github.com/zhiqiangxu/go-ethereum@v1.9.16-0.20210824055606-be91cfdebc48/les/serverpool.go (about) 1 // Copyright 2020 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package les 18 19 import ( 20 "errors" 21 "math/rand" 22 "reflect" 23 "sync" 24 "sync/atomic" 25 "time" 26 27 "github.com/zhiqiangxu/go-ethereum/common/mclock" 28 "github.com/zhiqiangxu/go-ethereum/ethdb" 29 lpc "github.com/zhiqiangxu/go-ethereum/les/lespay/client" 30 "github.com/zhiqiangxu/go-ethereum/les/utils" 31 "github.com/zhiqiangxu/go-ethereum/log" 32 "github.com/zhiqiangxu/go-ethereum/p2p/enode" 33 "github.com/zhiqiangxu/go-ethereum/p2p/enr" 34 "github.com/zhiqiangxu/go-ethereum/p2p/nodestate" 35 "github.com/zhiqiangxu/go-ethereum/rlp" 36 ) 37 38 const ( 39 minTimeout = time.Millisecond * 500 // minimum request timeout suggested by the server pool 40 timeoutRefresh = time.Second * 5 // recalculate timeout if older than this 41 dialCost = 10000 // cost of a TCP dial (used for known node selection weight calculation) 42 dialWaitStep = 1.5 // exponential multiplier of redial wait time when no value was provided by the server 43 queryCost = 500 // cost of a UDP pre-negotiation query 44 queryWaitStep = 1.02 // exponential multiplier of redial wait time when no value was provided by the server 45 waitThreshold = time.Hour * 2000 // drop node if waiting time is over the threshold 46 nodeWeightMul = 1000000 // multiplier constant for node weight calculation 47 nodeWeightThreshold = 100 // minimum weight for keeping a node in the the known (valuable) set 48 minRedialWait = 10 // minimum redial wait time in seconds 49 preNegLimit = 5 // maximum number of simultaneous pre-negotiation queries 50 maxQueryFails = 100 // number of consecutive UDP query failures before we print a warning 51 ) 52 53 // serverPool provides a node iterator for dial candidates. The output is a mix of newly discovered 54 // nodes, a weighted random selection of known (previously valuable) nodes and trusted/paid nodes. 55 type serverPool struct { 56 clock mclock.Clock 57 unixTime func() int64 58 db ethdb.KeyValueStore 59 60 ns *nodestate.NodeStateMachine 61 vt *lpc.ValueTracker 62 mixer *enode.FairMix 63 mixSources []enode.Iterator 64 dialIterator enode.Iterator 65 validSchemes enr.IdentityScheme 66 trustedURLs []string 67 fillSet *lpc.FillSet 68 queryFails uint32 69 70 timeoutLock sync.RWMutex 71 timeout time.Duration 72 timeWeights lpc.ResponseTimeWeights 73 timeoutRefreshed mclock.AbsTime 74 } 75 76 // nodeHistory keeps track of dial costs which determine node weight together with the 77 // service value calculated by lpc.ValueTracker. 78 type nodeHistory struct { 79 dialCost utils.ExpiredValue 80 redialWaitStart, redialWaitEnd int64 // unix time (seconds) 81 } 82 83 type nodeHistoryEnc struct { 84 DialCost utils.ExpiredValue 85 RedialWaitStart, RedialWaitEnd uint64 86 } 87 88 // queryFunc sends a pre-negotiation query and blocks until a response arrives or timeout occurs. 89 // It returns 1 if the remote node has confirmed that connection is possible, 0 if not 90 // possible and -1 if no response arrived (timeout). 91 type queryFunc func(*enode.Node) int 92 93 var ( 94 serverPoolSetup = &nodestate.Setup{Version: 1} 95 sfHasValue = serverPoolSetup.NewPersistentFlag("hasValue") 96 sfQueried = serverPoolSetup.NewFlag("queried") 97 sfCanDial = serverPoolSetup.NewFlag("canDial") 98 sfDialing = serverPoolSetup.NewFlag("dialed") 99 sfWaitDialTimeout = serverPoolSetup.NewFlag("dialTimeout") 100 sfConnected = serverPoolSetup.NewFlag("connected") 101 sfRedialWait = serverPoolSetup.NewFlag("redialWait") 102 sfAlwaysConnect = serverPoolSetup.NewFlag("alwaysConnect") 103 sfDisableSelection = nodestate.MergeFlags(sfQueried, sfCanDial, sfDialing, sfConnected, sfRedialWait) 104 105 sfiNodeHistory = serverPoolSetup.NewPersistentField("nodeHistory", reflect.TypeOf(nodeHistory{}), 106 func(field interface{}) ([]byte, error) { 107 if n, ok := field.