github.com/zhiqiangxu/go-ethereum@v1.9.16-0.20210824055606-be91cfdebc48/eth/peer.go (about)

     1  // Copyright 2015 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package eth
    18  
    19  import (
    20  	"errors"
    21  	"fmt"
    22  	"math/big"
    23  	"sync"
    24  	"time"
    25  
    26  	mapset "github.com/deckarep/golang-set"
    27  	"github.com/zhiqiangxu/go-ethereum/common"
    28  	"github.com/zhiqiangxu/go-ethereum/core/forkid"
    29  	"github.com/zhiqiangxu/go-ethereum/core/types"
    30  	"github.com/zhiqiangxu/go-ethereum/p2p"
    31  	"github.com/zhiqiangxu/go-ethereum/rlp"
    32  )
    33  
    34  var (
    35  	errClosed            = errors.New("peer set is closed")
    36  	errAlreadyRegistered = errors.New("peer is already registered")
    37  	errNotRegistered     = errors.New("peer is not registered")
    38  )
    39  
    40  const (
    41  	maxKnownTxs    = 32768 // Maximum transactions hashes to keep in the known list (prevent DOS)
    42  	maxKnownBlocks = 1024  // Maximum block hashes to keep in the known list (prevent DOS)
    43  
    44  	// maxQueuedTxs is the maximum number of transactions to queue up before dropping
    45  	// older broadcasts.
    46  	maxQueuedTxs = 4096
    47  
    48  	// maxQueuedTxAnns is the maximum number of transaction announcements to queue up
    49  	// before dropping older announcements.
    50  	maxQueuedTxAnns = 4096
    51  
    52  	// maxQueuedBlocks is the maximum number of block propagations to queue up before
    53  	// dropping broadcasts. There's not much point in queueing stale blocks, so a few
    54  	// that might cover uncles should be enough.
    55  	maxQueuedBlocks = 4
    56  
    57  	// maxQueuedBlockAnns is the maximum number of block announcements to queue up before
    58  	// dropping broadcasts. Similarly to block propagations, there's no point to queue
    59  	// above some healthy uncle limit, so use that.
    60  	maxQueuedBlockAnns = 4
    61  
    62  	handshakeTimeout = 5 * time.Second
    63  )
    64  
    65  // max is a helper function which returns the larger of the two given integers.
    66  func max(a, b int) int {
    67  	if a > b {
    68  		return a
    69  	}
    70  	return b
    71  }
    72  
    73  // PeerInfo represents a short summary of the Ethereum sub-protocol metadata known
    74  // about a connected peer.
    75  type PeerInfo struct {
    76  	Version    int      `json:"version"`    // Ethereum protocol version negotiated
    77  	Difficulty *big.Int `json:"difficulty"` // Total difficulty of the peer's blockchain
    78  	Head       string   `json:"head"`       // SHA3 hash of the peer's best owned block
    79  }
    80  
    81  // propEvent is a block propagation, waiting for its turn in the broadcast queue.
    82  type propEvent struct {
    83  	block *types.Block
    84  	td    *big.Int
    85  }
    86  
    87  type peer struct {
    88  	id string
    89  
    90  	*p2p.Peer
    91  	rw p2p.MsgReadWriter
    92  
    93  	version  int         // Protocol version negotiated
    94  	syncDrop *time.Timer // Timed connection dropper if sync progress isn't validated in time
    95  
    96  	head common.Hash
    97  	td   *big.Int
    98  	lock sync.RWMutex
    99  
   100  	knownBlocks     mapset.Set        // Set of block hashes known to be known by this peer
   101  	queuedBlocks    chan *propEvent   // Queue of blocks to broadcast to the peer
   102  	queuedBlockAnns chan *types.Block // Queue of blocks to announce to the peer
   103  
   104  	knownTxs    mapset.Set                           // Set of transaction hashes known to be known by this peer
   105  	txBroadcast chan []common.Hash                   // Channel used to queue transaction propagation requests
   106  	txAnnounce  chan []common.Hash                   // Channel used to queue transaction announcement requests
   107  	getPooledTx func(common.Hash) *types.Transaction // Callback used to retrieve transaction from txpool
   108  
   109  	term chan struct{} // Termination channel to stop the broadcaster
   110  }
   111  
   112  func newPeer(version int, p *p2p.Peer, rw p2p.MsgReadWriter, getPooledTx func(hash common.Hash) *types.Transaction) *peer {
   113  	return &peer{
   114  		Peer:            p,
   115  		rw:              rw,
   116  		version:         version,
   117  		id:              fmt.Sprintf("%x", p.ID().Bytes()[:8]),
   118  		knownTxs:        mapset.NewSet(),
   119  		knownBlocks:     mapset.NewSet(),
   120  		queuedBlocks:    make(chan *propEvent, maxQueuedBlocks),
   121  		queuedBlockAnns: make(chan *types.Block, maxQueuedBlockAnns),
   122  		txBroadcast:     make(chan []common.Hash),
   123  		txAnnounce:      make(chan []common.Hash),
   124  		getPooledTx:     getPooledTx,
   125  		term:            make(chan struct{}),
   126  	}
   127  }
   128  
   129  // broadcastBlocks is a write loop that multiplexes blocks and block accouncements
   130  // to the remote peer. The goal is to have an async writer that does not lock up
   131  // node internals and at the same time rate limits queued data.
