github.com/zebozhuang/go@v0.0.0-20200207033046-f8a98f6f5c5d/src/crypto/tls/conn.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // TLS low level connection and record layer
     6  
     7  package tls
     8  
     9  import (
    10  	"bytes"
    11  	"crypto/cipher"
    12  	"crypto/subtle"
    13  	"crypto/x509"
    14  	"errors"
    15  	"fmt"
    16  	"io"
    17  	"net"
    18  	"sync"
    19  	"sync/atomic"
    20  	"time"
    21  )
    22  
    23  // A Conn represents a secured connection.
    24  // It implements the net.Conn interface.
    25  type Conn struct {
    26  	// constant
    27  	conn     net.Conn
    28  	isClient bool
    29  
    30  	// constant after handshake; protected by handshakeMutex
    31  	handshakeMutex sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex
    32  	// handshakeCond, if not nil, indicates that a goroutine is committed
    33  	// to running the handshake for this Conn. Other goroutines that need
    34  	// to wait for the handshake can wait on this, under handshakeMutex.
    35  	handshakeCond *sync.Cond
    36  	handshakeErr  error   // error resulting from handshake
    37  	vers          uint16  // TLS version
    38  	haveVers      bool    // version has been negotiated
    39  	config        *Config // configuration passed to constructor
    40  	// handshakeComplete is true if the connection is currently transferring
    41  	// application data (i.e. is not currently processing a handshake).
    42  	handshakeComplete bool
    43  	// handshakes counts the number of handshakes performed on the
    44  	// connection so far. If renegotiation is disabled then this is either
    45  	// zero or one.
    46  	handshakes       int
    47  	didResume        bool // whether this connection was a session resumption
    48  	cipherSuite      uint16
    49  	ocspResponse     []byte   // stapled OCSP response
    50  	scts             [][]byte // signed certificate timestamps from server
    51  	peerCertificates []*x509.Certificate
    52  	// verifiedChains contains the certificate chains that we built, as
    53  	// opposed to the ones presented by the server.
    54  	verifiedChains [][]*x509.Certificate
    55  	// serverName contains the server name indicated by the client, if any.
    56  	serverName string
    57  	// secureRenegotiation is true if the server echoed the secure
    58  	// renegotiation extension. (This is meaningless as a server because
    59  	// renegotiation is not supported in that case.)
    60  	secureRenegotiation bool
    61  
    62  	// clientFinishedIsFirst is true if the client sent the first Finished
    63  	// message during the most recent handshake. This is recorded because
    64  	// the first transmitted Finished message is the tls-unique
    65  	// channel-binding value.
    66  	clientFinishedIsFirst bool
    67  
    68  	// closeNotifyErr is any error from sending the alertCloseNotify record.
    69  	closeNotifyErr error
    70  	// closeNotifySent is true if the Conn attempted to send an
    71  	// alertCloseNotify record.
    72  	closeNotifySent bool
    73  
    74  	// clientFinished and serverFinished contain the Finished message sent
    75  	// by the client or server in the most recent handshake. This is
    76  	// retained to support the renegotiation extension and tls-unique
    77  	// channel-binding.
    78  	clientFinished [12]byte
    79  	serverFinished [12]byte
    80  
    81  	clientProtocol         string
    82  	clientProtocolFallback bool
    83  
    84  	// input/output
    85  	in, out   halfConn     // in.Mutex < out.Mutex
    86  	rawInput  *block       // raw input, right off the wire
    87  	input     *block       // application data waiting to be read
    88  	hand      bytes.Buffer // handshake data waiting to be read
    89  	buffering bool         // whether records are buffered in sendBuf
    90  	sendBuf   []byte       // a buffer of records waiting to be sent
    91  
    92  	// bytesSent counts the bytes of application data sent.
    93  	// packetsSent counts packets.
    94  	bytesSent   int64
    95  	packetsSent int64
    96  
    97  	// activeCall is an atomic int32; the low bit is whether Close has
    98  	// been called. the rest of the bits are the number of goroutines
    99  	// in Conn.Write.
   100  	activeCall int32
   101  
   102  	tmp [16]byte
   103  }
   104  
   105  // Access to net.Conn methods.
   106  // Cannot just embed net.Conn because that would
   107  // export the struct field too.
   108  
   109  // LocalAddr returns the local network address.
   110  func (c *Conn) LocalAddr() net.Addr {
   111  	return c.conn.LocalAddr()
   112  }
   113  
   114  // RemoteAddr returns the remote network address.
   115  func (c *Conn) RemoteAddr() net.Addr {
   116  	return c.conn.RemoteAddr()
   117  }
   118  
   119  // SetDeadline sets the read and write deadlines associated with the connection.
   120  // A zero value for t means Read and Write will not time out.
   121  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
   122  func (c *Conn) SetDeadline(t time.Time) error {
   123  	return c.conn.SetDeadline(t)
   124  }
   125  
   126  // SetReadDeadline sets the read deadline on the underlying connection.
   127  // A zero value for t means Read will not time out.
   128  func (c *Conn) SetReadDeadline(t time.Time) error {
   129  	return c.conn.SetReadDeadline(t)
   130  }
   131  
   132  // SetWriteDeadline sets the write deadline on the underlying connection.
   133  // A zero value for t means Write will not time out.
   134  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
   135  func (c *Conn) SetWriteDeadline(t time.Time) error {
   136  	return c.conn.SetWriteDeadline(t)
   137  }
   138  
   139  // A halfConn represents one direction of the record layer
   140  // connection, either sending or receiving.
   141  type halfConn struct {
   142  	sync.Mutex
   143  
   144  	err            error       // first permanent error
   145  	version        uint16      // protocol version
   146  	cipher         interface{} // cipher algorithm
   147  	mac            macFunction
   148  	seq            [8]byte  // 64-bit sequence number
   149  	bfree          *block   // list of free blocks
   150  	additionalData [13]byte // to avoid allocs; interface method args escape
   151  
   152  	nextCipher interface{} // next encryption state
   153  	nextMac    macFunction // next MAC algorithm
   154  
   155  	// used to save allocating a new buffer for each MAC.
   156  	inDigestBuf, outDigestBuf []byte
   157  }
   158  
   159  func (hc *halfConn) setErrorLocked(err error) error {
   160  	hc.err = err
   161  	return err
   162  }
   163  
   164  // prepareCipherSpec sets the encryption and MAC states
   165  // that a subsequent changeCipherSpec will use.
   166  func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) {
   167  	hc.version = version
   168  	hc.nextCipher = cipher
   169  	hc.nextMac = mac
   170  }
   171  
   172  // changeCipherSpec changes the encryption and MAC states
   173  // to the ones previously passed to prepareCipherSpec.
