github.com/zebozhuang/go@v0.0.0-20200207033046-f8a98f6f5c5d/src/cmd/link/internal/ld/data.go (about) 1 // Derived from Inferno utils/6l/obj.c and utils/6l/span.c 2 // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/obj.c 3 // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/span.c 4 // 5 // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. 6 // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) 7 // Portions Copyright © 1997-1999 Vita Nuova Limited 8 // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) 9 // Portions Copyright © 2004,2006 Bruce Ellis 10 // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) 11 // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others 12 // Portions Copyright © 2009 The Go Authors. All rights reserved. 13 // 14 // Permission is hereby granted, free of charge, to any person obtaining a copy 15 // of this software and associated documentation files (the "Software"), to deal 16 // in the Software without restriction, including without limitation the rights 17 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 18 // copies of the Software, and to permit persons to whom the Software is 19 // furnished to do so, subject to the following conditions: 20 // 21 // The above copyright notice and this permission notice shall be included in 22 // all copies or substantial portions of the Software. 23 // 24 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 25 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 26 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 27 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 28 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 29 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 30 // THE SOFTWARE. 31 32 package ld 33 34 import ( 35 "cmd/internal/gcprog" 36 "cmd/internal/objabi" 37 "cmd/internal/sys" 38 "fmt" 39 "log" 40 "os" 41 "sort" 42 "strconv" 43 "strings" 44 "sync" 45 ) 46 47 func Symgrow(s *Symbol, siz int64) { 48 if int64(int(siz)) != siz { 49 log.Fatalf("symgrow size %d too long", siz) 50 } 51 if int64(len(s.P)) >= siz { 52 return 53 } 54 if cap(s.P) < int(siz) { 55 p := make([]byte, 2*(siz+1)) 56 s.P = append(p[:0], s.P...) 57 } 58 s.P = s.P[:siz] 59 } 60 61 func Addrel(s *Symbol) *Reloc { 62 s.R = append(s.R, Reloc{}) 63 return &s.R[len(s.R)-1] 64 } 65 66 func setuintxx(ctxt *Link, s *Symbol, off int64, v uint64, wid int64) int64 { 67 if s.Type == 0 { 68 s.Type = SDATA 69 } 70 s.Attr |= AttrReachable 71 if s.Size < off+wid { 72 s.Size = off + wid 73 Symgrow(s, s.Size) 74 } 75 76 switch wid { 77 case 1: 78 s.P[off] = uint8(v) 79 case 2: 80 ctxt.Arch.ByteOrder.PutUint16(s.P[off:], uint16(v)) 81 case 4: 82 ctxt.Arch.ByteOrder.PutUint32(s.P[off:], uint32(v)) 83 case 8: 84 ctxt.Arch.ByteOrder.PutUint64(s.P[off:], v) 85 } 86 87 return off + wid 88 } 89 90 func Addbytes(s *Symbol, bytes []byte) int64 { 91 if s.Type == 0 { 92 s.Type = SDATA 93 } 94 s.Attr |= AttrReachable 95 s.P = append(s.P, bytes...) 96 s.Size = int64(len(s.P)) 97 98 return s.Size 99 } 100 101 func adduintxx(ctxt *Link, s *Symbol, v uint64, wid int) int64 { 102 off := s.Size 103 setuintxx(ctxt, s, off, v, int64(wid)) 104 return off 105 } 106 107 func Adduint8(ctxt *Link, s *Symbol, v uint8) int64 { 108 off := s.Size 109 if s.Type == 0 { 110 s.Type = SDATA 111 } 112 s.Attr |= AttrReachable 113 s.Size++ 114 s.P = append(s.P, v) 115 116 return off 117 } 118 119 func Adduint16(ctxt *Link, s *Symbol, v uint16) int64 { 120 return adduintxx(ctxt, s, uint64(v), 2) 121 } 122 123 func Adduint32(ctxt *Link, s *Symbol, v uint32) int64 { 124 return adduintxx(ctxt, s, uint64(v), 4) 125 } 126 127 func Adduint64(ctxt *Link, s *Symbol, v uint64) int64 { 128 return adduintxx(ctxt, s, v, 8) 129 } 130 131 func adduint(ctxt *Link, s *Symbol, v uint64) int64 { 132 return adduintxx(ctxt, s, v, SysArch.PtrSize) 133 } 134 135 func setuint8(ctxt *Link, s *Symbol, r int64, v uint8) int64 { 136 return setuintxx(ctxt, s, r, uint64(v), 1) 137 } 138 139 func setuint32(ctxt *Link, s *Symbol, r int64, v uint32) int64 { 140 return setuintxx(ctxt, s, r, uint64(v), 4) 141 } 142 143 func setuint(ctxt *Link, s *Symbol, r int64, v uint64) int64 { 144 return setuintxx(ctxt, s, r, v, int64(SysArch.PtrSize)) 145 } 146 147 func Addaddrplus(ctxt *Link, s *Symbol, t *Symbol, add int64) int64 { 148 if s.Type == 0 { 149 s.Type = SDATA 150 } 151 s.Attr |= AttrReachable 152 i := s.Size 153 s.Size += int64(ctxt.Arch.PtrSize) 154 Symgrow(s, s.Size) 155 r := Addrel(s) 156 r.Sym = t 157 r.Off = int32(i) 158 r.Siz = uint8(ctxt.Arch.PtrSize) 159 r.Type = objabi.R_ADDR 160 r.Add = add 161 return i + int64(r.Siz) 162 } 163 164 func Addpcrelplus(ctxt *Link, s *Symbol, t *Symbol, add int64) int64 { 165 if s.Type == 0 { 166 s.Type = SDATA 167 } 168 s.Attr |= AttrReachable 169 i := s.Size 170 s.Size += 4 171 Symgrow(s, s.Size) 172 r := Addrel(s) 173 r.Sym = t 174 r.Off = int32(i) 175 r.Add = add 176 r.Type = objabi.R_PCREL 177 r.Siz = 4 178 if SysArch.Family == sys.S390X { 179 r.Variant = RV_390_DBL 180 } 181 return i + int64(r.Siz) 182 } 183 184 func Addaddr(ctxt *Link, s *Symbol, t *Symbol) int64 { 185 return Addaddrplus(ctxt, s, t, 0) 186 } 187 188 func setaddrplus(ctxt *Link, s *Symbol, off int64, t *Symbol, add int64) int64 { 189 if s.Type == 0 { 190 s.Type = SDATA 191 } 192 s.Attr |= AttrReachable 193 if off+int64(ctxt.Arch.PtrSize) > s.Size { 194 s.Size = off + int64(ctxt.Arch.PtrSize) 195 Symgrow(s, s.Size) 196 } 197 198 r := Addrel(s) 199 r.Sym = t 200 r.Off = int32(off) 201 r.Siz = uint8(ctxt.Arch.PtrSize) 202 r.Type = objabi.R_ADDR 203 r.Add = add 204 return off + int64(r.Siz) 205 } 206 207 func setaddr(ctxt *Link, s *Symbol, off int64, t *Symbol) int64 { 208 return setaddrplus(ctxt, s, off, t, 0) 209 } 210 211 func addsize(ctxt *Link, s *Symbol, t *Symbol) int64 { 212 if s.Type == 0 { 213 s.Type = SDATA 214 } 215 s.Attr |= AttrReachable 216 i := s.Size 217 s.Size += int64(ctxt.Arch.PtrSize) 218 Symgrow(s, s.Size) 219 r := Addrel(s) 220 r.Sym = t 221 r.Off = int32(i) 222 r.Siz = uint8(ctxt.Arch.PtrSize) 223 r.Type = objabi.R_SIZE 224 return i + int64(r.Siz) 225 } 226 227 func addaddrplus4(ctxt *Link, s *Symbol, t *Symbol, add int64) int64 { 228 if s.Type == 0 { 229 s.Type = SDATA 230 } 231 s.Attr |= AttrReachable 232 i := s.Size 233 s.Size += 4 234 Symgrow(s, s.Size) 235 r := Addrel(s) 236 r.Sym = t 237 r.Off = int32(i) 238 r.Siz = 4 239 r.Type = objabi.R_ADDR 240 r.Add = add 241 return i + int64(r.Siz) 242 } 243 244 /* 245 * divide-and-conquer list-link (by Sub) sort of Symbol* by Value. 246 * Used for sub-symbols when loading host objects (see e.g. ldelf.go). 247 */ 248 249 func listsort(l *Symbol) *Symbol { 250 if l == nil || l.Sub == nil { 251 return l 252 } 253 254 l1 := l 255 l2 := l 256 for { 257 l2 = l2.Sub 258 if l2 == nil { 259 break 260 } 261 l2 = l2.Sub 262 if l2 == nil { 263 break 264 } 265 l1 = l1.Sub 266 } 267 268 l2 = l1.Sub 269 l1.Sub = nil 270 l1 = listsort(l) 271 l2 = listsort(l2) 272 273 /* set up lead element */ 274 if l1.Value < l2.Value { 275 l = l1 276 l1 = l1.Sub 277 } else { 278 l = l2 279 l2 = l2.Sub 280 } 281 282 le := l 283 284 for { 285 if l1 == nil { 286 for l2 != nil { 287 le.Sub = l2 288 le = l2 289 l2 = l2.Sub 290 } 291 292 le.Sub = nil 293 break 294 } 295 296 if l2 == nil { 297 for l1 != nil { 298 le.Sub = l1 299 le = l1 300 l1 = l1.Sub 301 } 302 303 break 304 } 305 306 if l1.Value < l2.Value { 307 le.Sub = l1 308 le = l1 309 l1 = l1.Sub 310 } else { 311 le.Sub = l2 312 le = l2 313 l2 = l2.Sub 314 } 315 } 316 317 le.Sub = nil 318 return l 319 } 320 321 // isRuntimeDepPkg returns whether pkg is the runtime package or its dependency 322 func isRuntimeDepPkg(pkg string) bool { 323 switch pkg { 324 case "runtime", 325 "sync/atomic": // runtime may call to sync/atomic, due to go:linkname 326 return true 327 } 328 return strings.HasPrefix(pkg, "runtime/internal/") && !strings.HasSuffix(pkg, "_test") 329 } 330 331 // Estimate the max size needed to hold any new trampolines created for this function. This 332 // is used to determine when the section can be split if it becomes too large, to ensure that 333 // the trampolines are in the same section as the function that uses them. 334 func maxSizeTrampolinesPPC64(s *Symbol, isTramp bool) uint64 { 335 // If Thearch.Trampoline is nil, then trampoline support is not available on this arch. 336 // A trampoline does not need any dependent trampolines. 337 if Thearch.Trampoline == nil || isTramp { 338 return 0 339 } 340 341 n := uint64(0) 342 for ri := range s.R { 343 r := &s.R[ri] 344 if r.Type.IsDirectJump() { 345 n++ 346 } 347 } 348 // Trampolines in ppc64 are 4 instructions. 