR
  2666  		}
  2667  
  2668  		switch p.As {
  2669  		default:
  2670  
  2671  		case AADD, AADDC, AADDW:
  2672  			if p.As == AADDW && r == p.To.Reg {
  2673  				zRR(op_AR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2674  			} else {
  2675  				zRRF(opcode, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2676  			}
  2677  
  2678  		case AADDE, AMULLW, AMULLD:
  2679  			if r == p.To.Reg {
  2680  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2681  			} else if p.From.Reg == p.To.Reg {
  2682  				zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  2683  			} else {
  2684  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2685  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2686  			}
  2687  
  2688  		case ADIVW, ADIVWU, ADIVD, ADIVDU:
  2689  			if p.As == ADIVWU || p.As == ADIVDU {
  2690  				zRI(op_LGHI, REGTMP, 0, asm)
  2691  			}
  2692  			zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2693  			zRRE(opcode, REGTMP, uint32(p.From.Reg), asm)
  2694  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP2, asm)
  2695  
  2696  		case AMODW, AMODWU, AMODD, AMODDU:
  2697  			if p.As == AMODWU || p.As == AMODDU {
  2698  				zRI(op_LGHI, REGTMP, 0, asm)
  2699  			}
  2700  			zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2701  			zRRE(opcode, REGTMP, uint32(p.From.Reg), asm)
  2702  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP, asm)
  2703  
  2704  		}
  2705  
  2706  	case 3: // mov $constant reg
  2707  		v := c.vregoff(&p.From)
  2708  		switch p.As {
  2709  		case AMOVBZ:
  2710  			v = int64(uint8(v))
  2711  		case AMOVHZ:
  2712  			v = int64(uint16(v))
  2713  		case AMOVWZ:
  2714  			v = int64(uint32(v))
  2715  		case AMOVB:
  2716  			v = int64(int8(v))
  2717  		case AMOVH:
  2718  			v = int64(int16(v))
  2719  		case AMOVW:
  2720  			v = int64(int32(v))
  2721  		}
  2722  		if int64(int16(v)) == v {
  2723  			zRI(op_LGHI, uint32(p.To.Reg), uint32(v), asm)
  2724  		} else if v&0xffff0000 == v {
  2725  			zRI(op_LLILH, uint32(p.To.Reg), uint32(v>>16), asm)
  2726  		} else if v&0xffff00000000 == v {
  2727  			zRI(op_LLIHL, uint32(p.To.Reg), uint32(v>>32), asm)
  2728  		} else if uint64(v)&0xffff000000000000 == uint64(v) {
  2729  			zRI(op_LLIHH, uint32(p.To.Reg), uint32(v>>48), asm)
  2730  		} else if int64(int32(v)) == v {
  2731  			zRIL(_a, op_LGFI, uint32(p.To.Reg), uint32(v), asm)
  2732  		} else if int64(uint32(v)) == v {
  2733  			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
  2734  		} else if uint64(v)&0xffffffff00000000 == uint64(v) {
  2735  			zRIL(_a, op_LLIHF, uint32(p.To.Reg), uint32(v>>32), asm)
  2736  		} else {
  2737  			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
  2738  			zRIL(_a, op_IIHF, uint32(p.To.Reg), uint32(v>>32), asm)
  2739  		}
  2740  
  2741  	case 4: // multiply high (a*b)>>64
  2742  		r := p.Reg
  2743  		if r == 0 {
  2744  			r = p.To.Reg
  2745  		}
  2746  		zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2747  		zRRE(op_MLGR, REGTMP, uint32(p.From.Reg), asm)
  2748  		switch p.As {
  2749  		case AMULHDU:
  2750  			// Unsigned: move result into correct register.
  2751  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP, asm)
  2752  		case AMULHD:
  2753  			// Signed: need to convert result.
  2754  			// See Hacker's Delight 8-3.
  2755  			zRSY(op_SRAG, REGTMP2, uint32(p.From.Reg), 0, 63, asm)
  2756  			zRRE(op_NGR, REGTMP2, uint32(r), asm)
  2757  			zRRE(op_SGR, REGTMP, REGTMP2, asm)
  2758  			zRSY(op_SRAG, REGTMP2, uint32(r), 0, 63, asm)
  2759  			zRRE(op_NGR, REGTMP2, uint32(p.From.Reg), asm)
  2760  			zRRF(op_SGRK, REGTMP2, 0, uint32(p.To.Reg), REGTMP, asm)
  2761  		}
  2762  
  2763  	case 5: // syscall
  2764  		zI(op_SVC, 0, asm)
  2765  
  2766  	case 6: // logical op reg [reg] reg
  2767  		var oprr, oprre, oprrf uint32
  2768  		switch p.As {
  2769  		case AAND:
  2770  			oprre = op_NGR
  2771  			oprrf = op_NGRK
  2772  		case AANDW:
  2773  			oprr = op_NR
  2774  			oprrf = op_NRK
  2775  		case AOR:
  2776  			oprre = op_OGR
  2777  			oprrf = op_OGRK
  2778  		case AORW:
  2779  			oprr = op_OR
  2780  			oprrf = op_ORK
  2781  		case AXOR:
  2782  			oprre = op_XGR
  2783  			oprrf = op_XGRK
  2784  		case AXORW:
  2785  			oprr = op_XR
  2786  			oprrf = op_XRK
  2787  		}
  2788  		if p.Reg == 0 {
  2789  			if oprr != 0 {
  2790  				zRR(oprr, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2791  			} else {
  2792  				zRRE(oprre, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2793  			}
  2794  		} else {
  2795  			zRRF(oprrf, uint32(p.Reg), 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2796  		}
  2797  
  2798  	case 7: // shift/rotate reg [reg] reg
  2799  		d2 := c.vregoff(&p.From)
  2800  		b2 := p.From.Reg
  2801  		r3 := p.Reg
  2802  		if r3 == 0 {
  2803  			r3 = p.To.Reg
  2804  		}
  2805  		r1 := p.To.Reg
  2806  		var opcode uint32
  2807  		switch p.As {
  2808  		default:
  2809  		case ASLD:
  2810  			opcode = op_SLLG
  2811  		case ASRD:
  2812  			opcode = op_SRLG
  2813  		case ASLW:
  2814  			opcode = op_SLLK
  2815  		case ASRW:
  2816  			opcode = op_SRLK
  2817  		case ARLL:
  2818  			opcode = op_RLL
  2819  		case ARLLG:
  2820  			opcode = op_RLLG
  2821  		case ASRAW:
  2822  			opcode = op_SRAK
  2823  		case ASRAD:
  2824  			opcode = op_SRAG
  2825  		}
  2826  		zRSY(opcode, uint32(r1), uint32(r3), uint32(b2), uint32(d2), asm)
  2827  
  2828  	case 8: // find leftmost one
  2829  		if p.To.Reg&1 != 0 {
  2830  			c.ctxt.Diag("target must be an even-numbered register")
  2831  		}
  2832  		// FLOGR also writes a mask to p.To.Reg+1.
  2833  		zRRE(op_FLOGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2834  
  2835  	case 10: // subtract reg [reg] reg
  2836  		r := int(p.Reg)
  2837  
  2838  		switch p.As {
  2839  		default:
  2840  		case ASUB:
  2841  			if r == 0 {
  2842  				zRRE(op_SGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2843  			} else {
  2844  				zRRF(op_SGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2845  			}
  2846  		case ASUBC:
  2847  			if r == 0 {
  2848  				zRRE(op_SLGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2849  			} else {
  2850  				zRRF(op_SLGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2851  			}
  2852  		case ASUBE:
  2853  			if r == 0 {
  2854  				r = int(p.To.Reg)
  2855  			}
  2856  			if r == int(p.To.Reg) {
  2857  				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2858  			} else if p.From.Reg == p.To.Reg {
  2859  				zRRE(op_LGR, REGTMP, uint32(p.From.Reg), asm)
  2860  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2861  				zRRE(op_SLBGR, uint32(p.To.Reg), REGTMP, asm)
  2862  			} else {
  2863  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2864  				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2865  			}
  2866  		case ASUBW:
  2867  			if r == 0 {
  2868  				zRR(op_SR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2869  			} else {
  2870  				zRRF(op_SRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2871  			}
  2872  		}
  2873  
  2874  	case 11: // br/bl
  2875  		v := int32(0)
  2876  
  2877  		if p.Pcond != nil {
  2878  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  2879  		}
  2880  
  2881  		if p.As == ABR && p.To.Sym == nil && int32(int16(v)) == v {
  2882  			zRI(op_BRC, 0xF, uint32(v), asm)
  2883  		} else {
  2884  			if p.As == ABL {
  2885  				zRIL(_b, op_BRASL, uint32(REG_LR), uint32(v), asm)
  2886  			} else {
  2887  				zRIL(_c, op_BRCL, 0xF, uint32(v), asm)
  2888  			}
  2889  			if p.To.Sym != nil {
  2890  				c.addcallreloc(p.To.Sym, p.To.Offset)
  2891  			}
  2892  		}
  2893  
  2894  	case 12:
  2895  		r1 := p.To.Reg
  2896  		d2 := c.vregoff(&p.From)
  2897  		b2 := p.From.Reg
  2898  		if b2 == 0 {
  2899  			b2 = o.param
  2900  		}
  2901  		x2 := p.From.Index
  2902  		if -DISP20/2 > d2 || d2 >= DISP20/2 {
  2903  			zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm)
  2904  			if x2 != 0 {
  2905  				zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm)
  2906  			}
  2907  			x2 = REGTMP
  2908  			d2 = 0
  2909  		}
  2910  		var opx, opxy uint32
  2911  		switch p.As {
  2912  		case AADD:
  2913  			opxy = op_AG
  2914  		case AADDC:
  2915  			opxy = op_ALG
  2916  		case AADDW:
  2917  			opx = op_A
  2918  			opxy = op_AY
  2919  		case AMULLW:
  2920  			opx = op_MS
  2921  			opxy = op_MSY
  2922  		case AMULLD:
  2923  			opxy = op_MSG
  2924  		case ASUB:
  2925  			opxy = op_SG
  2926  		case ASUBC:
  2927  			opxy = op_SLG
  2928  		case ASUBE:
  2929  			opxy = op_SLBG
  2930  		case ASUBW:
  2931  			opx = op_S
  2932  			opxy = op_SY
