github.com/zhiqiangxu/go-ethereum@v1.9.16-0.20210824055606-be91cfdebc48/trie/trie.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  // Package trie implements Merkle Patricia Tries.
    18  package trie
    19  
    20  import (
    21  	"bytes"
    22  	"fmt"
    23  	"sync"
    24  
    25  	"github.com/zhiqiangxu/go-ethereum/common"
    26  	"github.com/zhiqiangxu/go-ethereum/crypto"
    27  	"github.com/zhiqiangxu/go-ethereum/log"
    28  )
    29  
    30  var (
    31  	// emptyRoot is the known root hash of an empty trie.
    32  	emptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
    33  
    34  	// emptyState is the known hash of an empty state trie entry.
    35  	emptyState = crypto.Keccak256Hash(nil)
    36  )
    37  
    38  // LeafCallback is a callback type invoked when a trie operation reaches a leaf
    39  // node. It's used by state sync and commit to allow handling external references
    40  // between account and storage tries.
    41  type LeafCallback func(leaf []byte, parent common.Hash) error
    42  
    43  // Trie is a Merkle Patricia Trie.
    44  // The zero value is an empty trie with no database.
    45  // Use New to create a trie that sits on top of a database.
    46  //
    47  // Trie is not safe for concurrent use.
    48  type Trie struct {
    49  	db   *Database
    50  	root node
    51  	// Keep track of the number leafs which have been inserted since the last
    52  	// hashing operation. This number will not directly map to the number of
    53  	// actually unhashed nodes
    54  	unhashed int
    55  }
    56  
    57  // newFlag returns the cache flag value for a newly created node.
    58  func (t *Trie) newFlag() nodeFlag {
    59  	return nodeFlag{dirty: true}
    60  }
    61  
    62  // New creates a trie with an existing root node from db.
    63  //
    64  // If root is the zero hash or the sha3 hash of an empty string, the
    65  // trie is initially empty and does not require a database. Otherwise,
    66  // New will panic if db is nil and returns a MissingNodeError if root does
    67  // not exist in the database. Accessing the trie loads nodes from db on demand.
    68  func New(root common.Hash, db *Database) (*Trie, error) {
    69  	if db == nil {
    70  		panic("trie.New called without a database")
    71  	}
    72  	trie := &Trie{
    73  		db: db,
    74  	}
    75  	if root != (common.Hash{}) && root != emptyRoot {
    76  		rootnode, err := trie.resolveHash(root[:], nil)
    77  		if err != nil {
    78  			return nil, err
    79  		}
    80  		trie.root = rootnode
    81  	}
    82  	return trie, nil
    83  }
    84  
    85  // NodeIterator returns an iterator that returns nodes of the trie. Iteration starts at
    86  // the key after the given start key.
    87  func (t *Trie) NodeIterator(start []byte) NodeIterator {
    88  	return newNodeIterator(t, start)
    89  }
    90  
    91  // Get returns the value for key stored in the trie.
    92  // The value bytes must not be modified by the caller.
    93  func (t *Trie) Get(key []byte) []byte {
    94  	res, err := t.TryGet(key)
    95  	if err != nil {
    96  		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
    97  	}
    98  	return res
    99  }
   100  
   101  // TryGet returns the value for key stored in the trie.
   102  // The value bytes must not be modified by the caller.
   103  // If a node was not found in the database, a MissingNodeError is returned.
   104  func (t *Trie) TryGet(key []byte) ([]byte, error) {
   105  	key = keybytesToHex(key)
   106  	value, newroot, didResolve, err := t.tryGet(t.root, key, 0)
   107  	if err == nil && didResolve {
   108  		t.root = newroot
   109  	}
   110  	return value, err
   111  }
   112  
   113  func (t *Trie) tryGet(origNode node, key []byte, pos int) (value []byte, newnode node, didResolve bool, err error) {
   114  	switch n := (origNode).(type) {
   115  	case nil:
   116  		return nil, nil, false, nil
   117  	case valueNode:
   118  		return n, n, false, nil
   119  	case *shortNode:
   120  		if len(key)-pos < len(n.Key) || !bytes.Equal(n.Key, key[pos:pos+len(n.Key)]) {
   121  			// key not found in trie
   122  			return nil, n, false, nil
   123  		}
   124  		value, newnode, didResolve, err = t.tryGet(n.Val, key, pos+len(n.Key))
   125  		if err == nil && didResolve {
   126  			n = n.copy()
   127  			n.Val = newnode
   128  		}
   129  		return value, n, didResolve, err
   130  	case *fullNode:
   131  		value, newnode, didResolve, err = t.tryGet(n.Children[key[pos]], key, pos+1)
   132  		if err == nil && didResolve {
   133  			n = n.copy()
   134  			n.Children[key[pos]] = newnode
   135  		}
   136  		return value, n, didResolve, err
   137  	case hashNode:
   138  		child, err := t.resolveHash(n, key[:pos])
   139  		if err != nil {
   140  			return nil, n, true, err
   141  		}
   142  		value, newnode, _, err := t.tryGet(child, key, pos)
   143  		return value, newnode, true, err
   144  	default:
   145  		panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
   146  	}
   147  }
   148  
   149  // Update associates key with value in the trie. Subsequent calls to
   150  // Get will return value. If value has length zero, any existing value
   151  // is deleted from the trie and calls to Get will return nil.