   174  func (hc *halfConn) changeCipherSpec() error {
   175  	if hc.nextCipher == nil {
   176  		return alertInternalError
   177  	}
   178  	hc.cipher = hc.nextCipher
   179  	hc.mac = hc.nextMac
   180  	hc.nextCipher = nil
   181  	hc.nextMac = nil
   182  	for i := range hc.seq {
   183  		hc.seq[i] = 0
   184  	}
   185  	return nil
   186  }
   187  
   188  // incSeq increments the sequence number.
   189  func (hc *halfConn) incSeq() {
   190  	for i := 7; i >= 0; i-- {
   191  		hc.seq[i]++
   192  		if hc.seq[i] != 0 {
   193  			return
   194  		}
   195  	}
   196  
   197  	// Not allowed to let sequence number wrap.
   198  	// Instead, must renegotiate before it does.
   199  	// Not likely enough to bother.
   200  	panic("TLS: sequence number wraparound")
   201  }
   202  
   203  // extractPadding returns, in constant time, the length of the padding to remove
   204  // from the end of payload. It also returns a byte which is equal to 255 if the
   205  // padding was valid and 0 otherwise. See RFC 2246, section 6.2.3.2
   206  func extractPadding(payload []byte) (toRemove int, good byte) {
   207  	if len(payload) < 1 {
   208  		return 0, 0
   209  	}
   210  
   211  	paddingLen := payload[len(payload)-1]
   212  	t := uint(len(payload)-1) - uint(paddingLen)
   213  	// if len(payload) >= (paddingLen - 1) then the MSB of t is zero
   214  	good = byte(int32(^t) >> 31)
   215  
   216  	toCheck := 255 // the maximum possible padding length
   217  	// The length of the padded data is public, so we can use an if here
   218  	if toCheck+1 > len(payload) {
   219  		toCheck = len(payload) - 1
   220  	}
   221  
   222  	for i := 0; i < toCheck; i++ {
   223  		t := uint(paddingLen) - uint(i)
   224  		// if i <= paddingLen then the MSB of t is zero
   225  		mask := byte(int32(^t) >> 31)
   226  		b := payload[len(payload)-1-i]
   227  		good &^= mask&paddingLen ^ mask&b
   228  	}
   229  
   230  	// We AND together the bits of good and replicate the result across
   231  	// all the bits.
   232  	good &= good << 4
   233  	good &= good << 2
   234  	good &= good << 1
   235  	good = uint8(int8(good) >> 7)
   236  
   237  	toRemove = int(paddingLen) + 1
   238  	return
   239  }
   240  
   241  // extractPaddingSSL30 is a replacement for extractPadding in the case that the
   242  // protocol version is SSLv3. In this version, the contents of the padding
   243  // are random and cannot be checked.
   244  func extractPaddingSSL30(payload []byte) (toRemove int, good byte) {
   245  	if len(payload) < 1 {
   246  		return 0, 0
   247  	}
   248  
   249  	paddingLen := int(payload[len(payload)-1]) + 1
   250  	if paddingLen > len(payload) {
   251  		return 0, 0
   252  	}
   253  
   254  	return paddingLen, 255
   255  }
   256  
   257  func roundUp(a, b int) int {
   258  	return a + (b-a%b)%b
   259  }
   260  
   261  // cbcMode is an interface for block ciphers using cipher block chaining.
   262  type cbcMode interface {
   263  	cipher.BlockMode
   264  	SetIV([]byte)
   265  }
   266  
   267  // decrypt checks and strips the mac and decrypts the data in b. Returns a
   268  // success boolean, the number of bytes to skip from the start of the record in
   269  // order to get the application payload, and an optional alert value.
   270  func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) {
   271  	// pull out payload
   272  	payload := b.data[recordHeaderLen:]
   273  
   274  	macSize := 0
   275  	if hc.mac != nil {
   276  		macSize = hc.mac.Size()
   277  	}
   278  
   279  	paddingGood := byte(255)
   280  	paddingLen := 0
   281  	explicitIVLen := 0
   282  
   283  	// decrypt
   284  	if hc.cipher != nil {
   285  		switch c := hc.cipher.(type) {
   286  		case cipher.Stream:
   287  			c.XORKeyStream(payload, payload)
   288  		case aead:
   289  			explicitIVLen = c.explicitNonceLen()
   290  			if len(payload) < explicitIVLen {
   291  				return false, 0, alertBadRecordMAC
   292  			}
   293  			nonce := payload[:explicitIVLen]
   294  			payload = payload[explicitIVLen:]
   295  
   296  			if len(nonce) == 0 {
   297  				nonce = hc.seq[:]
   298  			}
   299  
   300  			copy(hc.additionalData[:], hc.seq[:])
   301  			copy(hc.additionalData[8:], b.data[:3])
   302  			n := len(payload) - c.Overhead()
   303  			hc.additionalData[11] = byte(n >> 8)
   304  			hc.additionalData[12] = byte(n)
   305  			var err error
   306  			payload, err = c.Open(payload[:0], nonce, payload, hc.additionalData[:])
   307  			if err != nil {
   308  				return false, 0, alertBadRecordMAC
   309  			}
   310  			b.resize(recordHeaderLen + explicitIVLen + len(payload))
   311  		case cbcMode:
   312  			blockSize := c.BlockSize()
   313  			if hc.version >= VersionTLS11 {
   314  				explicitIVLen = blockSize
   315  			}
   316  
   317  			if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) {
   318  				return false, 0, alertBadRecordMAC
   319  			}
   320  
   321  			if explicitIVLen > 0 {
   322  				c.SetIV(payload[:explicitIVLen])
   323  				payload = payload[explicitIVLen:]
   324  			}
   325  			c.CryptBlocks(payload, payload)
   326  			if hc.version == VersionSSL30 {
   327  				paddingLen, paddingGood = extractPaddingSSL30(payload)
   328  			} else {
   329  				paddingLen, paddingGood = extractPadding(payload)
   330  
   331  				// To protect against CBC padding oracles like Lucky13, the data
   332  				// past paddingLen (which is secret) is passed to the MAC
   333  				// function as extra data, to be fed into the HMAC after
   334  				// computing the digest. This makes the MAC constant time as
   335  				// long as the digest computation is constant time and does not
   336  				// affect the subsequent write.