   132  func (p *peer) broadcastBlocks() {
   133  	for {
   134  		select {
   135  		case prop := <-p.queuedBlocks:
   136  			if err := p.SendNewBlock(prop.block, prop.td); err != nil {
   137  				return
   138  			}
   139  			p.Log().Trace("Propagated block", "number", prop.block.Number(), "hash", prop.block.Hash(), "td", prop.td)
   140  
   141  		case block := <-p.queuedBlockAnns:
   142  			if err := p.SendNewBlockHashes([]common.Hash{block.Hash()}, []uint64{block.NumberU64()}); err != nil {
   143  				return
   144  			}
   145  			p.Log().Trace("Announced block", "number", block.Number(), "hash", block.Hash())
   146  
   147  		case <-p.term:
   148  			return
   149  		}
   150  	}
   151  }
   152  
   153  // broadcastTransactions is a write loop that schedules transaction broadcasts
   154  // to the remote peer. The goal is to have an async writer that does not lock up
   155  // node internals and at the same time rate limits queued data.
   156  func (p *peer) broadcastTransactions() {
   157  	var (
   158  		queue []common.Hash         // Queue of hashes to broadcast as full transactions
   159  		done  chan struct{}         // Non-nil if background broadcaster is running
   160  		fail  = make(chan error, 1) // Channel used to receive network error
   161  	)
   162  	for {
   163  		// If there's no in-flight broadcast running, check if a new one is needed
   164  		if done == nil && len(queue) > 0 {
   165  			// Pile transaction until we reach our allowed network limit
   166  			var (
   167  				hashes []common.Hash
   168  				txs    []*types.Transaction
   169  				size   common.StorageSize
   170  			)
   171  			for i := 0; i < len(queue) && size < txsyncPackSize; i++ {
   172  				if tx := p.getPooledTx(queue[i]); tx != nil {
   173  					txs = append(txs, tx)
   174  					size += tx.Size()
   175  				}
   176  				hashes = append(hashes, queue[i])
   177  			}
   178  			queue = queue[:copy(queue, queue[len(hashes):])]
   179  
   180  			// If there's anything available to transfer, fire up an async writer
   181  			if len(txs) > 0 {
   182  				done = make(chan struct{})
   183  				go func() {
   184  					if err := p.sendTransactions(txs); err != nil {
   185  						fail <- err
   186  						return
   187  					}
   188  					close(done)
   189  					p.Log().Trace("Sent transactions", "count", len(txs))
   190  				}()
   191  			}
   192  		}
   193  		// Transfer goroutine may or may not have been started, listen for events
   194  		select {
   195  		case hashes := <-p.txBroadcast:
   196  			// New batch of transactions to be broadcast, queue them (with cap)
   197  			queue = append(queue, hashes...)
   198  			if len(queue) > maxQueuedTxs {
   199  				// Fancy copy and resize to ensure buffer doesn't grow indefinitely
   200  				queue = queue[:copy(queue, queue[len(queue)-maxQueuedTxs:])]
   201  			}
   202  
   203  		case <-done:
   204  			done = nil
   205  
   206  		case <-fail:
   207  			return
   208  
   209  		case <-p.term:
   210  			return
   211  		}
   212  	}
   213  }
   214  
   215  // announceTransactions is a write loop that schedules transaction broadcasts
   216  // to the remote peer. The goal is to have an async writer that does not lock up
   217  // node internals and at the same time rate limits queued data.
