github.com/zerjioang/time32@v0.0.0-20211102104504-b756043b9843/time.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package time provides functionality for measuring and displaying time.
     6  //
     7  // The calendrical calculations always assume a Gregorian calendar, with
     8  // no leap seconds.
     9  //
    10  // Monotonic Clocks
    11  //
    12  // Operating systems provide both a “wall clock,” which is subject to
    13  // changes for clock synchronization, and a “monotonic clock,” which is
    14  // not. The general rule is that the wall clock is for telling time and
    15  // the monotonic clock is for measuring time. Rather than split the API,
    16  // in this package the Time returned by time.Now contains both a wall
    17  // clock reading and a monotonic clock reading; later time-telling
    18  // operations use the wall clock reading, but later time-measuring
    19  // operations, specifically comparisons and subtractions, use the
    20  // monotonic clock reading.
    21  //
    22  // For example, this code always computes a positive elapsed time of
    23  // approximately 20 milliseconds, even if the wall clock is changed during
    24  // the operation being timed:
    25  //
    26  //	start := time.Now()
    27  //	... operation that takes 20 milliseconds ...
    28  //	t := time.Now()
    29  //	elapsed := t.Sub(start)
    30  //
    31  // Other idioms, such as time.Since(start), time.Until(deadline), and
    32  // time.Now().Before(deadline), are similarly robust against wall clock
    33  // resets.
    34  //
    35  // The rest of this section gives the precise details of how operations
    36  // use monotonic clocks, but understanding those details is not required
    37  // to use this package.
    38  //
    39  // The Time returned by time.Now contains a monotonic clock reading.
    40  // If Time t has a monotonic clock reading, t.Add adds the same duration to
    41  // both the wall clock and monotonic clock readings to compute the result.
    42  // Because t.AddDate(y, m, d), t.Round(d), and t.Truncate(d) are wall time
    43  // computations, they always strip any monotonic clock reading from their results.
    44  // Because t.In, t.Local, and t.UTC are used for their effect on the interpretation
    45  // of the wall time, they also strip any monotonic clock reading from their results.
    46  // The canonical way to strip a monotonic clock reading is to use t = t.Round(0).
    47  //
    48  // If Times t and u both contain monotonic clock readings, the operations
    49  // t.After(u), t.Before(u), t.Equal(u), and t.Sub(u) are carried out
    50  // using the monotonic clock readings alone, ignoring the wall clock
    51  // readings. If either t or u contains no monotonic clock reading, these
    52  // operations fall back to using the wall clock readings.
    53  //
    54  // On some systems the monotonic clock will stop if the computer goes to sleep.
    55  // On such a system, t.Sub(u) may not accurately reflect the actual
    56  // time that passed between t and u.
    57  //
    58  // Because the monotonic clock reading has no meaning outside
    59  // the current process, the serialized forms generated by t.GobEncode,
    60  // t.MarshalBinary, t.MarshalJSON, and t.MarshalText omit the monotonic
    61  // clock reading, and t.Format provides no format for it. Similarly, the
    62  // constructors time.Date, time.Parse, time.ParseInLocation, and time.Unix,
    63  // as well as the unmarshalers t.GobDecode, t.UnmarshalBinary.
    64  // t.UnmarshalJSON, and t.UnmarshalText always create times with
    65  // no monotonic clock reading.
    66  //
    67  // Note that the Go == operator compares not just the time instant but
    68  // also the Location and the monotonic clock reading. See the
    69  // documentation for the Time type for a discussion of equality
    70  // testing for Time values.
    71  //
    72  // For debugging, the result of t.String does include the monotonic
    73  // clock reading if present. If t != u because of different monotonic clock readings,
    74  // that difference will be visible when printing t.String() and u.String().
    75  //
    76  package time32
    77  
    78  import (
    79  	_ "unsafe" // for go:linkname
    80  )
    81  
    82  // A Time represents an instant in time with nanosecond precision.
    83  //
    84  // Programs using times should typically store and pass them as values,
    85  // not pointers. That is, time variables and struct fields should be of
    86  // type time.Time, not *time.Time.
    87  //
    88  // A Time value can be used by multiple goroutines simultaneously except
    89  // that the methods GobDecode, UnmarshalBinary, UnmarshalJSON and
    90  // UnmarshalText are not concurrency-safe.
    91  //
    92  // Time instants can be compared using the Before, After, and Equal methods.
    93  // The Sub method subtracts two instants, producing a Duration.
    94  // The Add method adds a Time and a Duration, producing a Time.
    95  //
    96  // The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC.
    97  // As this time is unlikely to come up in practice, the IsZero method gives
    98  // a simple way of detecting a time that has not been initialized explicitly.
    99  //
   100  // Each Time has associated with it a Location, consulted when computing the
   101  // presentation form of the time, such as in the Format, Hour, and Year methods.
   102  // The methods Local, UTC, and In return a Time with a specific location.
   103  // Changing the location in this way changes only the presentation; it does not
   104  // change the instant in time being denoted and therefore does not affect the
   105  // computations described in earlier paragraphs.
   106  //
   107  // Representations of a Time value saved by the GobEncode, MarshalBinary,
   108  // MarshalJSON, and MarshalText methods store the Time.Location's offset, but not
   109  // the location name. They therefore lose information about Daylight Saving Time.
   110  //
   111  // In addition to the required “wall clock” reading, a Time may contain an optional
   112  // reading of the current process's monotonic clock, to provide additional precision
   113  // for comparison or subtraction.
   114  // See the “Monotonic Clocks” section in the package documentation for details.
   115  //
   116  // Note that the Go == operator compares not just the time instant but also the
   117  // Location and the monotonic clock reading. Therefore, Time values should not
   118  // be used as map or database keys without first guaranteeing that the
   119  // identical Location has been set for all values, which can be achieved
   120  // through use of the UTC or Local method, and that the monotonic clock reading
   121  // has been stripped by setting t = t.Round(0). In general, prefer t.Equal(u)
   122  // to t == u, since t.Equal uses the most accurate comparison available and
   123  // correctly handles the case when only one of its arguments has a monotonic
   124  // clock reading.
   125  //
   126  type Time struct {
   127  	// wall and ext encode the wall time seconds, wall time nanoseconds,
   128  	// and optional monotonic clock reading in nanoseconds.
   129  	//
   130  	// From high to low bit position, wall encodes a 1-bit flag (hasMonotonic),
   131  	// a 33-bit seconds field, and a 30-bit wall time nanoseconds field.
   132  	// The nanoseconds field is in the range [0, 999999999].
   133  	// If the hasMonotonic bit is 0, then the 33-bit field must be zero
   134  	// and the full signed 64-bit wall seconds since Jan 1 year 1 is stored in ext.