   337  			}
   338  		default:
   339  			panic("unknown cipher type")
   340  		}
   341  	}
   342  
   343  	// check, strip mac
   344  	if hc.mac != nil {
   345  		if len(payload) < macSize {
   346  			return false, 0, alertBadRecordMAC
   347  		}
   348  
   349  		// strip mac off payload, b.data
   350  		n := len(payload) - macSize - paddingLen
   351  		n = subtle.ConstantTimeSelect(int(uint32(n)>>31), 0, n) // if n < 0 { n = 0 }
   352  		b.data[3] = byte(n >> 8)
   353  		b.data[4] = byte(n)
   354  		remoteMAC := payload[n : n+macSize]
   355  		localMAC := hc.mac.MAC(hc.inDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], payload[:n], payload[n+macSize:])
   356  
   357  		if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 {
   358  			return false, 0, alertBadRecordMAC
   359  		}
   360  		hc.inDigestBuf = localMAC
   361  
   362  		b.resize(recordHeaderLen + explicitIVLen + n)
   363  	}
   364  	hc.incSeq()
   365  
   366  	return true, recordHeaderLen + explicitIVLen, 0
   367  }
   368  
   369  // padToBlockSize calculates the needed padding block, if any, for a payload.
   370  // On exit, prefix aliases payload and extends to the end of the last full
   371  // block of payload. finalBlock is a fresh slice which contains the contents of
   372  // any suffix of payload as well as the needed padding to make finalBlock a
   373  // full block.
   374  func padToBlockSize(payload []byte, blockSize int) (prefix, finalBlock []byte) {
   375  	overrun := len(payload) % blockSize
   376  	paddingLen := blockSize - overrun
   377  	prefix = payload[:len(payload)-overrun]
   378  	finalBlock = make([]byte, blockSize)
   379  	copy(finalBlock, payload[len(payload)-overrun:])
   380  	for i := overrun; i < blockSize; i++ {
   381  		finalBlock[i] = byte(paddingLen - 1)
   382  	}
   383  	return
   384  }
   385  
   386  // encrypt encrypts and macs the data in b.
   387  func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) {
   388  	// mac
   389  	if hc.mac != nil {
   390  		mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:], nil)
   391  
   392  		n := len(b.data)
   393  		b.resize(n + len(mac))
   394  		copy(b.data[n:], mac)
   395  		hc.outDigestBuf = mac
   396  	}
   397  
   398  	payload := b.data[recordHeaderLen:]
   399  
   400  	// encrypt
   401  	if hc.cipher != nil {
   402  		switch c := hc.cipher.(type) {
   403  		case cipher.Stream:
   404  			c.XORKeyStream(payload, payload)
   405  		case aead:
   406  			payloadLen := len(b.data) - recordHeaderLen - explicitIVLen
   407  			b.resize(len(b.data) + c.Overhead())
   408  			nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
   409  			if len(nonce) == 0 {
   410  				nonce = hc.seq[:]
   411  			}
   412  			payload := b.data[recordHeaderLen+explicitIVLen:]
   413  			payload = payload[:payloadLen]
   414  
   415  			copy(hc.additionalData[:], hc.seq[:])
   416  			copy(hc.additionalData[8:], b.data[:3])
   417  			hc.additionalData[11] = byte(payloadLen >> 8)
   418  			hc.additionalData[12] = byte(payloadLen)
   419  
   420  			c.Seal(payload[:0], nonce, payload, hc.additionalData[:])
   421  		case cbcMode:
   422  			blockSize := c.BlockSize()
   423  			if explicitIVLen > 0 {
   424  				c.SetIV(payload[:explicitIVLen])
   425  				payload = payload[explicitIVLen:]
   426  			}
   427  			prefix, finalBlock := padToBlockSize(payload, blockSize)
   428  			b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock))
   429  			c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix)
   430  			c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock)
   431  		default:
   432  			panic("unknown cipher type")
   433  		}
   434  	}
   435  
   436  	// update length to include MAC and any block padding needed.
   437  	n := len(b.data) - recordHeaderLen
   438  	b.data[3] = byte(n >> 8)
   439  	b.data[4] = byte(n)
   440  	hc.incSeq()
   441  
   442  	return true, 0
   443  }
   444  
   445  // A block is a simple data buffer.
   446  type block struct {
   447  	data []byte
   448  	off  int // index for Read
   449  	link *block
   450  }
   451  
   452  // resize resizes block to be n bytes, growing if necessary.
   453  func (b *block) resize(n int) {
   454  	if n > cap(b.data) {
   455  		b.reserve(n)
   456  	}
   457  	b.data = b.data[0:n]
   458  }
   459  
   460  // reserve makes sure that block contains a capacity of at least n bytes.
   461  func (b *block) reserve(n int) {
   462  	if cap(b.data) >= n {
   463  		return
   464  	}
   465  	m := cap(b.data)
   466  	if m == 0 {
   467  		m = 1024
   468  	}
   469  	for m < n {
   470  		m *= 2
   471  	}
   472  	data := make([]byte, len(b.data), m)
   473  	copy(data, b.data)
   474  	b.data = data
   475  }
   476  
   477  // readFromUntil reads from r into b until b contains at least n bytes
   478  // or else returns an error.
   479  func (b *block) readFromUntil(r io.Reader, n int) error {
   480  	// quick case
   481  	if len(b.data) >= n {
   482  		return nil
   483  	}
   484  
   485  	// read until have enough.
   486  	b.reserve(n)
   487  	for {
   488  		m, err := r.Read(b.data[len(b.data):cap(b.data)])
   489  		b.data = b.data[0 : len(b.data)+m]
   490  		if len(b.data) >= n {
   491  			// TODO(bradfitz,agl): slightly suspicious
   492  			// that we're throwing away r.Read's err here.
   493  			break
   494  		}
   495  		if err != nil {
   496  			return err
   497  		}
   498  	}
   499  	return nil
   500  }
   501  
   502  func (b *block) Read(p []byte) (n int, err error) {
   503  	n = copy(p, b.data[b.off:])
   504  	b.off += n
   505  	return
   506  }
   507  
   508  // newBlock allocates a new block, from hc's free list if possible.
   509  func (hc *halfConn) newBlock() *block {
   510  	b := hc.bfree
   511  	if b == nil {
   512  		return new(block)
   513  	}
   514  	hc.bfree = b.link
   515  	b.link = nil
   516  	b.resize(0)
   517  	return b
   518  }
   519  
   520  // freeBlock returns a block to hc's free list.
   521  // The protocol is such that each side only has a block or two on
   522  // its free list at a time, so there's no need to worry about
   523  // trimming the list, etc.