   218  func (p *peer) announceTransactions() {
   219  	var (
   220  		queue []common.Hash         // Queue of hashes to announce as transaction stubs
   221  		done  chan struct{}         // Non-nil if background announcer is running
   222  		fail  = make(chan error, 1) // Channel used to receive network error
   223  	)
   224  	for {
   225  		// If there's no in-flight announce running, check if a new one is needed
   226  		if done == nil && len(queue) > 0 {
   227  			// Pile transaction hashes until we reach our allowed network limit
   228  			var (
   229  				hashes  []common.Hash
   230  				pending []common.Hash
   231  				size    common.StorageSize
   232  			)
   233  			for i := 0; i < len(queue) && size < txsyncPackSize; i++ {
   234  				if p.getPooledTx(queue[i]) != nil {
   235  					pending = append(pending, queue[i])
   236  					size += common.HashLength
   237  				}
   238  				hashes = append(hashes, queue[i])
   239  			}
   240  			queue = queue[:copy(queue, queue[len(hashes):])]
   241  
   242  			// If there's anything available to transfer, fire up an async writer
   243  			if len(pending) > 0 {
   244  				done = make(chan struct{})
   245  				go func() {
   246  					if err := p.sendPooledTransactionHashes(pending); err != nil {
   247  						fail <- err
   248  						return
   249  					}
   250  					close(done)
   251  					p.Log().Trace("Sent transaction announcements", "count", len(pending))
   252  				}()
   253  			}
   254  		}
   255  		// Transfer goroutine may or may not have been started, listen for events
   256  		select {
   257  		case hashes := <-p.txAnnounce:
   258  			// New batch of transactions to be broadcast, queue them (with cap)
   259  			queue = append(queue, hashes...)
   260  			if len(queue) > maxQueuedTxAnns {
   261  				// Fancy copy and resize to ensure buffer doesn't grow indefinitely
   262  				queue = queue[:copy(queue, queue[len(queue)-maxQueuedTxs:])]
   263  			}
   264  
   265  		case <-done:
   266  			done = nil
   267  
   268  		case <-fail:
   269  			return
   270  
   271  		case <-p.term:
   272  			return
   273  		}
   274  	}
   275  }
   276  
   277  // close signals the broadcast goroutine to terminate.
   278  func (p *peer) close() {
   279  	close(p.term)
   280  }
   281  
   282  // Info gathers and returns a collection of metadata known about a peer.
   283  func (p *peer) Info() *PeerInfo {
   284  	hash, td := p.Head()
   285  
   286  	return &PeerInfo{
   287  		Version:    p.version,
   288  		Difficulty: td,
   289  		Head:       hash.Hex(),
   290  	}
   291  }
   292  
   293  // Head retrieves a copy of the current head hash and total difficulty of the
   294  // peer.
   295  func (p *peer) Head() (hash common.Hash, td *big.Int) {
   296  	p.lock.RLock()
   297  	defer p.lock.RUnlock()
   298  
   299  	copy(hash[:], p.head[:])
   300  	return hash, new(big.Int).Set(p.td)
   301  }
   302  
   303  // SetHead updates the head hash and total difficulty of the peer.
   304  func (p *peer) SetHead(hash common.Hash, td *big.Int) {
   305  	p.lock.Lock()
   306  	defer p.lock.Unlock()
   307  
   308  	copy(p.head[:], hash[:])
   309  	p.td.Set(td)
   310  }
   311  
   312  // MarkBlock marks a block as known for the peer, ensuring that the block will
   313  // never be propagated to this particular peer.
   314  func (p *peer) MarkBlock(hash common.Hash) {
   315  	// If we reached the memory allowance, drop a previously known block hash
   316  	for p.knownBlocks.Cardinality() >= maxKnownBlocks {
   317  		p.knownBlocks.Pop()
   318  	}
   319  	p.knownBlocks.Add(hash)
   320  }
   321  
   322  // MarkTransaction marks a transaction as known for the peer, ensuring that it
   323  // will never be propagated to this particular peer.
   324  func (p *peer) MarkTransaction(hash common.Hash) {
   325  	// If we reached the memory allowance, drop a previously known transaction hash
   326  	for p.knownTxs.Cardinality() >= maxKnownTxs {
   327  		p.knownTxs.Pop()
   328  	}
   329  	p.knownTxs.Add(hash)
   330  }
   331  
   332  // SendTransactions64 sends transactions to the peer and includes the hashes
   333  // in its transaction hash set for future reference.
   334  //
   335  // This method is legacy support for initial transaction exchange in eth/64 and
   336  // prior. For eth/65 and higher use SendPooledTransactionHashes.