   135  	// If the hasMonotonic bit is 1, then the 33-bit field holds a 33-bit
   136  	// unsigned wall seconds since Jan 1 year 1885, and ext holds a
   137  	// signed 64-bit monotonic clock reading, nanoseconds since process start.
   138  	wall uint64
   139  	ext  int64
   140  }
   141  
   142  const (
   143  	hasMonotonic = 1 << 63
   144  	maxWall      = wallToInternal + (1<<33 - 1) // year 2157
   145  	minWall      = wallToInternal               // year 1885
   146  	nsecMask     = 1<<30 - 1
   147  	nsecShift    = 30
   148  )
   149  
   150  // These helpers for manipulating the wall and monotonic clock readings
   151  // take pointer receivers, even when they don't modify the time,
   152  // to make them cheaper to call.
   153  
   154  // nsec returns the time's nanoseconds.
   155  func (t *Time) nsec() int32 {
   156  	return int32(t.wall & nsecMask)
   157  }
   158  
   159  // sec returns the time's seconds since Jan 1 year 1.
   160  func (t *Time) sec() int64 {
   161  	if t.wall&hasMonotonic != 0 {
   162  		return wallToInternal + int64(t.wall<<1>>(nsecShift+1))
   163  	}
   164  	return t.ext
   165  }
   166  
   167  // unixSec returns the time's seconds since Jan 1 1970 (Unix time).
   168  func (t *Time) unixSec() int64 { return t.sec() + internalToUnix }
   169  
   170  // addSec adds d seconds to the time.
   171  func (t *Time) addSec(d int64) {
   172  	if t.wall&hasMonotonic != 0 {
   173  		sec := int64(t.wall << 1 >> (nsecShift + 1))
   174  		dsec := sec + d
   175  		if 0 <= dsec && dsec <= 1<<33-1 {
   176  			t.wall = t.wall&nsecMask | uint64(dsec)<<nsecShift | hasMonotonic
   177  			return
   178  		}
   179  		// Wall second now out of range for packed field.
   180  		// Move to ext.
   181  		t.stripMono()
   182  	}
   183  
   184  	// Check if the sum of t.ext and d overflows and handle it properly.
   185  	sum := t.ext + d
   186  	if (sum > t.ext) == (d > 0) {
   187  		t.ext = sum
   188  	} else if d > 0 {
   189  		t.ext = 1<<63 - 1
   190  	} else {
   191  		t.ext = -(1<<63 - 1)
   192  	}
   193  }
   194  
   195  // stripMono strips the monotonic clock reading in t.
   196  func (t *Time) stripMono() {
   197  	if t.wall&hasMonotonic != 0 {
   198  		t.ext = t.sec()
   199  		t.wall &= nsecMask
   200  	}
   201  }
   202  
   203  // setMono sets the monotonic clock reading in t.
   204  // If t cannot hold a monotonic clock reading,
   205  // because its wall time is too large,
   206  // setMono is a no-op.
   207  func (t *Time) setMono(m int64) {
   208  	if t.wall&hasMonotonic == 0 {
   209  		sec := t.ext
   210  		if sec < minWall || maxWall < sec {
   211  			return
   212  		}
   213  		t.wall |= hasMonotonic | uint64(sec-minWall)<<nsecShift
   214  	}
   215  	t.ext = m
   216  }
   217  
   218  // mono returns t's monotonic clock reading.
   219  // It returns 0 for a missing reading.
   220  // This function is used only for testing,
   221  // so it's OK that technically 0 is a valid
   222  // monotonic clock reading as well.
   223  func (t *Time) mono() int64 {
   224  	if t.wall&hasMonotonic == 0 {
   225  		return 0
   226  	}
   227  	return t.ext
   228  }
   229  
   230  // After reports whether the time instant t is after u.
   231  func (t Time) After(u Time) bool {
   232  	if t.wall&u.wall&hasMonotonic != 0 {
   233  		return t.ext > u.ext
   234  	}
   235  	ts := t.sec()
   236  	us := u.sec()
   237  	return ts > us || ts == us && t.nsec() > u.nsec()
   238  }
   239  
   240  // Before reports whether the time instant t is before u.
   241  func (t Time) Before(u Time) bool {
   242  	if t.wall&u.wall&hasMonotonic != 0 {
   243  		return t.ext < u.ext
   244  	}
   245  	ts := t.sec()
   246  	us := u.sec()
   247  	return ts < us || ts == us && t.nsec() < u.nsec()
   248  }
   249  
   250  // Equal reports whether t and u represent the same time instant.
   251  // Two times can be equal even if they are in different locations.
   252  // For example, 6:00 +0200 and 4:00 UTC are Equal.
   253  // See the documentation on the Time type for the pitfalls of using == with
   254  // Time values; most code should use Equal instead.
   255  func (t Time) Equal(u Time) bool {
   256  	if t.wall&u.wall&hasMonotonic != 0 {
   257  		return t.ext == u.ext
   258  	}
   259  	return t.sec() == u.sec() && t.nsec() == u.nsec()
   260  }
   261  
   262  // A Month specifies a month of the year (January = 1, ...).
   263  type Month int
   264  
   265  const (
   266  	January Month = 1 + iota
   267  	February
   268  	March
   269  	April
   270  	May
   271  	June
   272  	July
   273  	August
   274  	September
   275  	October
   276  	November
   277  	December
   278  )
   279  
   280  var longMonthNames = []string{
   281  	"January",
   282  	"February",
   283  	"March",
   284  	"April",
   285  	"May",
   286  	"June",
   287  	"July",
   288  	"August",
   289  	"September",
   290  	"October",
   291  	"November",
   292  	"December",
   293  }
   294  
   295  // String returns the English name of the month ("January", "February", ...).
   296  func (m Month) String() string {
   297  	if January <= m && m <= December {
   298  		return longMonthNames[m-1]
   299  	}
   300  	buf := make([]byte, 20)
   301  	n := fmtInt(buf, uint64(m))
   302  	return "%!Month(" + string(buf[n:]) + ")"
   303  }
   304  
   305  // A Weekday specifies a day of the week (Sunday = 0, ...).
   306  type Weekday int
   307  
   308  const (
   309  	Sunday Weekday = iota
   310  	Monday
   311  	Tuesday
   312  	Wednesday
   313  	Thursday
   314  	Friday
   315  	Saturday
   316  )
   317  
   318  var longDayNames = []string{
   319  	"Sunday",
   320  	"Monday",
   321  	"Tuesday",
   322  	"Wednesday",
   323  	"Thursday",
   324  	"Friday",
   325  	"Saturday",
   326  }
   327  
   328  // String returns the English name of the day ("Sunday", "Monday", ...).
