github.com/zebozhuang/go@v0.0.0-20200207033046-f8a98f6f5c5d/src/text/template/exec.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package template
     6  
     7  import (
     8  	"bytes"
     9  	"fmt"
    10  	"io"
    11  	"reflect"
    12  	"runtime"
    13  	"sort"
    14  	"strings"
    15  	"text/template/parse"
    16  )
    17  
    18  // maxExecDepth specifies the maximum stack depth of templates within
    19  // templates. This limit is only practically reached by accidentally
    20  // recursive template invocations. This limit allows us to return
    21  // an error instead of triggering a stack overflow.
    22  const maxExecDepth = 100000
    23  
    24  // state represents the state of an execution. It's not part of the
    25  // template so that multiple executions of the same template
    26  // can execute in parallel.
    27  type state struct {
    28  	tmpl  *Template
    29  	wr    io.Writer
    30  	node  parse.Node // current node, for errors
    31  	vars  []variable // push-down stack of variable values.
    32  	depth int        // the height of the stack of executing templates.
    33  }
    34  
    35  // variable holds the dynamic value of a variable such as $, $x etc.
    36  type variable struct {
    37  	name  string
    38  	value reflect.Value
    39  }
    40  
    41  // push pushes a new variable on the stack.
    42  func (s *state) push(name string, value reflect.Value) {
    43  	s.vars = append(s.vars, variable{name, value})
    44  }
    45  
    46  // mark returns the length of the variable stack.
    47  func (s *state) mark() int {
    48  	return len(s.vars)
    49  }
    50  
    51  // pop pops the variable stack up to the mark.
    52  func (s *state) pop(mark int) {
    53  	s.vars = s.vars[0:mark]
    54  }
    55  
    56  // setVar overwrites the top-nth variable on the stack. Used by range iterations.
    57  func (s *state) setVar(n int, value reflect.Value) {
    58  	s.vars[len(s.vars)-n].value = value
    59  }
    60  
    61  // varValue returns the value of the named variable.
    62  func (s *state) varValue(name string) reflect.Value {
    63  	for i := s.mark() - 1; i >= 0; i-- {
    64  		if s.vars[i].name == name {
    65  			return s.vars[i].value
    66  		}
    67  	}
    68  	s.errorf("undefined variable: %s", name)
    69  	return zero
    70  }
    71  
    72  var zero reflect.Value
    73  
    74  // at marks the state to be on node n, for error reporting.
    75  func (s *state) at(node parse.Node) {
    76  	s.node = node
    77  }
    78  
    79  // doublePercent returns the string with %'s replaced by %%, if necessary,
    80  // so it can be used safely inside a Printf format string.
    81  func doublePercent(str string) string {
    82  	if strings.Contains(str, "%") {
    83  		str = strings.Replace(str, "%", "%%", -1)
    84  	}
    85  	return str
    86  }
    87  
    88  // TODO: It would be nice if ExecError was more broken down, but
    89  // the way ErrorContext embeds the template name makes the
    90  // processing too clumsy.
    91  
    92  // ExecError is the custom error type returned when Execute has an
    93  // error evaluating its template. (If a write error occurs, the actual
    94  // error is returned; it will not be of type ExecError.)
    95  type ExecError struct {
    96  	Name string // Name of template.
    97  	Err  error  // Pre-formatted error.
    98  }
    99  
   100  func (e ExecError) Error() string {
   101  	return e.Err.Error()
   102  }
   103  
   104  // errorf records an ExecError and terminates processing.
   105  func (s *state) errorf(format string, args ...interface{}) {
   106  	name := doublePercent(s.tmpl.Name())
   107  	if s.node == nil {
   108  		format = fmt.Sprintf("template: %s: %s", name, format)
   109  	} else {
   110  		location, context := s.tmpl.ErrorContext(s.node)
   111  		format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format)
   112  	}
   113  	panic(ExecError{
   114  		Name: s.tmpl.Name(),
   115  		Err:  fmt.Errorf(format, args...),
   116  	})
   117  }
   118  
   119  // writeError is the wrapper type used internally when Execute has an
   120  // error writing to its output. We strip the wrapper in errRecover.
   121  // Note that this is not an implementation of error, so it cannot escape
   122  // from the package as an error value.
   123  type writeError struct {
   124  	Err error // Original error.
   125  }
   126  
   127  func (s *state) writeError(err error) {
   128  	panic(writeError{
   129  		Err: err,
   130  	})
   131  }
   132  
   133  // errRecover is the handler that turns panics into returns from the top
   134  // level of Parse.