   337  func (p *peer) SendTransactions64(txs types.Transactions) error {
   338  	return p.sendTransactions(txs)
   339  }
   340  
   341  // sendTransactions sends transactions to the peer and includes the hashes
   342  // in its transaction hash set for future reference.
   343  //
   344  // This method is a helper used by the async transaction sender. Don't call it
   345  // directly as the queueing (memory) and transmission (bandwidth) costs should
   346  // not be managed directly.
   347  func (p *peer) sendTransactions(txs types.Transactions) error {
   348  	// Mark all the transactions as known, but ensure we don't overflow our limits
   349  	for p.knownTxs.Cardinality() > max(0, maxKnownTxs-len(txs)) {
   350  		p.knownTxs.Pop()
   351  	}
   352  	for _, tx := range txs {
   353  		p.knownTxs.Add(tx.Hash())
   354  	}
   355  	return p2p.Send(p.rw, TransactionMsg, txs)
   356  }
   357  
   358  // AsyncSendTransactions queues a list of transactions (by hash) to eventually
   359  // propagate to a remote peer. The number of pending sends are capped (new ones
   360  // will force old sends to be dropped)
   361  func (p *peer) AsyncSendTransactions(hashes []common.Hash) {
   362  	select {
   363  	case p.txBroadcast <- hashes:
   364  		// Mark all the transactions as known, but ensure we don't overflow our limits
   365  		for p.knownTxs.Cardinality() > max(0, maxKnownTxs-len(hashes)) {
   366  			p.knownTxs.Pop()
   367  		}
   368  		for _, hash := range hashes {
   369  			p.knownTxs.Add(hash)
   370  		}
   371  	case <-p.term:
   372  		p.Log().Debug("Dropping transaction propagation", "count", len(hashes))
   373  	}
   374  }
   375  
   376  // sendPooledTransactionHashes sends transaction hashes to the peer and includes
   377  // them in its transaction hash set for future reference.
   378  //
   379  // This method is a helper used by the async transaction announcer. Don't call it
   380  // directly as the queueing (memory) and transmission (bandwidth) costs should
   381  // not be managed directly.
   382  func (p *peer) sendPooledTransactionHashes(hashes []common.Hash) error {
   383  	// Mark all the transactions as known, but ensure we don't overflow our limits
   384  	for p.knownTxs.Cardinality() > max(0, maxKnownTxs-len(hashes)) {
   385  		p.knownTxs.Pop()
   386  	}
   387  	for _, hash := range hashes {
   388  		p.knownTxs.Add(hash)
   389  	}
   390  	return p2p.Send(p.rw, NewPooledTransactionHashesMsg, hashes)
   391  }
   392  
   393  // AsyncSendPooledTransactionHashes queues a list of transactions hashes to eventually
   394  // announce to a remote peer.  The number of pending sends are capped (new ones
   395  // will force old sends to be dropped)
   396  func (p *peer) AsyncSendPooledTransactionHashes(hashes []common.Hash) {
   397  	select {
   398  	case p.txAnnounce <- hashes:
   399  		// Mark all the transactions as known, but ensure we don't overflow our limits
   400  		for p.knownTxs.Cardinality() > max(0, maxKnownTxs-len(hashes)) {
   401  			p.knownTxs.Pop()
   402  		}
   403  		for _, hash := range hashes {
   404  			p.knownTxs.Add(hash)
   405  		}
   406  	case <-p.term:
   407  		p.Log().Debug("Dropping transaction announcement", "count", len(hashes))
   408  	}
   409  }
   410  
   411  // SendPooledTransactionsRLP sends requested transactions to the peer and adds the
   412  // hashes in its transaction hash set for future reference.
   413  //
   414  // Note, the method assumes the hashes are correct and correspond to the list of
   415  // transactions being sent.
   416  func (p *peer) SendPooledTransactionsRLP(hashes []common.Hash, txs []rlp.RawValue) error {
   417  	// Mark all the transactions as known, but ensure we don't overflow our limits
   418  	for p.knownTxs.Cardinality() > max(0, maxKnownTxs-len(hashes)) {
   419  		p.knownTxs.Pop()
   420  	}
   421  	for _, hash := range hashes {
   422  		p.knownTxs.Add(hash)
   423  	}
   424  	return p2p.Send(p.rw, PooledTransactionsMsg, txs)
   425  }
   426  
   427  // SendNewBlockHashes announces the availability of a number of blocks through
   428  // a hash notification.