   329  func (d Weekday) String() string {
   330  	if Sunday <= d && d <= Saturday {
   331  		return longDayNames[d]
   332  	}
   333  	buf := make([]byte, 20)
   334  	n := fmtInt(buf, uint64(d))
   335  	return "%!Weekday(" + string(buf[n:]) + ")"
   336  }
   337  
   338  // Computations on time.
   339  //
   340  // The zero value for a Time is defined to be
   341  //	January 1, year 1, 00:00:00.000000000 UTC
   342  // which (1) looks like a zero, or as close as you can get in a date
   343  // (1-1-1 00:00:00 UTC), (2) is unlikely enough to arise in practice to
   344  // be a suitable "not set" sentinel, unlike Jan 1 1970, and (3) has a
   345  // non-negative year even in time zones west of UTC, unlike 1-1-0
   346  // 00:00:00 UTC, which would be 12-31-(-1) 19:00:00 in New York.
   347  //
   348  // The zero Time value does not force a specific epoch for the time
   349  // representation. For example, to use the Unix epoch internally, we
   350  // could define that to distinguish a zero value from Jan 1 1970, that
   351  // time would be represented by sec=-1, nsec=1e9. However, it does
   352  // suggest a representation, namely using 1-1-1 00:00:00 UTC as the
   353  // epoch, and that's what we do.
   354  //
   355  // The Add and Sub computations are oblivious to the choice of epoch.
   356  //
   357  // The presentation computations - year, month, minute, and so on - all
   358  // rely heavily on division and modulus by positive constants. For
   359  // calendrical calculations we want these divisions to round down, even
   360  // for negative values, so that the remainder is always positive, but
   361  // Go's division (like most hardware division instructions) rounds to
   362  // zero. We can still do those computations and then adjust the result
   363  // for a negative numerator, but it's annoying to write the adjustment
   364  // over and over. Instead, we can change to a different epoch so long
   365  // ago that all the times we care about will be positive, and then round
   366  // to zero and round down coincide. These presentation routines already
   367  // have to add the zone offset, so adding the translation to the
   368  // alternate epoch is cheap. For example, having a non-negative time t
   369  // means that we can write
   370  //
   371  //	sec = t % 60
   372  //
   373  // instead of
   374  //
   375  //	sec = t % 60
   376  //	if sec < 0 {
   377  //		sec += 60
   378  //	}
   379  //
   380  // everywhere.
   381  //
   382  // The calendar runs on an exact 400 year cycle: a 400-year calendar
   383  // printed for 1970-2369 will apply as well to 2370-2769. Even the days
   384  // of the week match up. It simplifies the computations to choose the
   385  // cycle boundaries so that the exceptional years are always delayed as
   386  // long as possible. That means choosing a year equal to 1 mod 400, so
   387  // that the first leap year is the 4th year, the first missed leap year
   388  // is the 100th year, and the missed missed leap year is the 400th year.
   389  // So we'd prefer instead to print a calendar for 2001-2400 and reuse it
   390  // for 2401-2800.
   391  //
   392  // Finally, it's convenient if the delta between the Unix epoch and
   393  // long-ago epoch is representable by an int64 constant.
   394  //
   395  // These three considerations—choose an epoch as early as possible, that
   396  // uses a year equal to 1 mod 400, and that is no more than 2⁶³ seconds
   397  // earlier than 1970—bring us to the year -292277022399. We refer to
   398  // this year as the absolute zero year, and to times measured as a uint64
   399  // seconds since this year as absolute times.
   400  //
   401  // Times measured as an int64 seconds since the year 1—the representation
   402  // used for Time's sec field—are called internal times.
   403  //
   404  // Times measured as an int64 seconds since the year 1970 are called Unix
   405  // times.
   406  //
   407  // It is tempting to just use the year 1 as the absolute epoch, defining
   408  // that the routines are only valid for years >= 1. However, the
   409  // routines would then be invalid when displaying the epoch in time zones
   410  // west of UTC, since it is year 0. It doesn't seem tenable to say that
   411  // printing the zero time correctly isn't supported in half the time
   412  // zones. By comparison, it's reasonable to mishandle some times in
   413  // the year -292277022399.
   414  //
   415  // All this is opaque to clients of the API and can be changed if a
   416  // better implementation presents itself.
   417  
   418  const (
   419  	// The unsigned zero year for internal calculations.
   420  	// Must be 1 mod 400, and times before it will not compute correctly,
   421  	// but otherwise can be changed at will.
   422  	absoluteZeroYear = -292277022399
   423  
   424  	// The year of the zero Time.
   425  	// Assumed by the unixToInternal computation below.
   426  	internalYear = 1
   427  
   428  	// Offsets to convert between internal and absolute or Unix times.
   429  	absoluteToInternal int64 = (absoluteZeroYear - internalYear) * 365.2425 * secondsPerDay
   430  	internalToAbsolute       = -absoluteToInternal
   431  
   432  	unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay
   433  	internalToUnix int64 = -unixToInternal
   434  
   435  	wallToInternal int64 = (1884*365 + 1884/4 - 1884/100 + 1884/400) * secondsPerDay
   436  	internalToWall int64 = -wallToInternal
   437  )
   438  
   439  // IsZero reports whether t represents the zero time instant,
   440  // January 1, year 1, 00:00:00 UTC.
   441  func (t Time) IsZero() bool {
   442  	return t.sec() == 0 && t.nsec() == 0
   443  }
   444  
   445  // Date returns the year, month, and day in which t occurs.
   446  func (t Time) Date() (year int, month Month, day int) {
   447  	year, month, day, _ = t.date(true)
   448  	return
   449  }
   450  
   451  // Year returns the year in which t occurs.
   452  func (t Time) Year() int {
   453  	year, _, _, _ := t.date(false)
   454  	return year
   455  }
   456  
   457  // Month returns the month of the year specified by t.
   458  func (t Time) Month() Month {
   459  	_, month, _, _ := t.date(true)
   460  	return month
   461  }
   462  
   463  // Day returns the day of the month specified by t.
   464  func (t Time) Day() int {
   465  	_, _, day, _ := t.date(true)
   466  	return day
   467  }
   468  
   469  // Weekday returns the day of the week specified by t.
   470  func (t Time) Weekday() Weekday {
   471  	return absWeekday(uint64(t.Unix()))
   472  }
   473  
   474  // absWeekday is like Weekday but operates on an absolute time.
   475  func absWeekday(abs uint64) Weekday {
   476  	// January 1 of the absolute year, like January 1 of 2001, was a Monday.