  2933  		case AAND:
  2934  			opxy = op_NG
  2935  		case AANDW:
  2936  			opx = op_N
  2937  			opxy = op_NY
  2938  		case AOR:
  2939  			opxy = op_OG
  2940  		case AORW:
  2941  			opx = op_O
  2942  			opxy = op_OY
  2943  		case AXOR:
  2944  			opxy = op_XG
  2945  		case AXORW:
  2946  			opx = op_X
  2947  			opxy = op_XY
  2948  		}
  2949  		if opx != 0 && 0 <= d2 && d2 < DISP12 {
  2950  			zRX(opx, uint32(r1), uint32(x2), uint32(b2), uint32(d2), asm)
  2951  		} else {
  2952  			zRXY(opxy, uint32(r1), uint32(x2), uint32(b2), uint32(d2), asm)
  2953  		}
  2954  
  2955  	case 15: // br/bl (reg)
  2956  		r := p.To.Reg
  2957  		if p.As == ABCL || p.As == ABL {
  2958  			zRR(op_BASR, uint32(REG_LR), uint32(r), asm)
  2959  		} else {
  2960  			zRR(op_BCR, 0xF, uint32(r), asm)
  2961  		}
  2962  
  2963  	case 16: // conditional branch
  2964  		v := int32(0)
  2965  		if p.Pcond != nil {
  2966  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  2967  		}
  2968  		mask := c.branchMask(p)
  2969  		if p.To.Sym == nil && int32(int16(v)) == v {
  2970  			zRI(op_BRC, mask, uint32(v), asm)
  2971  		} else {
  2972  			zRIL(_c, op_BRCL, mask, uint32(v), asm)
  2973  		}
  2974  		if p.To.Sym != nil {
  2975  			c.addrilreloc(p.To.Sym, p.To.Offset)
  2976  		}
  2977  
  2978  	case 17: // move on condition
  2979  		m3 := c.branchMask(p)
  2980  		zRRF(op_LOCGR, m3, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2981  
  2982  	case 18: // br/bl reg
  2983  		if p.As == ABL {
  2984  			zRR(op_BASR, uint32(REG_LR), uint32(p.To.Reg), asm)
  2985  		} else {
  2986  			zRR(op_BCR, 0xF, uint32(p.To.Reg), asm)
  2987  		}
  2988  
  2989  	case 19: // mov $sym+n(SB) reg
  2990  		d := c.vregoff(&p.From)
  2991  		zRIL(_b, op_LARL, uint32(p.To.Reg), 0, asm)
  2992  		if d&1 != 0 {
  2993  			zRX(op_LA, uint32(p.To.Reg), uint32(p.To.Reg), 0, 1, asm)
  2994  			d -= 1
  2995  		}
  2996  		c.addrilreloc(p.From.Sym, d)
  2997  
  2998  	case 21: // subtract $constant [reg] reg
  2999  		v := c.vregoff(&p.From)
  3000  		r := p.Reg
  3001  		if r == 0 {
  3002  			r = p.To.Reg
  3003  		}
  3004  		switch p.As {
  3005  		case ASUB:
  3006  			zRIL(_a, op_LGFI, uint32(REGTMP), uint32(v), asm)
  3007  			zRRF(op_SLGRK, uint32(REGTMP), 0, uint32(p.To.Reg), uint32(r), asm)
  3008  		case ASUBC:
  3009  			if r != p.To.Reg {
  3010  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  3011  			}
  3012  			zRIL(_a, op_SLGFI, uint32(p.To.Reg), uint32(v), asm)
  3013  		case ASUBW:
  3014  			if r != p.To.Reg {
  3015  				zRR(op_LR, uint32(p.To.Reg), uint32(r), asm)
  3016  			}
  3017  			zRIL(_a, op_SLFI, uint32(p.To.Reg), uint32(v), asm)
  3018  		}
  3019  
  3020  	case 22: // add/multiply $constant [reg] reg
  3021  		v := c.vregoff(&p.From)
  3022  		r := p.Reg
  3023  		if r == 0 {
  3024  			r = p.To.Reg
  3025  		}
  3026  		var opri, opril, oprie uint32
  3027  		switch p.As {
  3028  		case AADD:
  3029  			opri = op_AGHI
  3030  			opril = op_AGFI
  3031  			oprie = op_AGHIK
  3032  		case AADDC:
  3033  			opril = op_ALGFI
  3034  			oprie = op_ALGHSIK
  3035  		case AADDW:
  3036  			opri = op_AHI
  3037  			opril = op_AFI
  3038  			oprie = op_AHIK
  3039  		case AMULLW:
  3040  			opri = op_MHI
  3041  			opril = op_MSFI
  3042  		case AMULLD:
  3043  			opri = op_MGHI
  3044  			opril = op_MSGFI
  3045  		}
  3046  		if r != p.To.Reg && (oprie == 0 || int64(int16(v)) != v) {
  3047  			switch p.As {
  3048  			case AADD, AADDC, AMULLD:
  3049  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  3050  			case AADDW, AMULLW:
  3051  				zRR(op_LR, uint32(p.To.Reg), uint32(r), asm)
  3052  			}
  3053  			r = p.To.Reg
  3054  		}
  3055  		if r == p.To.Reg {
  3056  			if opri != 0 && int64(int16(v)) == v {
  3057  				zRI(opri, uint32(p.To.Reg), uint32(v), asm)
  3058  			} else {
  3059  				zRIL(_a, opril, uint32(p.To.Reg), uint32(v), asm)
  3060  			}
  3061  		} else {
  3062  			zRIE(_d, oprie, uint32(p.To.Reg), uint32(r), uint32(v), 0, 0, 0, 0, asm)
  3063  		}
  3064  
  3065  	case 23: // 64-bit logical op $constant reg
  3066  		// TODO(mundaym): merge with case 24.
  3067  		v := c.vregoff(&p.From)
  3068  		switch p.As {
  3069  		default:
  3070  			c.ctxt.Diag("%v is not supported", p)
  3071  		case AAND:
  3072  			if v >= 0 { // needs zero extend
  3073  				zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3074  				zRRE(op_NGR, uint32(p.To.Reg), REGTMP, asm)
  3075  			} else if int64(int16(v)) == v {
  3076  				zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
  3077  			} else { //  r.To.Reg & 0xffffffff00000000 & uint32(v)
  3078  				zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
  3079  			}
  3080  		case AOR:
  3081  			if int64(uint32(v)) != v { // needs sign extend
  3082  				zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3083  				zRRE(op_OGR, uint32(p.To.Reg), REGTMP, asm)
  3084  			} else if int64(uint16(v)) == v {
  3085  				zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
  3086  			} else {
  3087  				zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
  3088  			}
  3089  		case AXOR:
  3090  			if int64(uint32(v)) != v { // needs sign extend
  3091  				zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3092  				zRRE(op_XGR, uint32(p.To.Reg), REGTMP, asm)
  3093  			} else {
  3094  				zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
  3095  			}
  3096  		}
  3097  
  3098  	case 24: // 32-bit logical op $constant reg
  3099  		v := c.vregoff(&p.From)
  3100  		switch p.As {
  3101  		case AANDW:
  3102  			if uint32(v&0xffff0000) == 0xffff0000 {
  3103  				zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
  3104  			} else if uint32(v&0x0000ffff) == 0x0000ffff {
  3105  				zRI(op_NILH, uint32(p.To.Reg), uint32(v)>>16, asm)
  3106  			} else {
  3107  				zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
  3108  			}
  3109  		case AORW:
  3110  			if uint32(v&0xffff0000) == 0 {
  3111  				zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
  3112  			} else if uint32(v&0x0000ffff) == 0 {
  3113  				zRI(op_OILH, uint32(p.To.Reg), uint32(v)>>16, asm)
  3114  			} else {
  3115  				zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
  3116  			}
  3117  		case AXORW:
  3118  			zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
  3119  		}
  3120  
  3121  	case 26: // MOVD $offset(base)(index), reg
  3122  		v := c.regoff(&p.From)
  3123  		r := p.From.Reg
  3124  		if r == 0 {
  3125  			r = o.param
  3126  		}
  3127  		i := p.From.Index
  3128  		if v >= 0 && v < DISP12 {
  3129  			zRX(op_LA, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm)
  3130  		} else if v >= -DISP20/2 && v < DISP20/2 {
  3131  			zRXY(op_LAY, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm)
  3132  		} else {
  3133  			zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3134  			zRX(op_LA, uint32(p.To.Reg), uint32(r), REGTMP, uint32(i), asm)
  3135  		}
  3136  
  3137  	case 31: // dword
  3138  		wd := uint64(c.vregoff(&p.From))
  3139  		*asm = append(*asm,
  3140  			uint8(wd>>56),
  3141  			uint8(wd>>48),
  3142  			uint8(wd>>40),
  3143  			uint8(wd>>32),
  3144  			uint8(wd>>24),
  3145  			uint8(wd>>16),
  3146  			uint8(wd>>8),
  3147  			uint8(wd))
  3148  
  3149  	case 32: // float op freg freg
  3150  		var opcode uint32
  3151  		switch p.As {
  3152  		default:
  3153  			c.ctxt.Diag("invalid opcode")
  3154  		case AFADD:
  3155  			opcode = op_ADBR
  3156  		case AFADDS:
  3157  			opcode = op_AEBR
  3158  		case AFDIV:
  3159  			opcode = op_DDBR
  3160  		case AFDIVS:
  3161  			opcode = op_DEBR
  3162  		case AFMUL:
  3163  			opcode = op_MDBR
  3164  		case AFMULS:
  3165  			opcode = op_MEEBR
  3166  		case AFSUB:
  3167  			opcode = op_SDBR
  3168  		case AFSUBS:
  3169  			opcode = op_SEBR
  3170  		}
  3171  		zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3172  
  3173  	case 33: // float op [freg] freg
  3174  		r := p.From.Reg
  3175  		if oclass(&p.From) == C_NONE {
  3176  			r = p.To.Reg
  3177  		}
  3178  		var opcode uint32
  3179  		switch p.As {
  3180  		default:
  3181  		case AFABS:
  3182  			opcode = op_LPDBR
  3183  		case AFNABS:
  3184  			opcode = op_LNDBR
  3185  		case AFNEG:
  3186  			opcode = op_LCDFR
  3187  		case AFNEGS:
  3188  			opcode = op_LCEBR
  3189  		case ALEDBR:
  3190  			opcode = op_LEDBR
  3191  		case ALDEBR:
  3192  			opcode = op_LDEBR
  3193  		case AFSQRT:
  3194  			opcode = op_SQDBR
  3195  		case AFSQRTS:
  3196  			opcode = op_SQEBR
  3197  		}
  3198  		zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  3199  
  3200  	case 34: // float multiply-add freg freg freg
