github.com/zxy12/go_duplicate_112_new@v0.0.0-20200807091221-747231827200/src/cmd/compile/internal/gc/ssa.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gc 6 7 import ( 8 "bufio" 9 "bytes" 10 "encoding/binary" 11 "fmt" 12 "html" 13 "os" 14 "sort" 15 16 "cmd/compile/internal/ssa" 17 "cmd/compile/internal/types" 18 "cmd/internal/obj" 19 "cmd/internal/objabi" 20 "cmd/internal/src" 21 "cmd/internal/sys" 22 ) 23 24 var ssaConfig *ssa.Config 25 var ssaCaches []ssa.Cache 26 27 var ssaDump string // early copy of $GOSSAFUNC; the func name to dump output for 28 var ssaDumpStdout bool // whether to dump to stdout 29 var ssaDumpCFG string // generate CFGs for these phases 30 const ssaDumpFile = "ssa.html" 31 32 // ssaDumpInlined holds all inlined functions when ssaDump contains a function name. 33 var ssaDumpInlined []*Node 34 35 func initssaconfig() { 36 types_ := ssa.NewTypes() 37 38 if thearch.SoftFloat { 39 softfloatInit() 40 } 41 42 // Generate a few pointer types that are uncommon in the frontend but common in the backend. 43 // Caching is disabled in the backend, so generating these here avoids allocations. 44 _ = types.NewPtr(types.Types[TINTER]) // *interface{} 45 _ = types.NewPtr(types.NewPtr(types.Types[TSTRING])) // **string 46 _ = types.NewPtr(types.NewPtr(types.Idealstring)) // **string 47 _ = types.NewPtr(types.NewSlice(types.Types[TINTER])) // *[]interface{} 48 _ = types.NewPtr(types.NewPtr(types.Bytetype)) // **byte 49 _ = types.NewPtr(types.NewSlice(types.Bytetype)) // *[]byte 50 _ = types.NewPtr(types.NewSlice(types.Types[TSTRING])) // *[]string 51 _ = types.NewPtr(types.NewSlice(types.Idealstring)) // *[]string 52 _ = types.NewPtr(types.NewPtr(types.NewPtr(types.Types[TUINT8]))) // ***uint8 53 _ = types.NewPtr(types.Types[TINT16]) // *int16 54 _ = types.NewPtr(types.Types[TINT64]) // *int64 55 _ = types.NewPtr(types.Errortype) // *error 56 types.NewPtrCacheEnabled = false 57 ssaConfig = ssa.NewConfig(thearch.LinkArch.Name, *types_, Ctxt, Debug['N'] == 0) 58 if thearch.LinkArch.Name == "386" { 59 ssaConfig.Set387(thearch.Use387) 60 } 61 ssaConfig.SoftFloat = thearch.SoftFloat 62 ssaConfig.Race = flag_race 63 ssaCaches = make([]ssa.Cache, nBackendWorkers) 64 65 // Set up some runtime functions we'll need to call. 66 assertE2I = sysfunc("assertE2I") 67 assertE2I2 = sysfunc("assertE2I2") 68 assertI2I = sysfunc("assertI2I") 69 assertI2I2 = sysfunc("assertI2I2") 70 deferproc = sysfunc("deferproc") 71 Deferreturn = sysfunc("deferreturn") 72 Duffcopy = sysvar("duffcopy") // asm func with special ABI 73 Duffzero = sysvar("duffzero") // asm func with special ABI 74 gcWriteBarrier = sysvar("gcWriteBarrier") // asm func with special ABI 75 goschedguarded = sysfunc("goschedguarded") 76 growslice = sysfunc("growslice") 77 msanread = sysfunc("msanread") 78 msanwrite = sysfunc("msanwrite") 79 newproc = sysfunc("newproc") 80 panicdivide = sysfunc("panicdivide") 81 panicdottypeE = sysfunc("panicdottypeE") 82 panicdottypeI = sysfunc("panicdottypeI") 83 panicindex = sysfunc("panicindex") 84 panicnildottype = sysfunc("panicnildottype") 85 panicoverflow = sysfunc("panicoverflow") 86 panicslice = sysfunc("panicslice") 87 raceread = sysfunc("raceread") 88 racereadrange = sysfunc("racereadrange") 89 racewrite = sysfunc("racewrite") 90 racewriterange = sysfunc("racewriterange") 91 x86HasPOPCNT = sysvar("x86HasPOPCNT") // bool 92 x86HasSSE41 = sysvar("x86HasSSE41") // bool 93 arm64HasATOMICS = sysvar("arm64HasATOMICS") // bool 94 typedmemclr = sysfunc("typedmemclr") 95 typedmemmove = sysfunc("typedmemmove") 96 Udiv = sysvar("udiv") // asm func with special ABI 97 writeBarrier = sysvar("writeBarrier") // struct { bool; ... } 98 99 // GO386=387 runtime definitions 100 ControlWord64trunc = sysvar("controlWord64trunc") // uint16 101 ControlWord32 = sysvar("controlWord32") // uint16 102 103 // Wasm (all asm funcs with special ABIs) 104 WasmMove = sysvar("wasmMove") 105 WasmZero = sysvar("wasmZero") 106 WasmDiv = sysvar("wasmDiv") 107 WasmTruncS = sysvar("wasmTruncS") 108 WasmTruncU = sysvar("wasmTruncU") 109 SigPanic = sysfunc("sigpanic") 110 } 111 112 // buildssa builds an SSA function for fn. 113 // worker indicates which of the backend workers is doing the processing. 