github.com/zuoyebang/bitalostable@v1.0.1-0.20240229032404-e3b99a834294/internal/keyspan/bounded.go (about) 1 // Copyright 2022 The LevelDB-Go and Pebble Authors. All rights reserved. Use 2 // of this source code is governed by a BSD-style license that can be found in 3 // the LICENSE file. 4 5 package keyspan 6 7 import "github.com/zuoyebang/bitalostable/internal/base" 8 9 // TODO(jackson): Consider removing this type and adding bounds enforcement 10 // directly to the MergingIter. This type is probably too lightweight to warrant 11 // its own type, but for now we implement it separately for expediency. 12 13 // boundedIterPos records the position of the BoundedIter relative to the 14 // underlying iterator's position. It's used to avoid Next/Prev-ing the iterator 15 // if there can't possibly be another span within bounds, because the current 16 // span overlaps the bound. 17 // 18 // Imagine bounds [a,c) and an iterator that seeks to a span [b,d). The span 19 // [b,d) overlaps some portion of the iterator bounds, so the iterator must 20 // return it. If the iterator is subsequently Nexted, Next can tell that the 21 // iterator is exhausted without advancing the underlying iterator because the 22 // current span's end bound of d is ≥ the upper bound of c. In this case, the 23 // bounded iterator returns nil and records i.pos as posAtUpperLimit to remember 24 // that the underlying iterator position does not match the current BoundedIter 25 // position. 26 type boundedIterPos int8 27 28 const ( 29 posAtLowerLimit boundedIterPos = -1 30 posAtIterSpan boundedIterPos = 0 31 posAtUpperLimit boundedIterPos = +1 32 ) 33 34 // BoundedIter implements FragmentIterator and enforces bounds. 35 // 36 // Like the point InternalIterator interface, the bounded iterator's forward 37 // positioning routines (SeekGE, First, and Next) only check the upper bound. 38 // The reverse positioning routines (SeekLT, Last, and Prev) only check the 39 // lower bound. It is up to the caller to ensure that the forward positioning 40 // routines respect the lower bound and the reverse positioning routines respect 41 // the upper bound (i.e. calling SeekGE instead of First if there is a lower 42 // bound, and SeekLT instead of Last if there is an upper bound). 43 // 44 // When the hasPrefix parameter indicates that the iterator is in prefix 45 // iteration mode, BoundedIter elides any spans that do not overlap with the 46 // prefix's keyspace. In prefix iteration mode, reverse iteration is disallowed, 47 // except for an initial SeekLT with a seek key greater than or equal to the 48 // prefix. In prefix iteration mode, the first seek must position the iterator 49 // at or immediately before the first fragment covering a key greater than or 50 // equal to the prefix. 51 type BoundedIter struct { 52 iter FragmentIterator 53 iterSpan *Span 54 cmp base.Compare 55 split base.Split 56 lower []byte 57 upper []byte 58 hasPrefix *bool 59 prefix *[]byte 60 pos boundedIterPos 61 } 62 63 // Init initializes the bounded iterator. 64 // 65 // In addition to the iterator bounds, Init takes pointers to a boolean 66 // indicating whether the iterator is in prefix iteration mode and the prefix 67 // key if it is. This is used to exclude spans that are outside the iteration 68 // prefix. 69 func (i *BoundedIter) Init( 70 cmp base.Compare, 71 split base.Split, 72 iter FragmentIterator, 73 lower, upper []byte, 74 hasPrefix *bool, 75 prefix *[]byte, 76 ) { 77 *i = BoundedIter{ 78 iter: iter, 79 cmp: cmp, 80 split: split, 81 lower: lower, 82 upper: upper, 83 hasPrefix: hasPrefix, 84 prefix: prefix, 85 } 86 } 87 88 var _ FragmentIterator = (*BoundedIter)(nil) 89 90 // Seek calls. 91 // 92 // Seek calls check iterator bounds in the direction of the seek. Additionally, 93 // if the iterator is in prefix iteration mode, seek calls check both start and 94 // end bounds against the prefix's bounds. We check both bounds for defense in 95 // depth. This optimization has been a source of various bugs due to various 96 // other prefix iteration optimizations that can result in seek keys that don't 97 // respect the prefix bounds. 98 99 // SeekGE implements FragmentIterator. 100 func (i *BoundedIter) SeekGE(key []byte) *Span { 101 s := i.iter.SeekGE(key) 102 s = i.checkPrefixSpanStart(s) 103 s = i.checkPrefixSpanEnd(s) 104 return i.checkForwardBound(s) 105 } 106 107 // SeekLT implements FragmentIterator. 108 func (i *BoundedIter) SeekLT(key []byte) *Span { 109 s := i.iter.SeekLT(key) 110 s = i.checkPrefixSpanStart(s) 111 s = i.checkPrefixSpanEnd(s) 112 return i.checkBackwardBound(s) 113 } 114 115 // First implements FragmentIterator. 116 func (i *BoundedIter) First() *Span { 117 s := i.iter.First() 118 s = i.checkPrefixSpanStart(s) 119 return i.checkForwardBound(s) 120 } 121 122 // Last implements FragmentIterator. 