github.com/zebozhuang/go@v0.0.0-20200207033046-f8a98f6f5c5d/src/crypto/rsa/rsa.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package rsa implements RSA encryption as specified in PKCS#1. 6 // 7 // RSA is a single, fundamental operation that is used in this package to 8 // implement either public-key encryption or public-key signatures. 9 // 10 // The original specification for encryption and signatures with RSA is PKCS#1 11 // and the terms "RSA encryption" and "RSA signatures" by default refer to 12 // PKCS#1 version 1.5. However, that specification has flaws and new designs 13 // should use version two, usually called by just OAEP and PSS, where 14 // possible. 15 // 16 // Two sets of interfaces are included in this package. When a more abstract 17 // interface isn't necessary, there are functions for encrypting/decrypting 18 // with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract 19 // over the public-key primitive, the PrivateKey struct implements the 20 // Decrypter and Signer interfaces from the crypto package. 21 // 22 // The RSA operations in this package are not implemented using constant-time algorithms. 23 package rsa 24 25 import ( 26 "crypto" 27 "crypto/rand" 28 "crypto/subtle" 29 "errors" 30 "hash" 31 "io" 32 "math" 33 "math/big" 34 ) 35 36 var bigZero = big.NewInt(0) 37 var bigOne = big.NewInt(1) 38 39 // A PublicKey represents the public part of an RSA key. 40 type PublicKey struct { 41 N *big.Int // modulus 42 E int // public exponent 43 } 44 45 // OAEPOptions is an interface for passing options to OAEP decryption using the 46 // crypto.Decrypter interface. 47 type OAEPOptions struct { 48 // Hash is the hash function that will be used when generating the mask. 49 Hash crypto.Hash 50 // Label is an arbitrary byte string that must be equal to the value 51 // used when encrypting. 52 Label []byte 53 } 54 55 var ( 56 errPublicModulus = errors.New("crypto/rsa: missing public modulus") 57 errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small") 58 errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large") 59 ) 60 61 // checkPub sanity checks the public key before we use it. 62 // We require pub.E to fit into a 32-bit integer so that we 63 // do not have different behavior depending on whether 64 // int is 32 or 64 bits. See also 65 // http://www.imperialviolet.org/2012/03/16/rsae.html. 66 func checkPub(pub *PublicKey) error { 67 if pub.N == nil { 68 return errPublicModulus 69 } 70 if pub.E < 2 { 71 return errPublicExponentSmall 72 } 73 if pub.E > 1<<31-1 { 74 return errPublicExponentLarge 75 } 76 return nil 77 } 78 79 // A PrivateKey represents an RSA key 80 type PrivateKey struct { 81 PublicKey // public part. 82 D *big.Int // private exponent 83 Primes []*big.Int // prime factors of N, has >= 2 elements. 84 85 // Precomputed contains precomputed values that speed up private 86 // operations, if available. 87 Precomputed PrecomputedValues 88 } 89 90 // Public returns the public key corresponding to priv. 91 func (priv *PrivateKey) Public() crypto.PublicKey { 92 return &priv.PublicKey 93 } 94 95 // Sign signs msg with priv, reading randomness from rand. If opts is a 96 // *PSSOptions then the PSS algorithm will be used, otherwise PKCS#1 v1.5 will 97 // be used. This method is intended to support keys where the private part is 98 // kept in, for example, a hardware module. Common uses should use the Sign* 99 // functions in this package. 100 func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) { 101 if pssOpts, ok := opts.(*PSSOptions); ok { 102 return SignPSS(rand, priv, pssOpts.Hash, msg, pssOpts) 103 } 104 105 return SignPKCS1v15(rand, priv, opts.HashFunc(), msg) 106 } 107 108 // Decrypt decrypts ciphertext with priv. If opts is nil or of type 109 // *PKCS1v15DecryptOptions then PKCS#1 v1.5 decryption is performed. Otherwise 110 // opts must have type *OAEPOptions and OAEP decryption is done. 111 func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) { 112 if opts == nil { 113 return DecryptPKCS1v15(rand, priv, ciphertext) 114 } 115 116 switch opts := opts.