(nodeHistory); ok { 108 ne := nodeHistoryEnc{ 109 DialCost: n.dialCost, 110 RedialWaitStart: uint64(n.redialWaitStart), 111 RedialWaitEnd: uint64(n.redialWaitEnd), 112 } 113 enc, err := rlp.EncodeToBytes(&ne) 114 return enc, err 115 } else { 116 return nil, errors.New("invalid field type") 117 } 118 }, 119 func(enc []byte) (interface{}, error) { 120 var ne nodeHistoryEnc 121 err := rlp.DecodeBytes(enc, &ne) 122 n := nodeHistory{ 123 dialCost: ne.DialCost, 124 redialWaitStart: int64(ne.RedialWaitStart), 125 redialWaitEnd: int64(ne.RedialWaitEnd), 126 } 127 return n, err 128 }, 129 ) 130 sfiNodeWeight = serverPoolSetup.NewField("nodeWeight", reflect.TypeOf(uint64(0))) 131 sfiConnectedStats = serverPoolSetup.NewField("connectedStats", reflect.TypeOf(lpc.ResponseTimeStats{})) 132 ) 133 134 // newServerPool creates a new server pool 135 func newServerPool(db ethdb.KeyValueStore, dbKey []byte, vt *lpc.ValueTracker, discovery enode.Iterator, mixTimeout time.Duration, query queryFunc, clock mclock.Clock, trustedURLs []string) *serverPool { 136 s := &serverPool{ 137 db: db, 138 clock: clock, 139 unixTime: func() int64 { return time.Now().Unix() }, 140 validSchemes: enode.ValidSchemes, 141 trustedURLs: trustedURLs, 142 vt: vt, 143 ns: nodestate.NewNodeStateMachine(db, []byte(string(dbKey)+"ns:"), clock, serverPoolSetup), 144 } 145 s.recalTimeout() 146 s.mixer = enode.NewFairMix(mixTimeout) 147 knownSelector := lpc.NewWrsIterator(s.ns, sfHasValue, sfDisableSelection, sfiNodeWeight) 148 alwaysConnect := lpc.NewQueueIterator(s.ns, sfAlwaysConnect, sfDisableSelection, true, nil) 149 s.mixSources = append(s.mixSources, knownSelector) 150 s.mixSources = append(s.mixSources, alwaysConnect) 151 if discovery != nil { 152 s.mixSources = append(s.mixSources, discovery) 153 } 154 155 iter := enode.Iterator(s.mixer) 156 if query != nil { 157 iter = s.addPreNegFilter(iter, query) 158 } 159 s.dialIterator = enode.Filter(iter, func(node *enode.Node) bool { 160 s.ns.SetState(node, sfDialing, sfCanDial, 0) 161 s.ns.SetState(node, sfWaitDialTimeout, nodestate.Flags{}, time.Second*10) 162 return true 163 }) 164 165 s.ns.SubscribeState(nodestate.MergeFlags(sfWaitDialTimeout, sfConnected), func(n *enode.Node, oldState, newState nodestate.Flags) { 166 if oldState.Equals(sfWaitDialTimeout) && newState.IsEmpty() { 167 // dial timeout, no connection 168 s.setRedialWait(n, dialCost, dialWaitStep) 169 s.ns.SetState(n, nodestate.Flags{}, sfDialing, 0) 170 } 171 }) 172 173 s.ns.AddLogMetrics(sfHasValue, sfDisableSelection, "selectable", nil, nil, serverSelectableGauge) 174 s.ns.AddLogMetrics(sfDialing, nodestate.Flags{}, "dialed", serverDialedMeter, nil, nil) 175 s.ns.AddLogMetrics(sfConnected, nodestate.Flags{}, "connected", nil, nil, serverConnectedGauge) 176 return s 177 } 178 179 // addPreNegFilter installs a node filter mechanism that performs a pre-negotiation query. 180 // Nodes that are filtered out and does not appear on the output iterator are put back 181 // into redialWait state. 182 func (s *serverPool) addPreNegFilter(input enode.Iterator, query queryFunc) enode.Iterator { 183 s.fillSet = lpc.NewFillSet(s.ns, input, sfQueried) 184 s.ns.SubscribeState(sfQueried, func(n *enode.Node, oldState, newState nodestate.Flags) { 185 if newState.Equals(sfQueried) { 186 fails := atomic.LoadUint32(&s.queryFails) 187 if fails == maxQueryFails { 188 log.Warn("UDP pre-negotiation query does not seem to work") 189 } 190 if fails > maxQueryFails { 191 fails = maxQueryFails 192 } 193 if rand.Intn(maxQueryFails*2) < int(fails) { 194 // skip pre-negotiation with increasing chance, max 50% 195 // this ensures that the client can operate even if UDP is not working at all 196 s.ns.SetState(n, sfCanDial, nodestate.Flags{}, time.Second*10) 