   429  func (p *peer) SendNewBlockHashes(hashes []common.Hash, numbers []uint64) error {
   430  	// Mark all the block hashes as known, but ensure we don't overflow our limits
   431  	for p.knownBlocks.Cardinality() > max(0, maxKnownBlocks-len(hashes)) {
   432  		p.knownBlocks.Pop()
   433  	}
   434  	for _, hash := range hashes {
   435  		p.knownBlocks.Add(hash)
   436  	}
   437  	request := make(newBlockHashesData, len(hashes))
   438  	for i := 0; i < len(hashes); i++ {
   439  		request[i].Hash = hashes[i]
   440  		request[i].Number = numbers[i]
   441  	}
   442  	return p2p.Send(p.rw, NewBlockHashesMsg, request)
   443  }
   444  
   445  // AsyncSendNewBlockHash queues the availability of a block for propagation to a
   446  // remote peer. If the peer's broadcast queue is full, the event is silently
   447  // dropped.
   448  func (p *peer) AsyncSendNewBlockHash(block *types.Block) {
   449  	select {
   450  	case p.queuedBlockAnns <- block:
   451  		// Mark all the block hash as known, but ensure we don't overflow our limits
   452  		for p.knownBlocks.Cardinality() >= maxKnownBlocks {
   453  			p.knownBlocks.Pop()
   454  		}
   455  		p.knownBlocks.Add(block.Hash())
   456  	default:
   457  		p.Log().Debug("Dropping block announcement", "number", block.NumberU64(), "hash", block.Hash())
   458  	}
   459  }
   460  
   461  // SendNewBlock propagates an entire block to a remote peer.
   462  func (p *peer) SendNewBlock(block *types.Block, td *big.Int) error {
   463  	// Mark all the block hash as known, but ensure we don't overflow our limits
   464  	for p.knownBlocks.Cardinality() >= maxKnownBlocks {
   465  		p.knownBlocks.Pop()
   466  	}
   467  	p.knownBlocks.Add(block.Hash())
   468  	return p2p.Send(p.rw, NewBlockMsg, []interface{}{block, td})
   469  }
   470  
   471  // AsyncSendNewBlock queues an entire block for propagation to a remote peer. If
   472  // the peer's broadcast queue is full, the event is silently dropped.
   473  func (p *peer) AsyncSendNewBlock(block *types.Block, td *big.Int) {
   474  	select {
   475  	case p.queuedBlocks <- &propEvent{block: block, td: td}:
   476  		// Mark all the block hash as known, but ensure we don't overflow our limits
   477  		for p.knownBlocks.Cardinality() >= maxKnownBlocks {
   478  			p.knownBlocks.Pop()
   479  		}
   480  		p.knownBlocks.Add(block.Hash())
   481  	default:
   482  		p.Log().Debug("Dropping block propagation", "number", block.NumberU64(), "hash", block.Hash())
   483  	}
   484  }
   485  
   486  // SendBlockHeaders sends a batch of block headers to the remote peer.
   487  func (p *peer) SendBlockHeaders(headers []*types.Header) error {
   488  	return p2p.Send(p.rw, BlockHeadersMsg, headers)
   489  }
   490  
   491  // SendBlockBodies sends a batch of block contents to the remote peer.
   492  func (p *peer) SendBlockBodies(bodies []*blockBody) error {
   493  	return p2p.Send(p.rw, BlockBodiesMsg, blockBodiesData(bodies))
   494  }
   495  
   496  // SendBlockBodiesRLP sends a batch of block contents to the remote peer from
   497  // an already RLP encoded format.
   498  func (p *peer) SendBlockBodiesRLP(bodies []rlp.RawValue) error {
   499  	return p2p.Send(p.rw, BlockBodiesMsg, bodies)
   500  }
   501  
   502  // SendNodeDataRLP sends a batch of arbitrary internal data, corresponding to the
   503  // hashes requested.
   504  func (p *peer) SendNodeData(data [][]byte) error {
   505  	return p2p.Send(p.rw, NodeDataMsg, data)
   506  }
   507  
   508  // SendReceiptsRLP sends a batch of transaction receipts, corresponding to the
   509  // ones requested from an already RLP encoded format.
   510  func (p *peer) SendReceiptsRLP(receipts []rlp.RawValue) error {
   511  	return p2p.Send(p.rw, ReceiptsMsg, receipts)
   512  }
   513  
   514  // RequestOneHeader is a wrapper around the header query functions to fetch a
   515  // single header. It is used solely by the fetcher.