   524  func (hc *halfConn) freeBlock(b *block) {
   525  	b.link = hc.bfree
   526  	hc.bfree = b
   527  }
   528  
   529  // splitBlock splits a block after the first n bytes,
   530  // returning a block with those n bytes and a
   531  // block with the remainder.  the latter may be nil.
   532  func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) {
   533  	if len(b.data) <= n {
   534  		return b, nil
   535  	}
   536  	bb := hc.newBlock()
   537  	bb.resize(len(b.data) - n)
   538  	copy(bb.data, b.data[n:])
   539  	b.data = b.data[0:n]
   540  	return b, bb
   541  }
   542  
   543  // RecordHeaderError results when a TLS record header is invalid.
   544  type RecordHeaderError struct {
   545  	// Msg contains a human readable string that describes the error.
   546  	Msg string
   547  	// RecordHeader contains the five bytes of TLS record header that
   548  	// triggered the error.
   549  	RecordHeader [5]byte
   550  }
   551  
   552  func (e RecordHeaderError) Error() string { return "tls: " + e.Msg }
   553  
   554  func (c *Conn) newRecordHeaderError(msg string) (err RecordHeaderError) {
   555  	err.Msg = msg
   556  	copy(err.RecordHeader[:], c.rawInput.data)
   557  	return err
   558  }
   559  
   560  // readRecord reads the next TLS record from the connection
   561  // and updates the record layer state.
   562  // c.in.Mutex <= L; c.input == nil.
   563  func (c *Conn) readRecord(want recordType) error {
   564  	// Caller must be in sync with connection:
   565  	// handshake data if handshake not yet completed,
   566  	// else application data.
   567  	switch want {
   568  	default:
   569  		c.sendAlert(alertInternalError)
   570  		return c.in.setErrorLocked(errors.New("tls: unknown record type requested"))
   571  	case recordTypeHandshake, recordTypeChangeCipherSpec:
   572  		if c.handshakeComplete {
   573  			c.sendAlert(alertInternalError)
   574  			return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested while not in handshake"))
   575  		}
   576  	case recordTypeApplicationData:
   577  		if !c.handshakeComplete {
   578  			c.sendAlert(alertInternalError)
   579  			return c.in.setErrorLocked(errors.New("tls: application data record requested while in handshake"))
   580  		}
   581  	}
   582  
   583  Again:
   584  	if c.rawInput == nil {
   585  		c.rawInput = c.in.newBlock()
   586  	}
   587  	b := c.rawInput
   588  
   589  	// Read header, payload.
   590  	if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil {
   591  		// RFC suggests that EOF without an alertCloseNotify is
   592  		// an error, but popular web sites seem to do this,
   593  		// so we can't make it an error.
   594  		// if err == io.EOF {
   595  		// 	err = io.ErrUnexpectedEOF
   596  		// }
   597  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   598  			c.in.setErrorLocked(err)
   599  		}
   600  		return err
   601  	}
   602  	typ := recordType(b.data[0])
   603  
   604  	// No valid TLS record has a type of 0x80, however SSLv2 handshakes
   605  	// start with a uint16 length where the MSB is set and the first record
   606  	// is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
   607  	// an SSLv2 client.
   608  	if want == recordTypeHandshake && typ == 0x80 {
   609  		c.sendAlert(alertProtocolVersion)
   610  		return c.in.setErrorLocked(c.newRecordHeaderError("unsupported SSLv2 handshake received"))
   611  	}
   612  
   613  	vers := uint16(b.data[1])<<8 | uint16(b.data[2])
   614  	n := int(b.data[3])<<8 | int(b.data[4])
   615  	if c.haveVers && vers != c.vers {
   616  		c.sendAlert(alertProtocolVersion)
   617  		msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, c.vers)
   618  		return c.in.setErrorLocked(c.newRecordHeaderError(msg))
   619  	}
   620  	if n > maxCiphertext {
   621  		c.sendAlert(alertRecordOverflow)
   622  		msg := fmt.Sprintf("oversized record received with length %d", n)
   623  		return c.in.setErrorLocked(c.newRecordHeaderError(msg))
   624  	}
   625  	if !c.haveVers {
   626  		// First message, be extra suspicious: this might not be a TLS
   627  		// client. Bail out before reading a full 'body', if possible.
   628  		// The current max version is 3.3 so if the version is >= 16.0,
   629  		// it's probably not real.
   630  		if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 {
   631  			c.sendAlert(alertUnexpectedMessage)
   632  			return c.in.setErrorLocked(c.newRecordHeaderError("first record does not look like a TLS handshake"))
   633  		}
   634  	}
   635  	if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
   636  		if err == io.EOF {
   637  			err = io.ErrUnexpectedEOF
   638  		}
   639  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   640  			c.in.setErrorLocked(err)
   641  		}
   642  		return err
   643  	}
   644  
   645  	// Process message.
   646  	b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n)
   647  	ok, off, alertValue := c.in.decrypt(b)
   648  	if !ok {
   649  		c.in.freeBlock(b)
   650  		return c.in.setErrorLocked(c.sendAlert(alertValue))
   651  	}
   652  	b.off = off
   653  	data := b.data[b.off:]
   654  	if len(data) > maxPlaintext {
   655  		err := c.sendAlert(alertRecordOverflow)
   656  		c.in.freeBlock(b)
   657  		return c.in.setErrorLocked(err)
   658  	}
   659  
   660  	switch typ {
   661  	default:
   662  		c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   663  
   664  	case recordTypeAlert:
   665  		if len(data) != 2 {
   666  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   667  			break
   668  		}
   669  		if alert(data[1]) == alertCloseNotify {
   670  			c.in.setErrorLocked(io.EOF)
   671  			break
   672  		}
   673  		switch data[0] {
   674  		case alertLevelWarning:
   675  			// drop on the floor
   676  			c.in.freeBlock(b)
   677  			goto Again
   678  		case alertLevelError:
   679  			c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
   680  		default:
   681  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   682  		}
   683  
   684  	case recordTypeChangeCipherSpec:
   685  		if typ != want || len(data) != 1 || data[0] != 1 {
   686  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   687  			break
   688  		}
   689  		err := c.in.changeCipherSpec()
   690  		if err != nil {
   691  			c.in.setErrorLocked(c.sendAlert(err.(alert)))
   692  		}
   693  
   694  	case recordTypeApplicationData:
   695  		if typ != want {
   696  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   697  			break
   698  		}
   699  		c.input = b
   700  		b = nil
   701  
   702  	case recordTypeHandshake:
   703  		// TODO(rsc): Should at least pick off connection close.