   135  func errRecover(errp *error) {
   136  	e := recover()
   137  	if e != nil {
   138  		switch err := e.(type) {
   139  		case runtime.Error:
   140  			panic(e)
   141  		case writeError:
   142  			*errp = err.Err // Strip the wrapper.
   143  		case ExecError:
   144  			*errp = err // Keep the wrapper.
   145  		default:
   146  			panic(e)
   147  		}
   148  	}
   149  }
   150  
   151  // ExecuteTemplate applies the template associated with t that has the given name
   152  // to the specified data object and writes the output to wr.
   153  // If an error occurs executing the template or writing its output,
   154  // execution stops, but partial results may already have been written to
   155  // the output writer.
   156  // A template may be executed safely in parallel, although if parallel
   157  // executions share a Writer the output may be interleaved.
   158  func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error {
   159  	var tmpl *Template
   160  	if t.common != nil {
   161  		tmpl = t.tmpl[name]
   162  	}
   163  	if tmpl == nil {
   164  		return fmt.Errorf("template: no template %q associated with template %q", name, t.name)
   165  	}
   166  	return tmpl.Execute(wr, data)
   167  }
   168  
   169  // Execute applies a parsed template to the specified data object,
   170  // and writes the output to wr.
   171  // If an error occurs executing the template or writing its output,
   172  // execution stops, but partial results may already have been written to
   173  // the output writer.
   174  // A template may be executed safely in parallel, although if parallel
   175  // executions share a Writer the output may be interleaved.
   176  //
   177  // If data is a reflect.Value, the template applies to the concrete
   178  // value that the reflect.Value holds, as in fmt.Print.
   179  func (t *Template) Execute(wr io.Writer, data interface{}) error {
   180  	return t.execute(wr, data)
   181  }
   182  
   183  func (t *Template) execute(wr io.Writer, data interface{}) (err error) {
   184  	defer errRecover(&err)
   185  	value, ok := data.(reflect.Value)
   186  	if !ok {
   187  		value = reflect.ValueOf(data)
   188  	}
   189  	state := &state{
   190  		tmpl: t,
   191  		wr:   wr,
   192  		vars: []variable{{"$", value}},
   193  	}
   194  	if t.Tree == nil || t.Root == nil {
   195  		state.errorf("%q is an incomplete or empty template", t.Name())
   196  	}
   197  	state.walk(value, t.Root)
   198  	return
   199  }
   200  
   201  // DefinedTemplates returns a string listing the defined templates,
   202  // prefixed by the string "; defined templates are: ". If there are none,
   203  // it returns the empty string. For generating an error message here
   204  // and in html/template.
   205  func (t *Template) DefinedTemplates() string {
   206  	if t.common == nil {
   207  		return ""
   208  	}
   209  	var b bytes.Buffer
   210  	for name, tmpl := range t.tmpl {
   211  		if tmpl.Tree == nil || tmpl.Root == nil {
   212  			continue
   213  		}
   214  		if b.Len() > 0 {
   215  			b.WriteString(", ")
   216  		}
   217  		fmt.Fprintf(&b, "%q", name)
   218  	}
   219  	var s string
   220  	if b.Len() > 0 {
   221  		s = "; defined templates are: " + b.String()
   222  	}
   223  	return s
   224  }
   225  
   226  // Walk functions step through the major pieces of the template structure,
   227  // generating output as they go.
   228  func (s *state) walk(dot reflect.Value, node parse.Node) {
   229  	s.at(node)
   230  	switch node := node.(type) {
   231  	case *parse.ActionNode:
   232  		// Do not pop variables so they persist until next end.
   233  		// Also, if the action declares variables, don't print the result.
   234  		val := s.evalPipeline(dot, node.Pipe)
   235  		if len(node.Pipe.Decl) == 0 {
   236  			s.printValue(node, val)
   237  		}
   238  	case *parse.IfNode:
   239  		s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList)
   240  	case *parse.ListNode:
   241  		for _, node := range node.Nodes {
   242  			s.walk(dot, node)
   243  		}
   244  	case *parse.RangeNode:
   245  		s.walkRange(dot, node)
   246  	case *parse.TemplateNode:
   247  		s.walkTemplate(dot, node)
   248  	case *parse.TextNode:
   249  		if _, err := s.wr.Write(node.Text); err != nil {
   250  			s.writeError(err)
   251  		}
   252  	case *parse.WithNode:
   253  		s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList)
   254  	default:
   255  		s.errorf("unknown node: %s", node)
   256  	}
   257  }
   258  
   259  // walkIfOrWith walks an 'if' or 'with' node. The two control structures
   260  // are identical in behavior except that 'with' sets dot.