  3201  		var opcode uint32
  3202  		switch p.As {
  3203  		default:
  3204  			c.ctxt.Diag("invalid opcode")
  3205  		case AFMADD:
  3206  			opcode = op_MADBR
  3207  		case AFMADDS:
  3208  			opcode = op_MAEBR
  3209  		case AFMSUB:
  3210  			opcode = op_MSDBR
  3211  		case AFMSUBS:
  3212  			opcode = op_MSEBR
  3213  		}
  3214  		zRRD(opcode, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), asm)
  3215  
  3216  	case 35: // mov reg mem (no relocation)
  3217  		d2 := c.regoff(&p.To)
  3218  		b2 := p.To.Reg
  3219  		if b2 == 0 {
  3220  			b2 = o.param
  3221  		}
  3222  		x2 := p.To.Index
  3223  		if d2 < -DISP20/2 || d2 >= DISP20/2 {
  3224  			zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm)
  3225  			if x2 != 0 {
  3226  				zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm)
  3227  			}
  3228  			x2 = REGTMP
  3229  			d2 = 0
  3230  		}
  3231  		zRXY(c.zopstore(p.As), uint32(p.From.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3232  
  3233  	case 36: // mov mem reg (no relocation)
  3234  		d2 := c.regoff(&p.From)
  3235  		b2 := p.From.Reg
  3236  		if b2 == 0 {
  3237  			b2 = o.param
  3238  		}
  3239  		x2 := p.From.Index
  3240  		if d2 < -DISP20/2 || d2 >= DISP20/2 {
  3241  			zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm)
  3242  			if x2 != 0 {
  3243  				zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm)
  3244  			}
  3245  			x2 = REGTMP
  3246  			d2 = 0
  3247  		}
  3248  		zRXY(c.zopload(p.As), uint32(p.To.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3249  
  3250  	case 40: // word/byte
  3251  		wd := uint32(c.regoff(&p.From))
  3252  		if p.As == AWORD { //WORD
  3253  			*asm = append(*asm, uint8(wd>>24), uint8(wd>>16), uint8(wd>>8), uint8(wd))
  3254  		} else { //BYTE
  3255  			*asm = append(*asm, uint8(wd))
  3256  		}
  3257  
  3258  	case 47: // negate [reg] reg
  3259  		r := p.From.Reg
  3260  		if r == 0 {
  3261  			r = p.To.Reg
  3262  		}
  3263  		switch p.As {
  3264  		case ANEG:
  3265  			zRRE(op_LCGR, uint32(p.To.Reg), uint32(r), asm)
  3266  		case ANEGW:
  3267  			zRRE(op_LCGFR, uint32(p.To.Reg), uint32(r), asm)
  3268  		}
  3269  
  3270  	case 48: // floating-point round to integer
  3271  		m3 := c.vregoff(&p.From)
  3272  		if 0 > m3 || m3 > 7 {
  3273  			c.ctxt.Diag("mask (%v) must be in the range [0, 7]", m3)
  3274  		}
  3275  		var opcode uint32
  3276  		switch p.As {
  3277  		case AFIEBR:
  3278  			opcode = op_FIEBR
  3279  		case AFIDBR:
  3280  			opcode = op_FIDBR
  3281  		}
  3282  		zRRF(opcode, uint32(m3), 0, uint32(p.To.Reg), uint32(p.Reg), asm)
  3283  
  3284  	case 67: // fmov $0 freg
  3285  		var opcode uint32
  3286  		switch p.As {
  3287  		case AFMOVS:
  3288  			opcode = op_LZER
  3289  		case AFMOVD:
  3290  			opcode = op_LZDR
  3291  		}
  3292  		zRRE(opcode, uint32(p.To.Reg), 0, asm)
  3293  
  3294  	case 68: // movw areg reg
  3295  		zRRE(op_EAR, uint32(p.To.Reg), uint32(p.From.Reg-REG_AR0), asm)
  3296  
  3297  	case 69: // movw reg areg
  3298  		zRRE(op_SAR, uint32(p.To.Reg-REG_AR0), uint32(p.From.Reg), asm)
  3299  
  3300  	case 70: // cmp reg reg
  3301  		if p.As == ACMPW || p.As == ACMPWU {
  3302  			zRR(c.zoprr(p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
  3303  		} else {
  3304  			zRRE(c.zoprre(p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
  3305  		}
  3306  
  3307  	case 71: // cmp reg $constant
  3308  		v := c.vregoff(&p.To)
  3309  		switch p.As {
  3310  		case ACMP, ACMPW:
  3311  			if int64(int32(v)) != v {
  3312  				c.ctxt.Diag("%v overflows an int32", v)
  3313  			}
  3314  		case ACMPU, ACMPWU:
  3315  			if int64(uint32(v)) != v {
  3316  				c.ctxt.Diag("%v overflows a uint32", v)
  3317  			}
  3318  		}
  3319  		if p.As == ACMP && int64(int16(v)) == v {
  3320  			zRI(op_CGHI, uint32(p.From.Reg), uint32(v), asm)
  3321  		} else if p.As == ACMPW && int64(int16(v)) == v {
  3322  			zRI(op_CHI, uint32(p.From.Reg), uint32(v), asm)
  3323  		} else {
  3324  			zRIL(_a, c.zopril(p.As), uint32(p.From.Reg), uint32(v), asm)
  3325  		}
  3326  
  3327  	case 72: // mov $constant mem
  3328  		v := c.regoff(&p.From)
  3329  		d := c.regoff(&p.To)
  3330  		r := p.To.Reg
  3331  		if p.To.Index != 0 {
  3332  			c.ctxt.Diag("cannot use index register")
  3333  		}
  3334  		if r == 0 {
  3335  			r = o.param
  3336  		}
  3337  		var opcode uint32
  3338  		switch p.As {
  3339  		case AMOVD:
  3340  			opcode = op_MVGHI
  3341  		case AMOVW, AMOVWZ:
  3342  			opcode = op_MVHI
  3343  		case AMOVH, AMOVHZ:
  3344  			opcode = op_MVHHI
  3345  		case AMOVB, AMOVBZ:
  3346  			opcode = op_MVI
  3347  		}
  3348  		if d < 0 || d >= DISP12 {
  3349  			if r == REGTMP {
  3350  				c.ctxt.Diag("displacement must be in range [0, 4096) to use %v", r)
  3351  			}
  3352  			if d >= -DISP20/2 && d < DISP20/2 {
  3353  				if opcode == op_MVI {
  3354  					opcode = op_MVIY
  3355  				} else {
  3356  					zRXY(op_LAY, uint32(REGTMP), 0, uint32(r), uint32(d), asm)
  3357  					r = REGTMP
  3358  					d = 0
  3359  				}
  3360  			} else {
  3361  				zRIL(_a, op_LGFI, REGTMP, uint32(d), asm)
  3362  				zRX(op_LA, REGTMP, REGTMP, uint32(r), 0, asm)
  3363  				r = REGTMP
  3364  				d = 0
  3365  			}
  3366  		}
  3367  		switch opcode {
  3368  		case op_MVI:
  3369  			zSI(opcode, uint32(v), uint32(r), uint32(d), asm)
  3370  		case op_MVIY:
  3371  			zSIY(opcode, uint32(v), uint32(r), uint32(d), asm)
  3372  		default:
  3373  			zSIL(opcode, uint32(r), uint32(d), uint32(v), asm)
  3374  		}
  3375  
  3376  	case 74: // mov reg addr (including relocation)
  3377  		i2 := c.regoff(&p.To)
  3378  		switch p.As {
  3379  		case AMOVD:
  3380  			zRIL(_b, op_STGRL, uint32(p.From.Reg), 0, asm)
  3381  		case AMOVW, AMOVWZ: // The zero extension doesn't affect store instructions
  3382  			zRIL(_b, op_STRL, uint32(p.From.Reg), 0, asm)
  3383  		case AMOVH, AMOVHZ: // The zero extension doesn't affect store instructions
  3384  			zRIL(_b, op_STHRL, uint32(p.From.Reg), 0, asm)
  3385  		case AMOVB, AMOVBZ: // The zero extension doesn't affect store instructions
  3386  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3387  			adj := uint32(0) // adjustment needed for odd addresses
  3388  			if i2&1 != 0 {
  3389  				i2 -= 1
  3390  				adj = 1
  3391  			}
  3392  			zRX(op_STC, uint32(p.From.Reg), 0, REGTMP, adj, asm)
  3393  		case AFMOVD:
  3394  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3395  			zRX(op_STD, uint32(p.From.Reg), 0, REGTMP, 0, asm)
  3396  		case AFMOVS:
  3397  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3398  			zRX(op_STE, uint32(p.From.Reg), 0, REGTMP, 0, asm)
  3399  		}
  3400  		c.addrilreloc(p.To.Sym, int64(i2))
  3401  
  3402  	case 75: // mov addr reg (including relocation)
  3403  		i2 := c.regoff(&p.From)
  3404  		switch p.As {
  3405  		case AMOVD:
  3406  			if i2&1 != 0 {
  3407  				zRIL(_b, op_LARL, REGTMP, 0, asm)
  3408  				zRXY(op_LG, uint32(p.To.Reg), REGTMP, 0, 1, asm)
  3409  				i2 -= 1
  3410  			} else {
  3411  				zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
  3412  			}
  3413  		case AMOVW:
  3414  			zRIL(_b, op_LGFRL, uint32(p.To.Reg), 0, asm)
  3415  		case AMOVWZ:
  3416  			zRIL(_b, op_LLGFRL, uint32(p.To.Reg), 0, asm)
  3417  		case AMOVH:
  3418  			zRIL(_b, op_LGHRL, uint32(p.To.Reg), 0, asm)
  3419  		case AMOVHZ:
  3420  			zRIL(_b, op_LLGHRL, uint32(p.To.Reg), 0, asm)
  3421  		case AMOVB, AMOVBZ:
  3422  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3423  			adj := uint32(0) // adjustment needed for odd addresses
  3424  			if i2&1 != 0 {
  3425  				i2 -= 1
  3426  				adj = 1
  3427  			}
  3428  			switch p.As {
  3429  			case AMOVB:
  3430  				zRXY(op_LGB, uint32(p.To.Reg), 0, REGTMP, adj, asm)
  3431  			case AMOVBZ:
  3432  				zRXY(op_LLGC, uint32(p.To.Reg), 0, REGTMP, adj, asm)
  3433  			}
  3434  		case AFMOVD:
  3435  			zRIL(_a, op_LARL, REGTMP, 0, asm)
  3436  			zRX(op_LD, uint32(p.To.Reg), 0, REGTMP, 0, asm)
  3437  		case AFMOVS:
  3438  			zRIL(_a, op_LARL, REGTMP, 0, asm)
  3439  			zRX(op_LE, uint32(p.To.Reg), 0, REGTMP, 0, asm)
  3440  		}
  3441  		c.addrilreloc(p.From.Sym, int64(i2))
  3442  
  3443  	case 77: // syscall $constant
  3444  		if p.From.Offset > 255 || p.From.Offset < 1 {
  3445  			c.ctxt.Diag("illegal system call; system call number out of range: %v", p)
  3446  			zE(op_TRAP2, asm) // trap always
  3447  		} else {
  3448  			zI(op_SVC, uint32(p.From.Offset), asm)
  3449  		}
  3450  
  3451  	case 78: // undef
  3452  		// "An instruction consisting entirely of binary 0s is guaranteed
  3453  		// always to be an illegal instruction."