(type) { 117 case *OAEPOptions: 118 return DecryptOAEP(opts.Hash.New(), rand, priv, ciphertext, opts.Label) 119 120 case *PKCS1v15DecryptOptions: 121 if l := opts.SessionKeyLen; l > 0 { 122 plaintext = make([]byte, l) 123 if _, err := io.ReadFull(rand, plaintext); err != nil { 124 return nil, err 125 } 126 if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil { 127 return nil, err 128 } 129 return plaintext, nil 130 } else { 131 return DecryptPKCS1v15(rand, priv, ciphertext) 132 } 133 134 default: 135 return nil, errors.New("crypto/rsa: invalid options for Decrypt") 136 } 137 } 138 139 type PrecomputedValues struct { 140 Dp, Dq *big.Int // D mod (P-1) (or mod Q-1) 141 Qinv *big.Int // Q^-1 mod P 142 143 // CRTValues is used for the 3rd and subsequent primes. Due to a 144 // historical accident, the CRT for the first two primes is handled 145 // differently in PKCS#1 and interoperability is sufficiently 146 // important that we mirror this. 147 CRTValues []CRTValue 148 } 149 150 // CRTValue contains the precomputed Chinese remainder theorem values. 151 type CRTValue struct { 152 Exp *big.Int // D mod (prime-1). 153 Coeff *big.Int // R·Coeff ≡ 1 mod Prime. 154 R *big.Int // product of primes prior to this (inc p and q). 155 } 156 157 // Validate performs basic sanity checks on the key. 158 // It returns nil if the key is valid, or else an error describing a problem. 159 func (priv *PrivateKey) Validate() error { 160 if err := checkPub(&priv.PublicKey); err != nil { 161 return err 162 } 163 164 // Check that Πprimes == n. 165 modulus := new(big.Int).Set(bigOne) 166 for _, prime := range priv.Primes { 167 // Any primes ≤ 1 will cause divide-by-zero panics later. 168 if prime.Cmp(bigOne) <= 0 { 169 return errors.New("crypto/rsa: invalid prime value") 170 } 171 modulus.Mul(modulus, prime) 172 } 173 if modulus.Cmp(priv.N) != 0 { 174 return errors.New("crypto/rsa: invalid modulus") 175 } 176 177 // Check that de ≡ 1 mod p-1, for each prime. 178 // This implies that e is coprime to each p-1 as e has a multiplicative 179 // inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) = 180 // exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1 181 // mod p. Thus a^de ≡ a mod n for all a coprime to n, as required. 182 congruence := new(big.Int) 183 de := new(big.Int).SetInt64(int64(priv.E)) 184 de.Mul(de, priv.D) 185 for _, prime := range priv.Primes { 186 pminus1 := new(big.Int).Sub(prime, bigOne) 187 congruence.Mod(de, pminus1) 188 if congruence.Cmp(bigOne) != 0 { 189 return errors.New("crypto/rsa: invalid exponents") 190 } 191 } 192 return nil 193 } 194 195 // GenerateKey generates an RSA keypair of the given bit size using the 196 // random source random (for example, crypto/rand.Reader). 197 func GenerateKey(random io.Reader, bits int) (*PrivateKey, error) { 198 return GenerateMultiPrimeKey(random, 2, bits) 199 } 200 201 // GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit 202 // size and the given random source, as suggested in [1]. Although the public 203 // keys are compatible (actually, indistinguishable) from the 2-prime case, 204 // the private keys are not. Thus it may not be possible to export multi-prime 205 // private keys in certain formats or to subsequently import them into other 206 // code. 207 // 208 // Table 1 in [2] suggests maximum numbers of primes for a given size. 209 // 210 // [1] US patent 4405829 (1972, expired) 211 // [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf 212 func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (*PrivateKey, error) { 213 priv := new(PrivateKey) 214 priv.E = 65537 215 216 if nprimes < 2 { 217 return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2") 218 } 219 220 if bits < 64 { 221 primeLimit := float64(uint64(1) << uint(bits/nprimes)) 222 // pi approximates the number of primes less than primeLimit 223 pi := primeLimit / (math.Log(primeLimit) - 1) 224 // Generated primes start with 11 (in binary) so we can only 225 // use a quarter of them. 226 pi /= 4 227 // Use a factor of two to ensure that key generation terminates 228 // in a reasonable amount of time. 229 pi /= 2 230 if pi <= float64(nprimes) { 231 return nil, errors.New("crypto/rsa: too few primes of given length to generate an RSA key") 232 } 233 } 234 235 primes := make([]*big.Int, nprimes) 236 237 NextSetOfPrimes: 238 for { 239 todo := bits 240 // crypto/rand should set the top two bits in each prime. 