github.com/zebozhuang/go@v0.0.0-20200207033046-f8a98f6f5c5d/src/cmd/link/internal/ppc64/asm.go (about) 1 // Inferno utils/5l/asm.c 2 // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/5l/asm.c 3 // 4 // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. 5 // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) 6 // Portions Copyright © 1997-1999 Vita Nuova Limited 7 // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) 8 // Portions Copyright © 2004,2006 Bruce Ellis 9 // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) 10 // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others 11 // Portions Copyright © 2009 The Go Authors. All rights reserved. 12 // 13 // Permission is hereby granted, free of charge, to any person obtaining a copy 14 // of this software and associated documentation files (the "Software"), to deal 15 // in the Software without restriction, including without limitation the rights 16 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 17 // copies of the Software, and to permit persons to whom the Software is 18 // furnished to do so, subject to the following conditions: 19 // 20 // The above copyright notice and this permission notice shall be included in 21 // all copies or substantial portions of the Software. 22 // 23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 24 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 26 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 28 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 29 // THE SOFTWARE. 30 31 package ppc64 32 33 import ( 34 "cmd/internal/objabi" 35 "cmd/link/internal/ld" 36 "encoding/binary" 37 "fmt" 38 "log" 39 ) 40 41 func genplt(ctxt *ld.Link) { 42 // The ppc64 ABI PLT has similar concepts to other 43 // architectures, but is laid out quite differently. When we 44 // see an R_PPC64_REL24 relocation to a dynamic symbol 45 // (indicating that the call needs to go through the PLT), we 46 // generate up to three stubs and reserve a PLT slot. 47 // 48 // 1) The call site will be bl x; nop (where the relocation 49 // applies to the bl). We rewrite this to bl x_stub; ld 50 // r2,24(r1). The ld is necessary because x_stub will save 51 // r2 (the TOC pointer) at 24(r1) (the "TOC save slot"). 52 // 53 // 2) We reserve space for a pointer in the .plt section (once 54 // per referenced dynamic function). .plt is a data 55 // section filled solely by the dynamic linker (more like 56 // .plt.got on other architectures). Initially, the 57 // dynamic linker will fill each slot with a pointer to the 58 // corresponding x@plt entry point. 59 // 60 // 3) We generate the "call stub" x_stub (once per dynamic 61 // function/object file pair). This saves the TOC in the 62 // TOC save slot, reads the function pointer from x's .plt 63 // slot and calls it like any other global entry point 64 // (including setting r12 to the function address). 65 // 66 // 4) We generate the "symbol resolver stub" x@plt (once per 67 // dynamic function). This is solely a branch to the glink 68 // resolver stub. 69 // 70 // 5) We generate the glink resolver stub (only once). This 71 // computes which symbol resolver stub we came through and 72 // invokes the dynamic resolver via a pointer provided by 73 // the dynamic linker. This will patch up the .plt slot to 74 // point directly at the function so future calls go 75 // straight from the call stub to the real function, and 76 // then call the function. 77 78 // NOTE: It's possible we could make ppc64 closer to other 79 // architectures: ppc64's .plt is like .plt.got on other 80 // platforms and ppc64's .glink is like .plt on other 81 // platforms. 82 83 // Find all R_PPC64_REL24 relocations that reference dynamic 84 // imports. Reserve PLT entries for these symbols and 85 // generate call stubs. The call stubs need to live in .text, 86 // which is why we need to do this pass this early. 87 // 88 // This assumes "case 1" from the ABI, where the caller needs 89 // us to save and restore the TOC pointer. 