github.com/zhiqiangxu/go-ethereum@v1.9.16-0.20210824055606-be91cfdebc48/core/vm/contracts.go (about) 1 // Copyright 2014 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package vm 18 19 import ( 20 "crypto/sha256" 21 "encoding/binary" 22 "errors" 23 "math/big" 24 25 "github.com/zhiqiangxu/go-ethereum/common" 26 "github.com/zhiqiangxu/go-ethereum/common/math" 27 "github.com/zhiqiangxu/go-ethereum/crypto" 28 "github.com/zhiqiangxu/go-ethereum/crypto/blake2b" 29 "github.com/zhiqiangxu/go-ethereum/crypto/bls12381" 30 "github.com/zhiqiangxu/go-ethereum/crypto/bn256" 31 "github.com/zhiqiangxu/go-ethereum/params" 32 33 //lint:ignore SA1019 Needed for precompile 34 "golang.org/x/crypto/ripemd160" 35 ) 36 37 // PrecompiledContract is the basic interface for native Go contracts. The implementation 38 // requires a deterministic gas count based on the input size of the Run method of the 39 // contract. 40 type PrecompiledContract interface { 41 RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use 42 Run(input []byte) ([]byte, error) // Run runs the precompiled contract 43 } 44 45 // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum 46 // contracts used in the Frontier and Homestead releases. 47 var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{ 48 common.BytesToAddress([]byte{1}): &ecrecover{}, 49 common.BytesToAddress([]byte{2}): &sha256hash{}, 50 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 51 common.BytesToAddress([]byte{4}): &dataCopy{}, 52 } 53 54 // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum 55 // contracts used in the Byzantium release. 56 var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{ 57 common.BytesToAddress([]byte{1}): &ecrecover{}, 58 common.BytesToAddress([]byte{2}): &sha256hash{}, 59 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 60 common.BytesToAddress([]byte{4}): &dataCopy{}, 61 common.BytesToAddress([]byte{5}): &bigModExp{}, 62 common.BytesToAddress([]byte{6}): &bn256AddByzantium{}, 63 common.BytesToAddress([]byte{7}): &bn256ScalarMulByzantium{}, 64 common.BytesToAddress([]byte{8}): &bn256PairingByzantium{}, 65 } 66 67 // PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum 68 // contracts used in the Istanbul release. 69 var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{ 70 common.BytesToAddress([]byte{1}): &ecrecover{}, 71 common.BytesToAddress([]byte{2}): &sha256hash{}, 72 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 73 common.BytesToAddress([]byte{4}): &dataCopy{}, 74 common.BytesToAddress([]byte{5}): &bigModExp{}, 75 common.BytesToAddress([]byte{6}): &bn256AddIstanbul{}, 76 common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{}, 77 common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{}, 78 common.BytesToAddress([]byte{9}): &blake2F{}, 79 } 80 81 // PrecompiledContractsYoloV1 contains the default set of pre-compiled Ethereum 82 // contracts used in the Yolo v1 test release. 83 var PrecompiledContractsYoloV1 = map[common.Address]PrecompiledContract{ 84 common.BytesToAddress([]byte{1}): &ecrecover{}, 85 common.BytesToAddress([]byte{2}): &sha256hash{}, 86 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 87 common.BytesToAddress([]byte{4}): &dataCopy{}, 88 common.BytesToAddress([]byte{5}): &bigModExp{}, 89 common.BytesToAddress([]byte{6}): &bn256AddIstanbul{}, 90 common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{}, 91 common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{}, 92 common.BytesToAddress([]byte{9}): &blake2F{}, 93 common.BytesToAddress([]byte{10}): &bls12381G1Add{}, 94 common.BytesToAddress([]byte{11}): &bls12381G1Mul{}, 95 common.BytesToAddress([]byte{12}): &bls12381G1MultiExp{}, 96 common.BytesToAddress([]byte{13}): &bls12381G2Add{}, 97 common.BytesToAddress([]byte{14}): &bls12381G2Mul{}, 98 common.BytesToAddress([]byte{15}): &bls12381G2MultiExp{}, 99 common.BytesToAddress([]byte{16}): &bls12381Pairing{}, 100 common.BytesToAddress([]byte{17}): &bls12381MapG1{}, 101 common.BytesToAddress([]byte{18}): &bls12381MapG2{}, 102 } 103 104 // RunPrecompiledContract runs and evaluates the output of a precompiled contract. 