349 return n * 16 350 } 351 352 // detect too-far jumps in function s, and add trampolines if necessary 353 // ARM, PPC64 & PPC64LE support trampoline insertion for internal and external linking 354 // On PPC64 & PPC64LE the text sections might be split but will still insert trampolines 355 // where necessary. 356 func trampoline(ctxt *Link, s *Symbol) { 357 if Thearch.Trampoline == nil { 358 return // no need or no support of trampolines on this arch 359 } 360 361 for ri := range s.R { 362 r := &s.R[ri] 363 if !r.Type.IsDirectJump() { 364 continue 365 } 366 if Symaddr(r.Sym) == 0 && r.Sym.Type != SDYNIMPORT { 367 if r.Sym.File != s.File { 368 if !isRuntimeDepPkg(s.File) || !isRuntimeDepPkg(r.Sym.File) { 369 Errorf(s, "unresolved inter-package jump to %s(%s)", r.Sym, r.Sym.File) 370 } 371 // runtime and its dependent packages may call to each other. 372 // they are fine, as they will be laid down together. 373 } 374 continue 375 } 376 377 Thearch.Trampoline(ctxt, r, s) 378 } 379 380 } 381 382 // resolve relocations in s. 383 func relocsym(ctxt *Link, s *Symbol) { 384 var r *Reloc 385 var rs *Symbol 386 var i16 int16 387 var off int32 388 var siz int32 389 var fl int32 390 var o int64 391 392 for ri := int32(0); ri < int32(len(s.R)); ri++ { 393 r = &s.R[ri] 394 395 r.Done = 1 396 off = r.Off 397 siz = int32(r.Siz) 398 if off < 0 || off+siz > int32(len(s.P)) { 399 rname := "" 400 if r.Sym != nil { 401 rname = r.Sym.Name 402 } 403 Errorf(s, "invalid relocation %s: %d+%d not in [%d,%d)", rname, off, siz, 0, len(s.P)) 404 continue 405 } 406 407 if r.Sym != nil && (r.Sym.Type&(SMASK|SHIDDEN) == 0 || r.Sym.Type&SMASK == SXREF) { 408 // When putting the runtime but not main into a shared library 409 // these symbols are undefined and that's OK. 410 if Buildmode == BuildmodeShared { 411 if r.Sym.Name == "main.main" || r.Sym.Name == "main.init" { 412 r.Sym.Type = SDYNIMPORT 413 } else if strings.HasPrefix(r.Sym.Name, "go.info.") { 414 // Skip go.info symbols. They are only needed to communicate 415 // DWARF info between the compiler and linker. 416 continue 417 } 418 } else { 419 Errorf(s, "relocation target %s not defined", r.Sym.Name) 420 continue 421 } 422 } 423 424 if r.Type >= 256 { 425 continue 426 } 427 if r.Siz == 0 { // informational relocation - no work to do 428 continue 429 } 430 431 // We need to be able to reference dynimport symbols when linking against 432 // shared libraries, and Solaris needs it always 433 if Headtype != objabi.Hsolaris && r.Sym != nil && r.Sym.Type == SDYNIMPORT && !ctxt.DynlinkingGo() { 434 if !(SysArch.Family == sys.PPC64 && Linkmode == LinkExternal && r.Sym.Name == ".TOC.") { 435 Errorf(s, "unhandled relocation for %s (type %d rtype %d)", r.Sym.Name, r.Sym.Type, r.Type) 436 } 437 } 438 if r.Sym != nil && r.Sym.Type != STLSBSS && r.Type != objabi.R_WEAKADDROFF && !r.Sym.Attr.Reachable() { 439 Errorf(s, "unreachable sym in relocation: %s", r.Sym.Name) 440 } 441 442 // TODO(mundaym): remove this special case - see issue 14218. 443 if SysArch.Family == sys.S390X { 444 switch r.Type { 445 case objabi.R_PCRELDBL: 446 r.Type = objabi.R_PCREL 447 r.Variant = RV_390_DBL 448 case objabi.R_CALL: 449 r.Variant = RV_390_DBL 450 } 451 } 452 453 switch r.Type { 454 default: 455 switch siz { 456 default: 457 Errorf(s, "bad reloc size %#x for %s", uint32(siz), r.Sym.Name) 458 case 1: 459 o = int64(s.P[off]) 460 case 2: 461 o = int64(ctxt.Arch.ByteOrder.Uint16(s.P[off:])) 462 case 4: 463 o = int64(ctxt.Arch.ByteOrder.Uint32(s.P[off:])) 464 case 8: 465 o = int64(ctxt.Arch.ByteOrder.Uint64(s.P[off:])) 466 } 467 if Thearch.Archreloc(ctxt, r, s, &o) < 0 { 468 Errorf(s, "unknown reloc to %v: %v", r.Sym.Name, r.Type) 469 } 470 471 case objabi.R_TLS_LE: 472 isAndroidX86 := objabi.GOOS == "android" && (SysArch.InFamily(sys.AMD64, sys.I386)) 473 474 if Linkmode == LinkExternal && Iself && !isAndroidX86 { 475 r.Done = 0 476 if r.Sym == nil { 477 r.Sym = ctxt.Tlsg 478 } 479 r.Xsym = r.Sym 480 r.Xadd = r.Add 481 o = 0 482 if SysArch.Family != sys.AMD64 { 483 o = r.Add 484 } 485 break 486 } 487 488 if Iself && SysArch.Family == sys.ARM { 489 // On ELF ARM, the thread pointer is 8 bytes before 490 // the start of the thread-local data block, so add 8 491 // to the actual TLS offset (r->sym->value). 492 // This 8 seems to be a fundamental constant of 493 // ELF on ARM (or maybe Glibc on ARM); it is not 494 // related to the fact that our own TLS storage happens 495 // to take up 8 bytes. 496 o = 8 + r.Sym.Value 497 } else if Iself || Headtype == objabi.Hplan9 || Headtype == objabi.Hdarwin || isAndroidX86 { 498 o = int64(ctxt.Tlsoffset) + r.Add 499 } else if Headtype == objabi.Hwindows { 500 o = r.Add 501 } else { 502 log.Fatalf("unexpected R_TLS_LE relocation for %v", Headtype) 503 } 504 505 case objabi.R_TLS_IE: 506 isAndroidX86 := objabi.GOOS == "android" && (SysArch.InFamily(sys.AMD64, sys.I386)) 507 508 if Linkmode == LinkExternal && Iself && !isAndroidX86 { 509 r.Done = 0 510 if r.Sym == nil { 511 r.Sym = ctxt.Tlsg 512 } 513 r.Xsym = r.Sym 514 r.Xadd = r.Add 515 o = 0 516 if SysArch.Family != sys.AMD64 { 517 o = r.Add 518 } 519 break 520 } 521 if Buildmode == BuildmodePIE && Iself { 522 // We are linking the final executable, so we 523 // can optimize any TLS IE relocation to LE. 524 if Thearch.TLSIEtoLE == nil { 525 log.Fatalf("internal linking of TLS IE not supported on %v", SysArch.Family) 526 } 527 Thearch.TLSIEtoLE(s, int(off), int(r.Siz)) 528 o = int64(ctxt.Tlsoffset) 529 // TODO: o += r.Add when SysArch.Family != sys.AMD64? 530 // Why do we treat r.Add differently on AMD64? 531 // Is the external linker using Xadd at all? 532 } else { 533 log.Fatalf("cannot handle R_TLS_IE (sym %s) when linking internally", s.Name) 534 } 535 536 case objabi.R_ADDR: 537 if Linkmode == LinkExternal && r.Sym.Type != SCONST { 538 r.Done = 0 539 540 // set up addend for eventual relocation via outer symbol. 541 rs = r.Sym 542 543 r.Xadd = r.Add 544 for rs.Outer != nil { 545 r.Xadd += Symaddr(rs) - Symaddr(rs.Outer) 546 rs = rs.Outer 547 } 548 549 if rs.Type != SHOSTOBJ && rs.Type != SDYNIMPORT && rs.Sect == nil { 550 Errorf(s, "missing section for relocation target %s", rs.Name) 551 } 552 r.Xsym = rs 553 554 o = r.Xadd 555 if Iself { 556 if SysArch.Family == sys.AMD64 { 557 o = 0 558 } 559 } else if Headtype == objabi.Hdarwin { 560 // ld64 for arm64 has a bug where if the address pointed to by o exists in the 561 // symbol table (dynid >= 0), or is inside a symbol that exists in the symbol 562 // table, then it will add o twice into the relocated value. 563 // The workaround is that on arm64 don't ever add symaddr to o and always use 564 // extern relocation by requiring rs->dynid >= 0. 565 if rs.Type != SHOSTOBJ { 566 if SysArch.Family == sys.ARM64 && rs.Dynid < 0 { 567 Errorf(s, "R_ADDR reloc to %s+%d is not supported on darwin/arm64", rs.Name, o) 568 } 569 if SysArch.Family != sys.ARM64 { 570 o += Symaddr(rs) 571 } 572 } 573 } else if Headtype == objabi.Hwindows { 574 // nothing to do 575 } else { 576 Errorf(s, "unhandled pcrel relocation to %s on %v", rs.Name, Headtype) 577 } 578 579 break 580 } 581 582 o = Symaddr(r.Sym) + r.Add 583 584 // On amd64, 4-byte offsets will be sign-extended, so it is impossible to 585 // access more than 2GB of static data; fail at link time is better than 586 // fail at runtime. See https://golang.org/issue/7980. 587 // Instead of special casing only amd64, we treat this as an error on all 588 // 64-bit architectures so as to be future-proof. 589 if int32(o) < 0 && SysArch.PtrSize > 4 && siz == 4 { 590 Errorf(s, "non-pc-relative relocation address for %s is too big: %#x (%#x + %#x)", r.Sym.Name, uint64(o), Symaddr(r.Sym), r.Add) 591 errorexit() 592 } 593 594 case objabi.R_DWARFREF: 595 var sectName string 596 var vaddr int64 597 switch { 598 case r.Sym.Sect != nil: 599 sectName = r.Sym.Sect.Name 600 vaddr = int64(r.Sym.Sect.Vaddr) 601 case r.Sym.Type == SDWARFRANGE: 602 sectName = ".debug_ranges" 603 default: 604 Errorf(s, "missing DWARF section for relocation target %s", r.Sym.Name) 605 } 606 607 if Linkmode == LinkExternal { 608 r.Done = 0 609 // PE code emits IMAGE_REL_I386_SECREL and IMAGE_REL_AMD64_SECREL 610 // for R_DWARFREF relocations, while R_ADDR is replaced with 611 // IMAGE_REL_I386_DIR32, IMAGE_REL_AMD64_ADDR64 and IMAGE_REL_AMD64_ADDR32. 612 // Do not replace R_DWARFREF with R_ADDR for windows - 613 // let PE code emit correct relocations. 614 if Headtype != objabi.Hwindows { 615 r.Type = objabi.R_ADDR 616 } 617 618 r.Xsym = ctxt.Syms.ROLookup(sectName, 0) 619 r.Xadd = r.Add + Symaddr(r.Sym) - vaddr 620 621 o = r.Xadd 622 rs = r.Xsym 623 if Iself && SysArch.Family == sys.AMD64 { 624 o = 0 625 } 626 break 627 } 628 o = Symaddr(r.Sym) + r.Add - vaddr 629 630 case objabi.R_WEAKADDROFF: 631 if !r.Sym.Attr.Reachable() { 632 continue 633 } 634 fallthrough 635 case objabi.R_ADDROFF: 636 // The method offset tables using this relocation expect the offset to be relative 637 // to the start of the first text section, even if there are multiple. 