  3454  		*asm = append(*asm, 0, 0, 0, 0)
  3455  
  3456  	case 79: // compare and swap reg reg reg
  3457  		v := c.regoff(&p.To)
  3458  		if v < 0 {
  3459  			v = 0
  3460  		}
  3461  		if p.As == ACS {
  3462  			zRS(op_CS, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
  3463  		} else if p.As == ACSG {
  3464  			zRSY(op_CSG, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
  3465  		}
  3466  
  3467  	case 80: // sync
  3468  		zRR(op_BCR, 0xE, 0, asm)
  3469  
  3470  	case 81: // float to fixed and fixed to float moves (no conversion)
  3471  		switch p.As {
  3472  		case ALDGR:
  3473  			zRRE(op_LDGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3474  		case ALGDR:
  3475  			zRRE(op_LGDR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3476  		}
  3477  
  3478  	case 82: // fixed to float conversion
  3479  		var opcode uint32
  3480  		switch p.As {
  3481  		default:
  3482  			log.Fatalf("unexpected opcode %v", p.As)
  3483  		case ACEFBRA:
  3484  			opcode = op_CEFBRA
  3485  		case ACDFBRA:
  3486  			opcode = op_CDFBRA
  3487  		case ACEGBRA:
  3488  			opcode = op_CEGBRA
  3489  		case ACDGBRA:
  3490  			opcode = op_CDGBRA
  3491  		case ACELFBR:
  3492  			opcode = op_CELFBR
  3493  		case ACDLFBR:
  3494  			opcode = op_CDLFBR
  3495  		case ACELGBR:
  3496  			opcode = op_CELGBR
  3497  		case ACDLGBR:
  3498  			opcode = op_CDLGBR
  3499  		}
  3500  		// set immediate operand M3 to 0 to use the default BFP rounding mode
  3501  		// (usually round to nearest, ties to even)
  3502  		// TODO(mundaym): should this be fixed at round to nearest, ties to even?
  3503  		// M4 is reserved and must be 0
  3504  		zRRF(opcode, 0, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3505  
  3506  	case 83: // float to fixed conversion
  3507  		var opcode uint32
  3508  		switch p.As {
  3509  		default:
  3510  			log.Fatalf("unexpected opcode %v", p.As)
  3511  		case ACFEBRA:
  3512  			opcode = op_CFEBRA
  3513  		case ACFDBRA:
  3514  			opcode = op_CFDBRA
  3515  		case ACGEBRA:
  3516  			opcode = op_CGEBRA
  3517  		case ACGDBRA:
  3518  			opcode = op_CGDBRA
  3519  		case ACLFEBR:
  3520  			opcode = op_CLFEBR
  3521  		case ACLFDBR:
  3522  			opcode = op_CLFDBR
  3523  		case ACLGEBR:
  3524  			opcode = op_CLGEBR
  3525  		case ACLGDBR:
  3526  			opcode = op_CLGDBR
  3527  		}
  3528  		// set immediate operand M3 to 5 for rounding toward zero (required by Go spec)
  3529  		// M4 is reserved and must be 0
  3530  		zRRF(opcode, 5, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3531  
  3532  	case 84: // storage-and-storage operations $length mem mem
  3533  		l := c.regoff(&p.From)
  3534  		if l < 1 || l > 256 {
  3535  			c.ctxt.Diag("number of bytes (%v) not in range [1,256]", l)
  3536  		}
  3537  		if p.From3.Index != 0 || p.To.Index != 0 {
  3538  			c.ctxt.Diag("cannot use index reg")
  3539  		}
  3540  		b1 := p.To.Reg
  3541  		b2 := p.From3.Reg
  3542  		if b1 == 0 {
  3543  			b1 = o.param
  3544  		}
  3545  		if b2 == 0 {
  3546  			b2 = o.param
  3547  		}
  3548  		d1 := c.regoff(&p.To)
  3549  		d2 := c.regoff(p.From3)
  3550  		if d1 < 0 || d1 >= DISP12 {
  3551  			if b2 == REGTMP {
  3552  				c.ctxt.Diag("REGTMP conflict")
  3553  			}
  3554  			if b1 != REGTMP {
  3555  				zRRE(op_LGR, REGTMP, uint32(b1), asm)
  3556  			}
  3557  			zRIL(_a, op_AGFI, REGTMP, uint32(d1), asm)
  3558  			if d1 == d2 && b1 == b2 {
  3559  				d2 = 0
  3560  				b2 = REGTMP
  3561  			}
  3562  			d1 = 0
  3563  			b1 = REGTMP
  3564  		}
  3565  		if d2 < 0 || d2 >= DISP12 {
  3566  			if b1 == REGTMP2 {
  3567  				c.ctxt.Diag("REGTMP2 conflict")
  3568  			}
  3569  			if b2 != REGTMP2 {
  3570  				zRRE(op_LGR, REGTMP2, uint32(b2), asm)
  3571  			}
  3572  			zRIL(_a, op_AGFI, REGTMP2, uint32(d2), asm)
  3573  			d2 = 0
  3574  			b2 = REGTMP2
  3575  		}
  3576  		var opcode uint32
  3577  		switch p.As {
  3578  		default:
  3579  			c.ctxt.Diag("unexpected opcode %v", p.As)
  3580  		case AMVC:
  3581  			opcode = op_MVC
  3582  		case ACLC:
  3583  			opcode = op_CLC
  3584  			// swap operand order for CLC so that it matches CMP
  3585  			b1, b2 = b2, b1
  3586  			d1, d2 = d2, d1
  3587  		case AXC:
  3588  			opcode = op_XC
  3589  		case AOC:
  3590  			opcode = op_OC
  3591  		case ANC:
  3592  			opcode = op_NC
  3593  		}
  3594  		zSS(_a, opcode, uint32(l-1), 0, uint32(b1), uint32(d1), uint32(b2), uint32(d2), asm)
  3595  
  3596  	case 85: // load address relative long
  3597  		v := c.regoff(&p.From)
  3598  		if p.From.Sym == nil {
  3599  			if (v & 1) != 0 {
  3600  				c.ctxt.Diag("cannot use LARL with odd offset: %v", v)
  3601  			}
  3602  		} else {
  3603  			c.addrilreloc(p.From.Sym, int64(v))
  3604  			v = 0
  3605  		}
  3606  		zRIL(_b, op_LARL, uint32(p.To.Reg), uint32(v>>1), asm)
  3607  
  3608  	case 86: // load address
  3609  		d := c.vregoff(&p.From)
  3610  		x := p.From.Index
  3611  		b := p.From.Reg
  3612  		if b == 0 {
  3613  			b = o.param
  3614  		}
  3615  		switch p.As {
  3616  		case ALA:
  3617  			zRX(op_LA, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
  3618  		case ALAY:
  3619  			zRXY(op_LAY, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
  3620  		}
  3621  
  3622  	case 87: // execute relative long
  3623  		v := c.vregoff(&p.From)
  3624  		if p.From.Sym == nil {
  3625  			if v&1 != 0 {
  3626  				c.ctxt.Diag("cannot use EXRL with odd offset: %v", v)
  3627  			}
  3628  		} else {
  3629  			c.addrilreloc(p.From.Sym, v)
  3630  			v = 0
  3631  		}
  3632  		zRIL(_b, op_EXRL, uint32(p.To.Reg), uint32(v>>1), asm)
  3633  
  3634  	case 88: // store clock
  3635  		var opcode uint32
  3636  		switch p.As {
  3637  		case ASTCK:
  3638  			opcode = op_STCK
  3639  		case ASTCKC:
  3640  			opcode = op_STCKC
  3641  		case ASTCKE:
  3642  			opcode = op_STCKE
  3643  		case ASTCKF:
  3644  			opcode = op_STCKF
  3645  		}
  3646  		v := c.vregoff(&p.To)
  3647  		r := int(p.To.Reg)
  3648  		if r == 0 {
  3649  			r = int(o.param)
  3650  		}
  3651  		zS(opcode, uint32(r), uint32(v), asm)
  3652  
  3653  	case 89: // compare and branch reg reg
  3654  		var v int32
  3655  		if p.Pcond != nil {
  3656  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  3657  		}
  3658  		var opcode, opcode2 uint32
  3659  		switch p.As {
  3660  		case ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
  3661  			opcode = op_CGRJ
  3662  			opcode2 = op_CGR
  3663  		case ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
  3664  			opcode = op_CLGRJ
  3665  			opcode2 = op_CLGR
  3666  		}
  3667  		mask := c.branchMask(p)
  3668  		if int32(int16(v)) != v {
  3669  			zRRE(opcode2, uint32(p.From.Reg), uint32(p.Reg), asm)
  3670  			zRIL(_c, op_BRCL, mask, uint32(v-sizeRRE/2), asm)
  3671  		} else {
  3672  			zRIE(_b, opcode, uint32(p.From.Reg), uint32(p.Reg), uint32(v), 0, 0, mask, 0, asm)
  3673  		}
  3674  
  3675  	case 90: // compare and branch reg $constant
  3676  		var v int32
  3677  		if p.Pcond != nil {
  3678  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  3679  		}
  3680  		var opcode, opcode2 uint32
  3681  		switch p.As {
  3682  		case ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
  3683  			opcode = op_CGIJ
  3684  			opcode2 = op_CGFI
  3685  		case ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
  3686  			opcode = op_CLGIJ
  3687  			opcode2 = op_CLGFI
  3688  		}
  3689  		mask := c.branchMask(p)
  3690  		if int32(int16(v)) != v {
  3691  			zRIL(_a, opcode2, uint32(p.From.Reg), uint32(c.regoff(p.From3)), asm)
  3692  			zRIL(_c, op_BRCL, mask, uint32(v-sizeRIL/2), asm)
  3693  		} else {
  3694  			zRIE(_c, opcode, uint32(p.From.Reg), mask, uint32(v), 0, 0, 0, uint32(c.regoff(p.From3)), asm)
  3695  		}
  3696  
  3697  	case 93: // GOT lookup
  3698  		v := c.vregoff(&p.To)
  3699  		if v != 0 {
  3700  			c.ctxt.Diag("invalid offset against GOT slot %v", p)
  3701  		}
  3702  		zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
  3703  		rel := obj.Addrel(c.cursym)
  3704  		rel.Off = int32(c.pc + 2)
  3705  		rel.Siz = 4
  3706  		rel.Sym = p.From.Sym
  3707  		rel.Type = objabi.R_GOTPCREL
  3708  		rel.Add = 2 + int64(rel.Siz)
  3709  
  3710  	case 94: // TLS local exec model
  3711  		zRIL(_b, op_LARL, REGTMP, (sizeRIL+sizeRXY+sizeRI)>>1, asm)
  3712  		zRXY(op_LG, uint32(p.To.Reg), REGTMP, 0, 0, asm)
  3713  		zRI(op_BRC, 0xF, (sizeRI+8)>>1, asm)
  3714  		*asm = append(*asm, 0, 0, 0, 0, 0, 0, 0, 0)
  3715  		rel := obj.Addrel(c.cursym)
  3716  		rel.Off = int32(c.pc + sizeRIL + sizeRXY + sizeRI)
  3717  		rel.Siz = 8
  3718  		rel.Sym = p.From.Sym
  3719  		rel.Type = objabi.R_TLS_LE
  3720  		rel.Add = 0
  3721  
  3722  	case 95: // TLS initial exec model
  3723  		// Assembly                   | Relocation symbol    | Done Here?
