github.com/zebozhuang/go@v0.0.0-20200207033046-f8a98f6f5c5d/src/crypto/rsa/rsa.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package rsa implements RSA encryption as specified in PKCS#1.
     6  //
     7  // RSA is a single, fundamental operation that is used in this package to
     8  // implement either public-key encryption or public-key signatures.
     9  //
    10  // The original specification for encryption and signatures with RSA is PKCS#1
    11  // and the terms "RSA encryption" and "RSA signatures" by default refer to
    12  // PKCS#1 version 1.5. However, that specification has flaws and new designs
    13  // should use version two, usually called by just OAEP and PSS, where
    14  // possible.
    15  //
    16  // Two sets of interfaces are included in this package. When a more abstract
    17  // interface isn't necessary, there are functions for encrypting/decrypting
    18  // with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract
    19  // over the public-key primitive, the PrivateKey struct implements the
    20  // Decrypter and Signer interfaces from the crypto package.
    21  //
    22  // The RSA operations in this package are not implemented using constant-time algorithms.
    23  package rsa
    24  
    25  import (
    26  	"crypto"
    27  	"crypto/rand"
    28  	"crypto/subtle"
    29  	"errors"
    30  	"hash"
    31  	"io"
    32  	"math"
    33  	"math/big"
    34  )
    35  
    36  var bigZero = big.NewInt(0)
    37  var bigOne = big.NewInt(1)
    38  
    39  // A PublicKey represents the public part of an RSA key.
    40  type PublicKey struct {
    41  	N *big.Int // modulus
    42  	E int      // public exponent
    43  }
    44  
    45  // OAEPOptions is an interface for passing options to OAEP decryption using the
    46  // crypto.Decrypter interface.
    47  type OAEPOptions struct {
    48  	// Hash is the hash function that will be used when generating the mask.
    49  	Hash crypto.Hash
    50  	// Label is an arbitrary byte string that must be equal to the value
    51  	// used when encrypting.
    52  	Label []byte
    53  }
    54  
    55  var (
    56  	errPublicModulus       = errors.New("crypto/rsa: missing public modulus")
    57  	errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small")
    58  	errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large")
    59  )
    60  
    61  // checkPub sanity checks the public key before we use it.
    62  // We require pub.E to fit into a 32-bit integer so that we
    63  // do not have different behavior depending on whether
    64  // int is 32 or 64 bits. See also
    65  // http://www.imperialviolet.org/2012/03/16/rsae.html.
    66  func checkPub(pub *PublicKey) error {
    67  	if pub.N == nil {
    68  		return errPublicModulus
    69  	}
    70  	if pub.E < 2 {
    71  		return errPublicExponentSmall
    72  	}
    73  	if pub.E > 1<<31-1 {
    74  		return errPublicExponentLarge
    75  	}
    76  	return nil
    77  }
    78  
    79  // A PrivateKey represents an RSA key
    80  type PrivateKey struct {
    81  	PublicKey            // public part.
    82  	D         *big.Int   // private exponent
    83  	Primes    []*big.Int // prime factors of N, has >= 2 elements.
    84  
    85  	// Precomputed contains precomputed values that speed up private
    86  	// operations, if available.
    87  	Precomputed PrecomputedValues
    88  }
    89  
    90  // Public returns the public key corresponding to priv.
    91  func (priv *PrivateKey) Public() crypto.PublicKey {
    92  	return &priv.PublicKey
    93  }
    94  
    95  // Sign signs msg with priv, reading randomness from rand. If opts is a
    96  // *PSSOptions then the PSS algorithm will be used, otherwise PKCS#1 v1.5 will
    97  // be used. This method is intended to support keys where the private part is
    98  // kept in, for example, a hardware module. Common uses should use the Sign*
    99  // functions in this package.
   100  func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) {
   101  	if pssOpts, ok := opts.(*PSSOptions); ok {
   102  		return SignPSS(rand, priv, pssOpts.Hash, msg, pssOpts)
   103  	}
   104  
   105  	return SignPKCS1v15(rand, priv, opts.HashFunc(), msg)
   106  }
   107  
   108  // Decrypt decrypts ciphertext with priv. If opts is nil or of type
   109  // *PKCS1v15DecryptOptions then PKCS#1 v1.5 decryption is performed. Otherwise
   110  // opts must have type *OAEPOptions and OAEP decryption is done.