105 func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) { 106 gas := p.RequiredGas(input) 107 if contract.UseGas(gas) { 108 return p.Run(input) 109 } 110 return nil, ErrOutOfGas 111 } 112 113 // ECRECOVER implemented as a native contract. 114 type ecrecover struct{} 115 116 func (c *ecrecover) RequiredGas(input []byte) uint64 { 117 return params.EcrecoverGas 118 } 119 120 func (c *ecrecover) Run(input []byte) ([]byte, error) { 121 const ecRecoverInputLength = 128 122 123 input = common.RightPadBytes(input, ecRecoverInputLength) 124 // "input" is (hash, v, r, s), each 32 bytes 125 // but for ecrecover we want (r, s, v) 126 127 r := new(big.Int).SetBytes(input[64:96]) 128 s := new(big.Int).SetBytes(input[96:128]) 129 v := input[63] - 27 130 131 // tighter sig s values input homestead only apply to tx sigs 132 if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) { 133 return nil, nil 134 } 135 // We must make sure not to modify the 'input', so placing the 'v' along with 136 // the signature needs to be done on a new allocation 137 sig := make([]byte, 65) 138 copy(sig, input[64:128]) 139 sig[64] = v 140 // v needs to be at the end for libsecp256k1 141 pubKey, err := crypto.Ecrecover(input[:32], sig) 142 // make sure the public key is a valid one 143 if err != nil { 144 return nil, nil 145 } 146 147 // the first byte of pubkey is bitcoin heritage 148 return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil 149 } 150 151 // SHA256 implemented as a native contract. 152 type sha256hash struct{} 153 154 // RequiredGas returns the gas required to execute the pre-compiled contract. 155 // 156 // This method does not require any overflow checking as the input size gas costs 157 // required for anything significant is so high it's impossible to pay for. 158 func (c *sha256hash) RequiredGas(input []byte) uint64 { 159 return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas 160 } 161 func (c *sha256hash) Run(input []byte) ([]byte, error) { 162 h := sha256.Sum256(input) 163 return h[:], nil 164 } 165 166 // RIPEMD160 implemented as a native contract. 167 type ripemd160hash struct{} 168 169 // RequiredGas returns the gas required to execute the pre-compiled contract. 170 // 171 // This method does not require any overflow checking as the input size gas costs 172 // required for anything significant is so high it's impossible to pay for. 173 func (c *ripemd160hash) RequiredGas(input []byte) uint64 { 174 return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas 175 } 176 func (c *ripemd160hash) Run(input []byte) ([]byte, error) { 177 ripemd := ripemd160.New() 178 ripemd.Write(input) 179 return common.LeftPadBytes(ripemd.Sum(nil), 32), nil 180 } 181 182 // data copy implemented as a native contract. 183 type dataCopy struct{} 184 185 // RequiredGas returns the gas required to execute the pre-compiled contract. 186 // 187 // This method does not require any overflow checking as the input size gas costs 188 // required for anything significant is so high it's impossible to pay for. 189 func (c *dataCopy) RequiredGas(input []byte) uint64 { 190 return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas 191 } 192 func (c *dataCopy) Run(in []byte) ([]byte, error) { 193 return in, nil 194 } 195 196 // bigModExp implements a native big integer exponential modular operation. 197 type bigModExp struct{} 198 199 var ( 200 big1 = big.NewInt(1) 201 big4 = big.NewInt(4) 202 big8 = big.NewInt(8) 203 big16 = big.NewInt(16) 204 big32 = big.NewInt(32) 205 big64 = big.NewInt(64) 206 big96 = big.NewInt(96) 207 big480 = big.NewInt(480) 208 big1024 = big.NewInt(1024) 209 big3072 = big.NewInt(3072) 210 big199680 = big.NewInt(199680) 211 ) 212 213 // RequiredGas returns the gas required to execute the pre-compiled contract. 