   261  func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) {
   262  	defer s.pop(s.mark())
   263  	val := s.evalPipeline(dot, pipe)
   264  	truth, ok := isTrue(val)
   265  	if !ok {
   266  		s.errorf("if/with can't use %v", val)
   267  	}
   268  	if truth {
   269  		if typ == parse.NodeWith {
   270  			s.walk(val, list)
   271  		} else {
   272  			s.walk(dot, list)
   273  		}
   274  	} else if elseList != nil {
   275  		s.walk(dot, elseList)
   276  	}
   277  }
   278  
   279  // IsTrue reports whether the value is 'true', in the sense of not the zero of its type,
   280  // and whether the value has a meaningful truth value. This is the definition of
   281  // truth used by if and other such actions.
   282  func IsTrue(val interface{}) (truth, ok bool) {
   283  	return isTrue(reflect.ValueOf(val))
   284  }
   285  
   286  func isTrue(val reflect.Value) (truth, ok bool) {
   287  	if !val.IsValid() {
   288  		// Something like var x interface{}, never set. It's a form of nil.
   289  		return false, true
   290  	}
   291  	switch val.Kind() {
   292  	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
   293  		truth = val.Len() > 0
   294  	case reflect.Bool:
   295  		truth = val.Bool()
   296  	case reflect.Complex64, reflect.Complex128:
   297  		truth = val.Complex() != 0
   298  	case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface:
   299  		truth = !val.IsNil()
   300  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   301  		truth = val.Int() != 0
   302  	case reflect.Float32, reflect.Float64:
   303  		truth = val.Float() != 0
   304  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   305  		truth = val.Uint() != 0
   306  	case reflect.Struct:
   307  		truth = true // Struct values are always true.
   308  	default:
   309  		return
   310  	}
   311  	return truth, true
   312  }
   313  
   314  func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) {
   315  	s.at(r)
   316  	defer s.pop(s.mark())
   317  	val, _ := indirect(s.evalPipeline(dot, r.Pipe))
   318  	// mark top of stack before any variables in the body are pushed.
   319  	mark := s.mark()
   320  	oneIteration := func(index, elem reflect.Value) {
   321  		// Set top var (lexically the second if there are two) to the element.
   322  		if len(r.Pipe.Decl) > 0 {
   323  			s.setVar(1, elem)
   324  		}
   325  		// Set next var (lexically the first if there are two) to the index.
   326  		if len(r.Pipe.Decl) > 1 {
   327  			s.setVar(2, index)
   328  		}
   329  		s.walk(elem, r.List)
   330  		s.pop(mark)
   331  	}
   332  	switch val.Kind() {
   333  	case reflect.Array, reflect.Slice:
   334  		if val.Len() == 0 {
   335  			break
   336  		}
   337  		for i := 0; i < val.Len(); i++ {
   338  			oneIteration(reflect.ValueOf(i), val.Index(i))
   339  		}
   340  		return
   341  	case reflect.Map:
   342  		if val.Len() == 0 {
   343  			break
   344  		}
   345  		for _, key := range sortKeys(val.MapKeys()) {
   346  			oneIteration(key, val.MapIndex(key))
   347  		}
   348  		return
   349  	case reflect.Chan:
   350  		if val.IsNil() {
   351  			break
   352  		}
   353  		i := 0
   354  		for ; ; i++ {
   355  			elem, ok := val.Recv()
   356  			if !ok {
   357  				break
   358  			}
   359  			oneIteration(reflect.ValueOf(i), elem)
   360  		}
   361  		if i == 0 {
   362  			break
   363  		}
   364  		return
   365  	case reflect.Invalid:
   366  		break // An invalid value is likely a nil map, etc. and acts like an empty map.
   367  	default:
   368  		s.errorf("range can't iterate over %v", val)
   369  	}
   370  	if r.ElseList != nil {
   371  		s.walk(dot, r.ElseList)
   372  	}
   373  }
   374  
   375  func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) {
   376  	s.at(t)
   377  	tmpl := s.tmpl.tmpl[t.Name]
   378  	if tmpl == nil {
   379  		s.errorf("template %q not defined", t.Name)
   380  	}
   381  	if s.depth == maxExecDepth {
   382  		s.errorf("exceeded maximum template depth (%v)", maxExecDepth)
   383  	}
   384  	// Variables declared by the pipeline persist.