   111  func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) {
   112  	if opts == nil {
   113  		return DecryptPKCS1v15(rand, priv, ciphertext)
   114  	}
   115  
   116  	switch opts := opts.(type) {
   117  	case *OAEPOptions:
   118  		return DecryptOAEP(opts.Hash.New(), rand, priv, ciphertext, opts.Label)
   119  
   120  	case *PKCS1v15DecryptOptions:
   121  		if l := opts.SessionKeyLen; l > 0 {
   122  			plaintext = make([]byte, l)
   123  			if _, err := io.ReadFull(rand, plaintext); err != nil {
   124  				return nil, err
   125  			}
   126  			if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil {
   127  				return nil, err
   128  			}
   129  			return plaintext, nil
   130  		} else {
   131  			return DecryptPKCS1v15(rand, priv, ciphertext)
   132  		}
   133  
   134  	default:
   135  		return nil, errors.New("crypto/rsa: invalid options for Decrypt")
   136  	}
   137  }
   138  
   139  type PrecomputedValues struct {
   140  	Dp, Dq *big.Int // D mod (P-1) (or mod Q-1)
   141  	Qinv   *big.Int // Q^-1 mod P
   142  
   143  	// CRTValues is used for the 3rd and subsequent primes. Due to a
   144  	// historical accident, the CRT for the first two primes is handled
   145  	// differently in PKCS#1 and interoperability is sufficiently
   146  	// important that we mirror this.
   147  	CRTValues []CRTValue
   148  }
   149  
   150  // CRTValue contains the precomputed Chinese remainder theorem values.
   151  type CRTValue struct {
   152  	Exp   *big.Int // D mod (prime-1).
   153  	Coeff *big.Int // R·Coeff ≡ 1 mod Prime.
   154  	R     *big.Int // product of primes prior to this (inc p and q).
   155  }
   156  
   157  // Validate performs basic sanity checks on the key.
   158  // It returns nil if the key is valid, or else an error describing a problem.
   159  func (priv *PrivateKey) Validate() error {
   160  	if err := checkPub(&priv.PublicKey); err != nil {
   161  		return err
   162  	}
   163  
   164  	// Check that Πprimes == n.
   165  	modulus := new(big.Int).Set(bigOne)
   166  	for _, prime := range priv.Primes {
   167  		// Any primes ≤ 1 will cause divide-by-zero panics later.
   168  		if prime.Cmp(bigOne) <= 0 {
   169  			return errors.New("crypto/rsa: invalid prime value")
   170  		}
   171  		modulus.Mul(modulus, prime)
   172  	}
   173  	if modulus.Cmp(priv.N) != 0 {
   174  		return errors.New("crypto/rsa: invalid modulus")
   175  	}
   176  
   177  	// Check that de ≡ 1 mod p-1, for each prime.
   178  	// This implies that e is coprime to each p-1 as e has a multiplicative
   179  	// inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) =
   180  	// exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1
   181  	// mod p. Thus a^de ≡ a mod n for all a coprime to n, as required.
   182  	congruence := new(big.Int)
   183  	de := new(big.Int).SetInt64(int64(priv.E))
   184  	de.Mul(de, priv.D)
   185  	for _, prime := range priv.Primes {
   186  		pminus1 := new(big.Int).Sub(prime, bigOne)
   187  		congruence.Mod(de, pminus1)
   188  		if congruence.Cmp(bigOne) != 0 {
   189  			return errors.New("crypto/rsa: invalid exponents")
   190  		}
   191  	}
   192  	return nil
   193  }
   194  
   195  // GenerateKey generates an RSA keypair of the given bit size using the
   196  // random source random (for example, crypto/rand.Reader).
   197  func GenerateKey(random io.Reader, bits int) (*PrivateKey, error) {
   198  	return GenerateMultiPrimeKey(random, 2, bits)
   199  }
   200  
   201  // GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit
   202  // size and the given random source, as suggested in [1]. Although the public
   203  // keys are compatible (actually, indistinguishable) from the 2-prime case,
   204  // the private keys are not. Thus it may not be possible to export multi-prime
   205  // private keys in certain formats or to subsequently import them into other
   206  // code.