123 func (i *BoundedIter) Last() *Span { 124 s := i.iter.Last() 125 s = i.checkPrefixSpanEnd(s) 126 return i.checkBackwardBound(s) 127 } 128 129 // Next implements FragmentIterator. 130 func (i *BoundedIter) Next() *Span { 131 switch i.pos { 132 case posAtLowerLimit: 133 // The BoundedIter had previously returned nil, because it knew from 134 // i.iterSpan's bounds that there was no previous span. To Next, we only 135 // need to return the current iter span and reset i.pos to reflect that 136 // we're no longer positioned at the limit. 137 i.pos = posAtIterSpan 138 return i.iterSpan 139 case posAtIterSpan: 140 // If the span at the underlying iterator position extends to or beyond the 141 // upper bound, we can avoid advancing because the next span is necessarily 142 // out of bounds. 143 if i.iterSpan != nil && i.upper != nil && i.cmp(i.iterSpan.End, i.upper) >= 0 { 144 i.pos = posAtUpperLimit 145 return nil 146 } 147 // Similarly, if the span extends to the next prefix and we're in prefix 148 // iteration mode, we can avoid advancing. 149 if i.iterSpan != nil && *i.hasPrefix { 150 ei := i.split(i.iterSpan.End) 151 if i.cmp(i.iterSpan.End[:ei], *i.prefix) > 0 { 152 i.pos = posAtUpperLimit 153 return nil 154 } 155 } 156 return i.checkForwardBound(i.checkPrefixSpanStart(i.iter.Next())) 157 case posAtUpperLimit: 158 // Already exhausted. 159 return nil 160 default: 161 panic("unreachable") 162 } 163 } 164 165 // Prev implements FragmentIterator. 166 func (i *BoundedIter) Prev() *Span { 167 switch i.pos { 168 case posAtLowerLimit: 169 // Already exhausted. 170 return nil 171 case posAtIterSpan: 172 // If the span at the underlying iterator position extends to or beyond 173 // the lower bound, we can avoid advancing because the previous span is 174 // necessarily out of bounds. 175 if i.iterSpan != nil && i.lower != nil && i.cmp(i.iterSpan.Start, i.lower) <= 0 { 176 i.pos = posAtLowerLimit 177 return nil 178 } 179 // Similarly, if the span extends to or beyond the current prefix and 180 // we're in prefix iteration mode, we can avoid advancing. 181 if i.iterSpan != nil && *i.hasPrefix { 182 si := i.split(i.iterSpan.Start) 183 if i.cmp(i.iterSpan.Start[:si], *i.prefix) < 0 { 184 i.pos = posAtLowerLimit 185 return nil 186 } 187 } 188 return i.checkBackwardBound(i.checkPrefixSpanEnd(i.iter.Prev())) 189 case posAtUpperLimit: 190 // The BoundedIter had previously returned nil, because it knew from 191 // i.iterSpan's bounds that there was no next span. To Prev, we only 192 // need to return the current iter span and reset i.pos to reflect that 193 // we're no longer positioned at the limit. 194 i.pos = posAtIterSpan 195 return i.iterSpan 196 default: 197 panic("unreachable") 198 } 199 } 200 201 // Error implements FragmentIterator. 202 func (i *BoundedIter) Error() error { 203 return i.iter.Error() 204 } 205 206 // Close implements FragmentIterator. 207 func (i *BoundedIter) Close() error { 208 return i.iter.Close() 209 } 210 211 // SetBounds modifies the FragmentIterator's bounds. 212 func (i *BoundedIter) SetBounds(lower, upper []byte) { 213 i.lower, i.upper = lower, upper 214 } 215 216 func (i *BoundedIter) checkPrefixSpanStart(span *Span) *Span { 217 // Compare to the prefix's bounds, if in prefix iteration mode. 218 if span != nil && *i.hasPrefix { 219 si := i.split(span.Start) 220 if i.cmp(span.Start[:si], *i.prefix) > 0 { 221 // This span starts at a prefix that sorts after our current prefix. 222 span = nil 223 } 224 } 225 return span 226 } 227 228 // checkForwardBound enforces the upper bound, returning nil if the provided 229 // span is wholly outside the upper bound. It also updates i.pos and i.iterSpan 230 // to reflect the new iterator position. 231 func (i *BoundedIter) checkForwardBound(span *Span) *Span { 232 // Compare to the upper bound. 233 if span != nil && i.upper != nil && i.cmp(span.Start, i.upper) >= 0 { 234 span = nil 235 } 236 i.iterSpan = span 237 if i.pos != posAtIterSpan { 238 i.pos = posAtIterSpan 239 } 240 return span 241 } 242 243 func (i *BoundedIter) checkPrefixSpanEnd(span *Span) *Span { 244 // Compare to the prefix's bounds, if in prefix iteration mode. 245 if span != nil && *i.hasPrefix && i.cmp(span.End, *i.prefix) <= 0 { 246 // This span ends before the current prefix. 247 span = nil 248 } 249 return span 250 } 251 252 // checkBackward enforces the lower bound, returning nil if the provided span is 253 // wholly outside the lower bound. It also updates i.pos and i.iterSpan to 254 // reflect the new iterator position. 255 func (i *BoundedIter) checkBackwardBound(span *Span) *Span { 256 // Compare to the lower bound. 257 if span != nil && i.lower != nil && i.cmp(span.End, i.lower) <= 0 { 258 span = nil 259 } 260 i.iterSpan = span 261 if i.pos != posAtIterSpan { 262 i.pos = posAtIterSpan 263 } 264 return span 265 }