   477  	sec := (abs + uint64(Monday)*secondsPerDay) % secondsPerWeek
   478  	return Weekday(int(sec) / secondsPerDay)
   479  }
   480  
   481  // ISOWeek returns the ISO 8601 year and week number in which t occurs.
   482  // Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to
   483  // week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1
   484  // of year n+1.
   485  func (t Time) ISOWeek() (year, week int) {
   486  	// According to the rule that the first calendar week of a calendar year is
   487  	// the week including the first Thursday of that year, and that the last one is
   488  	// the week immediately preceding the first calendar week of the next calendar year.
   489  	// See https://www.iso.org/obp/ui#iso:std:iso:8601:-1:ed-1:v1:en:term:3.1.1.23 for details.
   490  
   491  	// weeks start with Monday
   492  	// Monday Tuesday Wednesday Thursday Friday Saturday Sunday
   493  	// 1      2       3         4        5      6        7
   494  	// +3     +2      +1        0        -1     -2       -3
   495  	// the offset to Thursday
   496  	abs := t.abs()
   497  	d := Thursday - absWeekday(abs)
   498  	// handle Sunday
   499  	if d == 4 {
   500  		d = -3
   501  	}
   502  	// find the Thursday of the calendar week
   503  	abs += uint64(d) * secondsPerDay
   504  	year, _, _, yday := absDate(abs, false)
   505  	return year, yday/7 + 1
   506  }
   507  
   508  // Clock returns the hour, minute, and second within the day specified by t.
   509  func (t Time) Clock() (hour, min, sec int) {
   510  	return absClock(t.abs())
   511  }
   512  
   513  // absClock is like clock but operates on an absolute time.
   514  func absClock(abs uint64) (hour, min, sec int) {
   515  	sec = int(abs % secondsPerDay)
   516  	hour = sec / secondsPerHour
   517  	sec -= hour * secondsPerHour
   518  	min = sec / secondsPerMinute
   519  	sec -= min * secondsPerMinute
   520  	return
   521  }
   522  
   523  // Hour returns the hour within the day specified by t, in the range [0, 23].
   524  func (t Time) Hour() int {
   525  	return int(t.abs()%secondsPerDay) / secondsPerHour
   526  }
   527  
   528  // Minute returns the minute offset within the hour specified by t, in the range [0, 59].
   529  func (t Time) Minute() int {
   530  	return int(t.abs()%secondsPerHour) / secondsPerMinute
   531  }
   532  
   533  // Second returns the second offset within the minute specified by t, in the range [0, 59].
   534  func (t Time) Second() int {
   535  	return int(t.abs() % secondsPerMinute)
   536  }
   537  
   538  // Nanosecond returns the nanosecond offset within the second specified by t,
   539  // in the range [0, 999999999].
   540  func (t Time) Nanosecond() int {
   541  	return int(t.nsec())
   542  }
   543  
   544  // YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years,
   545  // and [1,366] in leap years.
   546  func (t Time) YearDay() int {
   547  	_, _, _, yday := t.date(false)
   548  	return yday + 1
   549  }
   550  
   551  // A Duration represents the elapsed time between two instants
   552  // as an int64 nanosecond count. The representation limits the
   553  // largest representable duration to approximately 290 years.
   554  type Duration int64
   555  
   556  const (
   557  	minDuration Duration = -1 << 63
   558  	maxDuration Duration = 1<<63 - 1
   559  )
   560  
   561  // Common durations. There is no definition for units of Day or larger
   562  // to avoid confusion across daylight savings time zone transitions.
   563  //
   564  // To count the number of units in a Duration, divide:
   565  //	second := time.Second
   566  //	fmt.Print(int64(second/time.Millisecond)) // prints 1000
   567  //
   568  // To convert an integer number of units to a Duration, multiply:
   569  //	seconds := 10
   570  //	fmt.Print(time.Duration(seconds)*time.Second) // prints 10s
   571  //
   572  const (
   573  	Nanosecond  Duration = 1
   574  	Microsecond          = 1000 * Nanosecond
   575  	Millisecond          = 1000 * Microsecond
   576  	Second               = 1000 * Millisecond
   577  	Minute               = 60 * Second
   578  	Hour                 = 60 * Minute
   579  )
   580  
   581  // String returns a string representing the duration in the form "72h3m0.5s".
   582  // Leading zero units are omitted. As a special case, durations less than one
   583  // second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure
   584  // that the leading digit is non-zero. The zero duration formats as 0s.
   585  func (d Duration) String() string {
   586  	// Largest time is 2540400h10m10.000000000s
   587  	var buf [32]byte
   588  	w := len(buf)
   589  
   590  	u := uint64(d)
   591  	neg := d < 0
   592  	if neg {
   593  		u = -u
   594  	}
   595  
   596  	if u < uint64(Second) {
   597  		// Special case: if duration is smaller than a second,
   598  		// use smaller units, like 1.2ms
   599  		var prec int
   600  		w--
   601  		buf[w] = 's'
   602  		w--
   603  		switch {
   604  		case u == 0:
   605  			return "0s"
   606  		case u < uint64(Microsecond):
   607  			// print nanoseconds
   608  			prec = 0
   609  			buf[w] = 'n'
   610  		case u < uint64(Millisecond):
   611  			// print microseconds
   612  			prec = 3
   613  			// U+00B5 'µ' micro sign == 0xC2 0xB5
   614  			w-- // Need room for two bytes.
   615  			copy(buf[w:], "µ")
   616  		default:
   617  			// print milliseconds
   618  			prec = 6
   619  			buf[w] = 'm'
   620  		}
   621  		w, u = fmtFrac(buf[:w], u, prec)
   622  		w = fmtInt(buf[:w], u)
   623  	} else {
   624  		w--
   625  		buf[w] = 's'
   626  
   627  		w, u = fmtFrac(buf[:w], u, 9)
   628  
   629  		// u is now integer seconds
   630  		w = fmtInt(buf[:w], u%60)
   631  		u /= 60
   632  
   633  		// u is now integer minutes
   634  		if u > 0 {
   635  			w--
   636  			buf[w] = 'm'
   637  			w = fmtInt(buf[:w], u%60)
   638  			u /= 60
   639  
   640  			// u is now integer hours
   641  			// Stop at hours because days can be different lengths.
   642  			if u > 0 {
   643  				w--
   644  				buf[w] = 'h'
   645  				w = fmtInt(buf[:w], u)
   646  			}
   647  		}
   648  	}
   649  
   650  	if neg {
   651  		w--
   652  		buf[w] = '-'
   653  	}
   654  
   655  	return string(buf[w:])
   656  }
   657  
   658  // fmtFrac formats the fraction of v/10**prec (e.g., ".12345") into the
   659  // tail of buf, omitting trailing zeros. It omits the decimal
   660  // point too when the fraction is 0. It returns the index where the
   661  // output bytes begin and the value v/10**prec.