   207  //
   208  // Table 1 in [2] suggests maximum numbers of primes for a given size.
   209  //
   210  // [1] US patent 4405829 (1972, expired)
   211  // [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
   212  func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (*PrivateKey, error) {
   213  	priv := new(PrivateKey)
   214  	priv.E = 65537
   215  
   216  	if nprimes < 2 {
   217  		return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2")
   218  	}
   219  
   220  	if bits < 64 {
   221  		primeLimit := float64(uint64(1) << uint(bits/nprimes))
   222  		// pi approximates the number of primes less than primeLimit
   223  		pi := primeLimit / (math.Log(primeLimit) - 1)
   224  		// Generated primes start with 11 (in binary) so we can only
   225  		// use a quarter of them.
   226  		pi /= 4
   227  		// Use a factor of two to ensure that key generation terminates
   228  		// in a reasonable amount of time.
   229  		pi /= 2
   230  		if pi <= float64(nprimes) {
   231  			return nil, errors.New("crypto/rsa: too few primes of given length to generate an RSA key")
   232  		}
   233  	}
   234  
   235  	primes := make([]*big.Int, nprimes)
   236  
   237  NextSetOfPrimes:
   238  	for {
   239  		todo := bits
   240  		// crypto/rand should set the top two bits in each prime.
   241  		// Thus each prime has the form
   242  		//   p_i = 2^bitlen(p_i) × 0.11... (in base 2).
   243  		// And the product is:
   244  		//   P = 2^todo × α
   245  		// where α is the product of nprimes numbers of the form 0.11...
   246  		//
   247  		// If α < 1/2 (which can happen for nprimes > 2), we need to
   248  		// shift todo to compensate for lost bits: the mean value of 0.11...
   249  		// is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2
   250  		// will give good results.
   251  		if nprimes >= 7 {
   252  			todo += (nprimes - 2) / 5
   253  		}
   254  		for i := 0; i < nprimes; i++ {
   255  			var err error
   256  			primes[i], err = rand.Prime(random, todo/(nprimes-i))
   257  			if err != nil {
   258  				return nil, err
   259  			}
   260  			todo -= primes[i].BitLen()
   261  		}
   262  
   263  		// Make sure that primes is pairwise unequal.
   264  		for i, prime := range primes {
   265  			for j := 0; j < i; j++ {
   266  				if prime.Cmp(primes[j]) == 0 {
   267  					continue NextSetOfPrimes
   268  				}
   269  			}
   270  		}
   271  
   272  		n := new(big.Int).Set(bigOne)
   273  		totient := new(big.Int).Set(bigOne)
   274  		pminus1 := new(big.Int)
   275  		for _, prime := range primes {
   276  			n.Mul(n, prime)
   277  			pminus1.Sub(prime, bigOne)
   278  			totient.Mul(totient, pminus1)
   279  		}
   280  		if n.BitLen() != bits {
   281  			// This should never happen for nprimes == 2 because
   282  			// crypto/rand should set the top two bits in each prime.
   283  			// For nprimes > 2 we hope it does not happen often.
   284  			continue NextSetOfPrimes
   285  		}
   286  
   287  		g := new(big.Int)
   288  		priv.D = new(big.Int)
   289  		e := big.NewInt(int64(priv.E))
   290  		g.GCD(priv.D, nil, e, totient)
   291  
   292  		if g.Cmp(bigOne) == 0 {
   293  			if priv.D.Sign() < 0 {
   294  				priv.D.Add(priv.D, totient)
   295  			}
   296  			priv.Primes = primes
   297  			priv.N = n
   298  
   299  			break
   300  		}
   301  	}
   302  
   303  	priv.Precompute()
   304  	return priv, nil
   305  }
   306  
   307  // incCounter increments a four byte, big-endian counter.
   308  func incCounter(c *[4]byte) {
   309  	if c[3]++; c[3] != 0 {
   310  		return
   311  	}
   312  	if c[2]++; c[2] != 0 {
   313  		return
   314  	}
   315  	if c[1]++; c[1] != 0 {
   316  		return
   317  	}
   318  	c[0]++
   319  }
   320  
   321  // mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function
   322  // specified in PKCS#1 v2.1.
