github.com/zebozhuang/go@v0.0.0-20200207033046-f8a98f6f5c5d/src/go/types/predicates.go (about) 1 // Copyright 2012 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // This file implements commonly used type predicates. 6 7 package types 8 9 import "sort" 10 11 func isNamed(typ Type) bool { 12 if _, ok := typ.(*Basic); ok { 13 return ok 14 } 15 _, ok := typ.(*Named) 16 return ok 17 } 18 19 func isBoolean(typ Type) bool { 20 t, ok := typ.Underlying().(*Basic) 21 return ok && t.info&IsBoolean != 0 22 } 23 24 func isInteger(typ Type) bool { 25 t, ok := typ.Underlying().(*Basic) 26 return ok && t.info&IsInteger != 0 27 } 28 29 func isUnsigned(typ Type) bool { 30 t, ok := typ.Underlying().(*Basic) 31 return ok && t.info&IsUnsigned != 0 32 } 33 34 func isFloat(typ Type) bool { 35 t, ok := typ.Underlying().(*Basic) 36 return ok && t.info&IsFloat != 0 37 } 38 39 func isComplex(typ Type) bool { 40 t, ok := typ.Underlying().(*Basic) 41 return ok && t.info&IsComplex != 0 42 } 43 44 func isNumeric(typ Type) bool { 45 t, ok := typ.Underlying().(*Basic) 46 return ok && t.info&IsNumeric != 0 47 } 48 49 func isString(typ Type) bool { 50 t, ok := typ.Underlying().(*Basic) 51 return ok && t.info&IsString != 0 52 } 53 54 func isTyped(typ Type) bool { 55 t, ok := typ.Underlying().(*Basic) 56 return !ok || t.info&IsUntyped == 0 57 } 58 59 func isUntyped(typ Type) bool { 60 t, ok := typ.Underlying().(*Basic) 61 return ok && t.info&IsUntyped != 0 62 } 63 64 func isOrdered(typ Type) bool { 65 t, ok := typ.Underlying().(*Basic) 66 return ok && t.info&IsOrdered != 0 67 } 68 69 func isConstType(typ Type) bool { 70 t, ok := typ.Underlying().(*Basic) 71 return ok && t.info&IsConstType != 0 72 } 73 74 // IsInterface reports whether typ is an interface type. 75 func IsInterface(typ Type) bool { 76 _, ok := typ.Underlying().(*Interface) 77 return ok 78 } 79 80 // Comparable reports whether values of type T are comparable. 81 func Comparable(T Type) bool { 82 switch t := T.Underlying().(type) { 83 case *Basic: 84 // assume invalid types to be comparable 85 // to avoid follow-up errors 86 return t.kind != UntypedNil 87 case *Pointer, *Interface, *Chan: 88 return true 89 case *Struct: 90 for _, f := range t.fields { 91 if !Comparable(f.typ) { 92 return false 93 } 94 } 95 return true 96 case *Array: 97 return Comparable(t.elem) 98 } 99 return false 100 } 101 102 // hasNil reports whether a type includes the nil value. 103 func hasNil(typ Type) bool { 104 switch t := typ.Underlying().(type) { 105 case *Basic: 106 return t.kind == UnsafePointer 107 case *Slice, *Pointer, *Signature, *Interface, *Map, *Chan: 108 return true 109 } 110 return false 111 } 112 113 // Identical reports whether x and y are identical. 114 func Identical(x, y Type) bool { 115 return identical(x, y, true, nil) 116 } 117 118 // IdenticalIgnoreTags reports whether x and y are identical if tags are ignored. 119 func IdenticalIgnoreTags(x, y Type) bool { 120 return identical(x, y, false, nil) 121 } 122 123 // An ifacePair is a node in a stack of interface type pairs compared for identity. 124 type ifacePair struct { 125 x, y *Interface 126 prev *ifacePair 127 } 128 129 func (p *ifacePair) identical(q *ifacePair) bool { 130 return p.x == q.x && p.y == q.y || p.x == q.y && p.y == q.x 131 } 132 133 func identical(x, y Type, cmpTags bool, p *ifacePair) bool { 134 if x == y { 135 return true 136 } 137 138 switch x := x.(type) { 139 case *Basic: 140 // Basic types are singletons except for the rune and byte 141 // aliases, thus we cannot solely rely on the x == y check 142 // above. See also comment in TypeName.IsAlias. 143 if y, ok := y.(*Basic); ok { 144 return x.kind == y.kind 145 } 146 147 case *Array: 148 // Two array types are identical if they have identical element types 149 // and the same array length. 150 if y, ok := y.(*Array); ok { 151 return x.len == y.len && identical(x.elem, y.elem, cmpTags, p) 152 } 153 154 case *Slice: 155 // Two slice types are identical if they have identical element types. 156 if y, ok := y.(*Slice); ok { 157 return identical(x.elem, y.elem, cmpTags, p) 158 } 159 160 case *Struct: 161 // Two struct types are identical if they have the same sequence of fields, 162 // and if corresponding fields have the same names, and identical types, 163 // and identical tags. Two anonymous fields are considered to have the same 164 // name. Lower-case field names from different packages are always different. 165 if y, ok := y.