   662  func fmtFrac(buf []byte, v uint64, prec int) (nw int, nv uint64) {
   663  	// Omit trailing zeros up to and including decimal point.
   664  	w := len(buf)
   665  	print := false
   666  	for i := 0; i < prec; i++ {
   667  		digit := v % 10
   668  		print = print || digit != 0
   669  		if print {
   670  			w--
   671  			buf[w] = byte(digit) + '0'
   672  		}
   673  		v /= 10
   674  	}
   675  	if print {
   676  		w--
   677  		buf[w] = '.'
   678  	}
   679  	return w, v
   680  }
   681  
   682  // fmtInt formats v into the tail of buf.
   683  // It returns the index where the output begins.
   684  func fmtInt(buf []byte, v uint64) int {
   685  	w := len(buf)
   686  	if v == 0 {
   687  		w--
   688  		buf[w] = '0'
   689  	} else {
   690  		for v > 0 {
   691  			w--
   692  			buf[w] = byte(v%10) + '0'
   693  			v /= 10
   694  		}
   695  	}
   696  	return w
   697  }
   698  
   699  // Nanoseconds returns the duration as an integer nanosecond count.
   700  func (d Duration) Nanoseconds() int64 { return int64(d) }
   701  
   702  // Microseconds returns the duration as an integer microsecond count.
   703  func (d Duration) Microseconds() int64 { return int64(d) / 1e3 }
   704  
   705  // Milliseconds returns the duration as an integer millisecond count.
   706  func (d Duration) Milliseconds() int64 { return int64(d) / 1e6 }
   707  
   708  // These methods return float64 because the dominant
   709  // use case is for printing a floating point number like 1.5s, and
   710  // a truncation to integer would make them not useful in those cases.
   711  // Splitting the integer and fraction ourselves guarantees that
   712  // converting the returned float64 to an integer rounds the same
   713  // way that a pure integer conversion would have, even in cases
   714  // where, say, float64(d.Nanoseconds())/1e9 would have rounded
   715  // differently.
   716  
   717  // Seconds returns the duration as a floating point number of seconds.
   718  func (d Duration) Seconds() float64 {
   719  	sec := d / Second
   720  	nsec := d % Second
   721  	return float64(sec) + float64(nsec)/1e9
   722  }
   723  
   724  // Minutes returns the duration as a floating point number of minutes.
   725  func (d Duration) Minutes() float64 {
   726  	min := d / Minute
   727  	nsec := d % Minute
   728  	return float64(min) + float64(nsec)/(60*1e9)
   729  }
   730  
   731  // Hours returns the duration as a floating point number of hours.
   732  func (d Duration) Hours() float64 {
   733  	hour := d / Hour
   734  	nsec := d % Hour
   735  	return float64(hour) + float64(nsec)/(60*60*1e9)
   736  }
   737  
   738  // Truncate returns the result of rounding d toward zero to a multiple of m.
   739  // If m <= 0, Truncate returns d unchanged.
   740  func (d Duration) Truncate(m Duration) Duration {
   741  	if m <= 0 {
   742  		return d
   743  	}
   744  	return d - d%m
   745  }
   746  
   747  // lessThanHalf reports whether x+x < y but avoids overflow,
   748  // assuming x and y are both positive (Duration is signed).
   749  func lessThanHalf(x, y Duration) bool {
   750  	return uint64(x)+uint64(x) < uint64(y)
   751  }
   752  
   753  // Round returns the result of rounding d to the nearest multiple of m.
   754  // The rounding behavior for halfway values is to round away from zero.
   755  // If the result exceeds the maximum (or minimum)
   756  // value that can be stored in a Duration,
   757  // Round returns the maximum (or minimum) duration.
   758  // If m <= 0, Round returns d unchanged.
   759  func (d Duration) Round(m Duration) Duration {
   760  	if m <= 0 {
   761  		return d
   762  	}
   763  	r := d % m
   764  	if d < 0 {
   765  		r = -r
   766  		if lessThanHalf(r, m) {
   767  			return d + r
   768  		}
   769  		if d1 := d - m + r; d1 < d {
   770  			return d1
   771  		}
   772  		return minDuration // overflow
   773  	}
   774  	if lessThanHalf(r, m) {
   775  		return d - r
   776  	}
   777  	if d1 := d + m - r; d1 > d {
   778  		return d1
   779  	}
   780  	return maxDuration // overflow
   781  }
   782  
   783  // Add returns the time t+d.
   784  func (t Time) Add(d Duration) Time {
   785  	dsec := int64(d / 1e9)
   786  	nsec := t.nsec() + int32(d%1e9)
   787  	if nsec >= 1e9 {
   788  		dsec++
   789  		nsec -= 1e9
   790  	} else if nsec < 0 {
   791  		dsec--
   792  		nsec += 1e9
   793  	}
   794  	t.wall = t.wall&^nsecMask | uint64(nsec) // update nsec
   795  	t.addSec(dsec)
   796  	if t.wall&hasMonotonic != 0 {
   797  		te := t.ext + int64(d)
   798  		if d < 0 && te > t.ext || d > 0 && te < t.ext {
   799  			// Monotonic clock reading now out of range; degrade to wall-only.
   800  			t.stripMono()
   801  		} else {
   802  			t.ext = te
   803  		}
   804  	}
   805  	return t
   806  }
   807  
   808  // Sub returns the duration t-u. If the result exceeds the maximum (or minimum)
   809  // value that can be stored in a Duration, the maximum (or minimum) duration
   810  // will be returned.
   811  // To compute t-d for a duration d, use t.Add(-d).
   812  func (t Time) Sub(u Time) Duration {
   813  	if t.wall&u.wall&hasMonotonic != 0 {
   814  		te := t.ext
   815  		ue := u.ext
   816  		d := Duration(te - ue)
   817  		if d < 0 && te > ue {
   818  			return maxDuration // t - u is positive out of range
   819  		}
   820  		if d > 0 && te < ue {
   821  			return minDuration // t - u is negative out of range
   822  		}
   823  		return d
   824  	}
   825  	d := Duration(t.sec()-u.sec())*Second + Duration(t.nsec()-u.nsec())
   826  	// Check for overflow or underflow.
   827  	switch {
   828  	case u.Add(d).Equal(t):
   829  		return d // d is correct
   830  	case t.Before(u):
   831  		return minDuration // t - u is negative out of range
   832  	default:
   833  		return maxDuration // t - u is positive out of range
   834  	}
   835  }
   836  
   837  // Since returns the time elapsed since t.