   152  //
   153  // The value bytes must not be modified by the caller while they are
   154  // stored in the trie.
   155  func (t *Trie) Update(key, value []byte) {
   156  	if err := t.TryUpdate(key, value); err != nil {
   157  		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
   158  	}
   159  }
   160  
   161  // TryUpdate associates key with value in the trie. Subsequent calls to
   162  // Get will return value. If value has length zero, any existing value
   163  // is deleted from the trie and calls to Get will return nil.
   164  //
   165  // The value bytes must not be modified by the caller while they are
   166  // stored in the trie.
   167  //
   168  // If a node was not found in the database, a MissingNodeError is returned.
   169  func (t *Trie) TryUpdate(key, value []byte) error {
   170  	t.unhashed++
   171  	k := keybytesToHex(key)
   172  	if len(value) != 0 {
   173  		_, n, err := t.insert(t.root, nil, k, valueNode(value))
   174  		if err != nil {
   175  			return err
   176  		}
   177  		t.root = n
   178  	} else {
   179  		_, n, err := t.delete(t.root, nil, k)
   180  		if err != nil {
   181  			return err
   182  		}
   183  		t.root = n
   184  	}
   185  	return nil
   186  }
   187  
   188  func (t *Trie) insert(n node, prefix, key []byte, value node) (bool, node, error) {
   189  	if len(key) == 0 {
   190  		if v, ok := n.(valueNode); ok {
   191  			return !bytes.Equal(v, value.(valueNode)), value, nil
   192  		}
   193  		return true, value, nil
   194  	}
   195  	switch n := n.(type) {
   196  	case *shortNode:
   197  		matchlen := prefixLen(key, n.Key)
   198  		// If the whole key matches, keep this short node as is
   199  		// and only update the value.
   200  		if matchlen == len(n.Key) {
   201  			dirty, nn, err := t.insert(n.Val, append(prefix, key[:matchlen]...), key[matchlen:], value)
   202  			if !dirty || err != nil {
   203  				return false, n, err
   204  			}
   205  			return true, &shortNode{n.Key, nn, t.newFlag()}, nil
   206  		}
   207  		// Otherwise branch out at the index where they differ.
   208  		branch := &fullNode{flags: t.newFlag()}
   209  		var err error
   210  		_, branch.Children[n.Key[matchlen]], err = t.insert(nil, append(prefix, n.Key[:matchlen+1]...), n.Key[matchlen+1:], n.Val)
   211  		if err != nil {
   212  			return false, nil, err
   213  		}
   214  		_, branch.Children[key[matchlen]], err = t.insert(nil, append(prefix, key[:matchlen+1]...), key[matchlen+1:], value)
   215  		if err != nil {
   216  			return false, nil, err
   217  		}
   218  		// Replace this shortNode with the branch if it occurs at index 0.
   219  		if matchlen == 0 {
   220  			return true, branch, nil
   221  		}
   222  		// Otherwise, replace it with a short node leading up to the branch.
   223  		return true, &shortNode{key[:matchlen], branch, t.newFlag()}, nil
   224  
   225  	case *fullNode:
   226  		dirty, nn, err := t.insert(n.Children[key[0]], append(prefix, key[0]), key[1:], value)
   227  		if !dirty || err != nil {
   228  			return false, n, err
   229  		}
   230  		n = n.copy()
   231  		n.flags = t.newFlag()
   232  		n.Children[key[0]] = nn
   233  		return true, n, nil
   234  
   235  	case nil:
   236  		return true, &shortNode{key, value, t.newFlag()}, nil
   237  
   238  	case hashNode:
   239  		// We've hit a part of the trie that isn't loaded yet. Load
   240  		// the node and insert into it. This leaves all child nodes on
   241  		// the path to the value in the trie.