90 var stubs []*ld.Symbol 91 for _, s := range ctxt.Textp { 92 for i := range s.R { 93 r := &s.R[i] 94 if r.Type != 256+ld.R_PPC64_REL24 || r.Sym.Type != ld.SDYNIMPORT { 95 continue 96 } 97 98 // Reserve PLT entry and generate symbol 99 // resolver 100 addpltsym(ctxt, r.Sym) 101 102 // Generate call stub 103 n := fmt.Sprintf("%s.%s", s.Name, r.Sym.Name) 104 105 stub := ctxt.Syms.Lookup(n, 0) 106 if s.Attr.Reachable() { 107 stub.Attr |= ld.AttrReachable 108 } 109 if stub.Size == 0 { 110 // Need outer to resolve .TOC. 111 stub.Outer = s 112 stubs = append(stubs, stub) 113 gencallstub(ctxt, 1, stub, r.Sym) 114 } 115 116 // Update the relocation to use the call stub 117 r.Sym = stub 118 119 // Restore TOC after bl. The compiler put a 120 // nop here for us to overwrite. 121 const o1 = 0xe8410018 // ld r2,24(r1) 122 ctxt.Arch.ByteOrder.PutUint32(s.P[r.Off+4:], o1) 123 } 124 } 125 // Put call stubs at the beginning (instead of the end). 126 // So when resolving the relocations to calls to the stubs, 127 // the addresses are known and trampolines can be inserted 128 // when necessary. 129 ctxt.Textp = append(stubs, ctxt.Textp...) 130 } 131 132 func genaddmoduledata(ctxt *ld.Link) { 133 addmoduledata := ctxt.Syms.ROLookup("runtime.addmoduledata", 0) 134 if addmoduledata.Type == ld.STEXT { 135 return 136 } 137 addmoduledata.Attr |= ld.AttrReachable 138 initfunc := ctxt.Syms.Lookup("go.link.addmoduledata", 0) 139 initfunc.Type = ld.STEXT 140 initfunc.Attr |= ld.AttrLocal 141 initfunc.Attr |= ld.AttrReachable 142 o := func(op uint32) { 143 ld.Adduint32(ctxt, initfunc, op) 144 } 145 // addis r2, r12, .TOC.-func@ha 146 rel := ld.Addrel(initfunc) 147 rel.Off = int32(initfunc.Size) 148 rel.Siz = 8 149 rel.Sym = ctxt.Syms.Lookup(".TOC.", 0) 150 rel.Type = objabi.R_ADDRPOWER_PCREL 151 o(0x3c4c0000) 152 // addi r2, r2, .TOC.-func@l 153 o(0x38420000) 154 // mflr r31 155 o(0x7c0802a6) 156 // stdu r31, -32(r1) 157 o(0xf801ffe1) 158 // addis r3, r2, local.moduledata@got@ha 159 rel = ld.Addrel(initfunc) 160 rel.Off = int32(initfunc.Size) 161 rel.Siz = 8 162 rel.Sym = ctxt.Syms.Lookup("local.moduledata", 0) 163 rel.Type = objabi.R_ADDRPOWER_GOT 164 o(0x3c620000) 165 // ld r3, local.moduledata@got@l(r3) 166 o(0xe8630000) 167 // bl runtime.addmoduledata 168 rel = ld.Addrel(initfunc) 169 rel.Off = int32(initfunc.Size) 170 rel.Siz = 4 171 rel.Sym = addmoduledata 172 rel.Type = objabi.R_CALLPOWER 173 o(0x48000001) 174 // nop 175 o(0x60000000) 176 // ld r31, 0(r1) 177 o(0xe8010000) 178 // mtlr r31 179 o(0x7c0803a6) 180 // addi r1,r1,32 181 o(0x38210020) 182 // blr 183 o(0x4e800020) 184 185 initarray_entry := ctxt.Syms.Lookup("go.link.addmoduledatainit", 0) 186 ctxt.Textp = append(ctxt.Textp, initfunc) 187 initarray_entry.Attr |= ld.AttrReachable 188 initarray_entry.Attr |= ld.AttrLocal 189 initarray_entry.Type = ld.SINITARR 190 ld.Addaddr(ctxt, initarray_entry, initfunc) 191 } 192 193 func gentext(ctxt *ld.Link) { 194 if ctxt.DynlinkingGo() { 195 genaddmoduledata(ctxt) 196 } 197 198 if ld.Linkmode == ld.LinkInternal { 199 genplt(ctxt) 200 } 201 } 202 203 // Construct a call stub in stub that calls symbol targ via its PLT 204 // entry. 205 func gencallstub(ctxt *ld.Link, abicase int, stub *ld.Symbol, targ *ld.Symbol) { 206 if abicase != 1 { 207 // If we see R_PPC64_TOCSAVE or R_PPC64_REL24_NOTOC 208 // relocations, we'll need to implement cases 2 and 3. 209 log.Fatalf("gencallstub only implements case 1 calls") 210 } 211 212 plt := ctxt.Syms.Lookup(".plt", 0) 213 214 stub.Type = ld.STEXT 215 216 // Save TOC pointer in TOC save slot 217 ld.Adduint32(ctxt, stub, 0xf8410018) // std r2,24(r1) 218 219 // Load the function pointer from the PLT. 220 r := ld.Addrel(stub) 221 222 r.Off = int32(stub.Size) 223 r.Sym = plt 224 r.Add = int64(targ.Plt) 225 r.Siz = 2 226 if ctxt.Arch.ByteOrder == binary.BigEndian { 227 r.Off += int32(r.Siz) 228 } 229 r.Type = objabi.R_POWER_TOC 230 r.Variant = ld.RV_POWER_HA 231 ld.Adduint32(ctxt, stub, 0x3d820000) // addis