638 639 if r.Sym.Sect.Name == ".text" { 640 o = Symaddr(r.Sym) - int64(Segtext.Sections[0].Vaddr) + r.Add 641 } else { 642 o = Symaddr(r.Sym) - int64(r.Sym.Sect.Vaddr) + r.Add 643 } 644 645 // r->sym can be null when CALL $(constant) is transformed from absolute PC to relative PC call. 646 case objabi.R_GOTPCREL: 647 if ctxt.DynlinkingGo() && Headtype == objabi.Hdarwin && r.Sym != nil && r.Sym.Type != SCONST { 648 r.Done = 0 649 r.Xadd = r.Add 650 r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk 651 r.Xsym = r.Sym 652 653 o = r.Xadd 654 o += int64(r.Siz) 655 break 656 } 657 fallthrough 658 case objabi.R_CALL, objabi.R_PCREL: 659 if Linkmode == LinkExternal && r.Sym != nil && r.Sym.Type != SCONST && (r.Sym.Sect != s.Sect || r.Type == objabi.R_GOTPCREL) { 660 r.Done = 0 661 662 // set up addend for eventual relocation via outer symbol. 663 rs = r.Sym 664 665 r.Xadd = r.Add 666 for rs.Outer != nil { 667 r.Xadd += Symaddr(rs) - Symaddr(rs.Outer) 668 rs = rs.Outer 669 } 670 671 r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk 672 if rs.Type != SHOSTOBJ && rs.Type != SDYNIMPORT && rs.Sect == nil { 673 Errorf(s, "missing section for relocation target %s", rs.Name) 674 } 675 r.Xsym = rs 676 677 o = r.Xadd 678 if Iself { 679 if SysArch.Family == sys.AMD64 { 680 o = 0 681 } 682 } else if Headtype == objabi.Hdarwin { 683 if r.Type == objabi.R_CALL { 684 if rs.Type != SHOSTOBJ { 685 o += int64(uint64(Symaddr(rs)) - rs.Sect.Vaddr) 686 } 687 o -= int64(r.Off) // relative to section offset, not symbol 688 } else if SysArch.Family == sys.ARM { 689 // see ../arm/asm.go:/machoreloc1 690 o += Symaddr(rs) - int64(s.Value) - int64(r.Off) 691 } else { 692 o += int64(r.Siz) 693 } 694 } else if Headtype == objabi.Hwindows && SysArch.Family == sys.AMD64 { // only amd64 needs PCREL 695 // PE/COFF's PC32 relocation uses the address after the relocated 696 // bytes as the base. Compensate by skewing the addend. 697 o += int64(r.Siz) 698 } else { 699 Errorf(s, "unhandled pcrel relocation to %s on %v", rs.Name, Headtype) 700 } 701 702 break 703 } 704 705 o = 0 706 if r.Sym != nil { 707 o += Symaddr(r.Sym) 708 } 709 710 o += r.Add - (s.Value + int64(r.Off) + int64(r.Siz)) 711 712 case objabi.R_SIZE: 713 o = r.Sym.Size + r.Add 714 } 715 716 if r.Variant != RV_NONE { 717 o = Thearch.Archrelocvariant(ctxt, r, s, o) 718 } 719 720 if false { 721 nam := "<nil>" 722 if r.Sym != nil { 723 nam = r.Sym.Name 724 } 725 fmt.Printf("relocate %s %#x (%#x+%#x, size %d) => %s %#x +%#x [type %d/%d, %x]\n", s.Name, s.Value+int64(off), s.Value, r.Off, r.Siz, nam, Symaddr(r.Sym), r.Add, r.Type, r.Variant, o) 726 } 727 switch siz { 728 default: 729 Errorf(s, "bad reloc size %#x for %s", uint32(siz), r.Sym.Name) 730 fallthrough 731 732 // TODO(rsc): Remove. 733 case 1: 734 s.P[off] = byte(int8(o)) 735 736 case 2: 737 if o != int64(int16(o)) { 738 Errorf(s, "relocation address for %s is too big: %#x", r.Sym.Name, o) 739 } 740 i16 = int16(o) 741 ctxt.Arch.ByteOrder.PutUint16(s.P[off:], uint16(i16)) 742 743 case 4: 744 if r.Type == objabi.R_PCREL || r.Type == objabi.R_CALL { 745 if o != int64(int32(o)) { 746 Errorf(s, "pc-relative relocation address for %s is too big: %#x", r.Sym.Name, o) 747 } 748 } else { 749 if o != int64(int32(o)) && o != int64(uint32(o)) { 750 Errorf(s, "non-pc-relative relocation address for %s is too big: %#x", r.Sym.Name, uint64(o)) 751 } 752 } 753 754 fl = int32(o) 755 ctxt.Arch.ByteOrder.PutUint32(s.P[off:], uint32(fl)) 756 757 case 8: 758 ctxt.Arch.ByteOrder.PutUint64(s.P[off:], uint64(o)) 759 } 760 } 761 } 762 763 func (ctxt *Link) reloc() { 764 if ctxt.Debugvlog != 0 { 765 ctxt.Logf("%5.2f reloc\n", Cputime()) 766 } 767 768 for _, s := range ctxt.Textp { 769 relocsym(ctxt, s) 770 } 771 for _, sym := range datap { 772 relocsym(ctxt, sym) 773 } 774 for _, s := range dwarfp { 775 relocsym(ctxt, s) 776 } 777 } 778 779 func dynrelocsym(ctxt *Link, s *Symbol) { 780 if Headtype == objabi.Hwindows && Linkmode != LinkExternal { 781 rel := ctxt.Syms.Lookup(".rel", 0) 782 if s == rel { 783 return 784 } 785 for ri := 0; ri < len(s.R); ri++ { 786 r := &s.R[ri] 787 targ := r.Sym 788 if targ == nil { 789 continue 790 } 791 if !targ.Attr.Reachable() { 792 if r.Type == objabi.R_WEAKADDROFF { 793 continue 794 } 795 Errorf(s, "dynamic relocation to unreachable symbol %s", targ.Name) 796 } 797 if r.Sym.Plt == -2 && r.Sym.Got != -2 { // make dynimport JMP table for PE object files. 798 targ.Plt = int32(rel.Size) 799 r.Sym = rel 800 r.Add = int64(targ.Plt) 801 802 // jmp *addr 803 if SysArch.Family == sys.I386 { 804 Adduint8(ctxt, rel, 0xff) 805 Adduint8(ctxt, rel, 0x25) 806 Addaddr(ctxt, rel, targ) 807 Adduint8(ctxt, rel, 0x90) 808 Adduint8(ctxt, rel, 0x90) 809 } else { 810 Adduint8(ctxt, rel, 0xff) 811 Adduint8(ctxt, rel, 0x24) 812 Adduint8(ctxt, rel, 0x25) 813 addaddrplus4(ctxt, rel, targ, 0) 814 Adduint8(ctxt, rel, 0x90) 815 } 816 } else if r.Sym.Plt >= 0 { 817 r.Sym = rel 818 r.Add = int64(targ.Plt) 819 } 820 } 821 822 return 823 } 824 825 for ri := 0; ri < len(s.R); ri++ { 826 r := &s.R[ri] 827 if Buildmode == BuildmodePIE && Linkmode == LinkInternal { 828 // It's expected that some relocations will be done 829 // later by relocsym (R_TLS_LE, R_ADDROFF), so 830 // don't worry if Adddynrel returns false. 831 Thearch.Adddynrel(ctxt, s, r) 832 continue 833 } 834 if r.Sym != nil && r.Sym.Type == SDYNIMPORT || r.Type >= 256 { 835 if r.Sym != nil && !r.Sym.Attr.Reachable() { 836 Errorf(s, "dynamic relocation to unreachable symbol %s", r.Sym.Name) 837 } 838 if !Thearch.Adddynrel(ctxt, s, r) { 839 Errorf(s, "unsupported dynamic relocation for symbol %s (type=%d stype=%d)", r.Sym.Name, r.Type, r.Sym.Type) 840 } 841 } 842 } 843 } 844 845 func dynreloc(ctxt *Link, data *[SXREF][]*Symbol) { 846 // -d suppresses dynamic loader format, so we may as well not 847 // compute these sections or mark their symbols as reachable. 848 if *FlagD && Headtype != objabi.Hwindows { 849 return 850 } 851 if ctxt.Debugvlog != 0 { 852 ctxt.Logf("%5.2f reloc\n", Cputime()) 853 } 854 855 for _, s := range ctxt.Textp { 856 dynrelocsym(ctxt, s) 857 } 858 for _, syms := range data { 859 for _, sym := range syms { 860 dynrelocsym(ctxt, sym) 861 } 862 } 863 if Iself { 864 elfdynhash(ctxt) 865 } 866 } 867 868 func Codeblk(ctxt *Link, addr int64, size int64) { 869 CodeblkPad(ctxt, addr, size, zeros[:]) 870 } 871 func CodeblkPad(ctxt *Link, addr int64, size int64, pad []byte) { 872 if *flagA { 873 ctxt.Logf("codeblk [%#x,%#x) at offset %#x\n", addr, addr+size, coutbuf.Offset()) 874 } 875 876 blk(ctxt, ctxt.Textp, addr, size, pad) 877 878 /* again for printing */ 879 if !*flagA { 880 return 881 } 882 883 syms := ctxt.Textp 884 for i, sym := range syms { 885 if !sym.Attr.Reachable() { 886 continue 887 } 888 if sym.Value >= addr { 889 syms = syms[i:] 890 break 891 } 892 } 893 894 eaddr := addr + size 895 var q []byte 896 for _, sym := range syms { 897 if !sym.Attr.Reachable() { 898 continue 899 } 900 if sym.Value >= eaddr { 901 break 902 } 903 904 if addr < sym.Value { 905 ctxt.Logf("%-20s %.8x|", "_", uint64(addr)) 906 for ; addr < sym.Value; addr++ { 907 ctxt.Logf(" %.2x", 0) 908 } 909 ctxt.Logf("\n") 910 } 911 912 ctxt.Logf("%.6x\t%-20s\n", uint64(addr), sym.Name) 913 q = sym.P 914 915 for len(q) >= 16 { 916 ctxt.Logf("%.6x\t% x\n", uint64(addr), q[:16]) 917 addr += 16 918 q = q[16:] 919 } 920 921 if len(q) > 0 { 922 ctxt.Logf("%.6x\t% x\n", uint64(addr), q) 923 addr += int64(len(q)) 924 } 925 } 926 927 if addr < eaddr { 928 ctxt.Logf("%-20s %.8x|", "_", uint64(addr)) 929 for ; addr < eaddr; addr++ { 930 ctxt.Logf(" %.2x", 0) 931 } 932 } 933 } 934 935 func blk(ctxt *Link, syms []*Symbol, addr, size int64, pad []byte) { 936 for i, s := range syms { 937 if s.Type&SSUB == 0 && s.Value >= addr { 938 syms = syms[i:] 939 break 940 } 941 } 942 943 eaddr := addr + size 944 for _, s := range syms { 945 if s.Type&SSUB != 0 { 946 continue 947 } 948 if s.Value >= eaddr { 949 break 950 } 951 if s.Value < addr { 952 Errorf(s, "phase error: addr=%#x but sym=%#x type=%d", addr, s.Value, s.Type) 953 errorexit() 954 } 955 if addr < s.Value { 956 strnputPad("", int(s.Value-addr), pad) 957 addr = s.Value 958 } 959 Cwrite(s.P) 960 addr += int64(len(s.P)) 961 if addr < s.Value+s.Size { 962 strnputPad("", int(s.Value+s.Size-addr), pad) 963 addr = s.Value + s.Size 964 } 965 if addr != s.Value+s.Size { 966 Errorf(s, "phase error: addr=%#x value+size=%#x", addr, s.Value+s.Size) 967 errorexit() 968 } 969 if s.Value+s.Size >= eaddr { 970 break 971 } 972 } 973 974 if addr < eaddr { 975 strnputPad("", int(eaddr-addr), pad) 976 } 977 Cflush() 978 } 979 980 func Datblk(ctxt *Link, addr int64, size int64) { 981 if *flagA { 982 ctxt.Logf("datblk [%#x,%#x) at offset %#x\n", addr, addr+size, coutbuf.Offset()) 983 } 984 985 blk(ctxt, datap, addr, size, zeros[:]) 986 987 /* again for printing */ 988 if !