   838  // It is shorthand for time.Now().Sub(t).
   839  func Since(t Time) Duration {
   840  	var now Time
   841  	if t.wall&hasMonotonic != 0 {
   842  		// Common case optimization: if t has monotonic time, then Sub will use only it.
   843  		now = Time{hasMonotonic, runtimeNano() - startNano}
   844  	} else {
   845  		now = Now()
   846  	}
   847  	return now.Sub(t)
   848  }
   849  
   850  // Until returns the duration until t.
   851  // It is shorthand for t.Sub(time.Now()).
   852  func Until(t Time) Duration {
   853  	var now Time
   854  	if t.wall&hasMonotonic != 0 {
   855  		// Common case optimization: if t has monotonic time, then Sub will use only it.
   856  		now = Time{hasMonotonic, runtimeNano() - startNano}
   857  	} else {
   858  		now = Now()
   859  	}
   860  	return t.Sub(now)
   861  }
   862  
   863  // AddDate returns the time corresponding to adding the
   864  // given number of years, months, and days to t.
   865  // For example, AddDate(-1, 2, 3) applied to January 1, 2011
   866  // returns March 4, 2010.
   867  //
   868  // AddDate normalizes its result in the same way that Date does,
   869  // so, for example, adding one month to October 31 yields
   870  // December 1, the normalized form for November 31.
   871  func (t Time) AddDate(years int, months int, days int) Time {
   872  	year, month, day := t.Date()
   873  	hour, min, sec := t.Clock()
   874  	return Date(year+years, month+Month(months), day+days, hour, min, sec, int(t.nsec()))
   875  }
   876  
   877  const (
   878  	secondsPerMinute = 60
   879  	secondsPerHour   = 60 * secondsPerMinute
   880  	secondsPerDay    = 24 * secondsPerHour
   881  	secondsPerWeek   = 7 * secondsPerDay
   882  	daysPer400Years  = 365*400 + 97
   883  	daysPer100Years  = 365*100 + 24
   884  	daysPer4Years    = 365*4 + 1
   885  )
   886  
   887  // date computes the year, day of year, and when full=true,
   888  // the month and day in which t occurs.
   889  func (t Time) date(full bool) (year int, month Month, day int, yday int) {
   890  	return absDate(t.abs(), full)
   891  }
   892  
   893  // absDate is like date but operates on an absolute time.
   894  func absDate(abs uint64, full bool) (year int, month Month, day int, yday int) {
   895  	// Split into time and day.
   896  	d := abs / secondsPerDay
   897  
   898  	// Account for 400 year cycles.
   899  	n := d / daysPer400Years
   900  	y := 400 * n
   901  	d -= daysPer400Years * n
   902  
   903  	// Cut off 100-year cycles.
   904  	// The last cycle has one extra leap year, so on the last day
   905  	// of that year, day / daysPer100Years will be 4 instead of 3.
   906  	// Cut it back down to 3 by subtracting n>>2.
   907  	n = d / daysPer100Years
   908  	n -= n >> 2
   909  	y += 100 * n
   910  	d -= daysPer100Years * n
   911  
   912  	// Cut off 4-year cycles.
   913  	// The last cycle has a missing leap year, which does not
   914  	// affect the computation.
   915  	n = d / daysPer4Years
   916  	y += 4 * n
   917  	d -= daysPer4Years * n
   918  
   919  	// Cut off years within a 4-year cycle.
   920  	// The last year is a leap year, so on the last day of that year,
   921  	// day / 365 will be 4 instead of 3. Cut it back down to 3
   922  	// by subtracting n>>2.
   923  	n = d / 365
   924  	n -= n >> 2
   925  	y += n
   926  	d -= 365 * n
   927  
   928  	year = int(int64(y) + absoluteZeroYear)
   929  	yday = int(d)
   930  
   931  	if !full {
   932  		return
   933  	}
   934  
   935  	day = yday
   936  	if isLeap(year) {
   937  		// Leap year
   938  		switch {
   939  		case day > 31+29-1:
   940  			// After leap day; pretend it wasn't there.
   941  			day--
   942  		case day == 31+29-1:
   943  			// Leap day.
   944  			month = February
   945  			day = 29
   946  			return
   947  		}
   948  	}
   949  
   950  	// Estimate month on assumption that every month has 31 days.
   951  	// The estimate may be too low by at most one month, so adjust.
   952  	month = Month(day / 31)
   953  	end := int(daysBefore[month+1])
   954  	var begin int
   955  	if day >= end {
   956  		month++
   957  		begin = end
   958  	} else {
   959  		begin = int(daysBefore[month])
   960  	}
   961  
   962  	month++ // because January is 1
   963  	day = day - begin + 1
   964  	return
   965  }
   966  
   967  // daysBefore[m] counts the number of days in a non-leap year
   968  // before month m begins. There is an entry for m=12, counting
   969  // the number of days before January of next year (365).
   970  var daysBefore = [...]int32{
   971  	0,
   972  	31,
   973  	31 + 28,
   974  	31 + 28 + 31,
   975  	31 + 28 + 31 + 30,
   976  	31 + 28 + 31 + 30 + 31,
   977  	31 + 28 + 31 + 30 + 31 + 30,
   978  	31 + 28 + 31 + 30 + 31 + 30 + 31,
   979  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
   980  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
   981  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
   982  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30,
   983  	31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31,
   984  }
   985  
   986  func daysIn(m Month, year int) int {
   987  	if m == February && isLeap(year) {
   988  		return 29
   989  	}
   990  	return int(daysBefore[m] - daysBefore[m-1])
   991  }
   992  
   993  // daysSinceEpoch takes a year and returns the number of days from
   994  // the absolute epoch to the start of that year.
   995  // This is basically (year - zeroYear) * 365, but accounting for leap days.
   996  func daysSinceEpoch(year int) uint64 {
   997  	y := uint64(int64(year) - absoluteZeroYear)
   998  
   999  	// Add in days from 400-year cycles.
  1000  	n := y / 400
  1001  	y -= 400 * n
  1002  	d := daysPer400Years * n
  1003  
  1004  	// Add in 100-year cycles.
  1005  	n = y / 100
  1006  	y -= 100 * n
  1007  	d += daysPer100Years * n
  1008  
  1009  	// Add in 4-year cycles.
  1010  	n = y / 4
  1011  	y -= 4 * n
  1012  	d += daysPer4Years * n
  1013  
  1014  	// Add in non-leap years.