   704  		if typ != want && !(c.isClient && c.config.Renegotiation != RenegotiateNever) {
   705  			return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation))
   706  		}
   707  		c.hand.Write(data)
   708  	}
   709  
   710  	if b != nil {
   711  		c.in.freeBlock(b)
   712  	}
   713  	return c.in.err
   714  }
   715  
   716  // sendAlert sends a TLS alert message.
   717  // c.out.Mutex <= L.
   718  func (c *Conn) sendAlertLocked(err alert) error {
   719  	switch err {
   720  	case alertNoRenegotiation, alertCloseNotify:
   721  		c.tmp[0] = alertLevelWarning
   722  	default:
   723  		c.tmp[0] = alertLevelError
   724  	}
   725  	c.tmp[1] = byte(err)
   726  
   727  	_, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2])
   728  	if err == alertCloseNotify {
   729  		// closeNotify is a special case in that it isn't an error.
   730  		return writeErr
   731  	}
   732  
   733  	return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
   734  }
   735  
   736  // sendAlert sends a TLS alert message.
   737  // L < c.out.Mutex.
   738  func (c *Conn) sendAlert(err alert) error {
   739  	c.out.Lock()
   740  	defer c.out.Unlock()
   741  	return c.sendAlertLocked(err)
   742  }
   743  
   744  const (
   745  	// tcpMSSEstimate is a conservative estimate of the TCP maximum segment
   746  	// size (MSS). A constant is used, rather than querying the kernel for
   747  	// the actual MSS, to avoid complexity. The value here is the IPv6
   748  	// minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40
   749  	// bytes) and a TCP header with timestamps (32 bytes).
   750  	tcpMSSEstimate = 1208
   751  
   752  	// recordSizeBoostThreshold is the number of bytes of application data
   753  	// sent after which the TLS record size will be increased to the
   754  	// maximum.
   755  	recordSizeBoostThreshold = 128 * 1024
   756  )
   757  
   758  // maxPayloadSizeForWrite returns the maximum TLS payload size to use for the
   759  // next application data record. There is the following trade-off:
   760  //
   761  //   - For latency-sensitive applications, such as web browsing, each TLS
   762  //     record should fit in one TCP segment.
   763  //   - For throughput-sensitive applications, such as large file transfers,
   764  //     larger TLS records better amortize framing and encryption overheads.
   765  //
   766  // A simple heuristic that works well in practice is to use small records for
   767  // the first 1MB of data, then use larger records for subsequent data, and
   768  // reset back to smaller records after the connection becomes idle. See "High
   769  // Performance Web Networking", Chapter 4, or:
   770  // https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/
   771  //
   772  // In the interests of simplicity and determinism, this code does not attempt
   773  // to reset the record size once the connection is idle, however.
   774  //
   775  // c.out.Mutex <= L.
   776  func (c *Conn) maxPayloadSizeForWrite(typ recordType, explicitIVLen int) int {
   777  	if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData {
   778  		return maxPlaintext
   779  	}
   780  
   781  	if c.bytesSent >= recordSizeBoostThreshold {
   782  		return maxPlaintext
   783  	}
   784  
   785  	// Subtract TLS overheads to get the maximum payload size.
   786  	macSize := 0
   787  	if c.out.mac != nil {
   788  		macSize = c.out.mac.Size()
   789  	}
   790  
   791  	payloadBytes := tcpMSSEstimate - recordHeaderLen - explicitIVLen
   792  	if c.out.cipher != nil {
   793  		switch ciph := c.out.cipher.(type) {
   794  		case cipher.Stream:
   795  			payloadBytes -= macSize
   796  		case cipher.AEAD:
   797  			payloadBytes -= ciph.Overhead()
   798  		case cbcMode:
   799  			blockSize := ciph.BlockSize()
   800  			// The payload must fit in a multiple of blockSize, with
   801  			// room for at least one padding byte.
   802  			payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1
   803  			// The MAC is appended before padding so affects the
   804  			// payload size directly.
   805  			payloadBytes -= macSize
   806  		default:
   807  			panic("unknown cipher type")
   808  		}
   809  	}
   810  
   811  	// Allow packet growth in arithmetic progression up to max.
   812  	pkt := c.packetsSent
   813  	c.packetsSent++
   814  	if pkt > 1000 {
   815  		return maxPlaintext // avoid overflow in multiply below
   816  	}
   817  
   818  	n := payloadBytes * int(pkt+1)
   819  	if n > maxPlaintext {
   820  		n = maxPlaintext
   821  	}
   822  	return n
   823  }
   824  
   825  // c.out.Mutex <= L.
   826  func (c *Conn) write(data []byte) (int, error) {
   827  	if c.buffering {
   828  		c.sendBuf = append(c.sendBuf, data...)
   829  		return len(data), nil
   830  	}
   831  
   832  	n, err := c.conn.Write(data)
   833  	c.bytesSent += int64(n)
   834  	return n, err
   835  }
   836  
   837  func (c *Conn) flush() (int, error) {
   838  	if len(c.sendBuf) == 0 {
   839  		return 0, nil
   840  	}
   841  
   842  	n, err := c.conn.Write(c.sendBuf)
   843  	c.bytesSent += int64(n)
   844  	c.sendBuf = nil
   845  	c.buffering = false
   846  	return n, err
   847  }
   848  
   849  // writeRecordLocked writes a TLS record with the given type and payload to the
   850  // connection and updates the record layer state.
   851  // c.out.Mutex <= L.
   852  func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) {
   853  	b := c.out.newBlock()
   854  	defer c.out.freeBlock(b)
   855  
   856  	var n int
   857  	for len(data) > 0 {
   858  		explicitIVLen := 0
   859  		explicitIVIsSeq := false
   860  
   861  		var cbc cbcMode
   862  		if c.out.version >= VersionTLS11 {
   863  			var ok bool
   864  			if cbc, ok = c.out.cipher.(cbcMode); ok {
   865  				explicitIVLen = cbc.BlockSize()
   866  			}
   867  		}
   868  		if explicitIVLen == 0 {
   869  			if c, ok := c.out.cipher.(aead); ok {
   870  				explicitIVLen = c.explicitNonceLen()
   871  
   872  				// The AES-GCM construction in TLS has an
   873  				// explicit nonce so that the nonce can be
   874  				// random. However, the nonce is only 8 bytes
   875  				// which is too small for a secure, random
   876  				// nonce. Therefore we use the sequence number
   877  				// as the nonce.