214 func (c *bigModExp) RequiredGas(input []byte) uint64 { 215 var ( 216 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)) 217 expLen = new(big.Int).SetBytes(getData(input, 32, 32)) 218 modLen = new(big.Int).SetBytes(getData(input, 64, 32)) 219 ) 220 if len(input) > 96 { 221 input = input[96:] 222 } else { 223 input = input[:0] 224 } 225 // Retrieve the head 32 bytes of exp for the adjusted exponent length 226 var expHead *big.Int 227 if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 { 228 expHead = new(big.Int) 229 } else { 230 if expLen.Cmp(big32) > 0 { 231 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32)) 232 } else { 233 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64())) 234 } 235 } 236 // Calculate the adjusted exponent length 237 var msb int 238 if bitlen := expHead.BitLen(); bitlen > 0 { 239 msb = bitlen - 1 240 } 241 adjExpLen := new(big.Int) 242 if expLen.Cmp(big32) > 0 { 243 adjExpLen.Sub(expLen, big32) 244 adjExpLen.Mul(big8, adjExpLen) 245 } 246 adjExpLen.Add(adjExpLen, big.NewInt(int64(msb))) 247 248 // Calculate the gas cost of the operation 249 gas := new(big.Int).Set(math.BigMax(modLen, baseLen)) 250 switch { 251 case gas.Cmp(big64) <= 0: 252 gas.Mul(gas, gas) 253 case gas.Cmp(big1024) <= 0: 254 gas = new(big.Int).Add( 255 new(big.Int).Div(new(big.Int).Mul(gas, gas), big4), 256 new(big.Int).Sub(new(big.Int).Mul(big96, gas), big3072), 257 ) 258 default: 259 gas = new(big.Int).Add( 260 new(big.Int).Div(new(big.Int).Mul(gas, gas), big16), 261 new(big.Int).Sub(new(big.Int).Mul(big480, gas), big199680), 262 ) 263 } 264 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 265 gas.Div(gas, new(big.Int).SetUint64(params.ModExpQuadCoeffDiv)) 266 267 if gas.BitLen() > 64 { 268 return math.MaxUint64 269 } 270 return gas.Uint64() 271 } 272 273 func (c *bigModExp) Run(input []byte) ([]byte, error) { 274 var ( 275 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64() 276 expLen = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64() 277 modLen = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64() 278 ) 279 if len(input) > 96 { 280 input = input[96:] 281 } else { 282 input = input[:0] 283 } 284 // Handle a special case when both the base and mod length is zero 285 if baseLen == 0 && modLen == 0 { 286 return []byte{}, nil 287 } 288 // Retrieve the operands and execute the exponentiation 289 var ( 290 base = new(big.Int).SetBytes(getData(input, 0, baseLen)) 291 exp = new(big.Int).SetBytes(getData(input, baseLen, expLen)) 292 mod = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen)) 293 ) 294 if mod.BitLen() == 0 { 295 // Modulo 0 is undefined, return zero 296 return common.LeftPadBytes([]byte{}, int(modLen)), nil 297 } 298 return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil 299 } 300 301 // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point, 302 // returning it, or an error if the point is invalid. 303 func newCurvePoint(blob []byte) (*bn256.G1, error) { 304 p := new(bn256.G1) 305 if _, err := p.Unmarshal(blob); err != nil { 306 return nil, err 307 } 308 return p, nil 309 } 310 311 // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point, 312 // returning it, or an error if the point is invalid. 313 func newTwistPoint(blob []byte) (*bn256.G2, error) { 314 p := new(bn256.G2) 315 if _, err := p.Unmarshal(blob); err != nil { 316 return nil, err 317 } 318 return p, nil 319 } 320 321 // runBn256Add implements the Bn256Add precompile, referenced by both 322 // Byzantium and Istanbul operations. 323 func runBn256Add(input []byte) ([]byte, error) { 324 x, err := newCurvePoint(getData(input, 0, 64)) 325 if err != nil { 326 return nil, err 327 } 328 y, err := newCurvePoint(getData(input, 64, 64)) 329 if err != nil { 330 return nil, err 331 } 332 res := new(bn256.G1) 333 res.Add(x, y) 334 return res.Marshal(), nil 335 } 336 337 // bn256Add implements a native elliptic curve point addition conforming to 338 // Istanbul consensus rules. 339 type bn256AddIstanbul struct{} 340 341 // RequiredGas returns the gas required to execute the pre-compiled contract. 