241 // Thus each prime has the form 242 // p_i = 2^bitlen(p_i) × 0.11... (in base 2). 243 // And the product is: 244 // P = 2^todo × α 245 // where α is the product of nprimes numbers of the form 0.11... 246 // 247 // If α < 1/2 (which can happen for nprimes > 2), we need to 248 // shift todo to compensate for lost bits: the mean value of 0.11... 249 // is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2 250 // will give good results. 251 if nprimes >= 7 { 252 todo += (nprimes - 2) / 5 253 } 254 for i := 0; i < nprimes; i++ { 255 var err error 256 primes[i], err = rand.Prime(random, todo/(nprimes-i)) 257 if err != nil { 258 return nil, err 259 } 260 todo -= primes[i].BitLen() 261 } 262 263 // Make sure that primes is pairwise unequal. 264 for i, prime := range primes { 265 for j := 0; j < i; j++ { 266 if prime.Cmp(primes[j]) == 0 { 267 continue NextSetOfPrimes 268 } 269 } 270 } 271 272 n := new(big.Int).Set(bigOne) 273 totient := new(big.Int).Set(bigOne) 274 pminus1 := new(big.Int) 275 for _, prime := range primes { 276 n.Mul(n, prime) 277 pminus1.Sub(prime, bigOne) 278 totient.Mul(totient, pminus1) 279 } 280 if n.BitLen() != bits { 281 // This should never happen for nprimes == 2 because 282 // crypto/rand should set the top two bits in each prime. 283 // For nprimes > 2 we hope it does not happen often. 284 continue NextSetOfPrimes 285 } 286 287 g := new(big.Int) 288 priv.D = new(big.Int) 289 e := big.NewInt(int64(priv.E)) 290 g.GCD(priv.D, nil, e, totient) 291 292 if g.Cmp(bigOne) == 0 { 293 if priv.D.Sign() < 0 { 294 priv.D.Add(priv.D, totient) 295 } 296 priv.Primes = primes 297 priv.N = n 298 299 break 300 } 301 } 302 303 priv.Precompute() 304 return priv, nil 305 } 306 307 // incCounter increments a four byte, big-endian counter. 308 func incCounter(c *[4]byte) { 309 if c[3]++; c[3] != 0 { 310 return 311 } 312 if c[2]++; c[2] != 0 { 313 return 314 } 315 if c[1]++; c[1] != 0 { 316 return 317 } 318 c[0]++ 319 } 320 321 // mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function 322 // specified in PKCS#1 v2.1. 323 func mgf1XOR(out []byte, hash hash.Hash, seed []byte) { 324 var counter [4]byte 325 var digest []byte 326 327 done := 0 328 for done < len(out) { 329 hash.Write(seed) 330 hash.Write(counter[0:4]) 331 digest = hash.Sum(digest[:0]) 332 hash.Reset() 333 334 for i := 0; i < len(digest) && done < len(out); i++ { 335 out[done] ^= digest[i] 336 done++ 337 } 338 incCounter(&counter) 339 } 340 } 341 342 // ErrMessageTooLong is returned when attempting to encrypt a message which is 343 // too large for the size of the public key. 344 var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size") 345 346 func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int { 347 e := big.NewInt(int64(pub.E)) 348 c.Exp(m, e, pub.N) 349 return c 350 } 351 352 // EncryptOAEP encrypts the given message with RSA-OAEP. 353 // 354 // OAEP is parameterised by a hash function that is used as a random oracle. 355 // Encryption and decryption of a given message must use the same hash function 356 // and sha256.New() is a reasonable choice. 357 // 358 // The random parameter is used as a source of entropy to ensure that 359 // encrypting the same message twice doesn't result in the same ciphertext. 360 // 361 // The label parameter may contain arbitrary data that will not be encrypted, 362 // but which gives important context to the message. For example, if a given 363 // public key is used to decrypt two types of messages then distinct label 364 // values could be used to ensure that a ciphertext for one purpose cannot be 365 // used for another by an attacker. If not required it can be empty. 366 // 367 // The message must be no longer than the length of the public modulus minus 368 // twice the hash length, minus a further 2. 