   878  				explicitIVIsSeq = explicitIVLen > 0
   879  			}
   880  		}
   881  		m := len(data)
   882  		if maxPayload := c.maxPayloadSizeForWrite(typ, explicitIVLen); m > maxPayload {
   883  			m = maxPayload
   884  		}
   885  		b.resize(recordHeaderLen + explicitIVLen + m)
   886  		b.data[0] = byte(typ)
   887  		vers := c.vers
   888  		if vers == 0 {
   889  			// Some TLS servers fail if the record version is
   890  			// greater than TLS 1.0 for the initial ClientHello.
   891  			vers = VersionTLS10
   892  		}
   893  		b.data[1] = byte(vers >> 8)
   894  		b.data[2] = byte(vers)
   895  		b.data[3] = byte(m >> 8)
   896  		b.data[4] = byte(m)
   897  		if explicitIVLen > 0 {
   898  			explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
   899  			if explicitIVIsSeq {
   900  				copy(explicitIV, c.out.seq[:])
   901  			} else {
   902  				if _, err := io.ReadFull(c.config.rand(), explicitIV); err != nil {
   903  					return n, err
   904  				}
   905  			}
   906  		}
   907  		copy(b.data[recordHeaderLen+explicitIVLen:], data)
   908  		c.out.encrypt(b, explicitIVLen)
   909  		if _, err := c.write(b.data); err != nil {
   910  			return n, err
   911  		}
   912  		n += m
   913  		data = data[m:]
   914  	}
   915  
   916  	if typ == recordTypeChangeCipherSpec {
   917  		if err := c.out.changeCipherSpec(); err != nil {
   918  			return n, c.sendAlertLocked(err.(alert))
   919  		}
   920  	}
   921  
   922  	return n, nil
   923  }
   924  
   925  // writeRecord writes a TLS record with the given type and payload to the
   926  // connection and updates the record layer state.
   927  // L < c.out.Mutex.
   928  func (c *Conn) writeRecord(typ recordType, data []byte) (int, error) {
   929  	c.out.Lock()
   930  	defer c.out.Unlock()
   931  
   932  	return c.writeRecordLocked(typ, data)
   933  }
   934  
   935  // readHandshake reads the next handshake message from
   936  // the record layer.
   937  // c.in.Mutex < L; c.out.Mutex < L.
   938  func (c *Conn) readHandshake() (interface{}, error) {
   939  	for c.hand.Len() < 4 {
   940  		if err := c.in.err; err != nil {
   941  			return nil, err
   942  		}
   943  		if err := c.readRecord(recordTypeHandshake); err != nil {
   944  			return nil, err
   945  		}
   946  	}
   947  
   948  	data := c.hand.Bytes()
   949  	n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
   950  	if n > maxHandshake {
   951  		c.sendAlertLocked(alertInternalError)
   952  		return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake))
   953  	}
   954  	for c.hand.Len() < 4+n {
   955  		if err := c.in.err; err != nil {
   956  			return nil, err
   957  		}
   958  		if err := c.readRecord(recordTypeHandshake); err != nil {
   959  			return nil, err
   960  		}
   961  	}
   962  	data = c.hand.Next(4 + n)
   963  	var m handshakeMessage
   964  	switch data[0] {
   965  	case typeHelloRequest:
   966  		m = new(helloRequestMsg)
   967  	case typeClientHello:
   968  		m = new(clientHelloMsg)
   969  	case typeServerHello:
   970  		m = new(serverHelloMsg)
   971  	case typeNewSessionTicket:
   972  		m = new(newSessionTicketMsg)
   973  	case typeCertificate:
   974  		m = new(certificateMsg)
   975  	case typeCertificateRequest:
   976  		m = &certificateRequestMsg{
   977  			hasSignatureAndHash: c.vers >= VersionTLS12,
   978  		}
   979  	case typeCertificateStatus:
   980  		m = new(certificateStatusMsg)
   981  	case typeServerKeyExchange:
   982  		m = new(serverKeyExchangeMsg)
   983  	case typeServerHelloDone:
   984  		m = new(serverHelloDoneMsg)
   985  	case typeClientKeyExchange:
   986  		m = new(clientKeyExchangeMsg)
   987  	case typeCertificateVerify:
   988  		m = &certificateVerifyMsg{
   989  			hasSignatureAndHash: c.vers >= VersionTLS12,
   990  		}
   991  	case typeNextProtocol:
   992  		m = new(nextProtoMsg)
   993  	case typeFinished:
   994  		m = new(finishedMsg)
   995  	default:
   996  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   997  	}
   998  
   999  	// The handshake message unmarshalers
  1000  	// expect to be able to keep references to data,
  1001  	// so pass in a fresh copy that won't be overwritten.
  1002  	data = append([]byte(nil), data...)
  1003  
  1004  	if !m.unmarshal(data) {
  1005  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  1006  	}
  1007  	return m, nil
  1008  }
  1009  
  1010  var (
  1011  	errClosed   = errors.New("tls: use of closed connection")
  1012  	errShutdown = errors.New("tls: protocol is shutdown")
  1013  )
  1014  
  1015  // Write writes data to the connection.
  1016  func (c *Conn) Write(b []byte) (int, error) {
  1017  	// interlock with Close below
  1018  	for {
  1019  		x := atomic.LoadInt32(&c.activeCall)
  1020  		if x&1 != 0 {
  1021  			return 0, errClosed
  1022  		}
  1023  		if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) {
  1024  			defer atomic.AddInt32(&c.activeCall, -2)
  1025  			break
  1026  		}
  1027  	}
  1028  
  1029  	if err := c.Handshake(); err != nil {
  1030  		return 0, err
  1031  	}
  1032  
  1033  	c.out.Lock()
  1034  	defer c.out.Unlock()
  1035  
  1036  	if err := c.out.err; err != nil {
  1037  		return 0, err
  1038  	}
  1039  
  1040  	if !c.handshakeComplete {
  1041  		return 0, alertInternalError
  1042  	}
  1043  
  1044  	if c.closeNotifySent {
  1045  		return 0, errShutdown
  1046  	}
  1047  
  1048  	// SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext
  1049  	// attack when using block mode ciphers due to predictable IVs.
  1050  	// This can be prevented by splitting each Application Data
  1051  	// record into two records, effectively randomizing the IV.
  1052  	//
  1053  	// http://www.openssl.org/~bodo/tls-cbc.txt
  1054  	// https://bugzilla.mozilla.org/show_bug.cgi?id=665814
  1055  	// http://www.imperialviolet.org/2012/01/15/beastfollowup.html
  1056  
  1057  	var m int
  1058  	if len(b) > 1 && c.vers <= VersionTLS10 {
  1059  		if _, ok := c.out.cipher.(cipher.BlockMode); ok {
  1060  			n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1])
  1061  			if err != nil {
  1062  				return n, c.out.setErrorLocked(err)
  1063  			}
  1064  			m, b = 1, b[1:]
  1065  		}
  1066  	}
  1067  
  1068  	n, err := c.writeRecordLocked(recordTypeApplicationData, b)
  1069  	return n + m, c.out.setErrorLocked(err)
  1070  }
  1071  
  1072  // handleRenegotiation processes a HelloRequest handshake message.