342 func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 { 343 return params.Bn256AddGasIstanbul 344 } 345 346 func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) { 347 return runBn256Add(input) 348 } 349 350 // bn256AddByzantium implements a native elliptic curve point addition 351 // conforming to Byzantium consensus rules. 352 type bn256AddByzantium struct{} 353 354 // RequiredGas returns the gas required to execute the pre-compiled contract. 355 func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 { 356 return params.Bn256AddGasByzantium 357 } 358 359 func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) { 360 return runBn256Add(input) 361 } 362 363 // runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by 364 // both Byzantium and Istanbul operations. 365 func runBn256ScalarMul(input []byte) ([]byte, error) { 366 p, err := newCurvePoint(getData(input, 0, 64)) 367 if err != nil { 368 return nil, err 369 } 370 res := new(bn256.G1) 371 res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32))) 372 return res.Marshal(), nil 373 } 374 375 // bn256ScalarMulIstanbul implements a native elliptic curve scalar 376 // multiplication conforming to Istanbul consensus rules. 377 type bn256ScalarMulIstanbul struct{} 378 379 // RequiredGas returns the gas required to execute the pre-compiled contract. 380 func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 { 381 return params.Bn256ScalarMulGasIstanbul 382 } 383 384 func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) { 385 return runBn256ScalarMul(input) 386 } 387 388 // bn256ScalarMulByzantium implements a native elliptic curve scalar 389 // multiplication conforming to Byzantium consensus rules. 390 type bn256ScalarMulByzantium struct{} 391 392 // RequiredGas returns the gas required to execute the pre-compiled contract. 393 func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 { 394 return params.Bn256ScalarMulGasByzantium 395 } 396 397 func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) { 398 return runBn256ScalarMul(input) 399 } 400 401 var ( 402 // true32Byte is returned if the bn256 pairing check succeeds. 403 true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} 404 405 // false32Byte is returned if the bn256 pairing check fails. 406 false32Byte = make([]byte, 32) 407 408 // errBadPairingInput is returned if the bn256 pairing input is invalid. 409 errBadPairingInput = errors.New("bad elliptic curve pairing size") 410 ) 411 412 // runBn256Pairing implements the Bn256Pairing precompile, referenced by both 413 // Byzantium and Istanbul operations. 414 func runBn256Pairing(input []byte) ([]byte, error) { 415 // Handle some corner cases cheaply 416 if len(input)%192 > 0 { 417 return nil, errBadPairingInput 418 } 419 // Convert the input into a set of coordinates 420 var ( 421 cs []*bn256.G1 422 ts []*bn256.G2 423 ) 424 for i := 0; i < len(input); i += 192 { 425 c, err := newCurvePoint(input[i : i+64]) 426 if err != nil { 427 return nil, err 428 } 429 t, err := newTwistPoint(input[i+64 : i+192]) 430 if err != nil { 431 return nil, err 432 } 433 cs = append(cs, c) 434 ts = append(ts, t) 435 } 436 // Execute the pairing checks and return the results 437 if bn256.PairingCheck(cs, ts) { 438 return true32Byte, nil 439 } 440 return false32Byte, nil 441 } 442 443 // bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve 444 // conforming to Istanbul consensus rules. 445 type bn256PairingIstanbul struct{} 446 447 // RequiredGas returns the gas required to execute the pre-compiled contract. 448 func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 { 449 return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul 450 } 451 452 func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) { 453 return runBn256Pairing(input) 454 } 455 456 // bn256PairingByzantium implements a pairing pre-compile for the bn256 curve 457 // conforming to Byzantium consensus rules. 