   323  func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
   324  	var counter [4]byte
   325  	var digest []byte
   326  
   327  	done := 0
   328  	for done < len(out) {
   329  		hash.Write(seed)
   330  		hash.Write(counter[0:4])
   331  		digest = hash.Sum(digest[:0])
   332  		hash.Reset()
   333  
   334  		for i := 0; i < len(digest) && done < len(out); i++ {
   335  			out[done] ^= digest[i]
   336  			done++
   337  		}
   338  		incCounter(&counter)
   339  	}
   340  }
   341  
   342  // ErrMessageTooLong is returned when attempting to encrypt a message which is
   343  // too large for the size of the public key.
   344  var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size")
   345  
   346  func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
   347  	e := big.NewInt(int64(pub.E))
   348  	c.Exp(m, e, pub.N)
   349  	return c
   350  }
   351  
   352  // EncryptOAEP encrypts the given message with RSA-OAEP.
   353  //
   354  // OAEP is parameterised by a hash function that is used as a random oracle.
   355  // Encryption and decryption of a given message must use the same hash function
   356  // and sha256.New() is a reasonable choice.
   357  //
   358  // The random parameter is used as a source of entropy to ensure that
   359  // encrypting the same message twice doesn't result in the same ciphertext.
   360  //
   361  // The label parameter may contain arbitrary data that will not be encrypted,
   362  // but which gives important context to the message. For example, if a given
   363  // public key is used to decrypt two types of messages then distinct label
   364  // values could be used to ensure that a ciphertext for one purpose cannot be
   365  // used for another by an attacker. If not required it can be empty.
   366  //
   367  // The message must be no longer than the length of the public modulus minus
   368  // twice the hash length, minus a further 2.
   369  func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) ([]byte, error) {
   370  	if err := checkPub(pub); err != nil {
   371  		return nil, err
   372  	}
   373  	hash.Reset()
   374  	k := (pub.N.BitLen() + 7) / 8
   375  	if len(msg) > k-2*hash.Size()-2 {
   376  		return nil, ErrMessageTooLong
   377  	}
   378  
   379  	hash.Write(label)
   380  	lHash := hash.Sum(nil)
   381  	hash.Reset()
   382  
   383  	em := make([]byte, k)
   384  	seed := em[1 : 1+hash.Size()]
   385  	db := em[1+hash.Size():]
   386  
   387  	copy(db[0:hash.Size()], lHash)
   388  	db[len(db)-len(msg)-1] = 1
   389  	copy(db[len(db)-len(msg):], msg)
   390  
   391  	_, err := io.ReadFull(random, seed)
   392  	if err != nil {
   393  		return nil, err
   394  	}
   395  
   396  	mgf1XOR(db, hash, seed)
   397  	mgf1XOR(seed, hash, db)
   398  
   399  	m := new(big.Int)
   400  	m.SetBytes(em)
   401  	c := encrypt(new(big.Int), pub, m)
   402  	out := c.Bytes()
   403  
   404  	if len(out) < k {
   405  		// If the output is too small, we need to left-pad with zeros.
   406  		t := make([]byte, k)
   407  		copy(t[k-len(out):], out)
   408  		out = t
   409  	}
   410  
   411  	return out, nil
   412  }
   413  
   414  // ErrDecryption represents a failure to decrypt a message.
   415  // It is deliberately vague to avoid adaptive attacks.
   416  var ErrDecryption = errors.New("crypto/rsa: decryption error")
   417  
   418  // ErrVerification represents a failure to verify a signature.
   419  // It is deliberately vague to avoid adaptive attacks.
   420  var ErrVerification = errors.New("crypto/rsa: verification error")
   421  
   422  // modInverse returns ia, the inverse of a in the multiplicative group of prime
   423  // order n. It requires that a be a member of the group (i.e. less than n).
   424  func modInverse(a, n *big.Int) (ia *big.Int, ok bool) {
   425  	g := new(big.Int)
   426  	x := new(big.Int)
   427  	y := new(big.Int)
   428  	g.GCD(x, y, a, n)
   429  	if g.Cmp(bigOne) != 0 {
   430  		// In this case, a and n aren't coprime and we cannot calculate
   431  		// the inverse. This happens because the values of n are nearly
   432  		// prime (being the product of two primes) rather than truly
   433  		// prime.