  1073  // c.in.Mutex <= L
  1074  func (c *Conn) handleRenegotiation() error {
  1075  	msg, err := c.readHandshake()
  1076  	if err != nil {
  1077  		return err
  1078  	}
  1079  
  1080  	_, ok := msg.(*helloRequestMsg)
  1081  	if !ok {
  1082  		c.sendAlert(alertUnexpectedMessage)
  1083  		return alertUnexpectedMessage
  1084  	}
  1085  
  1086  	if !c.isClient {
  1087  		return c.sendAlert(alertNoRenegotiation)
  1088  	}
  1089  
  1090  	switch c.config.Renegotiation {
  1091  	case RenegotiateNever:
  1092  		return c.sendAlert(alertNoRenegotiation)
  1093  	case RenegotiateOnceAsClient:
  1094  		if c.handshakes > 1 {
  1095  			return c.sendAlert(alertNoRenegotiation)
  1096  		}
  1097  	case RenegotiateFreelyAsClient:
  1098  		// Ok.
  1099  	default:
  1100  		c.sendAlert(alertInternalError)
  1101  		return errors.New("tls: unknown Renegotiation value")
  1102  	}
  1103  
  1104  	c.handshakeMutex.Lock()
  1105  	defer c.handshakeMutex.Unlock()
  1106  
  1107  	c.handshakeComplete = false
  1108  	if c.handshakeErr = c.clientHandshake(); c.handshakeErr == nil {
  1109  		c.handshakes++
  1110  	}
  1111  	return c.handshakeErr
  1112  }
  1113  
  1114  // Read can be made to time out and return a net.Error with Timeout() == true
  1115  // after a fixed time limit; see SetDeadline and SetReadDeadline.
  1116  func (c *Conn) Read(b []byte) (n int, err error) {
  1117  	if err = c.Handshake(); err != nil {
  1118  		return
  1119  	}
  1120  	if len(b) == 0 {
  1121  		// Put this after Handshake, in case people were calling
  1122  		// Read(nil) for the side effect of the Handshake.
  1123  		return
  1124  	}
  1125  
  1126  	c.in.Lock()
  1127  	defer c.in.Unlock()
  1128  
  1129  	// Some OpenSSL servers send empty records in order to randomize the
  1130  	// CBC IV. So this loop ignores a limited number of empty records.
  1131  	const maxConsecutiveEmptyRecords = 100
  1132  	for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ {
  1133  		for c.input == nil && c.in.err == nil {
  1134  			if err := c.readRecord(recordTypeApplicationData); err != nil {
  1135  				// Soft error, like EAGAIN
  1136  				return 0, err
  1137  			}
  1138  			if c.hand.Len() > 0 {
  1139  				// We received handshake bytes, indicating the
  1140  				// start of a renegotiation.
  1141  				if err := c.handleRenegotiation(); err != nil {
  1142  					return 0, err
  1143  				}
  1144  			}
  1145  		}
  1146  		if err := c.in.err; err != nil {
  1147  			return 0, err
  1148  		}
  1149  
  1150  		n, err = c.input.Read(b)
  1151  		if c.input.off >= len(c.input.data) {
  1152  			c.in.freeBlock(c.input)
  1153  			c.input = nil
  1154  		}
  1155  
  1156  		// If a close-notify alert is waiting, read it so that
  1157  		// we can return (n, EOF) instead of (n, nil), to signal
  1158  		// to the HTTP response reading goroutine that the
  1159  		// connection is now closed. This eliminates a race
  1160  		// where the HTTP response reading goroutine would
  1161  		// otherwise not observe the EOF until its next read,
  1162  		// by which time a client goroutine might have already
  1163  		// tried to reuse the HTTP connection for a new
  1164  		// request.
  1165  		// See https://codereview.appspot.com/76400046
  1166  		// and https://golang.org/issue/3514
  1167  		if ri := c.rawInput; ri != nil &&
  1168  			n != 0 && err == nil &&
  1169  			c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert {
  1170  			if recErr := c.readRecord(recordTypeApplicationData); recErr != nil {
  1171  				err = recErr // will be io.EOF on closeNotify
  1172  			}
  1173  		}
  1174  
  1175  		if n != 0 || err != nil {
  1176  			return n, err
  1177  		}
  1178  	}
  1179  
  1180  	return 0, io.ErrNoProgress
  1181  }
  1182  
  1183  // Close closes the connection.
  1184  func (c *Conn) Close() error {
  1185  	// Interlock with Conn.Write above.
  1186  	var x int32
  1187  	for {
  1188  		x = atomic.LoadInt32(&c.activeCall)
  1189  		if x&1 != 0 {
  1190  			return errClosed
  1191  		}
  1192  		if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) {
  1193  			break
  1194  		}
  1195  	}
  1196  	if x != 0 {
  1197  		// io.Writer and io.Closer should not be used concurrently.
  1198  		// If Close is called while a Write is currently in-flight,
  1199  		// interpret that as a sign that this Close is really just
  1200  		// being used to break the Write and/or clean up resources and
  1201  		// avoid sending the alertCloseNotify, which may block
  1202  		// waiting on handshakeMutex or the c.out mutex.
  1203  		return c.conn.Close()
  1204  	}
  1205  
  1206  	var alertErr error
  1207  
  1208  	c.handshakeMutex.Lock()
  1209  	if c.handshakeComplete {
  1210  		alertErr = c.closeNotify()
  1211  	}
  1212  	c.handshakeMutex.Unlock()
  1213  
  1214  	if err := c.conn.Close(); err != nil {
  1215  		return err
  1216  	}
  1217  	return alertErr
  1218  }
  1219  
  1220  var errEarlyCloseWrite = errors.New("tls: CloseWrite called before handshake complete")
  1221  
  1222  // CloseWrite shuts down the writing side of the connection. It should only be
  1223  // called once the handshake has completed and does not call CloseWrite on the
  1224  // underlying connection. Most callers should just use Close.