  3724  		// --------------------------------------------------------------
  3725  		// ear  %r11, %a0             |                      |
  3726  		// sllg %r11, %r11, 32        |                      |
  3727  		// ear  %r11, %a1             |                      |
  3728  		// larl %r10, <var>@indntpoff | R_390_TLS_IEENT      | Y
  3729  		// lg   %r10, 0(%r10)         | R_390_TLS_LOAD (tag) | Y
  3730  		// la   %r10, 0(%r10, %r11)   |                      |
  3731  		// --------------------------------------------------------------
  3732  
  3733  		// R_390_TLS_IEENT
  3734  		zRIL(_b, op_LARL, REGTMP, 0, asm)
  3735  		ieent := obj.Addrel(c.cursym)
  3736  		ieent.Off = int32(c.pc + 2)
  3737  		ieent.Siz = 4
  3738  		ieent.Sym = p.From.Sym
  3739  		ieent.Type = objabi.R_TLS_IE
  3740  		ieent.Add = 2 + int64(ieent.Siz)
  3741  
  3742  		// R_390_TLS_LOAD
  3743  		zRXY(op_LGF, uint32(p.To.Reg), REGTMP, 0, 0, asm)
  3744  		// TODO(mundaym): add R_390_TLS_LOAD relocation here
  3745  		// not strictly required but might allow the linker to optimize
  3746  
  3747  	case 96: // clear macro
  3748  		length := c.vregoff(&p.From)
  3749  		offset := c.vregoff(&p.To)
  3750  		reg := p.To.Reg
  3751  		if reg == 0 {
  3752  			reg = o.param
  3753  		}
  3754  		if length <= 0 {
  3755  			c.ctxt.Diag("cannot CLEAR %d bytes, must be greater than 0", length)
  3756  		}
  3757  		for length > 0 {
  3758  			if offset < 0 || offset >= DISP12 {
  3759  				if offset >= -DISP20/2 && offset < DISP20/2 {
  3760  					zRXY(op_LAY, REGTMP, uint32(reg), 0, uint32(offset), asm)
  3761  				} else {
  3762  					if reg != REGTMP {
  3763  						zRRE(op_LGR, REGTMP, uint32(reg), asm)
  3764  					}
  3765  					zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm)
  3766  				}
  3767  				reg = REGTMP
  3768  				offset = 0
  3769  			}
  3770  			size := length
  3771  			if size > 256 {
  3772  				size = 256
  3773  			}
  3774  
  3775  			switch size {
  3776  			case 1:
  3777  				zSI(op_MVI, 0, uint32(reg), uint32(offset), asm)
  3778  			case 2:
  3779  				zSIL(op_MVHHI, uint32(reg), uint32(offset), 0, asm)
  3780  			case 4:
  3781  				zSIL(op_MVHI, uint32(reg), uint32(offset), 0, asm)
  3782  			case 8:
  3783  				zSIL(op_MVGHI, uint32(reg), uint32(offset), 0, asm)
  3784  			default:
  3785  				zSS(_a, op_XC, uint32(size-1), 0, uint32(reg), uint32(offset), uint32(reg), uint32(offset), asm)
  3786  			}
  3787  
  3788  			length -= size
  3789  			offset += size
  3790  		}
  3791  
  3792  	case 97: // store multiple
  3793  		rstart := p.From.Reg
  3794  		rend := p.Reg
  3795  		offset := c.regoff(&p.To)
  3796  		reg := p.To.Reg
  3797  		if reg == 0 {
  3798  			reg = o.param
  3799  		}
  3800  		if offset < -DISP20/2 || offset >= DISP20/2 {
  3801  			if reg != REGTMP {
  3802  				zRRE(op_LGR, REGTMP, uint32(reg), asm)
  3803  			}
  3804  			zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm)
  3805  			reg = REGTMP
  3806  			offset = 0
  3807  		}
  3808  		switch p.As {
  3809  		case ASTMY:
  3810  			if offset >= 0 && offset < DISP12 {
  3811  				zRS(op_STM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3812  			} else {
  3813  				zRSY(op_STMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3814  			}
  3815  		case ASTMG:
  3816  			zRSY(op_STMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3817  		}
  3818  
  3819  	case 98: // load multiple
  3820  		rstart := p.Reg
  3821  		rend := p.To.Reg
  3822  		offset := c.regoff(&p.From)
  3823  		reg := p.From.Reg
  3824  		if reg == 0 {
  3825  			reg = o.param
  3826  		}
  3827  		if offset < -DISP20/2 || offset >= DISP20/2 {
  3828  			if reg != REGTMP {
  3829  				zRRE(op_LGR, REGTMP, uint32(reg), asm)
  3830  			}
  3831  			zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm)
  3832  			reg = REGTMP
  3833  			offset = 0
  3834  		}
  3835  		switch p.As {
  3836  		case ALMY:
  3837  			if offset >= 0 && offset < DISP12 {
  3838  				zRS(op_LM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3839  			} else {
  3840  				zRSY(op_LMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3841  			}
  3842  		case ALMG:
  3843  			zRSY(op_LMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3844  		}
  3845  
  3846  	case 99: // interlocked load and op
  3847  		if p.To.Index != 0 {
  3848  			c.ctxt.Diag("cannot use indexed address")
  3849  		}
  3850  		offset := c.regoff(&p.To)
  3851  		if offset < -DISP20/2 || offset >= DISP20/2 {
  3852  			c.ctxt.Diag("%v does not fit into 20-bit signed integer", offset)
  3853  		}
  3854  		var opcode uint32
  3855  		switch p.As {
  3856  		case ALAA:
  3857  			opcode = op_LAA
  3858  		case ALAAG:
  3859  			opcode = op_LAAG
  3860  		case ALAAL:
  3861  			opcode = op_LAAL
  3862  		case ALAALG:
  3863  			opcode = op_LAALG
  3864  		case ALAN:
  3865  			opcode = op_LAN
  3866  		case ALANG:
  3867  			opcode = op_LANG
  3868  		case ALAX:
  3869  			opcode = op_LAX
  3870  		case ALAXG:
  3871  			opcode = op_LAXG
  3872  		case ALAO:
  3873  			opcode = op_LAO
  3874  		case ALAOG:
  3875  			opcode = op_LAOG
  3876  		}
  3877  		zRSY(opcode, uint32(p.Reg), uint32(p.From.Reg), uint32(p.To.Reg), uint32(offset), asm)
  3878  
  3879  	case 100: // VRX STORE
  3880  		op, m3, _ := vop(p.As)
  3881  		v1 := p.From.Reg
  3882  		if p.Reg != 0 {
  3883  			m3 = uint32(c.vregoff(&p.From))
  3884  			v1 = p.Reg
  3885  		}
  3886  		b2 := p.To.Reg
  3887  		if b2 == 0 {
  3888  			b2 = o.param
  3889  		}
  3890  		d2 := uint32(c.vregoff(&p.To))
  3891  		zVRX(op, uint32(v1), uint32(p.To.Index), uint32(b2), d2, m3, asm)
  3892  
  3893  	case 101: // VRX LOAD
  3894  		op, m3, _ := vop(p.As)
  3895  		src := &p.From
  3896  		if p.From3 != nil {
  3897  			m3 = uint32(c.vregoff(&p.From))
  3898  			src = p.From3
  3899  		}
  3900  		b2 := src.Reg
  3901  		if b2 == 0 {
  3902  			b2 = o.param
  3903  		}
  3904  		d2 := uint32(c.vregoff(src))
  3905  		zVRX(op, uint32(p.To.Reg), uint32(src.Index), uint32(b2), d2, m3, asm)
  3906  
  3907  	case 102: // VRV SCATTER
  3908  		op, _, _ := vop(p.As)
  3909  		m3 := uint32(c.vregoff(&p.From))
  3910  		b2 := p.To.Reg
  3911  		if b2 == 0 {
  3912  			b2 = o.param
  3913  		}
  3914  		d2 := uint32(c.vregoff(&p.To))
  3915  		zVRV(op, uint32(p.Reg), uint32(p.To.Index), uint32(b2), d2, m3, asm)
  3916  
  3917  	case 103: // VRV GATHER
  3918  		op, _, _ := vop(p.As)
  3919  		m3 := uint32(c.vregoff(&p.From))
  3920  		b2 := p.From3.Reg
  3921  		if b2 == 0 {
  3922  			b2 = o.param
  3923  		}
  3924  		d2 := uint32(c.vregoff(p.From3))
  3925  		zVRV(op, uint32(p.To.Reg), uint32(p.From3.Index), uint32(b2), d2, m3, asm)
  3926  
  3927  	case 104: // VRS SHIFT/ROTATE and LOAD GR FROM VR ELEMENT
  3928  		op, m4, _ := vop(p.As)
  3929  		fr := p.Reg
  3930  		if fr == 0 {
  3931  			fr = p.To.Reg
  3932  		}
  3933  		bits := uint32(c.vregoff(&p.From))
  3934  		zVRS(op, uint32(p.To.Reg), uint32(fr), uint32(p.From.Reg), bits, m4, asm)
  3935  
  3936  	case 105: // VRS STORE MULTIPLE
  3937  		op, _, _ := vop(p.As)
  3938  		offset := uint32(c.vregoff(&p.To))
  3939  		reg := p.To.Reg
  3940  		if reg == 0 {
  3941  			reg = o.param
  3942  		}
  3943  		zVRS(op, uint32(p.From.Reg), uint32(p.Reg), uint32(reg), offset, 0, asm)
  3944  
  3945  	case 106: // VRS LOAD MULTIPLE
  3946  		op, _, _ := vop(p.As)
  3947  		offset := uint32(c.vregoff(&p.From))
  3948  		reg := p.From.Reg
  3949  		if reg == 0 {
  3950  			reg = o.param
  3951  		}
  3952  		zVRS(op, uint32(p.Reg), uint32(p.To.Reg), uint32(reg), offset, 0, asm)
  3953  
  3954  	case 107: // VRS STORE WITH LENGTH
  3955  		op, _, _ := vop(p.As)
  3956  		offset := uint32(c.vregoff(&p.To))
  3957  		reg := p.To.Reg
  3958  		if reg == 0 {
  3959  			reg = o.param
  3960  		}
  3961  		zVRS(op, uint32(p.Reg), uint32(p.From.Reg), uint32(reg), offset, 0, asm)