369 func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) ([]byte, error) { 370 if err := checkPub(pub); err != nil { 371 return nil, err 372 } 373 hash.Reset() 374 k := (pub.N.BitLen() + 7) / 8 375 if len(msg) > k-2*hash.Size()-2 { 376 return nil, ErrMessageTooLong 377 } 378 379 hash.Write(label) 380 lHash := hash.Sum(nil) 381 hash.Reset() 382 383 em := make([]byte, k) 384 seed := em[1 : 1+hash.Size()] 385 db := em[1+hash.Size():] 386 387 copy(db[0:hash.Size()], lHash) 388 db[len(db)-len(msg)-1] = 1 389 copy(db[len(db)-len(msg):], msg) 390 391 _, err := io.ReadFull(random, seed) 392 if err != nil { 393 return nil, err 394 } 395 396 mgf1XOR(db, hash, seed) 397 mgf1XOR(seed, hash, db) 398 399 m := new(big.Int) 400 m.SetBytes(em) 401 c := encrypt(new(big.Int), pub, m) 402 out := c.Bytes() 403 404 if len(out) < k { 405 // If the output is too small, we need to left-pad with zeros. 406 t := make([]byte, k) 407 copy(t[k-len(out):], out) 408 out = t 409 } 410 411 return out, nil 412 } 413 414 // ErrDecryption represents a failure to decrypt a message. 415 // It is deliberately vague to avoid adaptive attacks. 416 var ErrDecryption = errors.New("crypto/rsa: decryption error") 417 418 // ErrVerification represents a failure to verify a signature. 419 // It is deliberately vague to avoid adaptive attacks. 420 var ErrVerification = errors.New("crypto/rsa: verification error") 421 422 // modInverse returns ia, the inverse of a in the multiplicative group of prime 423 // order n. It requires that a be a member of the group (i.e. less than n). 424 func modInverse(a, n *big.Int) (ia *big.Int, ok bool) { 425 g := new(big.Int) 426 x := new(big.Int) 427 y := new(big.Int) 428 g.GCD(x, y, a, n) 429 if g.Cmp(bigOne) != 0 { 430 // In this case, a and n aren't coprime and we cannot calculate 431 // the inverse. This happens because the values of n are nearly 432 // prime (being the product of two primes) rather than truly 433 // prime. 434 return 435 } 436 437 if x.Cmp(bigOne) < 0 { 438 // 0 is not the multiplicative inverse of any element so, if x 439 // < 1, then x is negative. 440 x.Add(x, n) 441 } 442 443 return x, true 444 } 445 446 // Precompute performs some calculations that speed up private key operations 447 // in the future. 448 func (priv *PrivateKey) Precompute() { 449 if priv.Precomputed.Dp != nil { 450 return 451 } 452 453 priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne) 454 priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp) 455 456 priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne) 457 priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq) 458 459 priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0]) 460 461 r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1]) 462 priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2) 463 for i := 2; i < len(priv.Primes); i++ { 464 prime := priv.Primes[i] 465 values := &priv.Precomputed.CRTValues[i-2] 466 467 values.Exp = new(big.Int).Sub(prime, bigOne) 468 values.Exp.Mod(priv.D, values.Exp) 469 470 values.R = new(big.Int).Set(r) 471 values.Coeff = new(big.Int).ModInverse(r, prime) 472 473 r.Mul(r, prime) 474 } 475 } 476 477 // decrypt performs an RSA decryption, resulting in a plaintext integer. If a 478 // random source is given, RSA blinding is used. 479 func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) { 480 // TODO(agl): can we get away with reusing blinds? 481 if c.Cmp(priv.N) > 0 { 482 err = ErrDecryption 483 return 484 } 485 if priv.N.Sign() == 0 { 486 return nil, ErrDecryption 487 } 488 489 var ir *big.Int 490 if random != nil { 491 // Blinding enabled. Blinding involves multiplying c by r^e. 492 // Then the decryption operation performs (m^e * r^e)^d mod n 493 // which equals mr mod n. The factor of r can then be removed 494 // by multiplying by the multiplicative inverse of r. 495 496 var r *big.Int 497 498 for { 499 r, err = rand.Int(random, priv.N) 500 if err != nil { 501 return 502 } 503 if r.Cmp(bigZero) == 0 { 504 r = bigOne 505 } 506 var ok bool 507 ir, ok = modInverse(r, priv.N) 508 if ok { 509 break 510 } 511 } 512 bigE := big.NewInt(int64(priv.E)) 513 rpowe := new(big.Int).Exp(r, bigE, priv.N) // N != 0 514 cCopy := new(big.Int).Set(c) 515 cCopy.Mul(cCopy, rpowe) 516 cCopy.Mod(cCopy, priv.N) 517 c = cCopy 518 } 519 520 if priv.Precomputed.Dp == nil { 521 m = new(big.Int).Exp(c, priv.D, priv.N) 522 } else { 523 // We have the precalculated values needed for the CRT. 524 m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0]) 525 m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1]) 526 m.Sub(m, m2) 527 if m.Sign() < 0 { 528 m.Add(m, priv.Primes[0]) 529 } 530 m.Mul(m, priv.Precomputed.Qinv) 531 m.Mod(m, priv.Primes[0]) 532 m.Mul(m, priv.Primes[1]) 533 m.Add(m, m2) 534 535 for i, values := range priv.Precomputed.CRTValues { 536 prime := priv.Primes[2+i] 537 m2.Exp(c, values.Exp, prime) 538 m2.Sub(m2, m) 539 m2.Mul(m2, values.Coeff) 540 m2.Mod(m2, prime) 541 if m2.Sign() < 0 { 542 m2.Add(m2, prime) 543 } 544 m2.Mul(m2, values.R) 545 m.Add(m, m2) 546 } 547 } 548 549 if ir != nil { 550 // Unblind. 