458 type bn256PairingByzantium struct{} 459 460 // RequiredGas returns the gas required to execute the pre-compiled contract. 461 func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 { 462 return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium 463 } 464 465 func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) { 466 return runBn256Pairing(input) 467 } 468 469 type blake2F struct{} 470 471 func (c *blake2F) RequiredGas(input []byte) uint64 { 472 // If the input is malformed, we can't calculate the gas, return 0 and let the 473 // actual call choke and fault. 474 if len(input) != blake2FInputLength { 475 return 0 476 } 477 return uint64(binary.BigEndian.Uint32(input[0:4])) 478 } 479 480 const ( 481 blake2FInputLength = 213 482 blake2FFinalBlockBytes = byte(1) 483 blake2FNonFinalBlockBytes = byte(0) 484 ) 485 486 var ( 487 errBlake2FInvalidInputLength = errors.New("invalid input length") 488 errBlake2FInvalidFinalFlag = errors.New("invalid final flag") 489 ) 490 491 func (c *blake2F) Run(input []byte) ([]byte, error) { 492 // Make sure the input is valid (correct length and final flag) 493 if len(input) != blake2FInputLength { 494 return nil, errBlake2FInvalidInputLength 495 } 496 if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes { 497 return nil, errBlake2FInvalidFinalFlag 498 } 499 // Parse the input into the Blake2b call parameters 500 var ( 501 rounds = binary.BigEndian.Uint32(input[0:4]) 502 final = (input[212] == blake2FFinalBlockBytes) 503 504 h [8]uint64 505 m [16]uint64 506 t [2]uint64 507 ) 508 for i := 0; i < 8; i++ { 509 offset := 4 + i*8 510 h[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 511 } 512 for i := 0; i < 16; i++ { 513 offset := 68 + i*8 514 m[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 515 } 516 t[0] = binary.LittleEndian.Uint64(input[196:204]) 517 t[1] = binary.LittleEndian.Uint64(input[204:212]) 518 519 // Execute the compression function, extract and return the result 520 blake2b.F(&h, m, t, final, rounds) 521 522 output := make([]byte, 64) 523 for i := 0; i < 8; i++ { 524 offset := i * 8 525 binary.LittleEndian.PutUint64(output[offset:offset+8], h[i]) 526 } 527 return output, nil 528 } 529 530 var ( 531 errBLS12381InvalidInputLength = errors.New("invalid input length") 532 errBLS12381InvalidFieldElementTopBytes = errors.New("invalid field element top bytes") 533 errBLS12381G1PointSubgroup = errors.New("g1 point is not on correct subgroup") 534 errBLS12381G2PointSubgroup = errors.New("g2 point is not on correct subgroup") 535 ) 536 537 // bls12381G1Add implements EIP-2537 G1Add precompile. 538 type bls12381G1Add struct{} 539 540 // RequiredGas returns the gas required to execute the pre-compiled contract. 541 func (c *bls12381G1Add) RequiredGas(input []byte) uint64 { 542 return params.Bls12381G1AddGas 543 } 544 545 func (c *bls12381G1Add) Run(input []byte) ([]byte, error) { 546 // Implements EIP-2537 G1Add precompile. 547 // > G1 addition call expects `256` bytes as an input that is interpreted as byte concatenation of two G1 points (`128` bytes each). 548 // > Output is an encoding of addition operation result - single G1 point (`128` bytes). 549 if len(input) != 256 { 550 return nil, errBLS12381InvalidInputLength 551 } 552 var err error 553 var p0, p1 *bls12381.PointG1 554 555 // Initialize G1 556 g := bls12381.NewG1() 557 558 // Decode G1 point p_0 559 if p0, err = g.DecodePoint(input[:128]); err != nil { 560 return nil, err 561 } 562 // Decode G1 point p_1 563 if p1, err = g.DecodePoint(input[128:]); err != nil { 564 return nil, err 565 } 566 567 // Compute r = p_0 + p_1 568 r := g.New() 569 g.Add(r, p0, p1) 570 571 // Encode the G1 point result into 128 bytes 572 return g.EncodePoint(r), nil 573 } 574 575 // bls12381G1Mul implements EIP-2537 G1Mul precompile. 576 type bls12381G1Mul struct{} 577 578 // RequiredGas returns the gas required to execute the pre-compiled contract. 579 func (c *bls12381G1Mul) RequiredGas(input []byte) uint64 { 580 return params.Bls12381G1MulGas 581 } 582 583 func (c *bls12381G1Mul) Run(input []byte) ([]byte, error) { 584 // Implements EIP-2537 G1Mul precompile. 