r12,r2,targ@plt@toc@ha 232 r = ld.Addrel(stub) 233 r.Off = int32(stub.Size) 234 r.Sym = plt 235 r.Add = int64(targ.Plt) 236 r.Siz = 2 237 if ctxt.Arch.ByteOrder == binary.BigEndian { 238 r.Off += int32(r.Siz) 239 } 240 r.Type = objabi.R_POWER_TOC 241 r.Variant = ld.RV_POWER_LO 242 ld.Adduint32(ctxt, stub, 0xe98c0000) // ld r12,targ@plt@toc@l(r12) 243 244 // Jump to the loaded pointer 245 ld.Adduint32(ctxt, stub, 0x7d8903a6) // mtctr r12 246 ld.Adduint32(ctxt, stub, 0x4e800420) // bctr 247 } 248 249 func adddynrel(ctxt *ld.Link, s *ld.Symbol, r *ld.Reloc) bool { 250 targ := r.Sym 251 252 switch r.Type { 253 default: 254 if r.Type >= 256 { 255 ld.Errorf(s, "unexpected relocation type %d", r.Type) 256 return false 257 } 258 259 // Handle relocations found in ELF object files. 260 case 256 + ld.R_PPC64_REL24: 261 r.Type = objabi.R_CALLPOWER 262 263 // This is a local call, so the caller isn't setting 264 // up r12 and r2 is the same for the caller and 265 // callee. Hence, we need to go to the local entry 266 // point. (If we don't do this, the callee will try 267 // to use r12 to compute r2.) 268 r.Add += int64(r.Sym.Localentry) * 4 269 270 if targ.Type == ld.SDYNIMPORT { 271 // Should have been handled in elfsetupplt 272 ld.Errorf(s, "unexpected R_PPC64_REL24 for dyn import") 273 } 274 275 return true 276 277 case 256 + ld.R_PPC_REL32: 278 r.Type = objabi.R_PCREL 279 r.Add += 4 280 281 if targ.Type == ld.SDYNIMPORT { 282 ld.Errorf(s, "unexpected R_PPC_REL32 for dyn import") 283 } 284 285 return true 286 287 case 256 + ld.R_PPC64_ADDR64: 288 r.Type = objabi.R_ADDR 289 if targ.Type == ld.SDYNIMPORT { 290 // These happen in .toc sections 291 ld.Adddynsym(ctxt, targ) 292 293 rela := ctxt.Syms.Lookup(".rela", 0) 294 ld.Addaddrplus(ctxt, rela, s, int64(r.Off)) 295 ld.Adduint64(ctxt, rela, ld.ELF64_R_INFO(uint32(targ.Dynid), ld.R_PPC64_ADDR64)) 296 ld.Adduint64(ctxt, rela, uint64(r.Add)) 297 r.Type = 256 // ignore during relocsym 298 } 299 300 return true 301 302 case 256 + ld.R_PPC64_TOC16: 303 r.Type = objabi.R_POWER_TOC 304 r.Variant = ld.RV_POWER_LO | ld.RV_CHECK_OVERFLOW 305 return true 306 307 case 256 + ld.R_PPC64_TOC16_LO: 308 r.Type = objabi.R_POWER_TOC 309 r.Variant = ld.RV_POWER_LO 310 return true 311 312 case 256 + ld.R_PPC64_TOC16_HA: 313 r.Type = objabi.R_POWER_TOC 314 r.Variant = ld.RV_POWER_HA | ld.RV_CHECK_OVERFLOW 315 return true 316 317 case 256 + ld.R_PPC64_TOC16_HI: 318 r.Type = objabi.R_POWER_TOC 319 r.Variant = ld.RV_POWER_HI | ld.RV_CHECK_OVERFLOW 320 return true 321 322 case 256 + ld.R_PPC64_TOC16_DS: 323 r.Type = objabi.R_POWER_TOC 324 r.Variant = ld.RV_POWER_DS | ld.RV_CHECK_OVERFLOW 325 return true 326 327 case 256 + ld.R_PPC64_TOC16_LO_DS: 328 r.Type = objabi.R_POWER_TOC 329 r.Variant = ld.RV_POWER_DS 330 return true 331 332 case 256 + ld.R_PPC64_REL16_LO: 333 r.Type = objabi.R_PCREL 334 r.Variant = ld.RV_POWER_LO 335 r.Add += 2 // Compensate for relocation size of 2 336 return true 337 338 case 256 + ld.R_PPC64_REL16_HI: 339 r.Type = objabi.R_PCREL 340 r.Variant = ld.RV_POWER_HI | ld.RV_CHECK_OVERFLOW 341 r.Add += 2 342 return true 343 344 case 256 + ld.R_PPC64_REL16_HA: 345 r.Type = objabi.R_PCREL 346 r.Variant = ld.RV_POWER_HA | ld.RV_CHECK_OVERFLOW 347 r.Add += 2 348 return true 349 } 350 351 // Handle references to ELF symbols from our own object files. 352 if targ.Type != ld.SDYNIMPORT { 353 return true 354 } 355 356 // TODO(austin): Translate our relocations to ELF 357 358 return false 359 } 360 361 func elfreloc1(ctxt *ld.Link, r *ld.Reloc, sectoff int64) int { 362 ld.Thearch.Vput(uint64(sectoff)) 363 364 elfsym := r.Xsym.ElfsymForReloc() 365 switch r.Type { 366 default: 367 return -1 368 369 case objabi.R_ADDR: 370 switch r.Siz { 371 case 4: 372 ld.Thearch.Vput(ld.R_PPC64_ADDR32 | uint64(elfsym)<<32) 373 case 8: 374 ld.Thearch.Vput(ld.R_PPC64_ADDR64 | uint64(elfsym)<<32) 375 default: 376 return -1 377 } 378 379 case objabi.R_POWER_TLS: 380 ld.Thearch.Vput(ld.R_PPC64_TLS | uint64(elfsym)<<32) 