   434  		return
   435  	}
   436  
   437  	if x.Cmp(bigOne) < 0 {
   438  		// 0 is not the multiplicative inverse of any element so, if x
   439  		// < 1, then x is negative.
   440  		x.Add(x, n)
   441  	}
   442  
   443  	return x, true
   444  }
   445  
   446  // Precompute performs some calculations that speed up private key operations
   447  // in the future.
   448  func (priv *PrivateKey) Precompute() {
   449  	if priv.Precomputed.Dp != nil {
   450  		return
   451  	}
   452  
   453  	priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne)
   454  	priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp)
   455  
   456  	priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne)
   457  	priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq)
   458  
   459  	priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0])
   460  
   461  	r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
   462  	priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2)
   463  	for i := 2; i < len(priv.Primes); i++ {
   464  		prime := priv.Primes[i]
   465  		values := &priv.Precomputed.CRTValues[i-2]
   466  
   467  		values.Exp = new(big.Int).Sub(prime, bigOne)
   468  		values.Exp.Mod(priv.D, values.Exp)
   469  
   470  		values.R = new(big.Int).Set(r)
   471  		values.Coeff = new(big.Int).ModInverse(r, prime)
   472  
   473  		r.Mul(r, prime)
   474  	}
   475  }
   476  
   477  // decrypt performs an RSA decryption, resulting in a plaintext integer. If a
   478  // random source is given, RSA blinding is used.
   479  func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
   480  	// TODO(agl): can we get away with reusing blinds?
   481  	if c.Cmp(priv.N) > 0 {
   482  		err = ErrDecryption
   483  		return
   484  	}
   485  	if priv.N.Sign() == 0 {
   486  		return nil, ErrDecryption
   487  	}
   488  
   489  	var ir *big.Int
   490  	if random != nil {
   491  		// Blinding enabled. Blinding involves multiplying c by r^e.
   492  		// Then the decryption operation performs (m^e * r^e)^d mod n
   493  		// which equals mr mod n. The factor of r can then be removed
   494  		// by multiplying by the multiplicative inverse of r.
   495  
   496  		var r *big.Int
   497  
   498  		for {
   499  			r, err = rand.Int(random, priv.N)
   500  			if err != nil {
   501  				return
   502  			}
   503  			if r.Cmp(bigZero) == 0 {
   504  				r = bigOne
   505  			}
   506  			var ok bool
   507  			ir, ok = modInverse(r, priv.N)
   508  			if ok {
   509  				break
   510  			}
   511  		}
   512  		bigE := big.NewInt(int64(priv.E))
   513  		rpowe := new(big.Int).Exp(r, bigE, priv.N) // N != 0
   514  		cCopy := new(big.Int).Set(c)
   515  		cCopy.Mul(cCopy, rpowe)
   516  		cCopy.Mod(cCopy, priv.N)
   517  		c = cCopy
   518  	}
   519  
   520  	if priv.Precomputed.Dp == nil {
   521  		m = new(big.Int).Exp(c, priv.D, priv.N)
   522  	} else {
   523  		// We have the precalculated values needed for the CRT.
   524  		m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0])
   525  		m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1])
   526  		m.Sub(m, m2)
   527  		if m.Sign() < 0 {
   528  			m.Add(m, priv.Primes[0])
   529  		}
   530  		m.Mul(m, priv.Precomputed.Qinv)
   531  		m.Mod(m, priv.Primes[0])
   532  		m.Mul(m, priv.Primes[1])
   533  		m.Add(m, m2)
   534  
   535  		for i, values := range priv.Precomputed.CRTValues {
   536  			prime := priv.Primes[2+i]
   537  			m2.Exp(c, values.Exp, prime)
   538  			m2.Sub(m2, m)
   539  			m2.Mul(m2, values.Coeff)
   540  			m2.Mod(m2, prime)
   541  			if m2.Sign() < 0 {
   542  				m2.Add(m2, prime)
   543  			}
   544  			m2.Mul(m2, values.R)
   545  			m.Add(m, m2)
   546  		}
   547  	}
   548  
   549  	if ir != nil {
   550  		// Unblind.