585 // > G1 multiplication call expects `160` bytes as an input that is interpreted as byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes). 586 // > Output is an encoding of multiplication operation result - single G1 point (`128` bytes). 587 if len(input) != 160 { 588 return nil, errBLS12381InvalidInputLength 589 } 590 var err error 591 var p0 *bls12381.PointG1 592 593 // Initialize G1 594 g := bls12381.NewG1() 595 596 // Decode G1 point 597 if p0, err = g.DecodePoint(input[:128]); err != nil { 598 return nil, err 599 } 600 // Decode scalar value 601 e := new(big.Int).SetBytes(input[128:]) 602 603 // Compute r = e * p_0 604 r := g.New() 605 g.MulScalar(r, p0, e) 606 607 // Encode the G1 point into 128 bytes 608 return g.EncodePoint(r), nil 609 } 610 611 // bls12381G1MultiExp implements EIP-2537 G1MultiExp precompile. 612 type bls12381G1MultiExp struct{} 613 614 // RequiredGas returns the gas required to execute the pre-compiled contract. 615 func (c *bls12381G1MultiExp) RequiredGas(input []byte) uint64 { 616 // Calculate G1 point, scalar value pair length 617 k := len(input) / 160 618 if k == 0 { 619 // Return 0 gas for small input length 620 return 0 621 } 622 // Lookup discount value for G1 point, scalar value pair length 623 maxDiscountLen := len(params.Bls12381MultiExpDiscountTable) 624 if k > maxDiscountLen { 625 k = maxDiscountLen 626 } 627 discount := params.Bls12381MultiExpDiscountTable[k-1] 628 // Calculate gas and return the result 629 return (uint64(k) * params.Bls12381G1MulGas * discount) / 1000 630 } 631 632 func (c *bls12381G1MultiExp) Run(input []byte) ([]byte, error) { 633 // Implements EIP-2537 G1MultiExp precompile. 634 // G1 multiplication call expects `160*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes). 635 // Output is an encoding of multiexponentiation operation result - single G1 point (`128` bytes). 636 k := len(input) / 160 637 if len(input) == 0 || len(input)%160 != 0 { 638 return nil, errBLS12381InvalidInputLength 639 } 640 var err error 641 points := make([]*bls12381.PointG1, k) 642 scalars := make([]*big.Int, k) 643 644 // Initialize G1 645 g := bls12381.NewG1() 646 647 // Decode point scalar pairs 648 for i := 0; i < k; i++ { 649 off := 160 * i 650 t0, t1, t2 := off, off+128, off+160 651 // Decode G1 point 652 if points[i], err = g.DecodePoint(input[t0:t1]); err != nil { 653 return nil, err 654 } 655 // Decode scalar value 656 scalars[i] = new(big.Int).SetBytes(input[t1:t2]) 657 } 658 659 // Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1) 660 r := g.New() 661 g.MultiExp(r, points, scalars) 662 663 // Encode the G1 point to 128 bytes 664 return g.EncodePoint(r), nil 665 } 666 667 // bls12381G2Add implements EIP-2537 G2Add precompile. 668 type bls12381G2Add struct{} 669 670 // RequiredGas returns the gas required to execute the pre-compiled contract. 671 func (c *bls12381G2Add) RequiredGas(input []byte) uint64 { 672 return params.Bls12381G2AddGas 673 } 674 675 func (c *bls12381G2Add) Run(input []byte) ([]byte, error) { 676 // Implements EIP-2537 G2Add precompile. 677 // > G2 addition call expects `512` bytes as an input that is interpreted as byte concatenation of two G2 points (`256` bytes each). 678 // > Output is an encoding of addition operation result - single G2 point (`256` bytes). 679 if len(input) != 512 { 680 return nil, errBLS12381InvalidInputLength 681 } 682 var err error 683 var p0, p1 *bls12381.PointG2 684 685 // Initialize G2 686 g := bls12381.NewG2() 687 r := g.New() 688 689 // Decode G2 point p_0 690 if p0, err = g.DecodePoint(input[:256]); err != nil { 691 return nil, err 692 } 693 // Decode G2 point p_1 694 if p1, err = g.DecodePoint(input[256:]); err != nil { 695 return nil, err 696 } 697 698 // Compute r = p_0 + p_1 699 g.Add(r, p0, p1) 700 701 // Encode the G2 point into 256 bytes 702 return g.EncodePoint(r), nil 703 } 704 705 // bls12381G2Mul implements EIP-2537 G2Mul precompile. 