(*Struct); ok { 166 if x.NumFields() == y.NumFields() { 167 for i, f := range x.fields { 168 g := y.fields[i] 169 if f.anonymous != g.anonymous || 170 cmpTags && x.Tag(i) != y.Tag(i) || 171 !f.sameId(g.pkg, g.name) || 172 !identical(f.typ, g.typ, cmpTags, p) { 173 return false 174 } 175 } 176 return true 177 } 178 } 179 180 case *Pointer: 181 // Two pointer types are identical if they have identical base types. 182 if y, ok := y.(*Pointer); ok { 183 return identical(x.base, y.base, cmpTags, p) 184 } 185 186 case *Tuple: 187 // Two tuples types are identical if they have the same number of elements 188 // and corresponding elements have identical types. 189 if y, ok := y.(*Tuple); ok { 190 if x.Len() == y.Len() { 191 if x != nil { 192 for i, v := range x.vars { 193 w := y.vars[i] 194 if !identical(v.typ, w.typ, cmpTags, p) { 195 return false 196 } 197 } 198 } 199 return true 200 } 201 } 202 203 case *Signature: 204 // Two function types are identical if they have the same number of parameters 205 // and result values, corresponding parameter and result types are identical, 206 // and either both functions are variadic or neither is. Parameter and result 207 // names are not required to match. 208 if y, ok := y.(*Signature); ok { 209 return x.variadic == y.variadic && 210 identical(x.params, y.params, cmpTags, p) && 211 identical(x.results, y.results, cmpTags, p) 212 } 213 214 case *Interface: 215 // Two interface types are identical if they have the same set of methods with 216 // the same names and identical function types. Lower-case method names from 217 // different packages are always different. The order of the methods is irrelevant. 218 if y, ok := y.(*Interface); ok { 219 a := x.allMethods 220 b := y.allMethods 221 if len(a) == len(b) { 222 // Interface types are the only types where cycles can occur 223 // that are not "terminated" via named types; and such cycles 224 // can only be created via method parameter types that are 225 // anonymous interfaces (directly or indirectly) embedding 226 // the current interface. Example: 227 // 228 // type T interface { 229 // m() interface{T} 230 // } 231 // 232 // If two such (differently named) interfaces are compared, 233 // endless recursion occurs if the cycle is not detected. 234 // 235 // If x and y were compared before, they must be equal 236 // (if they were not, the recursion would have stopped); 237 // search the ifacePair stack for the same pair. 238 // 239 // This is a quadratic algorithm, but in practice these stacks 240 // are extremely short (bounded by the nesting depth of interface 241 // type declarations that recur via parameter types, an extremely 242 // rare occurrence). An alternative implementation might use a 243 // "visited" map, but that is probably less efficient overall. 244 q := &ifacePair{x, y, p} 245 for p != nil { 246 if p.identical(q) { 247 return true // same pair was compared before 248 } 249 p = p.prev 250 } 251 if debug { 252 assert(sort.IsSorted(byUniqueMethodName(a))) 253 assert(sort.IsSorted(byUniqueMethodName(b))) 254 } 255 for i, f := range a { 256 g := b[i] 257 if f.Id() != g.Id() || !identical(f.typ, g.typ, cmpTags, q) { 258 return false 259 } 260 } 261 return true 262 } 263 } 264 265 case *Map: 266 // Two map types are identical if they have identical key and value types. 267 if y, ok := y.(*Map); ok { 268 return identical(x.key, y.key, cmpTags, p) && identical(x.elem, y.elem, cmpTags, p) 269 } 270 271 case *Chan: 272 // Two channel types are identical if they have identical value types 273 // and the same direction. 274 if y, ok := y.(*Chan); ok { 275 return x.dir == y.dir && identical(x.elem, y.elem, cmpTags, p) 276 } 277 278 case *Named: 279 // Two named types are identical if their type names originate 280 // in the same type declaration. 281 if y, ok := y.(*Named); ok { 282 return x.obj == y.obj 283 } 284 285 case nil: 286 287 default: 288 unreachable() 289 } 290 291 return false 292 } 293 294 // Default returns the default "typed" type for an "untyped" type; 295 // it returns the incoming type for all other types. The default type 296 // for untyped nil is untyped nil. 297 // 298 func Default(typ Type) Type { 299 if t, ok := typ.(*Basic); ok { 300 switch t.kind { 301 case UntypedBool: 302 return Typ[Bool] 303 case UntypedInt: 304 return Typ[Int] 305 case UntypedRune: 306 return universeRune // use 'rune' name 307 case UntypedFloat: 308 return Typ[Float64] 309 case UntypedComplex: 310 return Typ[Complex128] 311 case UntypedString: 312 return Typ[String] 313 } 314 } 315 return typ 316 }