   516  func (p *peer) RequestOneHeader(hash common.Hash) error {
   517  	p.Log().Debug("Fetching single header", "hash", hash)
   518  	return p2p.Send(p.rw, GetBlockHeadersMsg, &getBlockHeadersData{Origin: hashOrNumber{Hash: hash}, Amount: uint64(1), Skip: uint64(0), Reverse: false})
   519  }
   520  
   521  // RequestHeadersByHash fetches a batch of blocks' headers corresponding to the
   522  // specified header query, based on the hash of an origin block.
   523  func (p *peer) RequestHeadersByHash(origin common.Hash, amount int, skip int, reverse bool) error {
   524  	p.Log().Debug("Fetching batch of headers", "count", amount, "fromhash", origin, "skip", skip, "reverse", reverse)
   525  	return p2p.Send(p.rw, GetBlockHeadersMsg, &getBlockHeadersData{Origin: hashOrNumber{Hash: origin}, Amount: uint64(amount), Skip: uint64(skip), Reverse: reverse})
   526  }
   527  
   528  // RequestHeadersByNumber fetches a batch of blocks' headers corresponding to the
   529  // specified header query, based on the number of an origin block.
   530  func (p *peer) RequestHeadersByNumber(origin uint64, amount int, skip int, reverse bool) error {
   531  	p.Log().Debug("Fetching batch of headers", "count", amount, "fromnum", origin, "skip", skip, "reverse", reverse)
   532  	return p2p.Send(p.rw, GetBlockHeadersMsg, &getBlockHeadersData{Origin: hashOrNumber{Number: origin}, Amount: uint64(amount), Skip: uint64(skip), Reverse: reverse})
   533  }
   534  
   535  // RequestBodies fetches a batch of blocks' bodies corresponding to the hashes
   536  // specified.
   537  func (p *peer) RequestBodies(hashes []common.Hash) error {
   538  	p.Log().Debug("Fetching batch of block bodies", "count", len(hashes))
   539  	return p2p.Send(p.rw, GetBlockBodiesMsg, hashes)
   540  }
   541  
   542  // RequestNodeData fetches a batch of arbitrary data from a node's known state
   543  // data, corresponding to the specified hashes.
   544  func (p *peer) RequestNodeData(hashes []common.Hash) error {
   545  	p.Log().Debug("Fetching batch of state data", "count", len(hashes))
   546  	return p2p.Send(p.rw, GetNodeDataMsg, hashes)
   547  }
   548  
   549  // RequestReceipts fetches a batch of transaction receipts from a remote node.
   550  func (p *peer) RequestReceipts(hashes []common.Hash) error {
   551  	p.Log().Debug("Fetching batch of receipts", "count", len(hashes))
   552  	return p2p.Send(p.rw, GetReceiptsMsg, hashes)
   553  }
   554  
   555  // RequestTxs fetches a batch of transactions from a remote node.
   556  func (p *peer) RequestTxs(hashes []common.Hash) error {
   557  	p.Log().Debug("Fetching batch of transactions", "count", len(hashes))
   558  	return p2p.Send(p.rw, GetPooledTransactionsMsg, hashes)
   559  }
   560  
   561  // Handshake executes the eth protocol handshake, negotiating version number,
   562  // network IDs, difficulties, head and genesis blocks.