114 func buildssa(fn *Node, worker int) *ssa.Func { 115 name := fn.funcname() 116 printssa := name == ssaDump 117 var astBuf *bytes.Buffer 118 if printssa { 119 astBuf = &bytes.Buffer{} 120 fdumplist(astBuf, "buildssa-enter", fn.Func.Enter) 121 fdumplist(astBuf, "buildssa-body", fn.Nbody) 122 fdumplist(astBuf, "buildssa-exit", fn.Func.Exit) 123 if ssaDumpStdout { 124 fmt.Println("generating SSA for", name) 125 fmt.Print(astBuf.String()) 126 } 127 } 128 129 var s state 130 s.pushLine(fn.Pos) 131 defer s.popLine() 132 133 s.hasdefer = fn.Func.HasDefer() 134 if fn.Func.Pragma&CgoUnsafeArgs != 0 { 135 s.cgoUnsafeArgs = true 136 } 137 138 fe := ssafn{ 139 curfn: fn, 140 log: printssa && ssaDumpStdout, 141 } 142 s.curfn = fn 143 144 s.f = ssa.NewFunc(&fe) 145 s.config = ssaConfig 146 s.f.Type = fn.Type 147 s.f.Config = ssaConfig 148 s.f.Cache = &ssaCaches[worker] 149 s.f.Cache.Reset() 150 s.f.DebugTest = s.f.DebugHashMatch("GOSSAHASH", name) 151 s.f.Name = name 152 s.f.PrintOrHtmlSSA = printssa 153 if fn.Func.Pragma&Nosplit != 0 { 154 s.f.NoSplit = true 155 } 156 s.panics = map[funcLine]*ssa.Block{} 157 s.softFloat = s.config.SoftFloat 158 159 if printssa { 160 s.f.HTMLWriter = ssa.NewHTMLWriter(ssaDumpFile, s.f.Frontend(), name, ssaDumpCFG) 161 // TODO: generate and print a mapping from nodes to values and blocks 162 dumpSourcesColumn(s.f.HTMLWriter, fn) 163 s.f.HTMLWriter.WriteAST("AST", astBuf) 164 } 165 166 // Allocate starting block 167 s.f.Entry = s.f.NewBlock(ssa.BlockPlain) 168 169 // Allocate starting values 170 s.labels = map[string]*ssaLabel{} 171 s.labeledNodes = map[*Node]*ssaLabel{} 172 s.fwdVars = map[*Node]*ssa.Value{} 173 s.startmem = s.entryNewValue0(ssa.OpInitMem, types.TypeMem) 174 s.sp = s.entryNewValue0(ssa.OpSP, types.Types[TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead 175 s.sb = s.entryNewValue0(ssa.OpSB, types.Types[TUINTPTR]) 176 177 s.startBlock(s.f.Entry) 178 s.vars[&memVar] = s.startmem 179 180 // Generate addresses of local declarations 181 s.decladdrs = map[*Node]*ssa.Value{} 182 for _, n := range fn.Func.Dcl { 183 switch n.Class() { 184 case PPARAM, PPARAMOUT: 185 s.decladdrs[n] = s.entryNewValue2A(ssa.OpLocalAddr, types.NewPtr(n.Type), n, s.sp, s.startmem) 186 if n.Class() == PPARAMOUT && s.canSSA(n) { 187 // Save ssa-able PPARAMOUT variables so we can 188 // store them back to the stack at the end of 189 // the function. 190 s.returns = append(s.returns, n) 191 } 192 case PAUTO: 193 // processed at each use, to prevent Addr coming 194 // before the decl. 195 case PAUTOHEAP: 196 // moved to heap - already handled by frontend 197 case PFUNC: 198 // local function - already handled by frontend 199 default: 200 s.Fatalf("local variable with class %v unimplemented", n.Class()) 201 } 202 } 203 204 // Populate SSAable arguments. 205 for _, n := range fn.Func.Dcl { 206 if n.Class() == PPARAM && s.canSSA(n) { 207 v := s.newValue0A(ssa.OpArg, n.Type, n) 208 s.vars[n] = v 209 s.addNamedValue(n, v) // This helps with debugging information, not needed for compilation itself. 