381 382 case objabi.R_POWER_TLS_LE: 383 ld.Thearch.Vput(ld.R_PPC64_TPREL16 | uint64(elfsym)<<32) 384 385 case objabi.R_POWER_TLS_IE: 386 ld.Thearch.Vput(ld.R_PPC64_GOT_TPREL16_HA | uint64(elfsym)<<32) 387 ld.Thearch.Vput(uint64(r.Xadd)) 388 ld.Thearch.Vput(uint64(sectoff + 4)) 389 ld.Thearch.Vput(ld.R_PPC64_GOT_TPREL16_LO_DS | uint64(elfsym)<<32) 390 391 case objabi.R_ADDRPOWER: 392 ld.Thearch.Vput(ld.R_PPC64_ADDR16_HA | uint64(elfsym)<<32) 393 ld.Thearch.Vput(uint64(r.Xadd)) 394 ld.Thearch.Vput(uint64(sectoff + 4)) 395 ld.Thearch.Vput(ld.R_PPC64_ADDR16_LO | uint64(elfsym)<<32) 396 397 case objabi.R_ADDRPOWER_DS: 398 ld.Thearch.Vput(ld.R_PPC64_ADDR16_HA | uint64(elfsym)<<32) 399 ld.Thearch.Vput(uint64(r.Xadd)) 400 ld.Thearch.Vput(uint64(sectoff + 4)) 401 ld.Thearch.Vput(ld.R_PPC64_ADDR16_LO_DS | uint64(elfsym)<<32) 402 403 case objabi.R_ADDRPOWER_GOT: 404 ld.Thearch.Vput(ld.R_PPC64_GOT16_HA | uint64(elfsym)<<32) 405 ld.Thearch.Vput(uint64(r.Xadd)) 406 ld.Thearch.Vput(uint64(sectoff + 4)) 407 ld.Thearch.Vput(ld.R_PPC64_GOT16_LO_DS | uint64(elfsym)<<32) 408 409 case objabi.R_ADDRPOWER_PCREL: 410 ld.Thearch.Vput(ld.R_PPC64_REL16_HA | uint64(elfsym)<<32) 411 ld.Thearch.Vput(uint64(r.Xadd)) 412 ld.Thearch.Vput(uint64(sectoff + 4)) 413 ld.Thearch.Vput(ld.R_PPC64_REL16_LO | uint64(elfsym)<<32) 414 r.Xadd += 4 415 416 case objabi.R_ADDRPOWER_TOCREL: 417 ld.Thearch.Vput(ld.R_PPC64_TOC16_HA | uint64(elfsym)<<32) 418 ld.Thearch.Vput(uint64(r.Xadd)) 419 ld.Thearch.Vput(uint64(sectoff + 4)) 420 ld.Thearch.Vput(ld.R_PPC64_TOC16_LO | uint64(elfsym)<<32) 421 422 case objabi.R_ADDRPOWER_TOCREL_DS: 423 ld.Thearch.Vput(ld.R_PPC64_TOC16_HA | uint64(elfsym)<<32) 424 ld.Thearch.Vput(uint64(r.Xadd)) 425 ld.Thearch.Vput(uint64(sectoff + 4)) 426 ld.Thearch.Vput(ld.R_PPC64_TOC16_LO_DS | uint64(elfsym)<<32) 427 428 case objabi.R_CALLPOWER: 429 if r.Siz != 4 { 430 return -1 431 } 432 ld.Thearch.Vput(ld.R_PPC64_REL24 | uint64(elfsym)<<32) 433 434 } 435 ld.Thearch.Vput(uint64(r.Xadd)) 436 437 return 0 438 } 439 440 func elfsetupplt(ctxt *ld.Link) { 441 plt := ctxt.Syms.Lookup(".plt", 0) 442 if plt.Size == 0 { 443 // The dynamic linker stores the address of the 444 // dynamic resolver and the DSO identifier in the two 445 // doublewords at the beginning of the .plt section 446 // before the PLT array. Reserve space for these. 447 plt.Size = 16 448 } 449 } 450 451 func machoreloc1(s *ld.Symbol, r *ld.Reloc, sectoff int64) int { 452 return -1 453 } 454 455 // Return the value of .TOC. for symbol s 456 func symtoc(ctxt *ld.Link, s *ld.Symbol) int64 { 457 var toc *ld.Symbol 458 459 if s.Outer != nil { 460 toc = ctxt.Syms.ROLookup(".TOC.", int(s.Outer.Version)) 461 } else { 462 toc = ctxt.Syms.ROLookup(".TOC.", int(s.Version)) 463 } 464 465 if toc == nil { 466 ld.Errorf(s, "TOC-relative relocation in object without .TOC.") 467 return 0 468 } 469 470 return toc.Value 471 } 472 473 func archrelocaddr(ctxt *ld.Link, r *ld.Reloc, s *ld.Symbol, val *int64) int { 474 var o1, o2 uint32 475 if ctxt.Arch.ByteOrder == binary.BigEndian { 476 o1 = uint32(*val >> 32) 477 o2 = uint32(*val) 478 } else { 479 o1 = uint32(*val) 480 o2 = uint32(*val >> 32) 481 } 482 483 // We are spreading a 31-bit address across two instructions, putting the 484 // high (adjusted) part in the low 16 bits of the first instruction and the 485 // low part in the low 16 bits of the second instruction, or, in the DS case, 486 // bits 15-2 (inclusive) of the address into bits 15-2 of the second 487 // instruction (it is an error in this case if the low 2 bits of the address 488 // are non-zero). 