197 // set canDial before resetting queried so that FillSet will not read more 198 // candidates unnecessarily 199 s.ns.SetState(n, nodestate.Flags{}, sfQueried, 0) 200 return 201 } 202 go func() { 203 q := query(n) 204 if q == -1 { 205 atomic.AddUint32(&s.queryFails, 1) 206 } else { 207 atomic.StoreUint32(&s.queryFails, 0) 208 } 209 if q == 1 { 210 s.ns.SetState(n, sfCanDial, nodestate.Flags{}, time.Second*10) 211 } else { 212 s.setRedialWait(n, queryCost, queryWaitStep) 213 } 214 s.ns.SetState(n, nodestate.Flags{}, sfQueried, 0) 215 }() 216 } 217 }) 218 return lpc.NewQueueIterator(s.ns, sfCanDial, nodestate.Flags{}, false, func(waiting bool) { 219 if waiting { 220 s.fillSet.SetTarget(preNegLimit) 221 } else { 222 s.fillSet.SetTarget(0) 223 } 224 }) 225 } 226 227 // start starts the server pool. Note that NodeStateMachine should be started first. 228 func (s *serverPool) start() { 229 s.ns.Start() 230 for _, iter := range s.mixSources { 231 // add sources to mixer at startup because the mixer instantly tries to read them 232 // which should only happen after NodeStateMachine has been started 233 s.mixer.AddSource(iter) 234 } 235 for _, url := range s.trustedURLs { 236 if node, err := enode.Parse(s.validSchemes, url); err == nil { 237 s.ns.SetState(node, sfAlwaysConnect, nodestate.Flags{}, 0) 238 } else { 239 log.Error("Invalid trusted server URL", "url", url, "error", err) 240 } 241 } 242 unixTime := s.unixTime() 243 s.ns.ForEach(sfHasValue, nodestate.Flags{}, func(node *enode.Node, state nodestate.Flags) { 244 s.calculateWeight(node) 245 if n, ok := s.ns.GetField(node, sfiNodeHistory).(nodeHistory); ok && n.redialWaitEnd > unixTime { 246 wait := n.redialWaitEnd - unixTime 247 lastWait := n.redialWaitEnd - n.redialWaitStart 248 if wait > lastWait { 249 // if the time until expiration is larger than the last suggested 250 // waiting time then the system clock was probably adjusted 251 wait = lastWait 252 } 253 s.ns.SetState(node, sfRedialWait, nodestate.Flags{}, time.Duration(wait)*time.Second) 254 } 255 }) 256 } 257 258 // stop stops the server pool 259 func (s *serverPool) stop() { 260 s.dialIterator.Close() 261 if s.fillSet != nil { 262 s.fillSet.Close() 263 } 264 s.ns.ForEach(sfConnected, nodestate.Flags{}, func(n *enode.Node, state nodestate.Flags) { 265 // recalculate weight of connected nodes in order to update hasValue flag if necessary 266 s.calculateWeight(n) 267 }) 268 s.ns.Stop() 269 } 270 271 // registerPeer implements serverPeerSubscriber 272 func (s *serverPool) registerPeer(p *serverPeer) { 273 s.ns.SetState(p.Node(), sfConnected, sfDialing.Or(sfWaitDialTimeout), 0) 274 nvt := s.vt.Register(p.ID()) 275 s.ns.SetField(p.Node(), sfiConnectedStats, nvt.RtStats()) 276 p.setValueTracker(s.vt, nvt) 277 p.updateVtParams() 278 } 279 280 // unregisterPeer implements serverPeerSubscriber 281 func (s *serverPool) unregisterPeer(p *serverPeer) { 282 s.setRedialWait(p.Node(), dialCost, dialWaitStep) 283 s.ns.SetState(p.Node(), nodestate.Flags{}, sfConnected, 0) 284 s.ns.SetField(p.Node(), sfiConnectedStats, nil) 285 s.vt.Unregister(p.ID()) 286 p.setValueTracker(nil, nil) 287 } 288 289 // recalTimeout calculates the current recommended timeout. This value is used by 290 // the client as a "soft timeout" value. It also affects the service value calculation 291 // of individual nodes. 292 func (s *serverPool) recalTimeout() { 293 // Use cached result if possible, avoid recalculating too frequently. 294 s.timeoutLock.RLock() 295 refreshed := s.timeoutRefreshed 296 s.timeoutLock.RUnlock() 297 now := s.clock.Now() 298 if refreshed != 0 && time.Duration(now-refreshed) < timeoutRefresh { 299 return 300 } 301 // Cached result is stale, recalculate a new one. 302 rts := s.vt.RtStats() 303 304 // Add a fake statistic here. It is an easy way to initialize with some 305 // conservative values when the database is new. As soon as we have a 306 // considerable amount of real stats this small value won't matter. 