   242  		rn, err := t.resolveHash(n, prefix)
   243  		if err != nil {
   244  			return false, nil, err
   245  		}
   246  		dirty, nn, err := t.insert(rn, prefix, key, value)
   247  		if !dirty || err != nil {
   248  			return false, rn, err
   249  		}
   250  		return true, nn, nil
   251  
   252  	default:
   253  		panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   254  	}
   255  }
   256  
   257  // Delete removes any existing value for key from the trie.
   258  func (t *Trie) Delete(key []byte) {
   259  	if err := t.TryDelete(key); err != nil {
   260  		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
   261  	}
   262  }
   263  
   264  // TryDelete removes any existing value for key from the trie.
   265  // If a node was not found in the database, a MissingNodeError is returned.
   266  func (t *Trie) TryDelete(key []byte) error {
   267  	t.unhashed++
   268  	k := keybytesToHex(key)
   269  	_, n, err := t.delete(t.root, nil, k)
   270  	if err != nil {
   271  		return err
   272  	}
   273  	t.root = n
   274  	return nil
   275  }
   276  
   277  // delete returns the new root of the trie with key deleted.
   278  // It reduces the trie to minimal form by simplifying
   279  // nodes on the way up after deleting recursively.
   280  func (t *Trie) delete(n node, prefix, key []byte) (bool, node, error) {
   281  	switch n := n.(type) {
   282  	case *shortNode:
   283  		matchlen := prefixLen(key, n.Key)
   284  		if matchlen < len(n.Key) {
   285  			return false, n, nil // don't replace n on mismatch
   286  		}
   287  		if matchlen == len(key) {
   288  			return true, nil, nil // remove n entirely for whole matches
   289  		}
   290  		// The key is longer than n.Key. Remove the remaining suffix
   291  		// from the subtrie. Child can never be nil here since the
   292  		// subtrie must contain at least two other values with keys
   293  		// longer than n.Key.
   294  		dirty, child, err := t.delete(n.Val, append(prefix, key[:len(n.Key)]...), key[len(n.Key):])
   295  		if !dirty || err != nil {
   296  			return false, n, err
   297  		}
   298  		switch child := child.(type) {
   299  		case *shortNode:
   300  			// Deleting from the subtrie reduced it to another
   301  			// short node. Merge the nodes to avoid creating a
   302  			// shortNode{..., shortNode{...}}. Use concat (which
   303  			// always creates a new slice) instead of append to
   304  			// avoid modifying n.Key since it might be shared with
   305  			// other nodes.
   306  			return true, &shortNode{concat(n.Key, child.Key...), child.Val, t.newFlag()}, nil
   307  		default:
   308  			return true, &shortNode{n.Key, child, t.newFlag()}, nil
   309  		}
   310  
   311  	case *fullNode:
   312  		dirty, nn, err := t.delete(n.Children[key[0]], append(prefix, key[0]), key[1:])
   313  		if !dirty || err != nil {
   314  			return false, n, err
   315  		}
   316  		n = n.copy()
   317  		n.flags = t.newFlag()
   318  		n.Children[key[0]] = nn
   319  
   320  		// Check how many non-nil entries are left after deleting and
   321  		// reduce the full node to a short node if only one entry is
   322  		// left. Since n must've contained at least two children
   323  		// before deletion (otherwise it would not be a full node) n
   324  		// can never be reduced to nil.
   325  		//
   326  		// When the loop is done, pos contains the index of the single
   327  		// value that is left in n or -2 if n contains at least two
   328  		// values.
   329  		pos := -1
   330  		for i, cld := range &n.Children {
   331  			if cld != nil {
   332  				if pos == -1 {
   333  					pos = i
   334  				} else {
   335  					pos = -2
   336  					break
   337  				}
   338  			}
   339  		}
   340  		if pos >= 0 {
   341  			if pos != 16 {
   342  				// If the remaining entry is a short node, it replaces
   343  				// n and its key gets the missing nibble tacked to the
   344  				// front. This avoids creating an invalid
   345  				// shortNode{..., shortNode{...}}.  Since the entry
   346  				// might not be loaded yet, resolve it just for this
   347  				// check.
   348  				cnode, err := t.resolve(n.Children[pos], prefix)
   349  				if err != nil {
   350  					return false, nil, err
   351  				}
   352  				if cnode, ok := cnode.(*shortNode); ok {
   353  					k := append([]byte{byte(pos)}, cnode.Key...)
   354  					return true, &shortNode{k, cnode.Val, t.newFlag()}, nil
   355  				}
   356  			}
   357  			// Otherwise, n is replaced by a one-nibble short node
   358  			// containing the child.