210 } 211 } 212 213 // Convert the AST-based IR to the SSA-based IR 214 s.stmtList(fn.Func.Enter) 215 s.stmtList(fn.Nbody) 216 217 // fallthrough to exit 218 if s.curBlock != nil { 219 s.pushLine(fn.Func.Endlineno) 220 s.exit() 221 s.popLine() 222 } 223 224 for _, b := range s.f.Blocks { 225 if b.Pos != src.NoXPos { 226 s.updateUnsetPredPos(b) 227 } 228 } 229 230 s.insertPhis() 231 232 // Main call to ssa package to compile function 233 ssa.Compile(s.f) 234 return s.f 235 } 236 237 func dumpSourcesColumn(writer *ssa.HTMLWriter, fn *Node) { 238 // Read sources of target function fn. 239 fname := Ctxt.PosTable.Pos(fn.Pos).Filename() 240 targetFn, err := readFuncLines(fname, fn.Pos.Line(), fn.Func.Endlineno.Line()) 241 if err != nil { 242 writer.Logger.Logf("cannot read sources for function %v: %v", fn, err) 243 } 244 245 // Read sources of inlined functions. 246 var inlFns []*ssa.FuncLines 247 for _, fi := range ssaDumpInlined { 248 var elno src.XPos 249 if fi.Name.Defn == nil { 250 // Endlineno is filled from exported data. 251 elno = fi.Func.Endlineno 252 } else { 253 elno = fi.Name.Defn.Func.Endlineno 254 } 255 fname := Ctxt.PosTable.Pos(fi.Pos).Filename() 256 fnLines, err := readFuncLines(fname, fi.Pos.Line(), elno.Line()) 257 if err != nil { 258 writer.Logger.Logf("cannot read sources for function %v: %v", fi, err) 259 continue 260 } 261 inlFns = append(inlFns, fnLines) 262 } 263 264 sort.Sort(ssa.ByTopo(inlFns)) 265 if targetFn != nil { 266 inlFns = append([]*ssa.FuncLines{targetFn}, inlFns...) 267 } 268 269 writer.WriteSources("sources", inlFns) 270 } 271 272 func readFuncLines(file string, start, end uint) (*ssa.FuncLines, error) { 273 f, err := os.Open(os.ExpandEnv(file)) 274 if err != nil { 275 return nil, err 276 } 277 defer f.Close() 278 var lines []string 279 ln := uint(1) 280 scanner := bufio.NewScanner(f) 281 for scanner.Scan() && ln <= end { 282 if ln >= start { 283 lines = append(lines, scanner.Text()) 284 } 285 ln++ 286 } 287 return &ssa.FuncLines{Filename: file, StartLineno: start, Lines: lines}, nil 288 } 289 290 // updateUnsetPredPos propagates the earliest-value position information for b 291 // towards all of b's predecessors that need a position, and recurs on that 292 // predecessor if its position is updated. B should have a non-empty position. 293 func (s *state) updateUnsetPredPos(b *ssa.Block) { 294 if b.Pos == src.NoXPos { 295 s.Fatalf("Block %s should have a position", b) 296 } 297 bestPos := src.NoXPos 298 for _, e := range b.Preds { 299 p := e.Block() 300 if !p.LackingPos() { 301 continue 302 } 303 if bestPos == src.NoXPos { 304 bestPos = b.Pos 305 for _, v := range b.Values { 306 if v.LackingPos() { 307 continue 308 } 309 if v.Pos != src.NoXPos { 310 // Assume values are still in roughly textual order; 311 // TODO: could also seek minimum position? 312 bestPos = v.Pos 313 break 314 } 315 } 316 } 317 p.Pos = bestPos 318 s.updateUnsetPredPos(p) // We do not expect long chains of these, thus recursion is okay. 319 } 320 } 321 322 type state struct { 323 // configuration (arch) information 324 config *ssa.Config 325 326 // function we're building 327 f *ssa.Func 328 329 // Node for function 330 curfn *Node 331 332 // labels and labeled control flow nodes (OFOR, OFORUNTIL, OSWITCH, OSELECT) in f 333 labels map[string]*ssaLabel 334 labeledNodes map[*Node]*ssaLabel 335 336 // unlabeled break and continue statement tracking 337 breakTo *ssa.Block // current target for plain break statement 338 continueTo *ssa.Block // current target for plain continue statement 339 340 // current location where we're interpreting the AST 341 curBlock *ssa.Block 342 343 // variable assignments in the current block (map from variable symbol to ssa value) 344 // *Node is the unique identifier (an ONAME Node) for the variable. 345 // TODO: keep a single varnum map, then make all of these maps slices instead? 346 vars map[*Node]*ssa.Value 347 348 // fwdVars are variables that are used before they are defined in the current block. 349 // This map exists just to coalesce multiple references into a single FwdRef op. 350 // *Node is the unique identifier (an ONAME Node) for the variable. 