   563  func (p *peer) Handshake(network uint64, td *big.Int, head common.Hash, genesis common.Hash, forkID forkid.ID, forkFilter forkid.Filter) error {
   564  	// Send out own handshake in a new thread
   565  	errc := make(chan error, 2)
   566  
   567  	var (
   568  		status63 statusData63 // safe to read after two values have been received from errc
   569  		status   statusData   // safe to read after two values have been received from errc
   570  	)
   571  	go func() {
   572  		switch {
   573  		case p.version == eth63:
   574  			errc <- p2p.Send(p.rw, StatusMsg, &statusData63{
   575  				ProtocolVersion: uint32(p.version),
   576  				NetworkId:       network,
   577  				TD:              td,
   578  				CurrentBlock:    head,
   579  				GenesisBlock:    genesis,
   580  			})
   581  		case p.version >= eth64:
   582  			errc <- p2p.Send(p.rw, StatusMsg, &statusData{
   583  				ProtocolVersion: uint32(p.version),
   584  				NetworkID:       network,
   585  				TD:              td,
   586  				Head:            head,
   587  				Genesis:         genesis,
   588  				ForkID:          forkID,
   589  			})
   590  		default:
   591  			panic(fmt.Sprintf("unsupported eth protocol version: %d", p.version))
   592  		}
   593  	}()
   594  	go func() {
   595  		switch {
   596  		case p.version == eth63:
   597  			errc <- p.readStatusLegacy(network, &status63, genesis)
   598  		case p.version >= eth64:
   599  			errc <- p.readStatus(network, &status, genesis, forkFilter)
   600  		default:
   601  			panic(fmt.Sprintf("unsupported eth protocol version: %d", p.version))
   602  		}
   603  	}()
   604  	timeout := time.NewTimer(handshakeTimeout)
   605  	defer timeout.Stop()
   606  	for i := 0; i < 2; i++ {
   607  		select {
   608  		case err := <-errc:
   609  			if err != nil {
   610  				return err
   611  			}
   612  		case <-timeout.C:
   613  			return p2p.DiscReadTimeout
   614  		}
   615  	}
   616  	switch {
   617  	case p.version == eth63:
   618  		p.td, p.head = status63.TD, status63.CurrentBlock
   619  	case p.version >= eth64:
   620  		p.td, p.head = status.TD, status.Head
   621  	default:
   622  		panic(fmt.Sprintf("unsupported eth protocol version: %d", p.version))
   623  	}
   624  	return nil
   625  }
   626  
   627  func (p *peer) readStatusLegacy(network uint64, status *statusData63, genesis common.Hash) error {
   628  	msg, err := p.rw.ReadMsg()
   629  	if err != nil {
   630  		return err
   631  	}
   632  	if msg.Code != StatusMsg {
   633  		return errResp(ErrNoStatusMsg, "first msg has code %x (!= %x)", msg.Code, StatusMsg)
   634  	}
   635  	if msg.Size > protocolMaxMsgSize {
   636  		return errResp(ErrMsgTooLarge, "%v > %v", msg.Size, protocolMaxMsgSize)
   637  	}
   638  	// Decode the handshake and make sure everything matches
   639  	if err := msg.Decode(&status); err != nil {
   640  		return errResp(ErrDecode, "msg %v: %v", msg, err)
   641  	}
   642  	if status.GenesisBlock != genesis {
   643  		return errResp(ErrGenesisMismatch, "%x (!= %x)", status.GenesisBlock[:8], genesis[:8])
   644  	}
   645  	if status.NetworkId != network {
   646  		return errResp(ErrNetworkIDMismatch, "%d (!= %d)", status.NetworkId, network)
   647  	}
   648  	if int(status.ProtocolVersion) != p.version {
   649  		return errResp(ErrProtocolVersionMismatch, "%d (!= %d)", status.ProtocolVersion, p.version)
   650  	}
   651  	return nil
   652  }
   653  
   654  func (p *peer) readStatus(network uint64, status *statusData, genesis common.Hash, forkFilter forkid.Filter) error {
   655  	msg, err := p.rw.ReadMsg()
   656  	if err != nil {
   657  		return err
   658  	}
   659  	if msg.Code != StatusMsg {
   660  		return errResp(ErrNoStatusMsg, "first msg has code %x (!= %x)", msg.Code, StatusMsg)
   661  	}
   662  	if msg.Size > protocolMaxMsgSize {
   663  		return errResp(ErrMsgTooLarge, "%v > %v", msg.Size, protocolMaxMsgSize)
   664  	}
   665  	// Decode the handshake and make sure everything matches
   666  	if err := msg.Decode(&status); err != nil {
   667  		return errResp(ErrDecode, "msg %v: %v", msg, err)
   668  	}
   669  	if status.NetworkID != network {
   670  		return errResp(ErrNetworkIDMismatch, "%d (!= %d)", status.NetworkID, network)
   671  	}
   672  	if int(status.ProtocolVersion) != p.version {
   673  		return errResp(ErrProtocolVersionMismatch, "%d (!= %d)", status.ProtocolVersion, p.version)
   674  	}
   675  	if status.Genesis != genesis {
   676  		return errResp(ErrGenesisMismatch, "%x (!= %x)", status.Genesis, genesis)
   677  	}
   678  	if err := forkFilter(status.ForkID); err != nil {
   679  		return errResp(ErrForkIDRejected, "%v", err)
   680  	}
   681  	return nil
   682  }
   683  
   684  // String implements fmt.Stringer.