  3962  
  3963  	case 108: // VRS LOAD WITH LENGTH
  3964  		op, _, _ := vop(p.As)
  3965  		offset := uint32(c.vregoff(p.From3))
  3966  		reg := p.From3.Reg
  3967  		if reg == 0 {
  3968  			reg = o.param
  3969  		}
  3970  		zVRS(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(reg), offset, 0, asm)
  3971  
  3972  	case 109: // VRI-a
  3973  		op, m3, _ := vop(p.As)
  3974  		i2 := uint32(c.vregoff(&p.From))
  3975  		if p.From3 != nil {
  3976  			m3 = uint32(c.vregoff(&p.From))
  3977  			i2 = uint32(c.vregoff(p.From3))
  3978  		}
  3979  		switch p.As {
  3980  		case AVZERO:
  3981  			i2 = 0
  3982  		case AVONE:
  3983  			i2 = 0xffff
  3984  		}
  3985  		zVRIa(op, uint32(p.To.Reg), i2, m3, asm)
  3986  
  3987  	case 110:
  3988  		op, m4, _ := vop(p.As)
  3989  		i2 := uint32(c.vregoff(&p.From))
  3990  		i3 := uint32(c.vregoff(p.From3))
  3991  		zVRIb(op, uint32(p.To.Reg), i2, i3, m4, asm)
  3992  
  3993  	case 111:
  3994  		op, m4, _ := vop(p.As)
  3995  		i2 := uint32(c.vregoff(&p.From))
  3996  		zVRIc(op, uint32(p.To.Reg), uint32(p.Reg), i2, m4, asm)
  3997  
  3998  	case 112:
  3999  		op, m5, _ := vop(p.As)
  4000  		i4 := uint32(c.vregoff(&p.From))
  4001  		zVRId(op, uint32(p.To.Reg), uint32(p.Reg), uint32(p.From3.Reg), i4, m5, asm)
  4002  
  4003  	case 113:
  4004  		op, m4, _ := vop(p.As)
  4005  		m5 := singleElementMask(p.As)
  4006  		i3 := uint32(c.vregoff(&p.From))
  4007  		zVRIe(op, uint32(p.To.Reg), uint32(p.Reg), i3, m5, m4, asm)
  4008  
  4009  	case 114: // VRR-a
  4010  		op, m3, m5 := vop(p.As)
  4011  		m4 := singleElementMask(p.As)
  4012  		zVRRa(op, uint32(p.To.Reg), uint32(p.From.Reg), m5, m4, m3, asm)
  4013  
  4014  	case 115: // VRR-a COMPARE
  4015  		op, m3, m5 := vop(p.As)
  4016  		m4 := singleElementMask(p.As)
  4017  		zVRRa(op, uint32(p.From.Reg), uint32(p.To.Reg), m5, m4, m3, asm)
  4018  
  4019  	case 117: // VRR-b
  4020  		op, m4, m5 := vop(p.As)
  4021  		zVRRb(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), m5, m4, asm)
  4022  
  4023  	case 118: // VRR-c
  4024  		op, m4, m6 := vop(p.As)
  4025  		m5 := singleElementMask(p.As)
  4026  		v3 := p.Reg
  4027  		if v3 == 0 {
  4028  			v3 = p.To.Reg
  4029  		}
  4030  		zVRRc(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(v3), m6, m5, m4, asm)
  4031  
  4032  	case 119: // VRR-c SHIFT/ROTATE/DIVIDE/SUB (rhs value on the left, like SLD, DIV etc.)
  4033  		op, m4, m6 := vop(p.As)
  4034  		m5 := singleElementMask(p.As)
  4035  		v2 := p.Reg
  4036  		if v2 == 0 {
  4037  			v2 = p.To.Reg
  4038  		}
  4039  		zVRRc(op, uint32(p.To.Reg), uint32(v2), uint32(p.From.Reg), m6, m5, m4, asm)
  4040  
  4041  	case 120: // VRR-d
  4042  		op, m6, _ := vop(p.As)
  4043  		m5 := singleElementMask(p.As)
  4044  		v1 := uint32(p.To.Reg)
  4045  		v2 := uint32(p.From.Reg)
  4046  		v3 := uint32(p.Reg)
  4047  		v4 := uint32(p.From3.Reg)
  4048  		zVRRd(op, v1, v2, v3, m6, m5, v4, asm)
  4049  
  4050  	case 121: // VRR-e
  4051  		op, m6, _ := vop(p.As)
  4052  		m5 := singleElementMask(p.As)
  4053  		v1 := uint32(p.To.Reg)
  4054  		v2 := uint32(p.From.Reg)
  4055  		v3 := uint32(p.Reg)
  4056  		v4 := uint32(p.From3.Reg)
  4057  		zVRRe(op, v1, v2, v3, m6, m5, v4, asm)
  4058  
  4059  	case 122: // VRR-f LOAD VRS FROM GRS DISJOINT
  4060  		op, _, _ := vop(p.As)
  4061  		zVRRf(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), asm)
  4062  
  4063  	case 123: // VPDI $m4, V2, V3, V1
  4064  		op, _, _ := vop(p.As)
  4065  		m4 := c.regoff(&p.From)
  4066  		zVRRc(op, uint32(p.To.Reg), uint32(p.Reg), uint32(p.From3.Reg), 0, 0, uint32(m4), asm)
  4067  	}
  4068  }
  4069  
  4070  func (c *ctxtz) vregoff(a *obj.Addr) int64 {
  4071  	c.instoffset = 0
  4072  	if a != nil {
  4073  		c.aclass(a)
  4074  	}
  4075  	return c.instoffset
  4076  }
  4077  
  4078  func (c *ctxtz) regoff(a *obj.Addr) int32 {
  4079  	return int32(c.vregoff(a))
  4080  }
  4081  
  4082  // zopload returns the RXY op for the given load
  4083  func (c *ctxtz) zopload(a obj.As) uint32 {
  4084  	switch a {
  4085  	// fixed point load
  4086  	case AMOVD:
  4087  		return op_LG
  4088  	case AMOVW:
  4089  		return op_LGF
  4090  	case AMOVWZ:
  4091  		return op_LLGF
  4092  	case AMOVH:
  4093  		return op_LGH
  4094  	case AMOVHZ:
  4095  		return op_LLGH
  4096  	case AMOVB:
  4097  		return op_LGB
  4098  	case AMOVBZ:
  4099  		return op_LLGC
  4100  
  4101  	// floating point load
  4102  	case AFMOVD:
  4103  		return op_LDY
  4104  	case AFMOVS:
  4105  		return op_LEY
  4106  
  4107  	// byte reversed load
  4108  	case AMOVDBR:
  4109  		return op_LRVG
  4110  	case AMOVWBR:
  4111  		return op_LRV
  4112  	case AMOVHBR:
  4113  		return op_LRVH
  4114  	}
  4115  
  4116  	c.ctxt.Diag("unknown store opcode %v", a)
  4117  	return 0
  4118  }
  4119  
  4120  // zopstore returns the RXY op for the given store
  4121  func (c *ctxtz) zopstore(a obj.As) uint32 {
  4122  	switch a {
  4123  	// fixed point store
  4124  	case AMOVD:
  4125  		return op_STG
  4126  	case AMOVW, AMOVWZ:
  4127  		return op_STY
  4128  	case AMOVH, AMOVHZ:
  4129  		return op_STHY
  4130  	case AMOVB, AMOVBZ:
  4131  		return op_STCY
  4132  
  4133  	// floating point store
  4134  	case AFMOVD:
  4135  		return op_STDY
  4136  	case AFMOVS:
  4137  		return op_STEY
  4138  
  4139  	// byte reversed store
  4140  	case AMOVDBR:
  4141  		return op_STRVG
  4142  	case AMOVWBR:
  4143  		return op_STRV
  4144  	case AMOVHBR:
  4145  		return op_STRVH
  4146  	}
  4147  
  4148  	c.ctxt.Diag("unknown store opcode %v", a)
  4149  	return 0
  4150  }
  4151  
  4152  // zoprre returns the RRE op for the given a
  4153  func (c *ctxtz) zoprre(a obj.As) uint32 {
  4154  	switch a {
  4155  	case ACMP:
  4156  		return op_CGR
  4157  	case ACMPU:
  4158  		return op_CLGR
  4159  	case AFCMPO: //ordered
  4160  		return op_KDBR
  4161  	case AFCMPU: //unordered
  4162  		return op_CDBR
  4163  	case ACEBR:
  4164  		return op_CEBR
  4165  	}
  4166  	c.ctxt.Diag("unknown rre opcode %v", a)
  4167  	return 0
  4168  }
  4169  
  4170  // zoprr returns the RR op for the given a
  4171  func (c *ctxtz) zoprr(a obj.As) uint32 {
  4172  	switch a {
  4173  	case ACMPW:
  4174  		return op_CR
  4175  	case ACMPWU:
  4176  		return op_CLR
  4177  	}
  4178  	c.ctxt.Diag("unknown rr opcode %v", a)
  4179  	return 0
  4180  }
  4181  
  4182  // zopril returns the RIL op for the given a
  4183  func (c *ctxtz) zopril(a obj.As) uint32 {
  4184  	switch a {
  4185  	case ACMP:
  4186  		return op_CGFI
  4187  	case ACMPU:
  4188  		return op_CLGFI
  4189  	case ACMPW:
  4190  		return op_CFI
  4191  	case ACMPWU:
  4192  		return op_CLFI
  4193  	}
  4194  	c.ctxt.Diag("unknown ril opcode %v", a)
  4195  	return 0
  4196  }
  4197  
  4198  // z instructions sizes
  4199  const (
  4200  	sizeE    = 2
  4201  	sizeI    = 2
  4202  	sizeIE   = 4
  4203  	sizeMII  = 6
  4204  	sizeRI   = 4
  4205  	sizeRI1  = 4
  4206  	sizeRI2  = 4
  4207  	sizeRI3  = 4
  4208  	sizeRIE  = 6
  4209  	sizeRIE1 = 6
  4210  	sizeRIE2 = 6
  4211  	sizeRIE3 = 6
  4212  	sizeRIE4 = 6
  4213  	sizeRIE5 = 6
  4214  	sizeRIE6 = 6
  4215  	sizeRIL  = 6
  4216  	sizeRIL1 = 6
  4217  	sizeRIL2 = 6
  4218  	sizeRIL3 = 6
  4219  	sizeRIS  = 6
  4220  	sizeRR   = 2
  4221  	sizeRRD  = 4
  4222  	sizeRRE  = 4
  4223  	sizeRRF  = 4
  4224  	sizeRRF1 = 4
  4225  	sizeRRF2 = 4
  4226  	sizeRRF3 = 4
  4227  	sizeRRF4 = 4
  4228  	sizeRRF5 = 4
  4229  	sizeRRR  = 2
  4230  	sizeRRS  = 6
  4231  	sizeRS   = 4
  4232  	sizeRS1  = 4
  4233  	sizeRS2  = 4
  4234  	sizeRSI  = 4
  4235  	sizeRSL  = 6
  4236  	sizeRSY  = 6
  4237  	sizeRSY1 = 6
  4238  	sizeRSY2 = 6
  4239  	sizeRX   = 4
  4240  	sizeRX1  = 4
  4241  	sizeRX2  = 4
  4242  	sizeRXE  = 6
  4243  	sizeRXF  = 6
  4244  	sizeRXY  = 6
  4245  	sizeRXY1 = 6
  4246  	sizeRXY2 = 6