*flagA { 989 return 990 } 991 992 syms := datap 993 for i, sym := range syms { 994 if sym.Value >= addr { 995 syms = syms[i:] 996 break 997 } 998 } 999 1000 eaddr := addr + size 1001 for _, sym := range syms { 1002 if sym.Value >= eaddr { 1003 break 1004 } 1005 if addr < sym.Value { 1006 ctxt.Logf("\t%.8x| 00 ...\n", uint64(addr)) 1007 addr = sym.Value 1008 } 1009 1010 ctxt.Logf("%s\n\t%.8x|", sym.Name, uint64(addr)) 1011 for i, b := range sym.P { 1012 if i > 0 && i%16 == 0 { 1013 ctxt.Logf("\n\t%.8x|", uint64(addr)+uint64(i)) 1014 } 1015 ctxt.Logf(" %.2x", b) 1016 } 1017 1018 addr += int64(len(sym.P)) 1019 for ; addr < sym.Value+sym.Size; addr++ { 1020 ctxt.Logf(" %.2x", 0) 1021 } 1022 ctxt.Logf("\n") 1023 1024 if Linkmode != LinkExternal { 1025 continue 1026 } 1027 for _, r := range sym.R { 1028 rsname := "" 1029 if r.Sym != nil { 1030 rsname = r.Sym.Name 1031 } 1032 typ := "?" 1033 switch r.Type { 1034 case objabi.R_ADDR: 1035 typ = "addr" 1036 case objabi.R_PCREL: 1037 typ = "pcrel" 1038 case objabi.R_CALL: 1039 typ = "call" 1040 } 1041 ctxt.Logf("\treloc %.8x/%d %s %s+%#x [%#x]\n", uint(sym.Value+int64(r.Off)), r.Siz, typ, rsname, r.Add, r.Sym.Value+r.Add) 1042 } 1043 } 1044 1045 if addr < eaddr { 1046 ctxt.Logf("\t%.8x| 00 ...\n", uint(addr)) 1047 } 1048 ctxt.Logf("\t%.8x|\n", uint(eaddr)) 1049 } 1050 1051 func Dwarfblk(ctxt *Link, addr int64, size int64) { 1052 if *flagA { 1053 ctxt.Logf("dwarfblk [%#x,%#x) at offset %#x\n", addr, addr+size, coutbuf.Offset()) 1054 } 1055 1056 blk(ctxt, dwarfp, addr, size, zeros[:]) 1057 } 1058 1059 var zeros [512]byte 1060 1061 // strnput writes the first n bytes of s. 1062 // If n is larger than len(s), 1063 // it is padded with NUL bytes. 1064 func strnput(s string, n int) { 1065 strnputPad(s, n, zeros[:]) 1066 } 1067 1068 // strnput writes the first n bytes of s. 1069 // If n is larger than len(s), 1070 // it is padded with the bytes in pad (repeated as needed). 1071 func strnputPad(s string, n int, pad []byte) { 1072 if len(s) >= n { 1073 Cwritestring(s[:n]) 1074 } else { 1075 Cwritestring(s) 1076 n -= len(s) 1077 for n > len(pad) { 1078 Cwrite(pad) 1079 n -= len(pad) 1080 1081 } 1082 Cwrite(pad[:n]) 1083 } 1084 } 1085 1086 var strdata []*Symbol 1087 1088 func addstrdata1(ctxt *Link, arg string) { 1089 eq := strings.Index(arg, "=") 1090 dot := strings.LastIndex(arg[:eq+1], ".") 1091 if eq < 0 || dot < 0 { 1092 Exitf("-X flag requires argument of the form importpath.name=value") 1093 } 1094 addstrdata(ctxt, objabi.PathToPrefix(arg[:dot])+arg[dot:eq], arg[eq+1:]) 1095 } 1096 1097 func addstrdata(ctxt *Link, name string, value string) { 1098 p := fmt.Sprintf("%s.str", name) 1099 sp := ctxt.Syms.Lookup(p, 0) 1100 1101 Addstring(sp, value) 1102 sp.Type = SRODATA 1103 1104 s := ctxt.Syms.Lookup(name, 0) 1105 s.Size = 0 1106 s.Attr |= AttrDuplicateOK 1107 reachable := s.Attr.Reachable() 1108 Addaddr(ctxt, s, sp) 1109 adduintxx(ctxt, s, uint64(len(value)), SysArch.PtrSize) 1110 1111 // addstring, addaddr, etc., mark the symbols as reachable. 1112 // In this case that is not necessarily true, so stick to what 1113 // we know before entering this function. 1114 s.Attr.Set(AttrReachable, reachable) 1115 1116 strdata = append(strdata, s) 1117 1118 sp.Attr.Set(AttrReachable, reachable) 1119 } 1120 1121 func (ctxt *Link) checkstrdata() { 1122 for _, s := range strdata { 1123 if s.Type == STEXT { 1124 Errorf(s, "cannot use -X with text symbol") 1125 } else if s.Gotype != nil && s.Gotype.Name != "type.string" { 1126 Errorf(s, "cannot use -X with non-string symbol") 1127 } 1128 } 1129 } 1130 1131 func Addstring(s *Symbol, str string) int64 { 1132 if s.Type == 0 { 1133 s.Type = SNOPTRDATA 1134 } 1135 s.Attr |= AttrReachable 1136 r := s.Size 1137 if s.Name == ".shstrtab" { 1138 elfsetstring(s, str, int(r)) 1139 } 1140 s.P = append(s.P, str...) 1141 s.P = append(s.P, 0) 1142 s.Size = int64(len(s.P)) 1143 return r 1144 } 1145 1146 // addgostring adds str, as a Go string value, to s. symname is the name of the 1147 // symbol used to define the string data and must be unique per linked object. 1148 func addgostring(ctxt *Link, s *Symbol, symname, str string) { 1149 sym := ctxt.Syms.Lookup(symname, 0) 1150 if sym.Type != Sxxx { 1151 Errorf(s, "duplicate symname in addgostring: %s", symname) 1152 } 1153 sym.Attr |= AttrReachable 1154 sym.Attr |= AttrLocal 1155 sym.Type = SRODATA 1156 sym.Size = int64(len(str)) 1157 sym.P = []byte(str) 1158 Addaddr(ctxt, s, sym) 1159 adduint(ctxt, s, uint64(len(str))) 1160 } 1161 1162 func addinitarrdata(ctxt *Link, s *Symbol) { 1163 p := s.Name + ".ptr" 1164 sp := ctxt.Syms.Lookup(p, 0) 1165 sp.Type = SINITARR 1166 sp.Size = 0 1167 sp.Attr |= AttrDuplicateOK 1168 Addaddr(ctxt, sp, s) 1169 } 1170 1171 func dosymtype(ctxt *Link) { 1172 switch Buildmode { 1173 case BuildmodeCArchive, BuildmodeCShared: 1174 for _, s := range ctxt.Syms.Allsym { 1175 // Create a new entry in the .init_array section that points to the 1176 // library initializer function. 1177 switch Buildmode { 1178 case BuildmodeCArchive, BuildmodeCShared: 1179 if s.Name == *flagEntrySymbol { 1180 addinitarrdata(ctxt, s) 1181 } 1182 } 1183 } 1184 } 1185 } 1186 1187 // symalign returns the required alignment for the given symbol s. 1188 func symalign(s *Symbol) int32 { 1189 min := int32(Thearch.Minalign) 1190 if s.Align >= min { 1191 return s.Align 1192 } else if s.Align != 0 { 1193 return min 1194 } 1195 if strings.HasPrefix(s.Name, "go.string.") || strings.HasPrefix(s.Name, "type..namedata.") { 1196 // String data is just bytes. 1197 // If we align it, we waste a lot of space to padding. 1198 return min 1199 } 1200 align := int32(Thearch.Maxalign) 1201 for int64(align) > s.Size && align > min { 1202 align >>= 1 1203 } 1204 return align 1205 } 1206 1207 func aligndatsize(datsize int64, s *Symbol) int64 { 1208 return Rnd(datsize, int64(symalign(s))) 1209 } 1210 1211 const debugGCProg = false 1212 1213 type GCProg struct { 1214 ctxt *Link 1215 sym *Symbol 1216 w gcprog.Writer 1217 } 1218 1219 func (p *GCProg) Init(ctxt *Link, name string) { 1220 p.ctxt = ctxt 1221 p.sym = ctxt.Syms.Lookup(name, 0) 1222 p.w.Init(p.writeByte(ctxt)) 1223 if debugGCProg { 1224 fmt.Fprintf(os.Stderr, "ld: start GCProg %s\n", name) 1225 p.w.Debug(os.Stderr) 1226 } 1227 } 1228 1229 func (p *GCProg) writeByte(ctxt *Link) func(x byte) { 1230 return func(x byte) { 1231 Adduint8(ctxt, p.sym, x) 1232 } 1233 } 1234 1235 func (p *GCProg) End(size int64) { 1236 p.w.ZeroUntil(size / int64(SysArch.PtrSize)) 1237 p.w.End() 1238 if debugGCProg { 1239 fmt.Fprintf(os.Stderr, "ld: end GCProg\n") 1240 } 1241 } 1242 1243 func (p *GCProg) AddSym(s *Symbol) { 1244 typ := s.Gotype 1245 // Things without pointers should be in SNOPTRDATA or SNOPTRBSS; 1246 // everything we see should have pointers and should therefore have a type. 1247 if typ == nil { 1248 switch s.Name { 1249 case "runtime.data", "runtime.edata", "runtime.bss", "runtime.ebss": 1250 // Ignore special symbols that are sometimes laid out 1251 // as real symbols. See comment about dyld on darwin in 1252 // the address function. 1253 return 1254 } 1255 Errorf(s, "missing Go type information for global symbol: size %d", s.Size) 1256 return 1257 } 1258 1259 ptrsize := int64(SysArch.PtrSize) 1260 nptr := decodetypePtrdata(p.ctxt.Arch, typ) / ptrsize 1261 1262 if debugGCProg { 1263 fmt.Fprintf(os.Stderr, "gcprog sym: %s at %d (ptr=%d+%d)\n", s.Name, s.Value, s.Value/ptrsize, nptr) 1264 } 1265 1266 if decodetypeUsegcprog(typ) == 0 { 1267 // Copy pointers from mask into program. 1268 mask := decodetypeGcmask(p.ctxt, typ) 1269 for i := int64(0); i < nptr; i++ { 1270 if (mask[i/8]>>uint(i%8))&1 != 0 { 1271 p.w.Ptr(s.Value/ptrsize + i) 1272 } 1273 } 1274 return 1275 } 1276 1277 // Copy program. 1278 prog := decodetypeGcprog(p.ctxt, typ) 1279 p.w.ZeroUntil(s.Value / ptrsize) 1280 p.w.Append(prog[4:], nptr) 1281 } 1282 1283 // dataSortKey is used to sort a slice of data symbol *Symbol pointers. 1284 // The sort keys are kept inline to improve cache behavior while sorting. 1285 type dataSortKey struct { 1286 size int64 1287 name string 1288 sym *Symbol 1289 } 1290 1291 type bySizeAndName []dataSortKey 1292 1293 func (d bySizeAndName) Len() int { return len(d) } 1294 func (d bySizeAndName) Swap(i, j int) { d[i], d[j] = d[j], d[i] } 1295 func (d bySizeAndName) Less(i, j int) bool { 1296 s1, s2 := d[i], d[j] 1297 if s1.size != s2.size { 1298 return s1.size < s2.size 1299 } 1300 return s1.name < s2.name 1301 } 1302 1303 const cutoff int64 = 2e9 // 2 GB (or so; looks better in errors than 2^31) 1304 1305 func checkdatsize(ctxt *Link, datsize int64, symn SymKind) { 1306 if datsize > cutoff { 1307 Errorf(nil, "too much data in section %v (over %d bytes)", symn, cutoff) 1308 } 1309 } 1310 1311 // datap is a collection of reachable data symbols in address order. 