   685  func (p *peer) String() string {
   686  	return fmt.Sprintf("Peer %s [%s]", p.id,
   687  		fmt.Sprintf("eth/%2d", p.version),
   688  	)
   689  }
   690  
   691  // peerSet represents the collection of active peers currently participating in
   692  // the Ethereum sub-protocol.
   693  type peerSet struct {
   694  	peers  map[string]*peer
   695  	lock   sync.RWMutex
   696  	closed bool
   697  }
   698  
   699  // newPeerSet creates a new peer set to track the active participants.
   700  func newPeerSet() *peerSet {
   701  	return &peerSet{
   702  		peers: make(map[string]*peer),
   703  	}
   704  }
   705  
   706  // Register injects a new peer into the working set, or returns an error if the
   707  // peer is already known. If a new peer it registered, its broadcast loop is also
   708  // started.
   709  func (ps *peerSet) Register(p *peer) error {
   710  	ps.lock.Lock()
   711  	defer ps.lock.Unlock()
   712  
   713  	if ps.closed {
   714  		return errClosed
   715  	}
   716  	if _, ok := ps.peers[p.id]; ok {
   717  		return errAlreadyRegistered
   718  	}
   719  	ps.peers[p.id] = p
   720  
   721  	go p.broadcastBlocks()
   722  	go p.broadcastTransactions()
   723  	if p.version >= eth65 {
   724  		go p.announceTransactions()
   725  	}
   726  	return nil
   727  }
   728  
   729  // Unregister removes a remote peer from the active set, disabling any further
   730  // actions to/from that particular entity.
   731  func (ps *peerSet) Unregister(id string) error {
   732  	ps.lock.Lock()
   733  	defer ps.lock.Unlock()
   734  
   735  	p, ok := ps.peers[id]
   736  	if !ok {
   737  		return errNotRegistered
   738  	}
   739  	delete(ps.peers, id)
   740  	p.close()
   741  
   742  	return nil
   743  }
   744  
   745  // Peer retrieves the registered peer with the given id.
   746  func (ps *peerSet) Peer(id string) *peer {
   747  	ps.lock.RLock()
   748  	defer ps.lock.RUnlock()
   749  
   750  	return ps.peers[id]
   751  }
   752  
   753  // Len returns if the current number of peers in the set.
   754  func (ps *peerSet) Len() int {
   755  	ps.lock.RLock()
   756  	defer ps.lock.RUnlock()
   757  
   758  	return len(ps.peers)
   759  }
   760  
   761  // PeersWithoutBlock retrieves a list of peers that do not have a given block in
   762  // their set of known hashes.
   763  func (ps *peerSet) PeersWithoutBlock(hash common.Hash) []*peer {
   764  	ps.lock.RLock()
   765  	defer ps.lock.RUnlock()
   766  
   767  	list := make([]*peer, 0, len(ps.peers))
   768  	for _, p := range ps.peers {
   769  		if !p.knownBlocks.Contains(hash) {
   770  			list = append(list, p)
   771  		}
   772  	}
   773  	return list
   774  }
   775  
   776  // PeersWithoutTx retrieves a list of peers that do not have a given transaction
   777  // in their set of known hashes.
   778  func (ps *peerSet) PeersWithoutTx(hash common.Hash) []*peer {
   779  	ps.lock.RLock()
   780  	defer ps.lock.RUnlock()
   781  
   782  	list := make([]*peer, 0, len(ps.peers))
   783  	for _, p := range ps.peers {
   784  		if !p.knownTxs.Contains(hash) {
   785  			list = append(list, p)
   786  		}
   787  	}
   788  	return list
   789  }
   790  
   791  // BestPeer retrieves the known peer with the currently highest total difficulty.
   792  func (ps *peerSet) BestPeer() *peer {
   793  	ps.lock.RLock()
   794  	defer ps.lock.RUnlock()
   795  
   796  	var (
   797  		bestPeer *peer
   798  		bestTd   *big.Int
   799  	)
   800  	for _, p := range ps.peers {
   801  		if _, td := p.Head(); bestPeer == nil || td.Cmp(bestTd) > 0 {
   802  			bestPeer, bestTd = p, td
   803  		}
   804  	}
   805  	return bestPeer
   806  }
   807  
   808  // Close disconnects all peers.
   809  // No new peers can be registered after Close has returned.
   810  func (ps *peerSet) Close() {
   811  	ps.lock.Lock()
   812  	defer ps.lock.Unlock()
   813  
   814  	for _, p := range ps.peers {
   815  		p.Disconnect(p2p.DiscQuitting)
   816  	}
   817  	ps.closed = true
   818  }