  1225  func (c *Conn) CloseWrite() error {
  1226  	c.handshakeMutex.Lock()
  1227  	defer c.handshakeMutex.Unlock()
  1228  	if !c.handshakeComplete {
  1229  		return errEarlyCloseWrite
  1230  	}
  1231  
  1232  	return c.closeNotify()
  1233  }
  1234  
  1235  func (c *Conn) closeNotify() error {
  1236  	c.out.Lock()
  1237  	defer c.out.Unlock()
  1238  
  1239  	if !c.closeNotifySent {
  1240  		c.closeNotifyErr = c.sendAlertLocked(alertCloseNotify)
  1241  		c.closeNotifySent = true
  1242  	}
  1243  	return c.closeNotifyErr
  1244  }
  1245  
  1246  // Handshake runs the client or server handshake
  1247  // protocol if it has not yet been run.
  1248  // Most uses of this package need not call Handshake
  1249  // explicitly: the first Read or Write will call it automatically.
  1250  func (c *Conn) Handshake() error {
  1251  	// c.handshakeErr and c.handshakeComplete are protected by
  1252  	// c.handshakeMutex. In order to perform a handshake, we need to lock
  1253  	// c.in also and c.handshakeMutex must be locked after c.in.
  1254  	//
  1255  	// However, if a Read() operation is hanging then it'll be holding the
  1256  	// lock on c.in and so taking it here would cause all operations that
  1257  	// need to check whether a handshake is pending (such as Write) to
  1258  	// block.
  1259  	//
  1260  	// Thus we first take c.handshakeMutex to check whether a handshake is
  1261  	// needed.
  1262  	//
  1263  	// If so then, previously, this code would unlock handshakeMutex and
  1264  	// then lock c.in and handshakeMutex in the correct order to run the
  1265  	// handshake. The problem was that it was possible for a Read to
  1266  	// complete the handshake once handshakeMutex was unlocked and then
  1267  	// keep c.in while waiting for network data. Thus a concurrent
  1268  	// operation could be blocked on c.in.
  1269  	//
  1270  	// Thus handshakeCond is used to signal that a goroutine is committed
  1271  	// to running the handshake and other goroutines can wait on it if they
  1272  	// need. handshakeCond is protected by handshakeMutex.
  1273  	c.handshakeMutex.Lock()
  1274  	defer c.handshakeMutex.Unlock()
  1275  
  1276  	for {
  1277  		if err := c.handshakeErr; err != nil {
  1278  			return err
  1279  		}
  1280  		if c.handshakeComplete {
  1281  			return nil
  1282  		}
  1283  		if c.handshakeCond == nil {
  1284  			break
  1285  		}
  1286  
  1287  		c.handshakeCond.Wait()
  1288  	}
  1289  
  1290  	// Set handshakeCond to indicate that this goroutine is committing to
  1291  	// running the handshake.
  1292  	c.handshakeCond = sync.NewCond(&c.handshakeMutex)
  1293  	c.handshakeMutex.Unlock()
  1294  
  1295  	c.in.Lock()
  1296  	defer c.in.Unlock()
  1297  
  1298  	c.handshakeMutex.Lock()
  1299  
  1300  	// The handshake cannot have completed when handshakeMutex was unlocked
  1301  	// because this goroutine set handshakeCond.
  1302  	if c.handshakeErr != nil || c.handshakeComplete {
  1303  		panic("handshake should not have been able to complete after handshakeCond was set")
  1304  	}
  1305  
  1306  	if c.isClient {
  1307  		c.handshakeErr = c.clientHandshake()
  1308  	} else {
  1309  		c.handshakeErr = c.serverHandshake()
  1310  	}
  1311  	if c.handshakeErr == nil {
  1312  		c.handshakes++
  1313  	} else {
  1314  		// If an error occurred during the hadshake try to flush the
  1315  		// alert that might be left in the buffer.
  1316  		c.flush()
  1317  	}
  1318  
  1319  	if c.handshakeErr == nil && !c.handshakeComplete {
  1320  		panic("handshake should have had a result.")
  1321  	}
  1322  
  1323  	// Wake any other goroutines that are waiting for this handshake to
  1324  	// complete.
  1325  	c.handshakeCond.Broadcast()
  1326  	c.handshakeCond = nil
  1327  
  1328  	return c.handshakeErr
  1329  }
  1330  
  1331  // ConnectionState returns basic TLS details about the connection.
  1332  func (c *Conn) ConnectionState() ConnectionState {
  1333  	c.handshakeMutex.Lock()
  1334  	defer c.handshakeMutex.Unlock()
  1335  
  1336  	var state ConnectionState
  1337  	state.HandshakeComplete = c.handshakeComplete
  1338  	state.ServerName = c.serverName
  1339  
  1340  	if c.handshakeComplete {
  1341  		state.Version = c.vers
  1342  		state.NegotiatedProtocol = c.clientProtocol
  1343  		state.DidResume = c.didResume
  1344  		state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
  1345  		state.CipherSuite = c.cipherSuite
  1346  		state.PeerCertificates = c.peerCertificates
  1347  		state.VerifiedChains = c.verifiedChains
  1348  		state.SignedCertificateTimestamps = c.scts
  1349  		state.OCSPResponse = c.ocspResponse
  1350  		if !c.didResume {
  1351  			if c.clientFinishedIsFirst {
  1352  				state.TLSUnique = c.clientFinished[:]
  1353  			} else {
  1354  				state.TLSUnique = c.serverFinished[:]
  1355  			}
  1356  		}
  1357  	}
  1358  
  1359  	return state
  1360  }
  1361  
  1362  // OCSPResponse returns the stapled OCSP response from the TLS server, if
  1363  // any. (Only valid for client connections.)
  1364  func (c *Conn) OCSPResponse() []byte {
  1365  	c.handshakeMutex.Lock()
  1366  	defer c.handshakeMutex.Unlock()
  1367  
  1368  	return c.ocspResponse
  1369  }
  1370  
  1371  // VerifyHostname checks that the peer certificate chain is valid for
  1372  // connecting to host. If so, it returns nil; if not, it returns an error
  1373  // describing the problem.
  1374  func (c *Conn) VerifyHostname(host string) error {
  1375  	c.handshakeMutex.Lock()
  1376  	defer c.handshakeMutex.Unlock()
  1377  	if !c.isClient {
  1378  		return errors.New("tls: VerifyHostname called on TLS server connection")
  1379  	}
  1380  	if !c.handshakeComplete {
  1381  		return errors.New("tls: handshake has not yet been performed")
  1382  	}
  1383  	if len(c.verifiedChains) == 0 {
  1384  		return errors.New("tls: handshake did not verify certificate chain")
  1385  	}
  1386  	return c.peerCertificates[0].VerifyHostname(host)
  1387  }