   385  	dot = s.evalPipeline(dot, t.Pipe)
   386  	newState := *s
   387  	newState.depth++
   388  	newState.tmpl = tmpl
   389  	// No dynamic scoping: template invocations inherit no variables.
   390  	newState.vars = []variable{{"$", dot}}
   391  	newState.walk(dot, tmpl.Root)
   392  }
   393  
   394  // Eval functions evaluate pipelines, commands, and their elements and extract
   395  // values from the data structure by examining fields, calling methods, and so on.
   396  // The printing of those values happens only through walk functions.
   397  
   398  // evalPipeline returns the value acquired by evaluating a pipeline. If the
   399  // pipeline has a variable declaration, the variable will be pushed on the
   400  // stack. Callers should therefore pop the stack after they are finished
   401  // executing commands depending on the pipeline value.
   402  func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) {
   403  	if pipe == nil {
   404  		return
   405  	}
   406  	s.at(pipe)
   407  	for _, cmd := range pipe.Cmds {
   408  		value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg.
   409  		// If the object has type interface{}, dig down one level to the thing inside.
   410  		if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 {
   411  			value = reflect.ValueOf(value.Interface()) // lovely!
   412  		}
   413  	}
   414  	for _, variable := range pipe.Decl {
   415  		s.push(variable.Ident[0], value)
   416  	}
   417  	return value
   418  }
   419  
   420  func (s *state) notAFunction(args []parse.Node, final reflect.Value) {
   421  	if len(args) > 1 || final.IsValid() {
   422  		s.errorf("can't give argument to non-function %s", args[0])
   423  	}
   424  }
   425  
   426  func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value {
   427  	firstWord := cmd.Args[0]
   428  	switch n := firstWord.(type) {
   429  	case *parse.FieldNode:
   430  		return s.evalFieldNode(dot, n, cmd.Args, final)
   431  	case *parse.ChainNode:
   432  		return s.evalChainNode(dot, n, cmd.Args, final)
   433  	case *parse.IdentifierNode:
   434  		// Must be a function.
   435  		return s.evalFunction(dot, n, cmd, cmd.Args, final)
   436  	case *parse.PipeNode:
   437  		// Parenthesized pipeline. The arguments are all inside the pipeline; final is ignored.
   438  		return s.evalPipeline(dot, n)
   439  	case *parse.VariableNode:
   440  		return s.evalVariableNode(dot, n, cmd.Args, final)
   441  	}
   442  	s.at(firstWord)
   443  	s.notAFunction(cmd.Args, final)
   444  	switch word := firstWord.(type) {
   445  	case *parse.BoolNode:
   446  		return reflect.ValueOf(word.True)
   447  	case *parse.DotNode:
   448  		return dot
   449  	case *parse.NilNode:
   450  		s.errorf("nil is not a command")
   451  	case *parse.NumberNode:
   452  		return s.idealConstant(word)
   453  	case *parse.StringNode:
   454  		return reflect.ValueOf(word.Text)
   455  	}
   456  	s.errorf("can't evaluate command %q", firstWord)
   457  	panic("not reached")
   458  }
   459  
   460  // idealConstant is called to return the value of a number in a context where
   461  // we don't know the type. In that case, the syntax of the number tells us
   462  // its type, and we use Go rules to resolve. Note there is no such thing as
   463  // a uint ideal constant in this situation - the value must be of int type.
   464  func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value {
   465  	// These are ideal constants but we don't know the type
   466  	// and we have no context.  (If it was a method argument,
   467  	// we'd know what we need.) The syntax guides us to some extent.
   468  	s.at(constant)
   469  	switch {
   470  	case constant.IsComplex:
   471  		return reflect.ValueOf(constant.Complex128) // incontrovertible.
   472  	case constant.IsFloat && !isHexConstant(constant.Text) && strings.ContainsAny(constant.Text, ".eE"):
   473  		return reflect.ValueOf(constant.Float64)
   474  	case constant.IsInt:
   475  		n := int(constant.Int64)
   476  		if int64(n) != constant.Int64 {
   477  			s.errorf("%s overflows int", constant.Text)
   478  		}
   479  		return reflect.ValueOf(n)
   480  	case constant.IsUint:
   481  		s.errorf("%s overflows int", constant.Text)
   482  	}
   483  	return zero
   484  }
   485  
   486  func isHexConstant(s string) bool {
   487  	return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X')
   488  }
   489  
   490  func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value {
   491  	s.at(field)
   492  	return s.evalFieldChain(dot, dot, field, field.Ident, args, final)
   493  }
   494  
   495  func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value {
   496  	s.at(chain)
   497  	if len(chain.Field) == 0 {
   498  		s.errorf("internal error: no fields in evalChainNode")
   499  	}
   500  	if chain.Node.Type() == parse.NodeNil {
   501  		s.errorf("indirection through explicit nil in %s", chain)
   502  	}
   503  	// (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields.