1312 // Generated by dodata. 1313 var datap []*Symbol 1314 1315 func (ctxt *Link) dodata() { 1316 if ctxt.Debugvlog != 0 { 1317 ctxt.Logf("%5.2f dodata\n", Cputime()) 1318 } 1319 1320 if ctxt.DynlinkingGo() && Headtype == objabi.Hdarwin { 1321 // The values in moduledata are filled out by relocations 1322 // pointing to the addresses of these special symbols. 1323 // Typically these symbols have no size and are not laid 1324 // out with their matching section. 1325 // 1326 // However on darwin, dyld will find the special symbol 1327 // in the first loaded module, even though it is local. 1328 // 1329 // (An hypothesis, formed without looking in the dyld sources: 1330 // these special symbols have no size, so their address 1331 // matches a real symbol. The dynamic linker assumes we 1332 // want the normal symbol with the same address and finds 1333 // it in the other module.) 1334 // 1335 // To work around this we lay out the symbls whose 1336 // addresses are vital for multi-module programs to work 1337 // as normal symbols, and give them a little size. 1338 bss := ctxt.Syms.Lookup("runtime.bss", 0) 1339 bss.Size = 8 1340 bss.Attr.Set(AttrSpecial, false) 1341 1342 ctxt.Syms.Lookup("runtime.ebss", 0).Attr.Set(AttrSpecial, false) 1343 1344 data := ctxt.Syms.Lookup("runtime.data", 0) 1345 data.Size = 8 1346 data.Attr.Set(AttrSpecial, false) 1347 1348 ctxt.Syms.Lookup("runtime.edata", 0).Attr.Set(AttrSpecial, false) 1349 1350 types := ctxt.Syms.Lookup("runtime.types", 0) 1351 types.Type = STYPE 1352 types.Size = 8 1353 types.Attr.Set(AttrSpecial, false) 1354 1355 etypes := ctxt.Syms.Lookup("runtime.etypes", 0) 1356 etypes.Type = SFUNCTAB 1357 etypes.Attr.Set(AttrSpecial, false) 1358 } 1359 1360 // Collect data symbols by type into data. 1361 var data [SXREF][]*Symbol 1362 for _, s := range ctxt.Syms.Allsym { 1363 if !s.Attr.Reachable() || s.Attr.Special() { 1364 continue 1365 } 1366 if s.Type <= STEXT || s.Type >= SXREF { 1367 continue 1368 } 1369 data[s.Type] = append(data[s.Type], s) 1370 } 1371 1372 // Now that we have the data symbols, but before we start 1373 // to assign addresses, record all the necessary 1374 // dynamic relocations. These will grow the relocation 1375 // symbol, which is itself data. 1376 // 1377 // On darwin, we need the symbol table numbers for dynreloc. 1378 if Headtype == objabi.Hdarwin { 1379 machosymorder(ctxt) 1380 } 1381 dynreloc(ctxt, &data) 1382 1383 if UseRelro() { 1384 // "read only" data with relocations needs to go in its own section 1385 // when building a shared library. We do this by boosting objects of 1386 // type SXXX with relocations to type SXXXRELRO. 1387 for _, symnro := range readOnly { 1388 symnrelro := relROMap[symnro] 1389 1390 ro := []*Symbol{} 1391 relro := data[symnrelro] 1392 1393 for _, s := range data[symnro] { 1394 isRelro := len(s.R) > 0 1395 switch s.Type { 1396 case STYPE, STYPERELRO, SGOFUNCRELRO: 1397 // Symbols are not sorted yet, so it is possible 1398 // that an Outer symbol has been changed to a 1399 // relro Type before it reaches here. 1400 isRelro = true 1401 } 1402 if isRelro { 1403 s.Type = symnrelro 1404 if s.Outer != nil { 1405 s.Outer.Type = s.Type 1406 } 1407 relro = append(relro, s) 1408 } else { 1409 ro = append(ro, s) 1410 } 1411 } 1412 1413 // Check that we haven't made two symbols with the same .Outer into 1414 // different types (because references two symbols with non-nil Outer 1415 // become references to the outer symbol + offset it's vital that the 1416 // symbol and the outer end up in the same section). 1417 for _, s := range relro { 1418 if s.Outer != nil && s.Outer.Type != s.Type { 1419 Errorf(s, "inconsistent types for symbol and its Outer %s (%v != %v)", 1420 s.Outer.Name, s.Type, s.Outer.Type) 1421 } 1422 } 1423 1424 data[symnro] = ro 1425 data[symnrelro] = relro 1426 } 1427 } 1428 1429 // Sort symbols. 1430 var dataMaxAlign [SXREF]int32 1431 var wg sync.WaitGroup 1432 for symn := range data { 1433 symn := SymKind(symn) 1434 wg.Add(1) 1435 go func() { 1436 data[symn], dataMaxAlign[symn] = dodataSect(ctxt, symn, data[symn]) 1437 wg.Done() 1438 }() 1439 } 1440 wg.Wait() 1441 1442 // Allocate sections. 1443 // Data is processed before segtext, because we need 1444 // to see all symbols in the .data and .bss sections in order 1445 // to generate garbage collection information. 1446 datsize := int64(0) 1447 1448 // Writable data sections that do not need any specialized handling. 1449 writable := []SymKind{ 1450 SELFSECT, 1451 SMACHO, 1452 SMACHOGOT, 1453 SWINDOWS, 1454 } 1455 for _, symn := range writable { 1456 for _, s := range data[symn] { 1457 sect := addsection(&Segdata, s.Name, 06) 1458 sect.Align = symalign(s) 1459 datsize = Rnd(datsize, int64(sect.Align)) 1460 sect.Vaddr = uint64(datsize) 1461 s.Sect = sect 1462 s.Type = SDATA 1463 s.Value = int64(uint64(datsize) - sect.Vaddr) 1464 datsize += s.Size 1465 sect.Length = uint64(datsize) - sect.Vaddr 1466 } 1467 checkdatsize(ctxt, datsize, symn) 1468 } 1469 1470 // .got (and .toc on ppc64) 1471 if len(data[SELFGOT]) > 0 { 1472 sect := addsection(&Segdata, ".got", 06) 1473 sect.Align = dataMaxAlign[SELFGOT] 1474 datsize = Rnd(datsize, int64(sect.Align)) 1475 sect.Vaddr = uint64(datsize) 1476 var toc *Symbol 1477 for _, s := range data[SELFGOT] { 1478 datsize = aligndatsize(datsize, s) 1479 s.Sect = sect 1480 s.Type = SDATA 1481 s.Value = int64(uint64(datsize) - sect.Vaddr) 1482 1483 // Resolve .TOC. symbol for this object file (ppc64) 1484 toc = ctxt.Syms.ROLookup(".TOC.", int(s.Version)) 1485 if toc != nil { 1486 toc.Sect = sect 1487 toc.Outer = s 1488 toc.Sub = s.Sub 1489 s.Sub = toc 1490 1491 toc.Value = 0x8000 1492 } 1493 1494 datsize += s.Size 1495 } 1496 checkdatsize(ctxt, datsize, SELFGOT) 1497 sect.Length = uint64(datsize) - sect.Vaddr 1498 } 1499 1500 /* pointer-free data */ 1501 sect := addsection(&Segdata, ".noptrdata", 06) 1502 sect.Align = dataMaxAlign[SNOPTRDATA] 1503 datsize = Rnd(datsize, int64(sect.Align)) 1504 sect.Vaddr = uint64(datsize) 1505 ctxt.Syms.Lookup("runtime.noptrdata", 0).Sect = sect 1506 ctxt.Syms.Lookup("runtime.enoptrdata", 0).Sect = sect 1507 for _, s := range data[SNOPTRDATA] { 1508 datsize = aligndatsize(datsize, s) 1509 s.Sect = sect 1510 s.Type = SDATA 1511 s.Value = int64(uint64(datsize) - sect.Vaddr) 1512 datsize += s.Size 1513 } 1514 checkdatsize(ctxt, datsize, SNOPTRDATA) 1515 sect.Length = uint64(datsize) - sect.Vaddr 1516 1517 hasinitarr := *FlagLinkshared 1518 1519 /* shared library initializer */ 1520 switch Buildmode { 1521 case BuildmodeCArchive, BuildmodeCShared, BuildmodeShared, BuildmodePlugin: 1522 hasinitarr = true 1523 } 1524 if hasinitarr { 1525 sect := addsection(&Segdata, ".init_array", 06) 1526 sect.Align = dataMaxAlign[SINITARR] 1527 datsize = Rnd(datsize, int64(sect.Align)) 1528 sect.Vaddr = uint64(datsize) 1529 for _, s := range data[SINITARR] { 1530 datsize = aligndatsize(datsize, s) 1531 s.Sect = sect 1532 s.Value = int64(uint64(datsize) - sect.Vaddr) 1533 datsize += s.Size 1534 } 1535 sect.Length = uint64(datsize) - sect.Vaddr 1536 checkdatsize(ctxt, datsize, SINITARR) 1537 } 1538 1539 /* data */ 1540 sect = addsection(&Segdata, ".data", 06) 1541 sect.Align = dataMaxAlign[SDATA] 1542 datsize = Rnd(datsize, int64(sect.Align)) 1543 sect.Vaddr = uint64(datsize) 1544 ctxt.Syms.Lookup("runtime.data", 0).Sect = sect 1545 ctxt.Syms.Lookup("runtime.edata", 0).Sect = sect 1546 var gc GCProg 1547 gc.Init(ctxt, "runtime.gcdata") 1548 for _, s := range data[SDATA] { 1549 s.Sect = sect 1550 s.Type = SDATA 1551 datsize = aligndatsize(datsize, s) 1552 s.Value = int64(uint64(datsize) - sect.Vaddr) 1553 gc.AddSym(s) 1554 datsize += s.Size 1555 } 1556 checkdatsize(ctxt, datsize, SDATA) 1557 sect.Length = uint64(datsize) - sect.Vaddr 1558 gc.End(int64(sect.Length)) 1559 1560 /* bss */ 1561 sect = addsection(&Segdata, ".bss", 06) 1562 sect.Align = dataMaxAlign[SBSS] 1563 datsize = Rnd(datsize, int64(sect.Align)) 1564 sect.Vaddr = uint64(datsize) 1565 ctxt.Syms.Lookup("runtime.bss", 0).Sect = sect 1566 ctxt.Syms.Lookup("runtime.ebss", 0).Sect = sect 1567 gc = GCProg{} 1568 gc.Init(ctxt, "runtime.gcbss") 1569 for _, s := range data[SBSS] { 1570 s.Sect = sect 1571 datsize = aligndatsize(datsize, s) 1572 s.Value = int64(uint64(datsize) - sect.Vaddr) 1573 gc.AddSym(s) 1574 datsize += s.Size 1575 } 1576 checkdatsize(ctxt, datsize, SBSS) 1577 sect.Length = uint64(datsize) - sect.Vaddr 1578 gc.End(int64(sect.Length)) 1579 1580 /* pointer-free bss */ 1581 sect = addsection(&Segdata, ".noptrbss", 06) 1582 sect.Align = dataMaxAlign[SNOPTRBSS] 1583 datsize = Rnd(datsize, int64(sect.Align)) 1584 sect.Vaddr = uint64(datsize) 1585 ctxt.Syms.Lookup("runtime.noptrbss", 0).Sect = sect 1586 ctxt.Syms.Lookup("runtime.enoptrbss", 0).Sect = sect 1587 for _, s := range data[SNOPTRBSS] { 1588 datsize = aligndatsize(datsize, s) 1589 s.Sect = sect 1590 s.Value = int64(uint64(datsize) - sect.Vaddr) 1591 datsize += s.Size 1592 } 1593 1594 sect.Length = uint64(datsize) - sect.Vaddr 1595 ctxt.Syms.Lookup("runtime.end", 0).Sect = sect 1596 checkdatsize(ctxt, datsize, SNOPTRBSS) 1597 1598 if len(data[STLSBSS]) > 0 { 1599 var sect *Section 1600 if Iself && (Linkmode == LinkExternal || !