   551  		m.Mul(m, ir)
   552  		m.Mod(m, priv.N)
   553  	}
   554  
   555  	return
   556  }
   557  
   558  func decryptAndCheck(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
   559  	m, err = decrypt(random, priv, c)
   560  	if err != nil {
   561  		return nil, err
   562  	}
   563  
   564  	// In order to defend against errors in the CRT computation, m^e is
   565  	// calculated, which should match the original ciphertext.
   566  	check := encrypt(new(big.Int), &priv.PublicKey, m)
   567  	if c.Cmp(check) != 0 {
   568  		return nil, errors.New("rsa: internal error")
   569  	}
   570  	return m, nil
   571  }
   572  
   573  // DecryptOAEP decrypts ciphertext using RSA-OAEP.
   574  
   575  // OAEP is parameterised by a hash function that is used as a random oracle.
   576  // Encryption and decryption of a given message must use the same hash function
   577  // and sha256.New() is a reasonable choice.
   578  //
   579  // The random parameter, if not nil, is used to blind the private-key operation
   580  // and avoid timing side-channel attacks. Blinding is purely internal to this
   581  // function – the random data need not match that used when encrypting.
   582  //
   583  // The label parameter must match the value given when encrypting. See
   584  // EncryptOAEP for details.
   585  func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) ([]byte, error) {
   586  	if err := checkPub(&priv.PublicKey); err != nil {
   587  		return nil, err
   588  	}
   589  	k := (priv.N.BitLen() + 7) / 8
   590  	if len(ciphertext) > k ||
   591  		k < hash.Size()*2+2 {
   592  		return nil, ErrDecryption
   593  	}
   594  
   595  	c := new(big.Int).SetBytes(ciphertext)
   596  
   597  	m, err := decrypt(random, priv, c)
   598  	if err != nil {
   599  		return nil, err
   600  	}
   601  
   602  	hash.Write(label)
   603  	lHash := hash.Sum(nil)
   604  	hash.Reset()
   605  
   606  	// Converting the plaintext number to bytes will strip any
   607  	// leading zeros so we may have to left pad. We do this unconditionally
   608  	// to avoid leaking timing information. (Although we still probably
   609  	// leak the number of leading zeros. It's not clear that we can do
   610  	// anything about this.)
   611  	em := leftPad(m.Bytes(), k)
   612  
   613  	firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
   614  
   615  	seed := em[1 : hash.Size()+1]
   616  	db := em[hash.Size()+1:]
   617  
   618  	mgf1XOR(seed, hash, db)
   619  	mgf1XOR(db, hash, seed)
   620  
   621  	lHash2 := db[0:hash.Size()]
   622  
   623  	// We have to validate the plaintext in constant time in order to avoid
   624  	// attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal
   625  	// Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1
   626  	// v2.0. In J. Kilian, editor, Advances in Cryptology.
   627  	lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2)
   628  
   629  	// The remainder of the plaintext must be zero or more 0x00, followed
   630  	// by 0x01, followed by the message.
   631  	//   lookingForIndex: 1 iff we are still looking for the 0x01
   632  	//   index: the offset of the first 0x01 byte
   633  	//   invalid: 1 iff we saw a non-zero byte before the 0x01.
   634  	var lookingForIndex, index, invalid int
   635  	lookingForIndex = 1
   636  	rest := db[hash.Size():]
   637  
   638  	for i := 0; i < len(rest); i++ {
   639  		equals0 := subtle.ConstantTimeByteEq(rest[i], 0)
   640  		equals1 := subtle.ConstantTimeByteEq(rest[i], 1)
   641  		index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index)
   642  		lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex)
   643  		invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid)
   644  	}
   645  
   646  	if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 {
   647  		return nil, ErrDecryption
   648  	}
   649  
   650  	return rest[index+1:], nil
   651  }
   652  
   653  // leftPad returns a new slice of length size. The contents of input are right
   654  // aligned in the new slice.
   655  func leftPad(input []byte, size int) (out []byte) {
   656  	n := len(input)
   657  	if n > size {
   658  		n = size
   659  	}
   660  	out = make([]byte, size)
   661  	copy(out[len(out)-n:], input)
   662  	return
   663  }