489 490 t := ld.Symaddr(r.Sym) + r.Add 491 if t < 0 || t >= 1<<31 { 492 ld.Errorf(s, "relocation for %s is too big (>=2G): %d", s.Name, ld.Symaddr(r.Sym)) 493 } 494 if t&0x8000 != 0 { 495 t += 0x10000 496 } 497 498 switch r.Type { 499 case objabi.R_ADDRPOWER: 500 o1 |= (uint32(t) >> 16) & 0xffff 501 o2 |= uint32(t) & 0xffff 502 503 case objabi.R_ADDRPOWER_DS: 504 o1 |= (uint32(t) >> 16) & 0xffff 505 if t&3 != 0 { 506 ld.Errorf(s, "bad DS reloc for %s: %d", s.Name, ld.Symaddr(r.Sym)) 507 } 508 o2 |= uint32(t) & 0xfffc 509 510 default: 511 return -1 512 } 513 514 if ctxt.Arch.ByteOrder == binary.BigEndian { 515 *val = int64(o1)<<32 | int64(o2) 516 } else { 517 *val = int64(o2)<<32 | int64(o1) 518 } 519 return 0 520 } 521 522 // resolve direct jump relocation r in s, and add trampoline if necessary 523 func trampoline(ctxt *ld.Link, r *ld.Reloc, s *ld.Symbol) { 524 525 // Trampolines are created if the branch offset is too large and the linker cannot insert a call stub to handle it. 526 // For internal linking, trampolines are always created for long calls. 527 // For external linking, the linker can insert a call stub to handle a long call, but depends on having the TOC address in 528 // r2. For those build modes with external linking where the TOC address is not maintained in r2, trampolines must be created. 529 if ld.Linkmode == ld.LinkExternal && (ctxt.DynlinkingGo() || ld.Buildmode == ld.BuildmodeCArchive || ld.Buildmode == ld.BuildmodeCShared || ld.Buildmode == ld.BuildmodePIE) { 530 // No trampolines needed since r2 contains the TOC 531 return 532 } 533 534 t := ld.Symaddr(r.Sym) + r.Add - (s.Value + int64(r.Off)) 535 switch r.Type { 536 case objabi.R_CALLPOWER: 537 538 // If branch offset is too far then create a trampoline. 539 540 if (ld.Linkmode == ld.LinkExternal && s.Sect != r.Sym.Sect) || (ld.Linkmode == ld.LinkInternal && int64(int32(t<<6)>>6) != t) || (*ld.FlagDebugTramp > 1 && s.File != r.Sym.File) { 541 var tramp *ld.Symbol 542 for i := 0; ; i++ { 543 544 // Using r.Add as part of the name is significant in functions like duffzero where the call 545 // target is at some offset within the function. Calls to duff+8 and duff+256 must appear as 546 // distinct trampolines. 547 548 name := r.Sym.Name 549 if r.Add == 0 { 550 name = name + fmt.Sprintf("-tramp%d", i) 551 } else { 552 name = name + fmt.Sprintf("%+x-tramp%d", r.Add, i) 553 } 554 555 // Look up the trampoline in case it already exists 556 557 tramp = ctxt.Syms.Lookup(name, int(r.Sym.Version)) 558 if tramp.Value == 0 { 559 break 560 } 561 562 t = ld.Symaddr(tramp) + r.Add - (s.Value + int64(r.Off)) 563 564 // With internal linking, the trampoline can be used if it is not too far. 565 // With external linking, the trampoline must be in this section for it to be reused. 566 if (ld.Linkmode == ld.LinkInternal && int64(int32(t<<6)>>6) == t) || (ld.Linkmode == ld.LinkExternal && s.Sect == tramp.Sect) { 567 break 568 } 569 } 570 if tramp.Type == 0 { 571 if ctxt.DynlinkingGo() || ld.Buildmode == ld.BuildmodeCArchive || ld.Buildmode == ld.BuildmodeCShared || ld.Buildmode == ld.BuildmodePIE { 572 // Should have returned for above cases 573 ld.Errorf(s, "unexpected trampoline for shared or dynamic linking\n") 574 } else { 575 ctxt.AddTramp(tramp) 576 gentramp(tramp, r.Sym, int64(r.Add)) 577 } 578 } 579 r.Sym = tramp 580 r.Add = 0 // This was folded into the trampoline target address 581 r.Done = 0 582 } 583 default: 584 ld.Errorf(s, "trampoline called with non-jump reloc: %v", r.Type) 585 } 586 } 587 588 func gentramp(tramp, target *ld.Symbol, offset int64) { 589 // Used for default build mode for an executable 590 // Address of the call target is generated using 591 // relocation and doesn't depend on r2 (TOC). 592 tramp.Size = 16 // 4 instructions 593 tramp.P = make([]byte, tramp.Size) 594 t := ld.Symaddr(target) + offset 595 o1 := uint32(0x3fe00000) // lis r31,targetaddr hi 596 o2 := uint32(0x3bff0000) // addi r31,targetaddr lo 597 // With external linking, the target address must be 598 // relocated using LO and HA 599 if ld.Linkmode == ld.LinkExternal { 600 tr := ld.Addrel(tramp) 601 tr.Off = 0 602 tr.Type = objabi.R_ADDRPOWER 603 tr.Siz = 8 // generates 2 relocations: HA + LO 604 tr.Sym = target 605 tr.Add = offset 606 } else { 607 // adjustment needed if lo has sign bit set 608 // when using addi to compute address 609 val := uint32((t & 0xffff0000) >> 