551 m.Mul(m, ir) 552 m.Mod(m, priv.N) 553 } 554 555 return 556 } 557 558 func decryptAndCheck(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) { 559 m, err = decrypt(random, priv, c) 560 if err != nil { 561 return nil, err 562 } 563 564 // In order to defend against errors in the CRT computation, m^e is 565 // calculated, which should match the original ciphertext. 566 check := encrypt(new(big.Int), &priv.PublicKey, m) 567 if c.Cmp(check) != 0 { 568 return nil, errors.New("rsa: internal error") 569 } 570 return m, nil 571 } 572 573 // DecryptOAEP decrypts ciphertext using RSA-OAEP. 574 575 // OAEP is parameterised by a hash function that is used as a random oracle. 576 // Encryption and decryption of a given message must use the same hash function 577 // and sha256.New() is a reasonable choice. 578 // 579 // The random parameter, if not nil, is used to blind the private-key operation 580 // and avoid timing side-channel attacks. Blinding is purely internal to this 581 // function – the random data need not match that used when encrypting. 582 // 583 // The label parameter must match the value given when encrypting. See 584 // EncryptOAEP for details. 585 func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) ([]byte, error) { 586 if err := checkPub(&priv.PublicKey); err != nil { 587 return nil, err 588 } 589 k := (priv.N.BitLen() + 7) / 8 590 if len(ciphertext) > k || 591 k < hash.Size()*2+2 { 592 return nil, ErrDecryption 593 } 594 595 c := new(big.Int).SetBytes(ciphertext) 596 597 m, err := decrypt(random, priv, c) 598 if err != nil { 599 return nil, err 600 } 601 602 hash.Write(label) 603 lHash := hash.Sum(nil) 604 hash.Reset() 605 606 // Converting the plaintext number to bytes will strip any 607 // leading zeros so we may have to left pad. We do this unconditionally 608 // to avoid leaking timing information. (Although we still probably 609 // leak the number of leading zeros. It's not clear that we can do 610 // anything about this.) 611 em := leftPad(m.Bytes(), k) 612 613 firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0) 614 615 seed := em[1 : hash.Size()+1] 616 db := em[hash.Size()+1:] 617 618 mgf1XOR(seed, hash, db) 619 mgf1XOR(db, hash, seed) 620 621 lHash2 := db[0:hash.Size()] 622 623 // We have to validate the plaintext in constant time in order to avoid 624 // attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal 625 // Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1 626 // v2.0. In J. Kilian, editor, Advances in Cryptology. 627 lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2) 628 629 // The remainder of the plaintext must be zero or more 0x00, followed 630 // by 0x01, followed by the message. 631 // lookingForIndex: 1 iff we are still looking for the 0x01 632 // index: the offset of the first 0x01 byte 633 // invalid: 1 iff we saw a non-zero byte before the 0x01. 634 var lookingForIndex, index, invalid int 635 lookingForIndex = 1 636 rest := db[hash.Size():] 637 638 for i := 0; i < len(rest); i++ { 639 equals0 := subtle.ConstantTimeByteEq(rest[i], 0) 640 equals1 := subtle.ConstantTimeByteEq(rest[i], 1) 641 index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index) 642 lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex) 643 invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid) 644 } 645 646 if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 { 647 return nil, ErrDecryption 648 } 649 650 return rest[index+1:], nil 651 } 652 653 // leftPad returns a new slice of length size. The contents of input are right 654 // aligned in the new slice. 655 func leftPad(input []byte, size int) (out []byte) { 656 n := len(input) 657 if n > size { 658 n = size 659 } 660 out = make([]byte, size) 661 copy(out[len(out)-n:], input) 662 return 663 }