307 rts.Add(time.Second*2, 10, s.vt.StatsExpFactor()) 308 309 // Use either 10% failure rate timeout or twice the median response time 310 // as the recommended timeout. 311 timeout := minTimeout 312 if t := rts.Timeout(0.1); t > timeout { 313 timeout = t 314 } 315 if t := rts.Timeout(0.5) * 2; t > timeout { 316 timeout = t 317 } 318 s.timeoutLock.Lock() 319 if s.timeout != timeout { 320 s.timeout = timeout 321 s.timeWeights = lpc.TimeoutWeights(s.timeout) 322 323 suggestedTimeoutGauge.Update(int64(s.timeout / time.Millisecond)) 324 totalValueGauge.Update(int64(rts.Value(s.timeWeights, s.vt.StatsExpFactor()))) 325 } 326 s.timeoutRefreshed = now 327 s.timeoutLock.Unlock() 328 } 329 330 // getTimeout returns the recommended request timeout. 331 func (s *serverPool) getTimeout() time.Duration { 332 s.recalTimeout() 333 s.timeoutLock.RLock() 334 defer s.timeoutLock.RUnlock() 335 return s.timeout 336 } 337 338 // getTimeoutAndWeight returns the recommended request timeout as well as the 339 // response time weight which is necessary to calculate service value. 340 func (s *serverPool) getTimeoutAndWeight() (time.Duration, lpc.ResponseTimeWeights) { 341 s.recalTimeout() 342 s.timeoutLock.RLock() 343 defer s.timeoutLock.RUnlock() 344 return s.timeout, s.timeWeights 345 } 346 347 // addDialCost adds the given amount of dial cost to the node history and returns the current 348 // amount of total dial cost 349 func (s *serverPool) addDialCost(n *nodeHistory, amount int64) uint64 { 350 logOffset := s.vt.StatsExpirer().LogOffset(s.clock.Now()) 351 if amount > 0 { 352 n.dialCost.Add(amount, logOffset) 353 } 354 totalDialCost := n.dialCost.Value(logOffset) 355 if totalDialCost < dialCost { 356 totalDialCost = dialCost 357 } 358 return totalDialCost 359 } 360 361 // serviceValue returns the service value accumulated in this session and in total 362 func (s *serverPool) serviceValue(node *enode.Node) (sessionValue, totalValue float64) { 363 nvt := s.vt.GetNode(node.ID()) 364 if nvt == nil { 365 return 0, 0 366 } 367 currentStats := nvt.RtStats() 368 _, timeWeights := s.getTimeoutAndWeight() 369 expFactor := s.vt.StatsExpFactor() 370 371 totalValue = currentStats.Value(timeWeights, expFactor) 372 if connStats, ok := s.ns.GetField(node, sfiConnectedStats).(lpc.ResponseTimeStats); ok { 373 diff := currentStats 374 diff.SubStats(&connStats) 375 sessionValue = diff.Value(timeWeights, expFactor) 376 sessionValueMeter.Mark(int64(sessionValue)) 377 } 378 return 379 } 380 381 // updateWeight calculates the node weight and updates the nodeWeight field and the 382 // hasValue flag. It also saves the node state if necessary. 383 func (s *serverPool) updateWeight(node *enode.Node, totalValue float64, totalDialCost uint64) { 384 weight := uint64(totalValue * nodeWeightMul / float64(totalDialCost)) 385 if weight >= nodeWeightThreshold { 386 s.ns.SetState(node, sfHasValue, nodestate.Flags{}, 0) 387 s.ns.SetField(node, sfiNodeWeight, weight) 388 } else { 389 s.ns.SetState(node, nodestate.Flags{}, sfHasValue, 0) 390 s.ns.SetField(node, sfiNodeWeight, nil) 391 } 392 s.ns.Persist(node) // saved if node history or hasValue changed 393 } 394 395 // setRedialWait calculates and sets the redialWait timeout based on the service value 396 // and dial cost accumulated during the last session/attempt and in total. 397 // The waiting time is raised exponentially if no service value has been received in order 398 // to prevent dialing an unresponsive node frequently for a very long time just because it 399 // was useful in the past. It can still be occasionally dialed though and once it provides 400 // a significant amount of service value again its waiting time is quickly reduced or reset 401 // to the minimum. 