16) 610 if t&0x8000 != 0 { 611 val += 1 612 } 613 o1 |= val // hi part of addr 614 o2 |= uint32(t & 0xffff) // lo part of addr 615 } 616 o3 := uint32(0x7fe903a6) // mtctr r31 617 o4 := uint32(0x4e800420) // bctr 618 ld.SysArch.ByteOrder.PutUint32(tramp.P, o1) 619 ld.SysArch.ByteOrder.PutUint32(tramp.P[4:], o2) 620 ld.SysArch.ByteOrder.PutUint32(tramp.P[8:], o3) 621 ld.SysArch.ByteOrder.PutUint32(tramp.P[12:], o4) 622 } 623 624 func archreloc(ctxt *ld.Link, r *ld.Reloc, s *ld.Symbol, val *int64) int { 625 if ld.Linkmode == ld.LinkExternal { 626 switch r.Type { 627 default: 628 return -1 629 630 case objabi.R_POWER_TLS, objabi.R_POWER_TLS_LE, objabi.R_POWER_TLS_IE: 631 r.Done = 0 632 // check Outer is nil, Type is TLSBSS? 633 r.Xadd = r.Add 634 r.Xsym = r.Sym 635 return 0 636 637 case objabi.R_ADDRPOWER, 638 objabi.R_ADDRPOWER_DS, 639 objabi.R_ADDRPOWER_TOCREL, 640 objabi.R_ADDRPOWER_TOCREL_DS, 641 objabi.R_ADDRPOWER_GOT, 642 objabi.R_ADDRPOWER_PCREL: 643 r.Done = 0 644 645 // set up addend for eventual relocation via outer symbol. 646 rs := r.Sym 647 r.Xadd = r.Add 648 for rs.Outer != nil { 649 r.Xadd += ld.Symaddr(rs) - ld.Symaddr(rs.Outer) 650 rs = rs.Outer 651 } 652 653 if rs.Type != ld.SHOSTOBJ && rs.Type != ld.SDYNIMPORT && rs.Sect == nil { 654 ld.Errorf(s, "missing section for %s", rs.Name) 655 } 656 r.Xsym = rs 657 658 return 0 659 660 case objabi.R_CALLPOWER: 661 r.Done = 0 662 r.Xsym = r.Sym 663 r.Xadd = r.Add 664 return 0 665 } 666 } 667 668 switch r.Type { 669 case objabi.R_CONST: 670 *val = r.Add 671 return 0 672 673 case objabi.R_GOTOFF: 674 *val = ld.Symaddr(r.Sym) + r.Add - ld.Symaddr(ctxt.Syms.Lookup(".got", 0)) 675 return 0 676 677 case objabi.R_ADDRPOWER, objabi.R_ADDRPOWER_DS: 678 return archrelocaddr(ctxt, r, s, val) 679 680 case objabi.R_CALLPOWER: 681 // Bits 6 through 29 = (S + A - P) >> 2 682 683 t := ld.Symaddr(r.Sym) + r.Add - (s.Value + int64(r.Off)) 684 685 if t&3 != 0 { 686 ld.Errorf(s, "relocation for %s+%d is not aligned: %d", r.Sym.Name, r.Off, t) 687 } 688 // If branch offset is too far then create a trampoline. 689 690 if int64(int32(t<<6)>>6) != t { 691 ld.Errorf(s, "direct call too far: %s %x", r.Sym.Name, t) 692 } 693 *val |= int64(uint32(t) &^ 0xfc000003) 694 return 0 695 696 case objabi.R_POWER_TOC: // S + A - .TOC. 697 *val = ld.Symaddr(r.Sym) + r.Add - symtoc(ctxt, s) 698 699 return 0 700 701 case objabi.R_POWER_TLS_LE: 702 // The thread pointer points 0x7000 bytes after the start of the the 703 // thread local storage area as documented in section "3.7.2 TLS 704 // Runtime Handling" of "Power Architecture 64-Bit ELF V2 ABI 705 // Specification". 706 v := r.Sym.Value - 0x7000 707 if int64(int16(v)) != v { 708 ld.Errorf(s, "TLS offset out of range %d", v) 709 } 710 *val = (*val &^ 0xffff) | (v & 0xffff) 711 return 0 712 } 713 714 return -1 715 } 716 717 func archrelocvariant(ctxt *ld.Link, r *ld.Reloc, s *ld.Symbol, t int64) int64 { 718 switch r.Variant & ld.RV_TYPE_MASK { 719 default: 720 ld.Errorf(s, "unexpected relocation variant %d", r.Variant) 721 fallthrough 722 723 case ld.RV_NONE: 724 return t 725 726 case ld.RV_POWER_LO: 727 if r.Variant&ld.RV_CHECK_OVERFLOW != 0 { 728 // Whether to check for signed or unsigned 729 // overflow depends on the instruction 730 var o1 uint32 731 if ctxt.Arch.ByteOrder == binary.BigEndian { 732 o1 = ld.Be32(s.P[r.Off-2:]) 733 } else { 734 o1 = ld.Le32(s.P[r.Off:]) 735 } 736 switch o1 >> 26 { 737 case 24, // ori 738 26, // xori 739 28: // andi 740 if t>>16 != 0 { 741 goto overflow 742 } 743 744 default: 745 if int64(int16(t)) != t { 746 goto overflow 747 } 748 } 749 } 750 751 return int64(int16(t)) 752 753 case ld.RV_POWER_HA: 754 t += 0x8000 755 fallthrough 756 757 // Fallthrough 758 case ld.RV_POWER_HI: 759 t >>= 16 760 761 if r.Variant&ld.RV_CHECK_OVERFLOW != 0 { 762 // Whether to check for signed or unsigned 763 // overflow depends on the instruction 764 var o1 uint32 765 if ctxt.Arch.ByteOrder == binary.BigEndian { 766 o1 = ld.Be32(s.P[r.Off-2:]) 