*FlagD) { 1601 sect = addsection(&Segdata, ".tbss", 06) 1602 sect.Align = int32(SysArch.PtrSize) 1603 sect.Vaddr = 0 1604 } 1605 datsize = 0 1606 1607 for _, s := range data[STLSBSS] { 1608 datsize = aligndatsize(datsize, s) 1609 s.Sect = sect 1610 s.Value = datsize 1611 datsize += s.Size 1612 } 1613 checkdatsize(ctxt, datsize, STLSBSS) 1614 1615 if sect != nil { 1616 sect.Length = uint64(datsize) 1617 } 1618 } 1619 1620 /* 1621 * We finished data, begin read-only data. 1622 * Not all systems support a separate read-only non-executable data section. 1623 * ELF systems do. 1624 * OS X and Plan 9 do not. 1625 * Windows PE may, but if so we have not implemented it. 1626 * And if we're using external linking mode, the point is moot, 1627 * since it's not our decision; that code expects the sections in 1628 * segtext. 1629 */ 1630 var segro *Segment 1631 if Iself && Linkmode == LinkInternal { 1632 segro = &Segrodata 1633 } else { 1634 segro = &Segtext 1635 } 1636 1637 datsize = 0 1638 1639 /* read-only executable ELF, Mach-O sections */ 1640 if len(data[STEXT]) != 0 { 1641 Errorf(nil, "dodata found an STEXT symbol: %s", data[STEXT][0].Name) 1642 } 1643 for _, s := range data[SELFRXSECT] { 1644 sect := addsection(&Segtext, s.Name, 04) 1645 sect.Align = symalign(s) 1646 datsize = Rnd(datsize, int64(sect.Align)) 1647 sect.Vaddr = uint64(datsize) 1648 s.Sect = sect 1649 s.Type = SRODATA 1650 s.Value = int64(uint64(datsize) - sect.Vaddr) 1651 datsize += s.Size 1652 sect.Length = uint64(datsize) - sect.Vaddr 1653 checkdatsize(ctxt, datsize, SELFRXSECT) 1654 } 1655 1656 /* read-only data */ 1657 sect = addsection(segro, ".rodata", 04) 1658 1659 sect.Vaddr = 0 1660 ctxt.Syms.Lookup("runtime.rodata", 0).Sect = sect 1661 ctxt.Syms.Lookup("runtime.erodata", 0).Sect = sect 1662 if !UseRelro() { 1663 ctxt.Syms.Lookup("runtime.types", 0).Sect = sect 1664 ctxt.Syms.Lookup("runtime.etypes", 0).Sect = sect 1665 } 1666 for _, symn := range readOnly { 1667 align := dataMaxAlign[symn] 1668 if sect.Align < align { 1669 sect.Align = align 1670 } 1671 } 1672 datsize = Rnd(datsize, int64(sect.Align)) 1673 for _, symn := range readOnly { 1674 for _, s := range data[symn] { 1675 datsize = aligndatsize(datsize, s) 1676 s.Sect = sect 1677 s.Type = SRODATA 1678 s.Value = int64(uint64(datsize) - sect.Vaddr) 1679 datsize += s.Size 1680 } 1681 checkdatsize(ctxt, datsize, symn) 1682 } 1683 sect.Length = uint64(datsize) - sect.Vaddr 1684 1685 /* read-only ELF, Mach-O sections */ 1686 for _, s := range data[SELFROSECT] { 1687 sect = addsection(segro, s.Name, 04) 1688 sect.Align = symalign(s) 1689 datsize = Rnd(datsize, int64(sect.Align)) 1690 sect.Vaddr = uint64(datsize) 1691 s.Sect = sect 1692 s.Type = SRODATA 1693 s.Value = int64(uint64(datsize) - sect.Vaddr) 1694 datsize += s.Size 1695 sect.Length = uint64(datsize) - sect.Vaddr 1696 } 1697 checkdatsize(ctxt, datsize, SELFROSECT) 1698 1699 for _, s := range data[SMACHOPLT] { 1700 sect = addsection(segro, s.Name, 04) 1701 sect.Align = symalign(s) 1702 datsize = Rnd(datsize, int64(sect.Align)) 1703 sect.Vaddr = uint64(datsize) 1704 s.Sect = sect 1705 s.Type = SRODATA 1706 s.Value = int64(uint64(datsize) - sect.Vaddr) 1707 datsize += s.Size 1708 sect.Length = uint64(datsize) - sect.Vaddr 1709 } 1710 checkdatsize(ctxt, datsize, SMACHOPLT) 1711 1712 // There is some data that are conceptually read-only but are written to by 1713 // relocations. On GNU systems, we can arrange for the dynamic linker to 1714 // mprotect sections after relocations are applied by giving them write 1715 // permissions in the object file and calling them ".data.rel.ro.FOO". We 1716 // divide the .rodata section between actual .rodata and .data.rel.ro.rodata, 1717 // but for the other sections that this applies to, we just write a read-only 1718 // .FOO section or a read-write .data.rel.ro.FOO section depending on the 1719 // situation. 1720 // TODO(mwhudson): It would make sense to do this more widely, but it makes 1721 // the system linker segfault on darwin. 1722 addrelrosection := func(suffix string) *Section { 1723 return addsection(segro, suffix, 04) 1724 } 1725 1726 if UseRelro() { 1727 addrelrosection = func(suffix string) *Section { 1728 seg := &Segrelrodata 1729 if Linkmode == LinkExternal { 1730 // Using a separate segment with an external 1731 // linker results in some programs moving 1732 // their data sections unexpectedly, which 1733 // corrupts the moduledata. So we use the 1734 // rodata segment and let the external linker 1735 // sort out a rel.ro segment. 1736 seg = &Segrodata 1737 } 1738 return addsection(seg, ".data.rel.ro"+suffix, 06) 1739 } 1740 /* data only written by relocations */ 1741 sect = addrelrosection("") 1742 1743 sect.Vaddr = 0 1744 ctxt.Syms.Lookup("runtime.types", 0).Sect = sect 1745 ctxt.Syms.Lookup("runtime.etypes", 0).Sect = sect 1746 for _, symnro := range readOnly { 1747 symn := relROMap[symnro] 1748 align := dataMaxAlign[symn] 1749 if sect.Align < align { 1750 sect.Align = align 1751 } 1752 } 1753 datsize = Rnd(datsize, int64(sect.Align)) 1754 for _, symnro := range readOnly { 1755 symn := relROMap[symnro] 1756 for _, s := range data[symn] { 1757 datsize = aligndatsize(datsize, s) 1758 if s.Outer != nil && s.Outer.Sect != nil && s.Outer.Sect != sect { 1759 Errorf(s, "s.Outer (%s) in different section from s, %s != %s", s.Outer.Name, s.Outer.Sect.Name, sect.Name) 1760 } 1761 s.Sect = sect 1762 s.Type = SRODATA 1763 s.Value = int64(uint64(datsize) - sect.Vaddr) 1764 datsize += s.Size 1765 } 1766 checkdatsize(ctxt, datsize, symn) 1767 } 1768 1769 sect.Length = uint64(datsize) - sect.Vaddr 1770 } 1771 1772 /* typelink */ 1773 sect = addrelrosection(".typelink") 1774 sect.Align = dataMaxAlign[STYPELINK] 1775 datsize = Rnd(datsize, int64(sect.Align)) 1776 sect.Vaddr = uint64(datsize) 1777 typelink := ctxt.Syms.Lookup("runtime.typelink", 0) 1778 typelink.Sect = sect 1779 typelink.Type = SRODATA 1780 datsize += typelink.Size 1781 checkdatsize(ctxt, datsize, STYPELINK) 1782 sect.Length = uint64(datsize) - sect.Vaddr 1783 1784 /* itablink */ 1785 sect = addrelrosection(".itablink") 1786 sect.Align = dataMaxAlign[SITABLINK] 1787 datsize = Rnd(datsize, int64(sect.Align)) 1788 sect.Vaddr = uint64(datsize) 1789 ctxt.Syms.Lookup("runtime.itablink", 0).Sect = sect 1790 ctxt.Syms.Lookup("runtime.eitablink", 0).Sect = sect 1791 for _, s := range data[SITABLINK] { 1792 datsize = aligndatsize(datsize, s) 1793 s.Sect = sect 1794 s.Type = SRODATA 1795 s.Value = int64(uint64(datsize) - sect.Vaddr) 1796 datsize += s.Size 1797 } 1798 checkdatsize(ctxt, datsize, SITABLINK) 1799 sect.Length = uint64(datsize) - sect.Vaddr 1800 1801 /* gosymtab */ 1802 sect = addrelrosection(".gosymtab") 1803 sect.Align = dataMaxAlign[SSYMTAB] 1804 datsize = Rnd(datsize, int64(sect.Align)) 1805 sect.Vaddr = uint64(datsize) 1806 ctxt.Syms.Lookup("runtime.symtab", 0).Sect = sect 1807 ctxt.Syms.Lookup("runtime.esymtab", 0).Sect = sect 1808 for _, s := range data[SSYMTAB] { 1809 datsize = aligndatsize(datsize, s) 1810 s.Sect = sect 1811 s.Type = SRODATA 1812 s.Value = int64(uint64(datsize) - sect.Vaddr) 1813 datsize += s.Size 1814 } 1815 checkdatsize(ctxt, datsize, SSYMTAB) 1816 sect.Length = uint64(datsize) - sect.Vaddr 1817 1818 /* gopclntab */ 1819 sect = addrelrosection(".gopclntab") 1820 sect.Align = dataMaxAlign[SPCLNTAB] 1821 datsize = Rnd(datsize, int64(sect.Align)) 1822 sect.Vaddr = uint64(datsize) 1823 ctxt.Syms.Lookup("runtime.pclntab", 0).Sect = sect 1824 ctxt.Syms.Lookup("runtime.epclntab", 0).Sect = sect 1825 for _, s := range data[SPCLNTAB] { 1826 datsize = aligndatsize(datsize, s) 1827 s.Sect = sect 1828 s.Type = SRODATA 1829 s.Value = int64(uint64(datsize) - sect.Vaddr) 1830 datsize += s.Size 1831 } 1832 checkdatsize(ctxt, datsize, SRODATA) 1833 sect.Length = uint64(datsize) - sect.Vaddr 1834 1835 // 6g uses 4-byte relocation offsets, so the entire segment must fit in 32 bits. 1836 if datsize != int64(uint32(datsize)) { 1837 Errorf(nil, "read-only data segment too large: %d", datsize) 1838 } 1839 1840 for symn := SELFRXSECT; symn < SXREF; symn++ { 1841 datap = append(datap, data[symn]...) 