706 type bls12381G2Mul struct{} 707 708 // RequiredGas returns the gas required to execute the pre-compiled contract. 709 func (c *bls12381G2Mul) RequiredGas(input []byte) uint64 { 710 return params.Bls12381G2MulGas 711 } 712 713 func (c *bls12381G2Mul) Run(input []byte) ([]byte, error) { 714 // Implements EIP-2537 G2MUL precompile logic. 715 // > G2 multiplication call expects `288` bytes as an input that is interpreted as byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes). 716 // > Output is an encoding of multiplication operation result - single G2 point (`256` bytes). 717 if len(input) != 288 { 718 return nil, errBLS12381InvalidInputLength 719 } 720 var err error 721 var p0 *bls12381.PointG2 722 723 // Initialize G2 724 g := bls12381.NewG2() 725 726 // Decode G2 point 727 if p0, err = g.DecodePoint(input[:256]); err != nil { 728 return nil, err 729 } 730 // Decode scalar value 731 e := new(big.Int).SetBytes(input[256:]) 732 733 // Compute r = e * p_0 734 r := g.New() 735 g.MulScalar(r, p0, e) 736 737 // Encode the G2 point into 256 bytes 738 return g.EncodePoint(r), nil 739 } 740 741 // bls12381G2MultiExp implements EIP-2537 G2MultiExp precompile. 742 type bls12381G2MultiExp struct{} 743 744 // RequiredGas returns the gas required to execute the pre-compiled contract. 745 func (c *bls12381G2MultiExp) RequiredGas(input []byte) uint64 { 746 // Calculate G2 point, scalar value pair length 747 k := len(input) / 288 748 if k == 0 { 749 // Return 0 gas for small input length 750 return 0 751 } 752 // Lookup discount value for G2 point, scalar value pair length 753 maxDiscountLen := len(params.Bls12381MultiExpDiscountTable) 754 if k > maxDiscountLen { 755 k = maxDiscountLen 756 } 757 discount := params.Bls12381MultiExpDiscountTable[k-1] 758 // Calculate gas and return the result 759 return (uint64(k) * params.Bls12381G2MulGas * discount) / 1000 760 } 761 762 func (c *bls12381G2MultiExp) Run(input []byte) ([]byte, error) { 763 // Implements EIP-2537 G2MultiExp precompile logic 764 // > G2 multiplication call expects `288*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes). 765 // > Output is an encoding of multiexponentiation operation result - single G2 point (`256` bytes). 766 k := len(input) / 288 767 if len(input) == 0 || len(input)%288 != 0 { 768 return nil, errBLS12381InvalidInputLength 769 } 770 var err error 771 points := make([]*bls12381.PointG2, k) 772 scalars := make([]*big.Int, k) 773 774 // Initialize G2 775 g := bls12381.NewG2() 776 777 // Decode point scalar pairs 778 for i := 0; i < k; i++ { 779 off := 288 * i 780 t0, t1, t2 := off, off+256, off+288 781 // Decode G1 point 782 if points[i], err = g.DecodePoint(input[t0:t1]); err != nil { 783 return nil, err 784 } 785 // Decode scalar value 786 scalars[i] = new(big.Int).SetBytes(input[t1:t2]) 787 } 788 789 // Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1) 790 r := g.New() 791 g.MultiExp(r, points, scalars) 792 793 // Encode the G2 point to 256 bytes. 794 return g.EncodePoint(r), nil 795 } 796 797 // bls12381Pairing implements EIP-2537 Pairing precompile. 798 type bls12381Pairing struct{} 799 800 // RequiredGas returns the gas required to execute the pre-compiled contract. 801 func (c *bls12381Pairing) RequiredGas(input []byte) uint64 { 802 return params.Bls12381PairingBaseGas + uint64(len(input)/384)*params.Bls12381PairingPerPairGas 803 } 804 805 func (c *bls12381Pairing) Run(input []byte) ([]byte, error) { 806 // Implements EIP-2537 Pairing precompile logic. 807 // > Pairing call expects `384*k` bytes as an inputs that is interpreted as byte concatenation of `k` slices. Each slice has the following structure: 808 // > - `128` bytes of G1 point encoding 809 // > - `256` bytes of G2 point encoding 810 // > Output is a `32` bytes where last single byte is `0x01` if pairing result is equal to multiplicative identity in a pairing target field and `0x00` otherwise 811 // > (which is equivalent of Big Endian encoding of Solidity values `uint256(1)` and `uin256(0)` respectively). 