767 } else { 768 o1 = ld.Le32(s.P[r.Off:]) 769 } 770 switch o1 >> 26 { 771 case 25, // oris 772 27, // xoris 773 29: // andis 774 if t>>16 != 0 { 775 goto overflow 776 } 777 778 default: 779 if int64(int16(t)) != t { 780 goto overflow 781 } 782 } 783 } 784 785 return int64(int16(t)) 786 787 case ld.RV_POWER_DS: 788 var o1 uint32 789 if ctxt.Arch.ByteOrder == binary.BigEndian { 790 o1 = uint32(ld.Be16(s.P[r.Off:])) 791 } else { 792 o1 = uint32(ld.Le16(s.P[r.Off:])) 793 } 794 if t&3 != 0 { 795 ld.Errorf(s, "relocation for %s+%d is not aligned: %d", r.Sym.Name, r.Off, t) 796 } 797 if (r.Variant&ld.RV_CHECK_OVERFLOW != 0) && int64(int16(t)) != t { 798 goto overflow 799 } 800 return int64(o1)&0x3 | int64(int16(t)) 801 } 802 803 overflow: 804 ld.Errorf(s, "relocation for %s+%d is too big: %d", r.Sym.Name, r.Off, t) 805 return t 806 } 807 808 func addpltsym(ctxt *ld.Link, s *ld.Symbol) { 809 if s.Plt >= 0 { 810 return 811 } 812 813 ld.Adddynsym(ctxt, s) 814 815 if ld.Iself { 816 plt := ctxt.Syms.Lookup(".plt", 0) 817 rela := ctxt.Syms.Lookup(".rela.plt", 0) 818 if plt.Size == 0 { 819 elfsetupplt(ctxt) 820 } 821 822 // Create the glink resolver if necessary 823 glink := ensureglinkresolver(ctxt) 824 825 // Write symbol resolver stub (just a branch to the 826 // glink resolver stub) 827 r := ld.Addrel(glink) 828 829 r.Sym = glink 830 r.Off = int32(glink.Size) 831 r.Siz = 4 832 r.Type = objabi.R_CALLPOWER 833 ld.Adduint32(ctxt, glink, 0x48000000) // b .glink 834 835 // In the ppc64 ABI, the dynamic linker is responsible 836 // for writing the entire PLT. We just need to 837 // reserve 8 bytes for each PLT entry and generate a 838 // JMP_SLOT dynamic relocation for it. 839 // 840 // TODO(austin): ABI v1 is different 841 s.Plt = int32(plt.Size) 842 843 plt.Size += 8 844 845 ld.Addaddrplus(ctxt, rela, plt, int64(s.Plt)) 846 ld.Adduint64(ctxt, rela, ld.ELF64_R_INFO(uint32(s.Dynid), ld.R_PPC64_JMP_SLOT)) 847 ld.Adduint64(ctxt, rela, 0) 848 } else { 849 ld.Errorf(s, "addpltsym: unsupported binary format") 850 } 851 } 852 853 // Generate the glink resolver stub if necessary and return the .glink section 854 func ensureglinkresolver(ctxt *ld.Link) *ld.Symbol { 855 glink := ctxt.Syms.Lookup(".glink", 0) 856 if glink.Size != 0 { 857 return glink 858 } 859 860 // This is essentially the resolver from the ppc64 ELF ABI. 861 // At entry, r12 holds the address of the symbol resolver stub 862 // for the target routine and the argument registers hold the 863 // arguments for the target routine. 864 // 865 // This stub is PIC, so first get the PC of label 1 into r11. 866 // Other things will be relative to this. 867 ld.Adduint32(ctxt, glink, 0x7c0802a6) // mflr r0 868 ld.Adduint32(ctxt, glink, 0x429f0005) // bcl 20,31,1f 869 ld.Adduint32(ctxt, glink, 0x7d6802a6) // 1: mflr r11 870 ld.Adduint32(ctxt, glink, 0x7c0803a6) // mtlf r0 871 872 // Compute the .plt array index from the entry point address. 873 // Because this is PIC, everything is relative to label 1b (in 874 // r11): 875 // r0 = ((r12 - r11) - (res_0 - r11)) / 4 = (r12 - res_0) / 4 876 ld.Adduint32(ctxt, glink, 0x3800ffd0) // li r0,-(res_0-1b)=-48 877 ld.Adduint32(ctxt, glink, 0x7c006214) // add r0,r0,r12 878 ld.Adduint32(ctxt, glink, 0x7c0b0050) // sub r0,r0,r11 879 ld.Adduint32(ctxt, glink, 0x7800f082) // srdi r0,r0,2 880 881 // r11 = address of the first byte of the PLT 882 r := ld.Addrel(glink) 883 884 r.Off = int32(glink.Size) 885 r.Sym = ctxt.Syms.Lookup(".plt", 0) 886 r.Siz = 8 887 r.Type = objabi.R_ADDRPOWER 888 889 ld.Adduint32(ctxt, glink, 0x3d600000) // addis r11,0,.plt@ha 890 ld.Adduint32(ctxt, glink, 0x396b0000) // addi r11,r11,.plt@l 891 892 // Load r12 = dynamic resolver address and r11 = DSO 893 // identifier from the first two doublewords of the PLT. 894 ld.Adduint32(ctxt, glink, 0xe98b0000) // ld r12,0(r11) 895 ld.Adduint32(ctxt, glink, 0xe96b0008) // ld r11,8(r11) 896 897 // Jump to the dynamic resolver 898 ld.Adduint32(ctxt, glink, 0x7d8903a6) // mtctr r12 899 ld.Adduint32(ctxt, glink, 0x4e800420) // bctr 900 901 // The symbol resolvers must immediately follow. 