  1015  	n = y
  1016  	d += 365 * n
  1017  
  1018  	return d
  1019  }
  1020  
  1021  //go:noescape
  1022  //go:linkname nanotime runtime.nanotime
  1023  func nanotime() int64
  1024  
  1025  //go:noescape
  1026  //go:linkname time_now time.now
  1027  func time_now() (sec int64, nsec int32, mono int64)
  1028  
  1029  // runtimeNano returns the current value of the runtime clock in nanoseconds.
  1030  //go:linkname runtimeNano runtime.nanotime
  1031  func runtimeNano() int64
  1032  
  1033  // Monotonic times are reported as offsets from startNano.
  1034  // We initialize startNano to runtimeNano() - 1 so that on systems where
  1035  // monotonic time resolution is fairly low (e.g. Windows 2008
  1036  // which appears to have a default resolution of 15ms),
  1037  // we avoid ever reporting a monotonic time of 0.
  1038  // (Callers may want to use 0 as "time not set".)
  1039  var startNano int64 = runtimeNano() - 1
  1040  
  1041  // Now returns the current local time.
  1042  func Now() Time {
  1043  	sec, nsec, mono := time_now()
  1044  	mono -= startNano
  1045  	sec += unixToInternal - minWall
  1046  	if uint64(sec)>>33 != 0 {
  1047  		return Time{uint64(nsec), sec + minWall}
  1048  	}
  1049  	return Time{hasMonotonic | uint64(sec)<<nsecShift | uint64(nsec), mono}
  1050  }
  1051  
  1052  func unixTime(sec int64, nsec int32) Time {
  1053  	return Time{uint64(nsec), sec + unixToInternal}
  1054  }
  1055  
  1056  // Unix returns t as a Unix time, the number of seconds elapsed
  1057  // since January 1, 1970 UTC. The result does not depend on the
  1058  // location associated with t.
  1059  // Unix-like operating systems often record time as a 32-bit
  1060  // count of seconds, but since the method here returns a 64-bit
  1061  // value it is valid for billions of years into the past or future.
  1062  func (t Time) Unix() int64 {
  1063  	return t.unixSec()
  1064  }
  1065  
  1066  // UnixMilli returns t as a Unix time, the number of milliseconds elapsed since
  1067  // January 1, 1970 UTC. The result is undefined if the Unix time in
  1068  // milliseconds cannot be represented by an int64 (a date more than 292 million
  1069  // years before or after 1970). The result does not depend on the
  1070  // location associated with t.
  1071  func (t Time) UnixMilli() int64 {
  1072  	return t.unixSec()*1e3 + int64(t.nsec())/1e6
  1073  }
  1074  
  1075  // UnixMicro returns t as a Unix time, the number of microseconds elapsed since
  1076  // January 1, 1970 UTC. The result is undefined if the Unix time in
  1077  // microseconds cannot be represented by an int64 (a date before year -290307 or
  1078  // after year 294246). The result does not depend on the location associated
  1079  // with t.
  1080  func (t Time) UnixMicro() int64 {
  1081  	return t.unixSec()*1e6 + int64(t.nsec())/1e3
  1082  }
  1083  
  1084  // UnixNano returns t as a Unix time, the number of nanoseconds elapsed
  1085  // since January 1, 1970 UTC. The result is undefined if the Unix time
  1086  // in nanoseconds cannot be represented by an int64 (a date before the year
  1087  // 1678 or after 2262). Note that this means the result of calling UnixNano
  1088  // on the zero Time is undefined. The result does not depend on the
  1089  // location associated with t.
  1090  func (t Time) UnixNano() int64 {
  1091  	return (t.unixSec())*1e9 + int64(t.nsec())
  1092  }
  1093  
  1094  const timeBinaryVersion byte = 1
  1095  
  1096  // Unix returns the local Time corresponding to the given Unix time,
  1097  // sec seconds and nsec nanoseconds since January 1, 1970 UTC.
  1098  // It is valid to pass nsec outside the range [0, 999999999].
  1099  // Not all sec values have a corresponding time value. One such
  1100  // value is 1<<63-1 (the largest int64 value).
  1101  func Unix(sec int64, nsec int64) Time {
  1102  	if nsec < 0 || nsec >= 1e9 {
  1103  		n := nsec / 1e9
  1104  		sec += n
  1105  		nsec -= n * 1e9
  1106  		if nsec < 0 {
  1107  			nsec += 1e9
  1108  			sec--
  1109  		}
  1110  	}
  1111  	return unixTime(sec, int32(nsec))
  1112  }
  1113  
  1114  // UnixMilli returns the local Time corresponding to the given Unix time,
  1115  // msec milliseconds since January 1, 1970 UTC.
  1116  func UnixMilli(msec int64) Time {
  1117  	return Unix(msec/1e3, (msec%1e3)*1e6)
  1118  }
  1119  
  1120  // UnixMicro returns the local Time corresponding to the given Unix time,
  1121  // usec microseconds since January 1, 1970 UTC.
  1122  func UnixMicro(usec int64) Time {
  1123  	return Unix(usec/1e6, (usec%1e6)*1e3)
  1124  }
  1125  
  1126  func isLeap(year int) bool {
  1127  	return year%4 == 0 && (year%100 != 0 || year%400 == 0)
  1128  }
  1129  
  1130  // norm returns nhi, nlo such that
  1131  //	hi * base + lo == nhi * base + nlo
  1132  //	0 <= nlo < base
  1133  func norm(hi, lo, base int) (nhi, nlo int) {
  1134  	if lo < 0 {
  1135  		n := (-lo-1)/base + 1
  1136  		hi -= n
  1137  		lo += n * base
  1138  	}
  1139  	if lo >= base {
  1140  		n := lo / base
  1141  		hi += n
  1142  		lo -= n * base
  1143  	}
  1144  	return hi, lo
  1145  }
  1146  
  1147  // Date returns the Time corresponding to
  1148  //	yyyy-mm-dd hh:mm:ss + nsec nanoseconds
  1149  // in the appropriate zone for that time in the given location.
  1150  //
  1151  // The month, day, hour, min, sec, and nsec values may be outside
  1152  // their usual ranges and will be normalized during the conversion.
  1153  // For example, October 32 converts to November 1.
  1154  //
  1155  // A daylight savings time transition skips or repeats times.
  1156  // For example, in the United States, March 13, 2011 2:15am never occurred,
  1157  // while November 6, 2011 1:15am occurred twice. In such cases, the
  1158  // choice of time zone, and therefore the time, is not well-defined.
  1159  // Date returns a time that is correct in one of the two zones involved
  1160  // in the transition, but it does not guarantee which.
  1161  //
  1162  // Date panics if loc is nil.