1842 } 1843 1844 dwarfgeneratedebugsyms(ctxt) 1845 1846 var s *Symbol 1847 var i int 1848 for i, s = range dwarfp { 1849 if s.Type != SDWARFSECT { 1850 break 1851 } 1852 1853 sect = addsection(&Segdwarf, s.Name, 04) 1854 sect.Align = 1 1855 datsize = Rnd(datsize, int64(sect.Align)) 1856 sect.Vaddr = uint64(datsize) 1857 s.Sect = sect 1858 s.Type = SRODATA 1859 s.Value = int64(uint64(datsize) - sect.Vaddr) 1860 datsize += s.Size 1861 sect.Length = uint64(datsize) - sect.Vaddr 1862 } 1863 checkdatsize(ctxt, datsize, SDWARFSECT) 1864 1865 if i < len(dwarfp) { 1866 sect = addsection(&Segdwarf, ".debug_info", 04) 1867 sect.Align = 1 1868 datsize = Rnd(datsize, int64(sect.Align)) 1869 sect.Vaddr = uint64(datsize) 1870 for _, s := range dwarfp[i:] { 1871 if s.Type != SDWARFINFO { 1872 break 1873 } 1874 s.Sect = sect 1875 s.Type = SRODATA 1876 s.Value = int64(uint64(datsize) - sect.Vaddr) 1877 s.Attr |= AttrLocal 1878 datsize += s.Size 1879 } 1880 sect.Length = uint64(datsize) - sect.Vaddr 1881 checkdatsize(ctxt, datsize, SDWARFINFO) 1882 } 1883 1884 /* number the sections */ 1885 n := int32(1) 1886 1887 for _, sect := range Segtext.Sections { 1888 sect.Extnum = int16(n) 1889 n++ 1890 } 1891 for _, sect := range Segrodata.Sections { 1892 sect.Extnum = int16(n) 1893 n++ 1894 } 1895 for _, sect := range Segrelrodata.Sections { 1896 sect.Extnum = int16(n) 1897 n++ 1898 } 1899 for _, sect := range Segdata.Sections { 1900 sect.Extnum = int16(n) 1901 n++ 1902 } 1903 for _, sect := range Segdwarf.Sections { 1904 sect.Extnum = int16(n) 1905 n++ 1906 } 1907 } 1908 1909 func dodataSect(ctxt *Link, symn SymKind, syms []*Symbol) (result []*Symbol, maxAlign int32) { 1910 if Headtype == objabi.Hdarwin { 1911 // Some symbols may no longer belong in syms 1912 // due to movement in machosymorder. 1913 newSyms := make([]*Symbol, 0, len(syms)) 1914 for _, s := range syms { 1915 if s.Type == symn { 1916 newSyms = append(newSyms, s) 1917 } 1918 } 1919 syms = newSyms 1920 } 1921 1922 var head, tail *Symbol 1923 symsSort := make([]dataSortKey, 0, len(syms)) 1924 for _, s := range syms { 1925 if s.Attr.OnList() { 1926 log.Fatalf("symbol %s listed multiple times", s.Name) 1927 } 1928 s.Attr |= AttrOnList 1929 switch { 1930 case s.Size < int64(len(s.P)): 1931 Errorf(s, "initialize bounds (%d < %d)", s.Size, len(s.P)) 1932 case s.Size < 0: 1933 Errorf(s, "negative size (%d bytes)", s.Size) 1934 case s.Size > cutoff: 1935 Errorf(s, "symbol too large (%d bytes)", s.Size) 1936 } 1937 1938 // If the usually-special section-marker symbols are being laid 1939 // out as regular symbols, put them either at the beginning or 1940 // end of their section. 1941 if ctxt.DynlinkingGo() && Headtype == objabi.Hdarwin { 1942 switch s.Name { 1943 case "runtime.text", "runtime.bss", "runtime.data", "runtime.types": 1944 head = s 1945 continue 1946 case "runtime.etext", "runtime.ebss", "runtime.edata", "runtime.etypes": 1947 tail = s 1948 continue 1949 } 1950 } 1951 1952 key := dataSortKey{ 1953 size: s.Size, 1954 name: s.Name, 1955 sym: s, 1956 } 1957 1958 switch s.Type { 1959 case SELFGOT: 1960 // For ppc64, we want to interleave the .got and .toc sections 1961 // from input files. Both are type SELFGOT, so in that case 1962 // we skip size comparison and fall through to the name 1963 // comparison (conveniently, .got sorts before .toc). 1964 key.size = 0 1965 } 1966 1967 symsSort = append(symsSort, key) 1968 } 1969 1970 sort.Sort(bySizeAndName(symsSort)) 1971 1972 off := 0 1973 if head != nil { 1974 syms[0] = head 1975 off++ 1976 } 1977 for i, symSort := range symsSort { 1978 syms[i+off] = symSort.sym 1979 align := symalign(symSort.sym) 1980 if maxAlign < align { 1981 maxAlign = align 1982 } 1983 } 1984 if tail != nil { 1985 syms[len(syms)-1] = tail 1986 } 1987 1988 if Iself && symn == SELFROSECT { 1989 // Make .rela and .rela.plt contiguous, the ELF ABI requires this 1990 // and Solaris actually cares. 1991 reli, plti := -1, -1 1992 for i, s := range syms { 1993 switch s.Name { 1994 case ".rel.plt", ".rela.plt": 1995 plti = i 1996 case ".rel", ".rela": 1997 reli = i 1998 } 1999 } 2000 if reli >= 0 && plti >= 0 && plti != reli+1 { 2001 var first, second int 2002 if plti > reli { 2003 first, second = reli, plti 2004 } else { 2005 first, second = plti, reli 2006 } 2007 rel, plt := syms[reli], syms[plti] 2008 copy(syms[first+2:], syms[first+1:second]) 2009 syms[first+0] = rel 2010 syms[first+1] = plt 2011 2012 // Make sure alignment doesn't introduce a gap. 2013 // Setting the alignment explicitly prevents 2014 // symalign from basing it on the size and 2015 // getting it wrong. 2016 rel.Align = int32(SysArch.RegSize) 2017 plt.Align = int32(SysArch.RegSize) 2018 } 2019 } 2020 2021 return syms, maxAlign 2022 } 2023 2024 // Add buildid to beginning of text segment, on non-ELF systems. 2025 // Non-ELF binary formats are not always flexible enough to 2026 // give us a place to put the Go build ID. On those systems, we put it 2027 // at the very beginning of the text segment. 2028 // This ``header'' is read by cmd/go. 2029 func (ctxt *Link) textbuildid() { 2030 if Iself || Buildmode == BuildmodePlugin || *flagBuildid == "" { 2031 return 2032 } 2033 2034 sym := ctxt.Syms.Lookup("go.buildid", 0) 2035 sym.Attr |= AttrReachable 2036 // The \xff is invalid UTF-8, meant to make it less likely 2037 // to find one of these accidentally. 2038 data := "\xff Go build ID: " + strconv.Quote(*flagBuildid) + "\n \xff" 2039 sym.Type = STEXT 2040 sym.P = []byte(data) 2041 sym.Size = int64(len(sym.P)) 2042 2043 ctxt.Textp = append(ctxt.Textp, nil) 2044 copy(ctxt.Textp[1:], ctxt.Textp) 2045 ctxt.Textp[0] = sym 2046 } 2047 2048 // assign addresses to text 2049 func (ctxt *Link) textaddress() { 2050 addsection(&Segtext, ".text", 05) 2051 2052 // Assign PCs in text segment. 2053 // Could parallelize, by assigning to text 2054 // and then letting threads copy down, but probably not worth it. 2055 sect := Segtext.Sections[0] 2056 2057 sect.Align = int32(Funcalign) 2058 2059 text := ctxt.Syms.Lookup("runtime.text", 0) 2060 text.Sect = sect 2061 2062 if ctxt.DynlinkingGo() && Headtype == objabi.Hdarwin { 2063 etext := ctxt.Syms.Lookup("runtime.etext", 0) 2064 etext.Sect = sect 2065 2066 ctxt.Textp = append(ctxt.Textp, etext, nil) 2067 copy(ctxt.Textp[1:], ctxt.Textp) 2068 ctxt.Textp[0] = text 2069 } 2070 2071 va := uint64(*FlagTextAddr) 2072 n := 1 2073 sect.Vaddr = va 2074 ntramps := 0 2075 for _, sym := range ctxt.Textp { 2076 sect, n, va = assignAddress(ctxt, sect, n, sym, va, false) 2077 2078 trampoline(ctxt, sym) // resolve jumps, may add trampolines if jump too far 2079 2080 // lay down trampolines after each function 2081 for ; ntramps < len(ctxt.tramps); ntramps++ { 2082 tramp := ctxt.tramps[ntramps] 2083 sect, n, va = assignAddress(ctxt, sect, n, tramp, va, true) 2084 } 2085 } 2086 2087 sect.Length = va - sect.Vaddr 2088 ctxt.Syms.Lookup("runtime.etext", 0).Sect = sect 2089 2090 // merge tramps into Textp, keeping Textp in address order 2091 if ntramps != 0 { 2092 newtextp := make([]*Symbol, 0, len(ctxt.Textp)+ntramps) 2093 i := 0 2094 for _, sym := range ctxt.Textp { 2095 for ; i < ntramps && ctxt.tramps[i].Value < sym.Value; i++ { 2096 newtextp = append(newtextp, ctxt.tramps[i]) 2097 } 2098 newtextp = append(newtextp, sym) 2099 } 2100 newtextp = append(newtextp, ctxt.tramps[i:ntramps]...) 2101 2102 ctxt.Textp = newtextp 2103 } 2104 } 2105 2106 // assigns address for a text symbol, returns (possibly new) section, its number, and the address 2107 // Note: once we have trampoline insertion support for external linking, this function 2108 // will not need to create new text sections, and so no need to return sect and n. 2109 func assignAddress(ctxt *Link, sect *Section, n int, sym *Symbol, va uint64, isTramp bool) (*Section, int, uint64) { 2110 sym.Sect = sect 2111 if sym.Type&SSUB != 0 { 2112 return sect, n, va 2113 } 2114 if sym.Align != 0 { 2115 va = uint64(Rnd(int64(va), int64(sym.Align))) 2116 } else { 2117 va = uint64(Rnd(int64(va), int64(Funcalign))) 2118 } 2119 sym.Value = 0 2120 for sub := sym; sub != nil; sub = sub.Sub { 2121 sub.Value += int64(va) 2122 } 2123 2124 funcsize := uint64(MINFUNC) // spacing required for findfunctab 2125 if sym.Size > MINFUNC { 2126 funcsize = uint64(sym.Size) 2127 } 2128 2129 // On ppc64x a text section should not be larger than 2^26 bytes due to the size of 2130 // call target offset field in the bl instruction. Splitting into smaller text 2131 // sections smaller than this limit allows the GNU linker to modify the long calls 2132 // appropriately. The limit allows for the space needed for tables inserted by the linker. 