  4247  	sizeS    = 4
  4248  	sizeSI   = 4
  4249  	sizeSIL  = 6
  4250  	sizeSIY  = 6
  4251  	sizeSMI  = 6
  4252  	sizeSS   = 6
  4253  	sizeSS1  = 6
  4254  	sizeSS2  = 6
  4255  	sizeSS3  = 6
  4256  	sizeSS4  = 6
  4257  	sizeSS5  = 6
  4258  	sizeSS6  = 6
  4259  	sizeSSE  = 6
  4260  	sizeSSF  = 6
  4261  )
  4262  
  4263  // instruction format variations
  4264  type form int
  4265  
  4266  const (
  4267  	_a form = iota
  4268  	_b
  4269  	_c
  4270  	_d
  4271  	_e
  4272  	_f
  4273  )
  4274  
  4275  func zE(op uint32, asm *[]byte) {
  4276  	*asm = append(*asm, uint8(op>>8), uint8(op))
  4277  }
  4278  
  4279  func zI(op, i1 uint32, asm *[]byte) {
  4280  	*asm = append(*asm, uint8(op>>8), uint8(i1))
  4281  }
  4282  
  4283  func zMII(op, m1, ri2, ri3 uint32, asm *[]byte) {
  4284  	*asm = append(*asm,
  4285  		uint8(op>>8),
  4286  		(uint8(m1)<<4)|uint8((ri2>>8)&0x0F),
  4287  		uint8(ri2),
  4288  		uint8(ri3>>16),
  4289  		uint8(ri3>>8),
  4290  		uint8(ri3))
  4291  }
  4292  
  4293  func zRI(op, r1_m1, i2_ri2 uint32, asm *[]byte) {
  4294  	*asm = append(*asm,
  4295  		uint8(op>>8),
  4296  		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
  4297  		uint8(i2_ri2>>8),
  4298  		uint8(i2_ri2))
  4299  }
  4300  
  4301  // Expected argument values for the instruction formats.
  4302  //
  4303  // Format    a1  a2   a3  a4  a5  a6  a7
  4304  // ------------------------------------
  4305  // a         r1,  0,  i2,  0,  0, m3,  0
  4306  // b         r1, r2, ri4,  0,  0, m3,  0
  4307  // c         r1, m3, ri4,  0,  0,  0, i2
  4308  // d         r1, r3,  i2,  0,  0,  0,  0
  4309  // e         r1, r3, ri2,  0,  0,  0,  0
  4310  // f         r1, r2,   0, i3, i4,  0, i5
  4311  // g         r1, m3,  i2,  0,  0,  0,  0
  4312  func zRIE(f form, op, r1, r2_m3_r3, i2_ri4_ri2, i3, i4, m3, i2_i5 uint32, asm *[]byte) {
  4313  	*asm = append(*asm, uint8(op>>8), uint8(r1)<<4|uint8(r2_m3_r3&0x0F))
  4314  
  4315  	switch f {
  4316  	default:
  4317  		*asm = append(*asm, uint8(i2_ri4_ri2>>8), uint8(i2_ri4_ri2))
  4318  	case _f:
  4319  		*asm = append(*asm, uint8(i3), uint8(i4))
  4320  	}
  4321  
  4322  	switch f {
  4323  	case _a, _b:
  4324  		*asm = append(*asm, uint8(m3)<<4)
  4325  	default:
  4326  		*asm = append(*asm, uint8(i2_i5))
  4327  	}
  4328  
  4329  	*asm = append(*asm, uint8(op))
  4330  }
  4331  
  4332  func zRIL(f form, op, r1_m1, i2_ri2 uint32, asm *[]byte) {
  4333  	if f == _a || f == _b {
  4334  		r1_m1 = r1_m1 - obj.RBaseS390X // this is a register base
  4335  	}
  4336  	*asm = append(*asm,
  4337  		uint8(op>>8),
  4338  		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
  4339  		uint8(i2_ri2>>24),
  4340  		uint8(i2_ri2>>16),
  4341  		uint8(i2_ri2>>8),
  4342  		uint8(i2_ri2))
  4343  }
  4344  
  4345  func zRIS(op, r1, m3, b4, d4, i2 uint32, asm *[]byte) {
  4346  	*asm = append(*asm,
  4347  		uint8(op>>8),
  4348  		(uint8(r1)<<4)|uint8(m3&0x0F),
  4349  		(uint8(b4)<<4)|(uint8(d4>>8)&0x0F),
  4350  		uint8(d4),
  4351  		uint8(i2),
  4352  		uint8(op))
  4353  }
  4354  
  4355  func zRR(op, r1, r2 uint32, asm *[]byte) {
  4356  	*asm = append(*asm, uint8(op>>8), (uint8(r1)<<4)|uint8(r2&0x0F))
  4357  }
  4358  
  4359  func zRRD(op, r1, r3, r2 uint32, asm *[]byte) {
  4360  	*asm = append(*asm,
  4361  		uint8(op>>8),
  4362  		uint8(op),
  4363  		uint8(r1)<<4,
  4364  		(uint8(r3)<<4)|uint8(r2&0x0F))
  4365  }
  4366  
  4367  func zRRE(op, r1, r2 uint32, asm *[]byte) {
  4368  	*asm = append(*asm,
  4369  		uint8(op>>8),
  4370  		uint8(op),
  4371  		0,
  4372  		(uint8(r1)<<4)|uint8(r2&0x0F))
  4373  }
  4374  
  4375  func zRRF(op, r3_m3, m4, r1, r2 uint32, asm *[]byte) {
  4376  	*asm = append(*asm,
  4377  		uint8(op>>8),
  4378  		uint8(op),
  4379  		(uint8(r3_m3)<<4)|uint8(m4&0x0F),
  4380  		(uint8(r1)<<4)|uint8(r2&0x0F))
  4381  }
  4382  
  4383  func zRRS(op, r1, r2, b4, d4, m3 uint32, asm *[]byte) {
  4384  	*asm = append(*asm,
  4385  		uint8(op>>8),
  4386  		(uint8(r1)<<4)|uint8(r2&0x0F),
  4387  		(uint8(b4)<<4)|uint8((d4>>8)&0x0F),
  4388  		uint8(d4),
  4389  		uint8(m3)<<4,
  4390  		uint8(op))
  4391  }
  4392  
  4393  func zRS(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
  4394  	*asm = append(*asm,
  4395  		uint8(op>>8),
  4396  		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
  4397  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4398  		uint8(d2))
  4399  }
  4400  
  4401  func zRSI(op, r1, r3, ri2 uint32, asm *[]byte) {
  4402  	*asm = append(*asm,
  4403  		uint8(op>>8),
  4404  		(uint8(r1)<<4)|uint8(r3&0x0F),
  4405  		uint8(ri2>>8),
  4406  		uint8(ri2))
  4407  }
  4408  
  4409  func zRSL(op, l1, b2, d2 uint32, asm *[]byte) {
  4410  	*asm = append(*asm,
  4411  		uint8(op>>8),
  4412  		uint8(l1),
  4413  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4414  		uint8(d2),
  4415  		uint8(op))
  4416  }
  4417  
  4418  func zRSY(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
  4419  	dl2 := uint16(d2) & 0x0FFF
  4420  	*asm = append(*asm,
  4421  		uint8(op>>8),
  4422  		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
  4423  		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
  4424  		uint8(dl2),
  4425  		uint8(d2>>12),
  4426  		uint8(op))
  4427  }
  4428  
  4429  func zRX(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
  4430  	*asm = append(*asm,
  4431  		uint8(op>>8),
  4432  		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
  4433  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4434  		uint8(d2))
  4435  }
  4436  
  4437  func zRXE(op, r1, x2, b2, d2, m3 uint32, asm *[]byte) {
  4438  	*asm = append(*asm,
  4439  		uint8(op>>8),
  4440  		(uint8(r1)<<4)|uint8(x2&0x0F),
  4441  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4442  		uint8(d2),
  4443  		uint8(m3)<<4,
  4444  		uint8(op))
  4445  }
  4446  
  4447  func zRXF(op, r3, x2, b2, d2, m1 uint32, asm *[]byte) {
  4448  	*asm = append(*asm,
  4449  		uint8(op>>8),
  4450  		(uint8(r3)<<4)|uint8(x2&0x0F),
  4451  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4452  		uint8(d2),
  4453  		uint8(m1)<<4,
  4454  		uint8(op))
  4455  }
  4456  
  4457  func zRXY(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
  4458  	dl2 := uint16(d2) & 0x0FFF
  4459  	*asm = append(*asm,
  4460  		uint8(op>>8),
  4461  		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
  4462  		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
  4463  		uint8(dl2),
  4464  		uint8(d2>>12),
  4465  		uint8(op))
  4466  }
  4467  
  4468  func zS(op, b2, d2 uint32, asm *[]byte) {
  4469  	*asm = append(*asm,
  4470  		uint8(op>>8),
  4471  		uint8(op),
  4472  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4473  		uint8(d2))
  4474  }
  4475  
  4476  func zSI(op, i2, b1, d1 uint32, asm *[]byte) {
  4477  	*asm = append(*asm,
  4478  		uint8(op>>8),
  4479  		uint8(i2),
  4480  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4481  		uint8(d1))
  4482  }
  4483  
  4484  func zSIL(op, b1, d1, i2 uint32, asm *[]byte) {
  4485  	*asm = append(*asm,
  4486  		uint8(op>>8),
  4487  		uint8(op),
  4488  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4489  		uint8(d1),
  4490  		uint8(i2>>8),
  4491  		uint8(i2))
  4492  }
  4493  
  4494  func zSIY(op, i2, b1, d1 uint32, asm *[]byte) {
  4495  	dl1 := uint16(d1) & 0x0FFF
  4496  	*asm = append(*asm,
  4497  		uint8(op>>8),
  4498  		uint8(i2),
  4499  		(uint8(b1)<<4)|(uint8(dl1>>8)&0x0F),
  4500  		uint8(dl1),
  4501  		uint8(d1>>12),
  4502  		uint8(op))
  4503  }
  4504  
  4505  func zSMI(op, m1, b3, d3, ri2 uint32, asm *[]byte) {
  4506  	*asm = append(*asm,
  4507  		uint8(op>>8),
  4508  		uint8(m1)<<4,
  4509  		(uint8(b3)<<4)|uint8((d3>>8)&0x0F),
  4510  		uint8(d3),
  4511  		uint8(ri2>>8),
  4512  		uint8(ri2))
  4513  }
  4514  
  4515  // Expected argument values for the instruction formats.