402 // Note: node weight is also recalculated and updated by this function. 403 func (s *serverPool) setRedialWait(node *enode.Node, addDialCost int64, waitStep float64) { 404 n, _ := s.ns.GetField(node, sfiNodeHistory).(nodeHistory) 405 sessionValue, totalValue := s.serviceValue(node) 406 totalDialCost := s.addDialCost(&n, addDialCost) 407 408 // if the current dial session has yielded at least the average value/dial cost ratio 409 // then the waiting time should be reset to the minimum. If the session value 410 // is below average but still positive then timeout is limited to the ratio of 411 // average / current service value multiplied by the minimum timeout. If the attempt 412 // was unsuccessful then timeout is raised exponentially without limitation. 413 // Note: dialCost is used in the formula below even if dial was not attempted at all 414 // because the pre-negotiation query did not return a positive result. In this case 415 // the ratio has no meaning anyway and waitFactor is always raised, though in smaller 416 // steps because queries are cheaper and therefore we can allow more failed attempts. 417 unixTime := s.unixTime() 418 plannedTimeout := float64(n.redialWaitEnd - n.redialWaitStart) // last planned redialWait timeout 419 var actualWait float64 // actual waiting time elapsed 420 if unixTime > n.redialWaitEnd { 421 // the planned timeout has elapsed 422 actualWait = plannedTimeout 423 } else { 424 // if the node was redialed earlier then we do not raise the planned timeout 425 // exponentially because that could lead to the timeout rising very high in 426 // a short amount of time 427 // Note that in case of an early redial actualWait also includes the dial 428 // timeout or connection time of the last attempt but it still serves its 429 // purpose of preventing the timeout rising quicker than linearly as a function 430 // of total time elapsed without a successful connection. 431 actualWait = float64(unixTime - n.redialWaitStart) 432 } 433 // raise timeout exponentially if the last planned timeout has elapsed 434 // (use at least the last planned timeout otherwise) 435 nextTimeout := actualWait * waitStep 436 if plannedTimeout > nextTimeout { 437 nextTimeout = plannedTimeout 438 } 439 // we reduce the waiting time if the server has provided service value during the 440 // connection (but never under the minimum) 441 a := totalValue * dialCost * float64(minRedialWait) 442 b := float64(totalDialCost) * sessionValue 443 if a < b*nextTimeout { 444 nextTimeout = a / b 445 } 446 if nextTimeout < minRedialWait { 447 nextTimeout = minRedialWait 448 } 449 wait := time.Duration(float64(time.Second) * nextTimeout) 450 if wait < waitThreshold { 451 n.redialWaitStart = unixTime 452 n.redialWaitEnd = unixTime + int64(nextTimeout) 453 s.ns.SetField(node, sfiNodeHistory, n) 454 s.ns.SetState(node, sfRedialWait, nodestate.Flags{}, wait) 455 s.updateWeight(node, totalValue, totalDialCost) 456 } else { 457 // discard known node statistics if waiting time is very long because the node 458 // hasn't been responsive for a very long time 459 s.ns.SetField(node, sfiNodeHistory, nil) 460 s.ns.SetField(node, sfiNodeWeight, nil) 461 s.ns.SetState(node, nodestate.Flags{}, sfHasValue, 0) 462 } 463 } 464 465 // calculateWeight calculates and sets the node weight without altering the node history. 466 // This function should be called during startup and shutdown only, otherwise setRedialWait 467 // will keep the weights updated as the underlying statistics are adjusted. 468 func (s *serverPool) calculateWeight(node *enode.Node) { 469 n, _ := s.ns.GetField(node, sfiNodeHistory).(nodeHistory) 470 _, totalValue := s.serviceValue(node) 471 totalDialCost := s.addDialCost(&n, 0) 472 s.updateWeight(node, totalValue, totalDialCost) 473 }