   504  	pipe := s.evalArg(dot, nil, chain.Node)
   505  	return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final)
   506  }
   507  
   508  func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value {
   509  	// $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields.
   510  	s.at(variable)
   511  	value := s.varValue(variable.Ident[0])
   512  	if len(variable.Ident) == 1 {
   513  		s.notAFunction(args, final)
   514  		return value
   515  	}
   516  	return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final)
   517  }
   518  
   519  // evalFieldChain evaluates .X.Y.Z possibly followed by arguments.
   520  // dot is the environment in which to evaluate arguments, while
   521  // receiver is the value being walked along the chain.
   522  func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value {
   523  	n := len(ident)
   524  	for i := 0; i < n-1; i++ {
   525  		receiver = s.evalField(dot, ident[i], node, nil, zero, receiver)
   526  	}
   527  	// Now if it's a method, it gets the arguments.
   528  	return s.evalField(dot, ident[n-1], node, args, final, receiver)
   529  }
   530  
   531  func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value {
   532  	s.at(node)
   533  	name := node.Ident
   534  	function, ok := findFunction(name, s.tmpl)
   535  	if !ok {
   536  		s.errorf("%q is not a defined function", name)
   537  	}
   538  	return s.evalCall(dot, function, cmd, name, args, final)
   539  }
   540  
   541  // evalField evaluates an expression like (.Field) or (.Field arg1 arg2).
   542  // The 'final' argument represents the return value from the preceding
   543  // value of the pipeline, if any.
   544  func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value {
   545  	if !receiver.IsValid() {
   546  		if s.tmpl.option.missingKey == mapError { // Treat invalid value as missing map key.
   547  			s.errorf("nil data; no entry for key %q", fieldName)
   548  		}
   549  		return zero
   550  	}
   551  	typ := receiver.Type()
   552  	receiver, isNil := indirect(receiver)
   553  	// Unless it's an interface, need to get to a value of type *T to guarantee
   554  	// we see all methods of T and *T.
   555  	ptr := receiver
   556  	if ptr.Kind() != reflect.Interface && ptr.Kind() != reflect.Ptr && ptr.CanAddr() {
   557  		ptr = ptr.Addr()
   558  	}
   559  	if method := ptr.MethodByName(fieldName); method.IsValid() {
   560  		return s.evalCall(dot, method, node, fieldName, args, final)
   561  	}
   562  	hasArgs := len(args) > 1 || final.IsValid()
   563  	// It's not a method; must be a field of a struct or an element of a map.
   564  	switch receiver.Kind() {
   565  	case reflect.Struct:
   566  		tField, ok := receiver.Type().FieldByName(fieldName)
   567  		if ok {
   568  			if isNil {
   569  				s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
   570  			}
   571  			field := receiver.FieldByIndex(tField.Index)
   572  			if tField.PkgPath != "" { // field is unexported
   573  				s.errorf("%s is an unexported field of struct type %s", fieldName, typ)
   574  			}
   575  			// If it's a function, we must call it.
   576  			if hasArgs {
   577  				s.errorf("%s has arguments but cannot be invoked as function", fieldName)
   578  			}
   579  			return field
   580  		}
   581  	case reflect.Map:
   582  		if isNil {
   583  			s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
   584  		}
   585  		// If it's a map, attempt to use the field name as a key.
   586  		nameVal := reflect.ValueOf(fieldName)
   587  		if nameVal.Type().AssignableTo(receiver.Type().Key()) {
   588  			if hasArgs {
   589  				s.errorf("%s is not a method but has arguments", fieldName)
   590  			}
   591  			result := receiver.MapIndex(nameVal)
   592  			if !result.IsValid() {
   593  				switch s.tmpl.option.missingKey {
   594  				case mapInvalid:
   595  					// Just use the invalid value.
   596  				case mapZeroValue:
   597  					result = reflect.Zero(receiver.Type().Elem())
   598  				case mapError:
   599  					s.errorf("map has no entry for key %q", fieldName)
   600  				}
   601  			}
   602  			return result
   603  		}
   604  	}
   605  	s.errorf("can't evaluate field %s in type %s", fieldName, typ)
   606  	panic("not reached")
   607  }
   608  
   609  var (
   610  	errorType        = reflect.TypeOf((*error)(nil)).Elem()
   611  	fmtStringerType  = reflect.TypeOf((*fmt.Stringer)(nil)).Elem()
   612  	reflectValueType = reflect.TypeOf((*reflect.Value)(nil)).Elem()
   613  )
   614  
   615  // evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so
   616  // it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0]
   617  // as the function itself.