902 // res_0: 903 904 // Add DT_PPC64_GLINK .dynamic entry, which points to 32 bytes 905 // before the first symbol resolver stub. 906 s := ctxt.Syms.Lookup(".dynamic", 0) 907 908 ld.Elfwritedynentsymplus(ctxt, s, ld.DT_PPC64_GLINK, glink, glink.Size-32) 909 910 return glink 911 } 912 913 func asmb(ctxt *ld.Link) { 914 if ctxt.Debugvlog != 0 { 915 ctxt.Logf("%5.2f asmb\n", ld.Cputime()) 916 } 917 918 if ld.Iself { 919 ld.Asmbelfsetup() 920 } 921 922 for _, sect := range ld.Segtext.Sections { 923 ld.Cseek(int64(sect.Vaddr - ld.Segtext.Vaddr + ld.Segtext.Fileoff)) 924 // Handle additional text sections with Codeblk 925 if sect.Name == ".text" { 926 ld.Codeblk(ctxt, int64(sect.Vaddr), int64(sect.Length)) 927 } else { 928 ld.Datblk(ctxt, int64(sect.Vaddr), int64(sect.Length)) 929 } 930 } 931 932 if ld.Segrodata.Filelen > 0 { 933 if ctxt.Debugvlog != 0 { 934 ctxt.Logf("%5.2f rodatblk\n", ld.Cputime()) 935 } 936 ld.Cseek(int64(ld.Segrodata.Fileoff)) 937 ld.Datblk(ctxt, int64(ld.Segrodata.Vaddr), int64(ld.Segrodata.Filelen)) 938 } 939 if ld.Segrelrodata.Filelen > 0 { 940 if ctxt.Debugvlog != 0 { 941 ctxt.Logf("%5.2f relrodatblk\n", ld.Cputime()) 942 } 943 ld.Cseek(int64(ld.Segrelrodata.Fileoff)) 944 ld.Datblk(ctxt, int64(ld.Segrelrodata.Vaddr), int64(ld.Segrelrodata.Filelen)) 945 } 946 947 if ctxt.Debugvlog != 0 { 948 ctxt.Logf("%5.2f datblk\n", ld.Cputime()) 949 } 950 951 ld.Cseek(int64(ld.Segdata.Fileoff)) 952 ld.Datblk(ctxt, int64(ld.Segdata.Vaddr), int64(ld.Segdata.Filelen)) 953 954 ld.Cseek(int64(ld.Segdwarf.Fileoff)) 955 ld.Dwarfblk(ctxt, int64(ld.Segdwarf.Vaddr), int64(ld.Segdwarf.Filelen)) 956 957 /* output symbol table */ 958 ld.Symsize = 0 959 960 ld.Lcsize = 0 961 symo := uint32(0) 962 if !*ld.FlagS { 963 // TODO: rationalize 964 if ctxt.Debugvlog != 0 { 965 ctxt.Logf("%5.2f sym\n", ld.Cputime()) 966 } 967 switch ld.Headtype { 968 default: 969 if ld.Iself { 970 symo = uint32(ld.Segdwarf.Fileoff + ld.Segdwarf.Filelen) 971 symo = uint32(ld.Rnd(int64(symo), int64(*ld.FlagRound))) 972 } 973 974 case objabi.Hplan9: 975 symo = uint32(ld.Segdata.Fileoff + ld.Segdata.Filelen) 976 } 977 978 ld.Cseek(int64(symo)) 979 switch ld.Headtype { 980 default: 981 if ld.Iself { 982 if ctxt.Debugvlog != 0 { 983 ctxt.Logf("%5.2f elfsym\n", ld.Cputime()) 984 } 985 ld.Asmelfsym(ctxt) 986 ld.Cflush() 987 ld.Cwrite(ld.Elfstrdat) 988 989 if ld.Linkmode == ld.LinkExternal { 990 ld.Elfemitreloc(ctxt) 991 } 992 } 993 994 case objabi.Hplan9: 995 ld.Asmplan9sym(ctxt) 996 ld.Cflush() 997 998 sym := ctxt.Syms.Lookup("pclntab", 0) 999 if sym != nil { 1000 ld.Lcsize = int32(len(sym.P)) 1001 for i := 0; int32(i) < ld.Lcsize; i++ { 1002 ld.Cput(sym.P[i]) 1003 } 1004 1005 ld.Cflush() 1006 } 1007 } 1008 } 1009 1010 if ctxt.Debugvlog != 0 { 1011 ctxt.Logf("%5.2f header\n", ld.Cputime()) 1012 } 1013 ld.Cseek(0) 1014 switch ld.Headtype { 1015 default: 1016 case objabi.Hplan9: /* plan 9 */ 1017 ld.Thearch.Lput(0x647) /* magic */ 1018 ld.Thearch.Lput(uint32(ld.Segtext.Filelen)) /* sizes */ 1019 ld.Thearch.Lput(uint32(ld.Segdata.Filelen)) 1020 ld.Thearch.Lput(uint32(ld.Segdata.Length - ld.Segdata.Filelen)) 1021 ld.Thearch.Lput(uint32(ld.Symsize)) /* nsyms */ 1022 ld.Thearch.Lput(uint32(ld.Entryvalue(ctxt))) /* va of entry */ 1023 ld.Thearch.Lput(0) 1024 ld.Thearch.Lput(uint32(ld.Lcsize)) 1025 1026 case objabi.Hlinux, 1027 objabi.Hfreebsd, 1028 objabi.Hnetbsd, 1029 objabi.Hopenbsd, 1030 objabi.Hnacl: 1031 ld.Asmbelf(ctxt, int64(symo)) 1032 } 1033 1034 ld.Cflush() 1035 if *ld.FlagC { 1036 fmt.Printf("textsize=%d\n", ld.Segtext.Filelen) 1037 fmt.Printf("datsize=%d\n", ld.Segdata.Filelen) 1038 fmt.Printf("bsssize=%d\n", ld.Segdata.Length-ld.Segdata.Filelen) 1039 fmt.Printf("symsize=%d\n", ld.Symsize) 1040 fmt.Printf("lcsize=%d\n", ld.Lcsize) 1041 fmt.Printf("total=%d\n", ld.Segtext.Filelen+ld.Segdata.Length+uint64(ld.Symsize)+uint64(ld.Lcsize)) 1042 } 1043 }