  1163  func Date(year int, month Month, day, hour, min, sec, nsec int) Time {
  1164  	// Normalize month, overflowing into year.
  1165  	m := int(month) - 1
  1166  	year, m = norm(year, m, 12)
  1167  	month = Month(m) + 1
  1168  
  1169  	// Normalize nsec, sec, min, hour, overflowing into day.
  1170  	sec, nsec = norm(sec, nsec, 1e9)
  1171  	min, sec = norm(min, sec, 60)
  1172  	hour, min = norm(hour, min, 60)
  1173  	day, hour = norm(day, hour, 24)
  1174  
  1175  	// Compute days since the absolute epoch.
  1176  	d := daysSinceEpoch(year)
  1177  
  1178  	// Add in days before this month.
  1179  	d += uint64(daysBefore[month-1])
  1180  	if isLeap(year) && month >= March {
  1181  		d++ // February 29
  1182  	}
  1183  
  1184  	// Add in days before today.
  1185  	d += uint64(day - 1)
  1186  
  1187  	// Add in time elapsed today.
  1188  	abs := d * secondsPerDay
  1189  	abs += uint64(hour*secondsPerHour + min*secondsPerMinute + sec)
  1190  
  1191  	unix := int64(abs) + (absoluteToInternal + internalToUnix)
  1192  	t := unixTime(unix, int32(nsec))
  1193  	return t
  1194  }
  1195  
  1196  // Truncate returns the result of rounding t down to a multiple of d (since the zero time).
  1197  // If d <= 0, Truncate returns t stripped of any monotonic clock reading but otherwise unchanged.
  1198  //
  1199  // Truncate operates on the time as an absolute duration since the
  1200  // zero time; it does not operate on the presentation form of the
  1201  // time. Thus, Truncate(Hour) may return a time with a non-zero
  1202  // minute, depending on the time's Location.
  1203  func (t Time) Truncate(d Duration) Time {
  1204  	t.stripMono()
  1205  	if d <= 0 {
  1206  		return t
  1207  	}
  1208  	_, r := div(t, d)
  1209  	return t.Add(-r)
  1210  }
  1211  
  1212  // Round returns the result of rounding t to the nearest multiple of d (since the zero time).
  1213  // The rounding behavior for halfway values is to round up.
  1214  // If d <= 0, Round returns t stripped of any monotonic clock reading but otherwise unchanged.
  1215  //
  1216  // Round operates on the time as an absolute duration since the
  1217  // zero time; it does not operate on the presentation form of the
  1218  // time. Thus, Round(Hour) may return a time with a non-zero
  1219  // minute, depending on the time's Location.
  1220  func (t Time) Round(d Duration) Time {
  1221  	t.stripMono()
  1222  	if d <= 0 {
  1223  		return t
  1224  	}
  1225  	_, r := div(t, d)
  1226  	if lessThanHalf(r, d) {
  1227  		return t.Add(-r)
  1228  	}
  1229  	return t.Add(d - r)
  1230  }
  1231  
  1232  func (t Time) abs() uint64 {
  1233  	return uint64(t.Unix())
  1234  }
  1235  
  1236  // div divides t by d and returns the quotient parity and remainder.
  1237  // We don't use the quotient parity anymore (round half up instead of round to even)
  1238  // but it's still here in case we change our minds.
  1239  func div(t Time, d Duration) (qmod2 int, r Duration) {
  1240  	neg := false
  1241  	nsec := t.nsec()
  1242  	sec := t.sec()
  1243  	if sec < 0 {
  1244  		// Operate on absolute value.
  1245  		neg = true
  1246  		sec = -sec
  1247  		nsec = -nsec
  1248  		if nsec < 0 {
  1249  			nsec += 1e9
  1250  			sec-- // sec >= 1 before the -- so safe
  1251  		}
  1252  	}
  1253  
  1254  	switch {
  1255  	// Special case: 2d divides 1 second.
  1256  	case d < Second && Second%(d+d) == 0:
  1257  		qmod2 = int(nsec/int32(d)) & 1
  1258  		r = Duration(nsec % int32(d))
  1259  
  1260  	// Special case: d is a multiple of 1 second.
  1261  	case d%Second == 0:
  1262  		d1 := int64(d / Second)
  1263  		qmod2 = int(sec/d1) & 1
  1264  		r = Duration(sec%d1)*Second + Duration(nsec)
  1265  
  1266  	// General case.
  1267  	// This could be faster if more cleverness were applied,
  1268  	// but it's really only here to avoid special case restrictions in the API.
  1269  	// No one will care about these cases.
  1270  	default:
  1271  		// Compute nanoseconds as 128-bit number.
  1272  		sec := uint64(sec)
  1273  		tmp := (sec >> 32) * 1e9
  1274  		u1 := tmp >> 32
  1275  		u0 := tmp << 32
  1276  		tmp = (sec & 0xFFFFFFFF) * 1e9
  1277  		u0x, u0 := u0, u0+tmp
  1278  		if u0 < u0x {
  1279  			u1++
  1280  		}
  1281  		u0x, u0 = u0, u0+uint64(nsec)
  1282  		if u0 < u0x {
  1283  			u1++
  1284  		}
  1285  
  1286  		// Compute remainder by subtracting r<<k for decreasing k.
  1287  		// Quotient parity is whether we subtract on last round.
  1288  		d1 := uint64(d)
  1289  		for d1>>63 != 1 {
  1290  			d1 <<= 1
  1291  		}
  1292  		d0 := uint64(0)
  1293  		for {
  1294  			qmod2 = 0
  1295  			if u1 > d1 || u1 == d1 && u0 >= d0 {
  1296  				// subtract
  1297  				qmod2 = 1
  1298  				u0x, u0 = u0, u0-d0
  1299  				if u0 > u0x {
  1300  					u1--
  1301  				}
  1302  				u1 -= d1
  1303  			}
  1304  			if d1 == 0 && d0 == uint64(d) {
  1305  				break
  1306  			}
  1307  			d0 >>= 1
  1308  			d0 |= (d1 & 1) << 63
  1309  			d1 >>= 1
  1310  		}
  1311  		r = Duration(u0)
  1312  	}
  1313  
  1314  	if neg && r != 0 {
  1315  		// If input was negative and not an exact multiple of d, we computed q, r such that
  1316  		//	q*d + r = -t
  1317  		// But the right answers are given by -(q-1), d-r:
  1318  		//	q*d + r = -t
  1319  		//	-q*d - r = t
  1320  		//	-(q-1)*d + (d - r) = t
  1321  		qmod2 ^= 1
  1322  		r = d - r
  1323  	}
  1324  	return
  1325  }