   618  func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value {
   619  	if args != nil {
   620  		args = args[1:] // Zeroth arg is function name/node; not passed to function.
   621  	}
   622  	typ := fun.Type()
   623  	numIn := len(args)
   624  	if final.IsValid() {
   625  		numIn++
   626  	}
   627  	numFixed := len(args)
   628  	if typ.IsVariadic() {
   629  		numFixed = typ.NumIn() - 1 // last arg is the variadic one.
   630  		if numIn < numFixed {
   631  			s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args))
   632  		}
   633  	} else if numIn != typ.NumIn() {
   634  		s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), len(args))
   635  	}
   636  	if !goodFunc(typ) {
   637  		// TODO: This could still be a confusing error; maybe goodFunc should provide info.
   638  		s.errorf("can't call method/function %q with %d results", name, typ.NumOut())
   639  	}
   640  	// Build the arg list.
   641  	argv := make([]reflect.Value, numIn)
   642  	// Args must be evaluated. Fixed args first.
   643  	i := 0
   644  	for ; i < numFixed && i < len(args); i++ {
   645  		argv[i] = s.evalArg(dot, typ.In(i), args[i])
   646  	}
   647  	// Now the ... args.
   648  	if typ.IsVariadic() {
   649  		argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice.
   650  		for ; i < len(args); i++ {
   651  			argv[i] = s.evalArg(dot, argType, args[i])
   652  		}
   653  	}
   654  	// Add final value if necessary.
   655  	if final.IsValid() {
   656  		t := typ.In(typ.NumIn() - 1)
   657  		if typ.IsVariadic() {
   658  			if numIn-1 < numFixed {
   659  				// The added final argument corresponds to a fixed parameter of the function.
   660  				// Validate against the type of the actual parameter.
   661  				t = typ.In(numIn - 1)
   662  			} else {
   663  				// The added final argument corresponds to the variadic part.
   664  				// Validate against the type of the elements of the variadic slice.
   665  				t = t.Elem()
   666  			}
   667  		}
   668  		argv[i] = s.validateType(final, t)
   669  	}
   670  	result := fun.Call(argv)
   671  	// If we have an error that is not nil, stop execution and return that error to the caller.
   672  	if len(result) == 2 && !result[1].IsNil() {
   673  		s.at(node)
   674  		s.errorf("error calling %s: %s", name, result[1].Interface().(error))
   675  	}
   676  	v := result[0]
   677  	if v.Type() == reflectValueType {
   678  		v = v.Interface().(reflect.Value)
   679  	}
   680  	return v
   681  }
   682  
   683  // canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero.
   684  func canBeNil(typ reflect.Type) bool {
   685  	switch typ.Kind() {
   686  	case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
   687  		return true
   688  	case reflect.Struct:
   689  		return typ == reflectValueType
   690  	}
   691  	return false
   692  }
   693  
   694  // validateType guarantees that the value is valid and assignable to the type.
   695  func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value {
   696  	if !value.IsValid() {
   697  		if typ == nil || canBeNil(typ) {
   698  			// An untyped nil interface{}. Accept as a proper nil value.
   699  			return reflect.Zero(typ)
   700  		}
   701  		s.errorf("invalid value; expected %s", typ)
   702  	}
   703  	if typ == reflectValueType && value.Type() != typ {
   704  		return reflect.ValueOf(value)
   705  	}
   706  	if typ != nil && !value.Type().AssignableTo(typ) {
   707  		if value.Kind() == reflect.Interface && !value.IsNil() {
   708  			value = value.Elem()
   709  			if value.Type().AssignableTo(typ) {
   710  				return value
   711  			}
   712  			// fallthrough
   713  		}
   714  		// Does one dereference or indirection work? We could do more, as we
   715  		// do with method receivers, but that gets messy and method receivers
   716  		// are much more constrained, so it makes more sense there than here.
   717  		// Besides, one is almost always all you need.