812 k := len(input) / 384 813 if len(input) == 0 || len(input)%384 != 0 { 814 return nil, errBLS12381InvalidInputLength 815 } 816 817 // Initialize BLS12-381 pairing engine 818 e := bls12381.NewPairingEngine() 819 g1, g2 := e.G1, e.G2 820 821 // Decode pairs 822 for i := 0; i < k; i++ { 823 off := 384 * i 824 t0, t1, t2 := off, off+128, off+384 825 826 // Decode G1 point 827 p1, err := g1.DecodePoint(input[t0:t1]) 828 if err != nil { 829 return nil, err 830 } 831 // Decode G2 point 832 p2, err := g2.DecodePoint(input[t1:t2]) 833 if err != nil { 834 return nil, err 835 } 836 837 // 'point is on curve' check already done, 838 // Here we need to apply subgroup checks. 839 if !g1.InCorrectSubgroup(p1) { 840 return nil, errBLS12381G1PointSubgroup 841 } 842 if !g2.InCorrectSubgroup(p2) { 843 return nil, errBLS12381G2PointSubgroup 844 } 845 846 // Update pairing engine with G1 and G2 ponits 847 e.AddPair(p1, p2) 848 } 849 // Prepare 32 byte output 850 out := make([]byte, 32) 851 852 // Compute pairing and set the result 853 if e.Check() { 854 out[31] = 1 855 } 856 return out, nil 857 } 858 859 // decodeBLS12381FieldElement decodes BLS12-381 elliptic curve field element. 860 // Removes top 16 bytes of 64 byte input. 861 func decodeBLS12381FieldElement(in []byte) ([]byte, error) { 862 if len(in) != 64 { 863 return nil, errors.New("invalid field element length") 864 } 865 // check top bytes 866 for i := 0; i < 16; i++ { 867 if in[i] != byte(0x00) { 868 return nil, errBLS12381InvalidFieldElementTopBytes 869 } 870 } 871 out := make([]byte, 48) 872 copy(out[:], in[16:]) 873 return out, nil 874 } 875 876 // bls12381MapG1 implements EIP-2537 MapG1 precompile. 877 type bls12381MapG1 struct{} 878 879 // RequiredGas returns the gas required to execute the pre-compiled contract. 880 func (c *bls12381MapG1) RequiredGas(input []byte) uint64 { 881 return params.Bls12381MapG1Gas 882 } 883 884 func (c *bls12381MapG1) Run(input []byte) ([]byte, error) { 885 // Implements EIP-2537 Map_To_G1 precompile. 886 // > Field-to-curve call expects `64` bytes an an input that is interpreted as a an element of the base field. 887 // > Output of this call is `128` bytes and is G1 point following respective encoding rules. 888 if len(input) != 64 { 889 return nil, errBLS12381InvalidInputLength 890 } 891 892 // Decode input field element 893 fe, err := decodeBLS12381FieldElement(input) 894 if err != nil { 895 return nil, err 896 } 897 898 // Initialize G1 899 g := bls12381.NewG1() 900 901 // Compute mapping 902 r, err := g.MapToCurve(fe) 903 if err != nil { 904 return nil, err 905 } 906 907 // Encode the G1 point to 128 bytes 908 return g.EncodePoint(r), nil 909 } 910 911 // bls12381MapG2 implements EIP-2537 MapG2 precompile. 912 type bls12381MapG2 struct{} 913 914 // RequiredGas returns the gas required to execute the pre-compiled contract. 915 func (c *bls12381MapG2) RequiredGas(input []byte) uint64 { 916 return params.Bls12381MapG2Gas 917 } 918 919 func (c *bls12381MapG2) Run(input []byte) ([]byte, error) { 920 // Implements EIP-2537 Map_FP2_TO_G2 precompile logic. 921 // > Field-to-curve call expects `128` bytes an an input that is interpreted as a an element of the quadratic extension field. 922 // > Output of this call is `256` bytes and is G2 point following respective encoding rules. 923 if len(input) != 128 { 924 return nil, errBLS12381InvalidInputLength 925 } 926 927 // Decode input field element 928 fe := make([]byte, 96) 929 c0, err := decodeBLS12381FieldElement(input[:64]) 930 if err != nil { 931 return nil, err 932 } 933 copy(fe[48:], c0) 934 c1, err := decodeBLS12381FieldElement(input[64:]) 935 if err != nil { 936 return nil, err 937 } 938 copy(fe[:48], c1) 939 940 // Initialize G2 941 g := bls12381.NewG2() 942 943 // Compute mapping 944 r, err := g.MapToCurve(fe) 945 if err != nil { 946 return nil, err 947 } 948 949 // Encode the G2 point to 256 bytes 950 return g.EncodePoint(r), nil 951 }