   359  			return true, &shortNode{[]byte{byte(pos)}, n.Children[pos], t.newFlag()}, nil
   360  		}
   361  		// n still contains at least two values and cannot be reduced.
   362  		return true, n, nil
   363  
   364  	case valueNode:
   365  		return true, nil, nil
   366  
   367  	case nil:
   368  		return false, nil, nil
   369  
   370  	case hashNode:
   371  		// We've hit a part of the trie that isn't loaded yet. Load
   372  		// the node and delete from it. This leaves all child nodes on
   373  		// the path to the value in the trie.
   374  		rn, err := t.resolveHash(n, prefix)
   375  		if err != nil {
   376  			return false, nil, err
   377  		}
   378  		dirty, nn, err := t.delete(rn, prefix, key)
   379  		if !dirty || err != nil {
   380  			return false, rn, err
   381  		}
   382  		return true, nn, nil
   383  
   384  	default:
   385  		panic(fmt.Sprintf("%T: invalid node: %v (%v)", n, n, key))
   386  	}
   387  }
   388  
   389  func concat(s1 []byte, s2 ...byte) []byte {
   390  	r := make([]byte, len(s1)+len(s2))
   391  	copy(r, s1)
   392  	copy(r[len(s1):], s2)
   393  	return r
   394  }
   395  
   396  func (t *Trie) resolve(n node, prefix []byte) (node, error) {
   397  	if n, ok := n.(hashNode); ok {
   398  		return t.resolveHash(n, prefix)
   399  	}
   400  	return n, nil
   401  }
   402  
   403  func (t *Trie) resolveHash(n hashNode, prefix []byte) (node, error) {
   404  	hash := common.BytesToHash(n)
   405  	if node := t.db.node(hash); node != nil {
   406  		return node, nil
   407  	}
   408  	return nil, &MissingNodeError{NodeHash: hash, Path: prefix}
   409  }
   410  
   411  // Hash returns the root hash of the trie. It does not write to the
   412  // database and can be used even if the trie doesn't have one.
   413  func (t *Trie) Hash() common.Hash {
   414  	hash, cached, _ := t.hashRoot(nil)
   415  	t.root = cached
   416  	return common.BytesToHash(hash.(hashNode))
   417  }
   418  
   419  // Commit writes all nodes to the trie's memory database, tracking the internal
   420  // and external (for account tries) references.
   421  func (t *Trie) Commit(onleaf LeafCallback) (root common.Hash, err error) {
   422  	if t.db == nil {
   423  		panic("commit called on trie with nil database")
   424  	}
   425  	if t.root == nil {
   426  		return emptyRoot, nil
   427  	}
   428  	rootHash := t.Hash()
   429  	h := newCommitter()
   430  	defer returnCommitterToPool(h)
   431  	// Do a quick check if we really need to commit, before we spin
   432  	// up goroutines. This can happen e.g. if we load a trie for reading storage
   433  	// values, but don't write to it.
   434  	if !h.commitNeeded(t.root) {
   435  		return rootHash, nil
   436  	}
   437  	var wg sync.WaitGroup
   438  	if onleaf != nil {
   439  		h.onleaf = onleaf
   440  		h.leafCh = make(chan *leaf, leafChanSize)
   441  		wg.Add(1)
   442  		go func() {
   443  			defer wg.Done()
   444  			h.commitLoop(t.db)
   445  		}()
   446  	}
   447  	var newRoot hashNode
   448  	newRoot, err = h.Commit(t.root, t.db)
   449  	if onleaf != nil {
   450  		// The leafch is created in newCommitter if there was an onleaf callback
   451  		// provided. The commitLoop only _reads_ from it, and the commit
   452  		// operation was the sole writer. Therefore, it's safe to close this
   453  		// channel here.
   454  		close(h.leafCh)
   455  		wg.Wait()
   456  	}
   457  	if err != nil {
   458  		return common.Hash{}, err
   459  	}
   460  	t.root = newRoot
   461  	return rootHash, nil
   462  }
   463  
   464  // hashRoot calculates the root hash of the given trie
   465  func (t *Trie) hashRoot(db *Database) (node, node, error) {
   466  	if t.root == nil {
   467  		return hashNode(emptyRoot.Bytes()), nil, nil
   468  	}
   469  	// If the number of changes is below 100, we let one thread handle it
   470  	h := newHasher(t.unhashed >= 100)
   471  	defer returnHasherToPool(h)
   472  	hashed, cached := h.hash(t.root, true)
   473  	t.unhashed = 0
   474  	return hashed, cached, nil
   475  }