2133 2134 // If this function doesn't fit in the current text section, then create a new one. 2135 2136 // Only break at outermost syms. 2137 2138 if SysArch.InFamily(sys.PPC64) && sym.Outer == nil && Iself && Linkmode == LinkExternal && va-sect.Vaddr+funcsize+maxSizeTrampolinesPPC64(sym, isTramp) > 0x1c00000 { 2139 2140 // Set the length for the previous text section 2141 sect.Length = va - sect.Vaddr 2142 2143 // Create new section, set the starting Vaddr 2144 sect = addsection(&Segtext, ".text", 05) 2145 sect.Vaddr = va 2146 sym.Sect = sect 2147 2148 // Create a symbol for the start of the secondary text sections 2149 ctxt.Syms.Lookup(fmt.Sprintf("runtime.text.%d", n), 0).Sect = sect 2150 n++ 2151 } 2152 va += funcsize 2153 2154 return sect, n, va 2155 } 2156 2157 // assign addresses 2158 func (ctxt *Link) address() { 2159 va := uint64(*FlagTextAddr) 2160 Segtext.Rwx = 05 2161 Segtext.Vaddr = va 2162 Segtext.Fileoff = uint64(HEADR) 2163 for _, s := range Segtext.Sections { 2164 va = uint64(Rnd(int64(va), int64(s.Align))) 2165 s.Vaddr = va 2166 va += s.Length 2167 } 2168 2169 Segtext.Length = va - uint64(*FlagTextAddr) 2170 Segtext.Filelen = Segtext.Length 2171 if Headtype == objabi.Hnacl { 2172 va += 32 // room for the "halt sled" 2173 } 2174 2175 if len(Segrodata.Sections) > 0 { 2176 // align to page boundary so as not to mix 2177 // rodata and executable text. 2178 // 2179 // Note: gold or GNU ld will reduce the size of the executable 2180 // file by arranging for the relro segment to end at a page 2181 // boundary, and overlap the end of the text segment with the 2182 // start of the relro segment in the file. The PT_LOAD segments 2183 // will be such that the last page of the text segment will be 2184 // mapped twice, once r-x and once starting out rw- and, after 2185 // relocation processing, changed to r--. 2186 // 2187 // Ideally the last page of the text segment would not be 2188 // writable even for this short period. 2189 va = uint64(Rnd(int64(va), int64(*FlagRound))) 2190 2191 Segrodata.Rwx = 04 2192 Segrodata.Vaddr = va 2193 Segrodata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff 2194 Segrodata.Filelen = 0 2195 for _, s := range Segrodata.Sections { 2196 va = uint64(Rnd(int64(va), int64(s.Align))) 2197 s.Vaddr = va 2198 va += s.Length 2199 } 2200 2201 Segrodata.Length = va - Segrodata.Vaddr 2202 Segrodata.Filelen = Segrodata.Length 2203 } 2204 if len(Segrelrodata.Sections) > 0 { 2205 // align to page boundary so as not to mix 2206 // rodata, rel-ro data, and executable text. 2207 va = uint64(Rnd(int64(va), int64(*FlagRound))) 2208 2209 Segrelrodata.Rwx = 06 2210 Segrelrodata.Vaddr = va 2211 Segrelrodata.Fileoff = va - Segrodata.Vaddr + Segrodata.Fileoff 2212 Segrelrodata.Filelen = 0 2213 for _, s := range Segrelrodata.Sections { 2214 va = uint64(Rnd(int64(va), int64(s.Align))) 2215 s.Vaddr = va 2216 va += s.Length 2217 } 2218 2219 Segrelrodata.Length = va - Segrelrodata.Vaddr 2220 Segrelrodata.Filelen = Segrelrodata.Length 2221 } 2222 2223 va = uint64(Rnd(int64(va), int64(*FlagRound))) 2224 Segdata.Rwx = 06 2225 Segdata.Vaddr = va 2226 Segdata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff 2227 Segdata.Filelen = 0 2228 if Headtype == objabi.Hwindows { 2229 Segdata.Fileoff = Segtext.Fileoff + uint64(Rnd(int64(Segtext.Length), PEFILEALIGN)) 2230 } 2231 if Headtype == objabi.Hplan9 { 2232 Segdata.Fileoff = Segtext.Fileoff + Segtext.Filelen 2233 } 2234 var data *Section 2235 var noptr *Section 2236 var bss *Section 2237 var noptrbss *Section 2238 var vlen int64 2239 for i, s := range Segdata.Sections { 2240 if Iself && s.Name == ".tbss" { 2241 continue 2242 } 2243 vlen = int64(s.Length) 2244 if i+1 < len(Segdata.Sections) && !(Iself && Segdata.Sections[i+1].Name == ".tbss") { 2245 vlen = int64(Segdata.Sections[i+1].Vaddr - s.Vaddr) 2246 } 2247 s.Vaddr = va 2248 va += uint64(vlen) 2249 Segdata.Length = va - Segdata.Vaddr 2250 if s.Name == ".data" { 2251 data = s 2252 } 2253 if s.Name == ".noptrdata" { 2254 noptr = s 2255 } 2256 if s.Name == ".bss" { 2257 bss = s 2258 } 2259 if s.Name == ".noptrbss" { 2260 noptrbss = s 2261 } 2262 } 2263 2264 Segdata.Filelen = bss.Vaddr - Segdata.Vaddr 2265 2266 va = uint64(Rnd(int64(va), int64(*FlagRound))) 2267 Segdwarf.Rwx = 06 2268 Segdwarf.Vaddr = va 2269 Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(*FlagRound))) 2270 Segdwarf.Filelen = 0 2271 if Headtype == objabi.Hwindows { 2272 Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(PEFILEALIGN))) 2273 } 2274 for i, s := range Segdwarf.Sections { 2275 vlen = int64(s.Length) 2276 if i+1 < len(Segdwarf.Sections) { 2277 vlen = int64(Segdwarf.Sections[i+1].Vaddr - s.Vaddr) 2278 } 2279 s.Vaddr = va 2280 va += uint64(vlen) 2281 if Headtype == objabi.Hwindows { 2282 va = uint64(Rnd(int64(va), PEFILEALIGN)) 2283 } 2284 Segdwarf.Length = va - Segdwarf.Vaddr 2285 } 2286 2287 Segdwarf.Filelen = va - Segdwarf.Vaddr 2288 2289 var ( 2290 text = Segtext.Sections[0] 2291 rodata = ctxt.Syms.Lookup("runtime.rodata", 0).Sect 2292 itablink = ctxt.Syms.Lookup("runtime.itablink", 0).Sect 2293 symtab = ctxt.Syms.Lookup("runtime.symtab", 0).Sect 2294 pclntab = ctxt.Syms.Lookup("runtime.pclntab", 0).Sect 2295 types = ctxt.Syms.Lookup("runtime.types", 0).Sect 2296 ) 2297 lasttext := text 2298 // Could be multiple .text sections 2299 for _, sect := range Segtext.Sections { 2300 if sect.Name == ".text" { 2301 lasttext = sect 2302 } 2303 } 2304 2305 for _, s := range datap { 2306 if s.Sect != nil { 2307 s.Value += int64(s.Sect.Vaddr) 2308 } 2309 for sub := s.Sub; sub != nil; sub = sub.Sub { 2310 sub.Value += s.Value 2311 } 2312 } 2313 2314 for _, sym := range dwarfp { 2315 if sym.Sect != nil { 2316 sym.Value += int64(sym.Sect.Vaddr) 2317 } 2318 for sub := sym.Sub; sub != nil; sub = sub.Sub { 2319 sub.Value += sym.Value 2320 } 2321 } 2322 2323 if Buildmode == BuildmodeShared { 2324 s := ctxt.Syms.Lookup("go.link.abihashbytes", 0) 2325 sectSym := ctxt.Syms.Lookup(".note.go.abihash", 0) 2326 s.Sect = sectSym.Sect 2327 s.Value = int64(sectSym.Sect.Vaddr + 16) 2328 } 2329 2330 ctxt.xdefine("runtime.text", STEXT, int64(text.Vaddr)) 2331 ctxt.xdefine("runtime.etext", STEXT, int64(lasttext.Vaddr+lasttext.Length)) 2332 2333 // If there are multiple text sections, create runtime.text.n for 2334 // their section Vaddr, using n for index 2335 n := 1 2336 for _, sect := range Segtext.Sections[1:] { 2337 if sect.Name == ".text" { 2338 symname := fmt.Sprintf("runtime.text.%d", n) 2339 ctxt.xdefine(symname, STEXT, int64(sect.Vaddr)) 2340 n++ 2341 } else { 2342 break 2343 } 2344 } 2345 2346 ctxt.xdefine("runtime.rodata", SRODATA, int64(rodata.Vaddr)) 2347 ctxt.xdefine("runtime.erodata", SRODATA, int64(rodata.Vaddr+rodata.Length)) 2348 ctxt.xdefine("runtime.types", SRODATA, int64(types.Vaddr)) 2349 ctxt.xdefine("runtime.etypes", SRODATA, int64(types.Vaddr+types.Length)) 2350 ctxt.xdefine("runtime.itablink", SRODATA, int64(itablink.Vaddr)) 2351 ctxt.xdefine("runtime.eitablink", SRODATA, int64(itablink.Vaddr+itablink.Length)) 2352 2353 sym := ctxt.Syms.Lookup("runtime.gcdata", 0) 2354 sym.Attr |= AttrLocal 2355 ctxt.xdefine("runtime.egcdata", SRODATA, Symaddr(sym)+sym.Size) 2356 ctxt.Syms.Lookup("runtime.egcdata", 0).Sect = sym.Sect 2357 2358 sym = ctxt.Syms.Lookup("runtime.gcbss", 0) 2359 sym.Attr |= AttrLocal 2360 ctxt.xdefine("runtime.egcbss", SRODATA, Symaddr(sym)+sym.Size) 2361 ctxt.Syms.Lookup("runtime.egcbss", 0).Sect = sym.Sect 2362 2363 ctxt.xdefine("runtime.symtab", SRODATA, int64(symtab.Vaddr)) 2364 ctxt.xdefine("runtime.esymtab", SRODATA, int64(symtab.Vaddr+symtab.Length)) 2365 ctxt.xdefine("runtime.pclntab", SRODATA, int64(pclntab.Vaddr)) 2366 ctxt.xdefine("runtime.epclntab", SRODATA, int64(pclntab.Vaddr+pclntab.Length)) 2367 ctxt.xdefine("runtime.noptrdata", SNOPTRDATA, int64(noptr.Vaddr)) 2368 ctxt.xdefine("runtime.enoptrdata", SNOPTRDATA, int64(noptr.Vaddr+noptr.Length)) 2369 ctxt.xdefine("runtime.bss", SBSS, int64(bss.Vaddr)) 2370 ctxt.xdefine("runtime.ebss", SBSS, int64(bss.Vaddr+bss.Length)) 2371 ctxt.xdefine("runtime.data", SDATA, int64(data.Vaddr)) 2372 ctxt.xdefine("runtime.edata", SDATA, int64(data.Vaddr+data.Length)) 2373 ctxt.xdefine("runtime.noptrbss", SNOPTRBSS, int64(noptrbss.Vaddr)) 2374 ctxt.xdefine("runtime.enoptrbss", SNOPTRBSS, int64(noptrbss.Vaddr+noptrbss.Length)) 2375 ctxt.xdefine("runtime.end", SBSS, int64(Segdata.Vaddr+Segdata.Length)) 2376 } 2377 2378 // add a trampoline with symbol s (to be laid down after the current function) 2379 func (ctxt *Link) AddTramp(s *Symbol) { 2380 s.Type = STEXT 2381 s.Attr |= AttrReachable 2382 s.Attr |= AttrOnList 2383 ctxt.tramps = append(ctxt.tramps, s) 2384 if *FlagDebugTramp > 0 && ctxt.Debugvlog > 0 { 2385 ctxt.Logf("trampoline %s inserted\n", s) 2386 } 2387 }