  4516  //
  4517  // Format    a1  a2  a3  a4  a5  a6
  4518  // -------------------------------
  4519  // a         l1,  0, b1, d1, b2, d2
  4520  // b         l1, l2, b1, d1, b2, d2
  4521  // c         l1, i3, b1, d1, b2, d2
  4522  // d         r1, r3, b1, d1, b2, d2
  4523  // e         r1, r3, b2, d2, b4, d4
  4524  // f          0, l2, b1, d1, b2, d2
  4525  func zSS(f form, op, l1_r1, l2_i3_r3, b1_b2, d1_d2, b2_b4, d2_d4 uint32, asm *[]byte) {
  4526  	*asm = append(*asm, uint8(op>>8))
  4527  
  4528  	switch f {
  4529  	case _a:
  4530  		*asm = append(*asm, uint8(l1_r1))
  4531  	case _b, _c, _d, _e:
  4532  		*asm = append(*asm, (uint8(l1_r1)<<4)|uint8(l2_i3_r3&0x0F))
  4533  	case _f:
  4534  		*asm = append(*asm, uint8(l2_i3_r3))
  4535  	}
  4536  
  4537  	*asm = append(*asm,
  4538  		(uint8(b1_b2)<<4)|uint8((d1_d2>>8)&0x0F),
  4539  		uint8(d1_d2),
  4540  		(uint8(b2_b4)<<4)|uint8((d2_d4>>8)&0x0F),
  4541  		uint8(d2_d4))
  4542  }
  4543  
  4544  func zSSE(op, b1, d1, b2, d2 uint32, asm *[]byte) {
  4545  	*asm = append(*asm,
  4546  		uint8(op>>8),
  4547  		uint8(op),
  4548  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4549  		uint8(d1),
  4550  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4551  		uint8(d2))
  4552  }
  4553  
  4554  func zSSF(op, r3, b1, d1, b2, d2 uint32, asm *[]byte) {
  4555  	*asm = append(*asm,
  4556  		uint8(op>>8),
  4557  		(uint8(r3)<<4)|(uint8(op)&0x0F),
  4558  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4559  		uint8(d1),
  4560  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4561  		uint8(d2))
  4562  }
  4563  
  4564  func rxb(va, vb, vc, vd uint32) uint8 {
  4565  	mask := uint8(0)
  4566  	if va >= REG_V16 && va <= REG_V31 {
  4567  		mask |= 0x8
  4568  	}
  4569  	if vb >= REG_V16 && vb <= REG_V31 {
  4570  		mask |= 0x4
  4571  	}
  4572  	if vc >= REG_V16 && vc <= REG_V31 {
  4573  		mask |= 0x2
  4574  	}
  4575  	if vd >= REG_V16 && vd <= REG_V31 {
  4576  		mask |= 0x1
  4577  	}
  4578  	return mask
  4579  }
  4580  
  4581  func zVRX(op, v1, x2, b2, d2, m3 uint32, asm *[]byte) {
  4582  	*asm = append(*asm,
  4583  		uint8(op>>8),
  4584  		(uint8(v1)<<4)|(uint8(x2)&0xf),
  4585  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4586  		uint8(d2),
  4587  		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
  4588  		uint8(op))
  4589  }
  4590  
  4591  func zVRV(op, v1, v2, b2, d2, m3 uint32, asm *[]byte) {
  4592  	*asm = append(*asm,
  4593  		uint8(op>>8),
  4594  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4595  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4596  		uint8(d2),
  4597  		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
  4598  		uint8(op))
  4599  }
  4600  
  4601  func zVRS(op, v1, v3_r3, b2, d2, m4 uint32, asm *[]byte) {
  4602  	*asm = append(*asm,
  4603  		uint8(op>>8),
  4604  		(uint8(v1)<<4)|(uint8(v3_r3)&0xf),
  4605  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4606  		uint8(d2),
  4607  		(uint8(m4)<<4)|rxb(v1, v3_r3, 0, 0),
  4608  		uint8(op))
  4609  }
  4610  
  4611  func zVRRa(op, v1, v2, m5, m4, m3 uint32, asm *[]byte) {
  4612  	*asm = append(*asm,
  4613  		uint8(op>>8),
  4614  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4615  		0,
  4616  		(uint8(m5)<<4)|(uint8(m4)&0xf),
  4617  		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
  4618  		uint8(op))
  4619  }
  4620  
  4621  func zVRRb(op, v1, v2, v3, m5, m4 uint32, asm *[]byte) {
  4622  	*asm = append(*asm,
  4623  		uint8(op>>8),
  4624  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4625  		uint8(v3)<<4,
  4626  		uint8(m5)<<4,
  4627  		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
  4628  		uint8(op))
  4629  }
  4630  
  4631  func zVRRc(op, v1, v2, v3, m6, m5, m4 uint32, asm *[]byte) {
  4632  	*asm = append(*asm,
  4633  		uint8(op>>8),
  4634  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4635  		uint8(v3)<<4,
  4636  		(uint8(m6)<<4)|(uint8(m5)&0xf),
  4637  		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
  4638  		uint8(op))
  4639  }
  4640  
  4641  func zVRRd(op, v1, v2, v3, m5, m6, v4 uint32, asm *[]byte) {
  4642  	*asm = append(*asm,
  4643  		uint8(op>>8),
  4644  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4645  		(uint8(v3)<<4)|(uint8(m5)&0xf),
  4646  		uint8(m6)<<4,
  4647  		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
  4648  		uint8(op))
  4649  }
  4650  
  4651  func zVRRe(op, v1, v2, v3, m6, m5, v4 uint32, asm *[]byte) {
  4652  	*asm = append(*asm,
  4653  		uint8(op>>8),
  4654  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4655  		(uint8(v3)<<4)|(uint8(m6)&0xf),
  4656  		uint8(m5),
  4657  		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
  4658  		uint8(op))
  4659  }
  4660  
  4661  func zVRRf(op, v1, r2, r3 uint32, asm *[]byte) {
  4662  	*asm = append(*asm,
  4663  		uint8(op>>8),
  4664  		(uint8(v1)<<4)|(uint8(r2)&0xf),
  4665  		uint8(r3)<<4,
  4666  		0,
  4667  		rxb(v1, 0, 0, 0),
  4668  		uint8(op))
  4669  }
  4670  
  4671  func zVRIa(op, v1, i2, m3 uint32, asm *[]byte) {
  4672  	*asm = append(*asm,
  4673  		uint8(op>>8),
  4674  		uint8(v1)<<4,
  4675  		uint8(i2>>8),
  4676  		uint8(i2),
  4677  		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
  4678  		uint8(op))
  4679  }
  4680  
  4681  func zVRIb(op, v1, i2, i3, m4 uint32, asm *[]byte) {
  4682  	*asm = append(*asm,
  4683  		uint8(op>>8),
  4684  		uint8(v1)<<4,
  4685  		uint8(i2),
  4686  		uint8(i3),
  4687  		(uint8(m4)<<4)|rxb(v1, 0, 0, 0),
  4688  		uint8(op))
  4689  }
  4690  
  4691  func zVRIc(op, v1, v3, i2, m4 uint32, asm *[]byte) {
  4692  	*asm = append(*asm,
  4693  		uint8(op>>8),
  4694  		(uint8(v1)<<4)|(uint8(v3)&0xf),
  4695  		uint8(i2>>8),
  4696  		uint8(i2),
  4697  		(uint8(m4)<<4)|rxb(v1, v3, 0, 0),
  4698  		uint8(op))
  4699  }
  4700  
  4701  func zVRId(op, v1, v2, v3, i4, m5 uint32, asm *[]byte) {
  4702  	*asm = append(*asm,
  4703  		uint8(op>>8),
  4704  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4705  		uint8(v3)<<4,
  4706  		uint8(i4),
  4707  		(uint8(m5)<<4)|rxb(v1, v2, v3, 0),
  4708  		uint8(op))
  4709  }
  4710  
  4711  func zVRIe(op, v1, v2, i3, m5, m4 uint32, asm *[]byte) {
  4712  	*asm = append(*asm,
  4713  		uint8(op>>8),
  4714  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4715  		uint8(i3>>4),
  4716  		(uint8(i3)<<4)|(uint8(m5)&0xf),
  4717  		(uint8(m4)<<4)|rxb(v1, v2, 0, 0),
  4718  		uint8(op))
  4719  }