   718  		switch {
   719  		case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ):
   720  			value = value.Elem()
   721  			if !value.IsValid() {
   722  				s.errorf("dereference of nil pointer of type %s", typ)
   723  			}
   724  		case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr():
   725  			value = value.Addr()
   726  		default:
   727  			s.errorf("wrong type for value; expected %s; got %s", typ, value.Type())
   728  		}
   729  	}
   730  	return value
   731  }
   732  
   733  func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value {
   734  	s.at(n)
   735  	switch arg := n.(type) {
   736  	case *parse.DotNode:
   737  		return s.validateType(dot, typ)
   738  	case *parse.NilNode:
   739  		if canBeNil(typ) {
   740  			return reflect.Zero(typ)
   741  		}
   742  		s.errorf("cannot assign nil to %s", typ)
   743  	case *parse.FieldNode:
   744  		return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, zero), typ)
   745  	case *parse.VariableNode:
   746  		return s.validateType(s.evalVariableNode(dot, arg, nil, zero), typ)
   747  	case *parse.PipeNode:
   748  		return s.validateType(s.evalPipeline(dot, arg), typ)
   749  	case *parse.IdentifierNode:
   750  		return s.validateType(s.evalFunction(dot, arg, arg, nil, zero), typ)
   751  	case *parse.ChainNode:
   752  		return s.validateType(s.evalChainNode(dot, arg, nil, zero), typ)
   753  	}
   754  	switch typ.Kind() {
   755  	case reflect.Bool:
   756  		return s.evalBool(typ, n)
   757  	case reflect.Complex64, reflect.Complex128:
   758  		return s.evalComplex(typ, n)
   759  	case reflect.Float32, reflect.Float64:
   760  		return s.evalFloat(typ, n)
   761  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   762  		return s.evalInteger(typ, n)
   763  	case reflect.Interface:
   764  		if typ.NumMethod() == 0 {
   765  			return s.evalEmptyInterface(dot, n)
   766  		}
   767  	case reflect.Struct:
   768  		if typ == reflectValueType {
   769  			return reflect.ValueOf(s.evalEmptyInterface(dot, n))
   770  		}
   771  	case reflect.String:
   772  		return s.evalString(typ, n)
   773  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   774  		return s.evalUnsignedInteger(typ, n)
   775  	}
   776  	s.errorf("can't handle %s for arg of type %s", n, typ)
   777  	panic("not reached")
   778  }
   779  
   780  func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value {
   781  	s.at(n)
   782  	if n, ok := n.(*parse.BoolNode); ok {
   783  		value := reflect.New(typ).Elem()
   784  		value.SetBool(n.True)
   785  		return value
   786  	}
   787  	s.errorf("expected bool; found %s", n)
   788  	panic("not reached")
   789  }
   790  
   791  func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value {
   792  	s.at(n)
   793  	if n, ok := n.(*parse.StringNode); ok {
   794  		value := reflect.New(typ).Elem()
   795  		value.SetString(n.Text)
   796  		return value
   797  	}
   798  	s.errorf("expected string; found %s", n)
   799  	panic("not reached")
   800  }
   801  
   802  func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value {
   803  	s.at(n)
   804  	if n, ok := n.(*parse.NumberNode); ok && n.IsInt {
   805  		value := reflect.New(typ).Elem()
   806  		value.SetInt(n.Int64)
   807  		return value
   808  	}
   809  	s.errorf("expected integer; found %s", n)
   810  	panic("not reached")
   811  }
   812  
   813  func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value {
   814  	s.at(n)
   815  	if n, ok := n.(*parse.NumberNode); ok && n.IsUint {
   816  		value := reflect.New(typ).Elem()
   817  		value.SetUint(n.Uint64)
   818  		return value
   819  	}
   820  	s.errorf("expected unsigned integer; found %s", n)
   821  	panic("not reached")
   822  }
   823  
   824  func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value {
   825  	s.at(n)
   826  	if n, ok := n.(*parse.NumberNode); ok && n.IsFloat {
   827  		value := reflect.New(typ).Elem()
   828  		value.SetFloat(n.Float64)
   829  		return value
   830  	}
   831  	s.errorf("expected float; found %s", n)
   832  	panic("not reached")
   833  }
   834  
   835  func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value {
   836  	if n, ok := n.(*parse.NumberNode); ok && n.IsComplex {
   837  		value := reflect.New(typ).Elem()
   838  		value.SetComplex(n.Complex128)
   839  		return value
   840  	}
   841  	s.errorf("expected complex; found %s", n)
   842  	panic("not reached")
   843  }
   844  
   845  func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value {
   846  	s.at(n)
   847  	switch n := n.(type) {
   848  	case *parse.BoolNode:
   849  		return reflect.ValueOf(n.True)
   850  	case *parse.DotNode:
   851  		return dot
   852  	case *parse.FieldNode:
   853  		return s.evalFieldNode(dot, n, nil, zero)
   854  	case *parse.IdentifierNode:
   855  		return s.evalFunction(dot, n, n, nil, zero)
   856  	case *parse.NilNode:
   857  		// NilNode is handled in evalArg, the only place that calls here.
   858  		s.errorf("evalEmptyInterface: nil (can't happen)")
   859  	case *parse.NumberNode:
   860  		return s.idealConstant(n)
   861  	case *parse.StringNode:
   862  		return reflect.ValueOf(n.Text)
   863  	case *parse.VariableNode:
   864  		return s.evalVariableNode(dot, n, nil, zero)
   865  	case *parse.PipeNode:
   866  		return s.evalPipeline(dot, n)
   867  	}
   868  	s.errorf("can't handle assignment of %s to empty interface argument", n)
   869  	panic("not reached")
   870  }
   871  
   872  // indirect returns the item at the end of indirection, and a bool to indicate if it's nil.
   873  func indirect(v reflect.Value) (rv reflect.Value, isNil bool) {
   874  	for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() {
   875  		if v.IsNil() {
   876  			return v, true
   877  		}
   878  	}
   879  	return v, false
   880  }
   881  
   882  // indirectInterface returns the concrete value in an interface value,
   883  // or else the zero reflect.Value.
   884  // That is, if v represents the interface value x, the result is the same as reflect.ValueOf(x):
   885  // the fact that x was an interface value is forgotten.
   886  func indirectInterface(v reflect.Value) reflect.Value {
   887  	if v.Kind() != reflect.Interface {
   888  		return v
   889  	}
   890  	if v.IsNil() {
   891  		return reflect.Value{}
   892  	}
   893  	return v.Elem()
   894  }
   895  
   896  // printValue writes the textual representation of the value to the output of
   897  // the template.
   898  func (s *state) printValue(n parse.Node, v reflect.Value) {
   899  	s.at(n)
   900  	iface, ok := printableValue(v)
   901  	if !ok {
   902  		s.errorf("can't print %s of type %s", n, v.Type())
   903  	}
   904  	_, err := fmt.Fprint(s.wr, iface)
   905  	if err != nil {
   906  		s.writeError(err)
   907  	}
   908  }
   909  
   910  // printableValue returns the, possibly indirected, interface value inside v that
   911  // is best for a call to formatted printer.
   912  func printableValue(v reflect.Value) (interface{}, bool) {
   913  	if v.Kind() == reflect.Ptr {
   914  		v, _ = indirect(v) // fmt.Fprint handles nil.
   915  	}
   916  	if !v.IsValid() {
   917  		return "<no value>", true
   918  	}
   919  
   920  	if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) {
   921  		if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) {
   922  			v = v.Addr()
   923  		} else {
   924  			switch v.Kind() {
   925  			case reflect.Chan, reflect.Func:
   926  				return nil, false
   927  			}
   928  		}
   929  	}
   930  	return v.Interface(), true
   931  }
   932  
   933  // Types to help sort the keys in a map for reproducible output.
   934  
   935  type rvs []reflect.Value
   936  
   937  func (x rvs) Len() int      { return len(x) }
   938  func (x rvs) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
   939  
   940  type rvInts struct{ rvs }
   941  
   942  func (x rvInts) Less(i, j int) bool { return x.rvs[i].Int() < x.rvs[j].Int() }
   943  
   944  type rvUints struct{ rvs }
   945  
   946  func (x rvUints) Less(i, j int) bool { return x.rvs[i].Uint() < x.rvs[j].Uint() }
   947  
   948  type rvFloats struct{ rvs }
   949  
   950  func (x rvFloats) Less(i, j int) bool { return x.rvs[i].Float() < x.rvs[j].Float() }
   951  
   952  type rvStrings struct{ rvs }
   953  
   954  func (x rvStrings) Less(i, j int) bool { return x.rvs[i].String() < x.rvs[j].String() }
   955  
   956  // sortKeys sorts (if it can) the slice of reflect.Values, which is a slice of map keys.
   957  func sortKeys(v []reflect.Value) []reflect.Value {
   958  	if len(v) <= 1 {
   959  		return v
   960  	}
   961  	switch v[0].Kind() {
   962  	case reflect.Float32, reflect.Float64:
   963  		sort.Sort(rvFloats{v})
   964  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   965  		sort.Sort(rvInts{v})
   966  	case reflect.String:
   967  		sort.Sort(rvStrings{v})
   968  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   969  		sort.Sort(rvUints{v})
   970  	}
   971  	return v
   972  }