351 fwdVars map[*Node]*ssa.Value 352 353 // all defined variables at the end of each block. Indexed by block ID. 354 defvars []map[*Node]*ssa.Value 355 356 // addresses of PPARAM and PPARAMOUT variables. 357 decladdrs map[*Node]*ssa.Value 358 359 // starting values. Memory, stack pointer, and globals pointer 360 startmem *ssa.Value 361 sp *ssa.Value 362 sb *ssa.Value 363 364 // line number stack. The current line number is top of stack 365 line []src.XPos 366 // the last line number processed; it may have been popped 367 lastPos src.XPos 368 369 // list of panic calls by function name and line number. 370 // Used to deduplicate panic calls. 371 panics map[funcLine]*ssa.Block 372 373 // list of PPARAMOUT (return) variables. 374 returns []*Node 375 376 cgoUnsafeArgs bool 377 hasdefer bool // whether the function contains a defer statement 378 softFloat bool 379 } 380 381 type funcLine struct { 382 f *obj.LSym 383 base *src.PosBase 384 line uint 385 } 386 387 type ssaLabel struct { 388 target *ssa.Block // block identified by this label 389 breakTarget *ssa.Block // block to break to in control flow node identified by this label 390 continueTarget *ssa.Block // block to continue to in control flow node identified by this label 391 } 392 393 // label returns the label associated with sym, creating it if necessary. 394 func (s *state) label(sym *types.Sym) *ssaLabel { 395 lab := s.labels[sym.Name] 396 if lab == nil { 397 lab = new(ssaLabel) 398 s.labels[sym.Name] = lab 399 } 400 return lab 401 } 402 403 func (s *state) Logf(msg string, args ...interface{}) { s.f.Logf(msg, args...) } 404 func (s *state) Log() bool { return s.f.Log() } 405 func (s *state) Fatalf(msg string, args ...interface{}) { 406 s.f.Frontend().Fatalf(s.peekPos(), msg, args...) 407 } 408 func (s *state) Warnl(pos src.XPos, msg string, args ...interface{}) { s.f.Warnl(pos, msg, args...) } 409 func (s *state) Debug_checknil() bool { return s.f.Frontend().Debug_checknil() } 410 411 var ( 412 // dummy node for the memory variable 413 memVar = Node{Op: ONAME, Sym: &types.Sym{Name: "mem"}} 414 415 // dummy nodes for temporary variables 416 ptrVar = Node{Op: ONAME, Sym: &types.Sym{Name: "ptr"}} 417 lenVar = Node{Op: ONAME, Sym: &types.Sym{Name: "len"}} 418 newlenVar = Node{Op: ONAME, Sym: &types.Sym{Name: "newlen"}} 419 capVar = Node{Op: ONAME, Sym: &types.Sym{Name: "cap"}} 420 typVar = Node{Op: ONAME, Sym: &types.Sym{Name: "typ"}} 421 okVar = Node{Op: ONAME, Sym: &types.Sym{Name: "ok"}} 422 ) 423 424 // startBlock sets the current block we're generating code in to b. 425 func (s *state) startBlock(b *ssa.Block) { 426 if s.curBlock != nil { 427 s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock) 428 } 429 s.curBlock = b 430 s.vars = map[*Node]*ssa.Value{} 431 for n := range s.fwdVars { 432 delete(s.fwdVars, n) 433 } 434 } 435 436 // endBlock marks the end of generating code for the current block. 437 // Returns the (former) current block. Returns nil if there is no current 438 // block, i.e. if no code flows to the current execution point. 439 func (s *state) endBlock() *ssa.Block { 440 b := s.curBlock 441 if b == nil { 442 return nil 443 } 444 for len(s.defvars) <= int(b.ID) { 445 s.defvars = append(s.defvars, nil) 446 } 447 s.defvars[b.ID] = s.vars 448 s.curBlock = nil 449 s.vars = nil 450 if b.LackingPos() { 451 // Empty plain blocks get the line of their successor (handled after all blocks created), 452 // except for increment blocks in For statements (handled in ssa conversion of OFOR), 453 // and for blocks ending in GOTO/BREAK/CONTINUE. 454 b.Pos = src.NoXPos 455 } else { 456 b.Pos = s.lastPos 457 } 458 return b 459 } 460 461 // pushLine pushes a line number on the line number stack. 462 func (s *state) pushLine(line src.XPos) { 463 if !line.IsKnown() { 464 // the frontend may emit node with line number missing, 465 // use the parent line number in this case. 466 line = s.peekPos() 467 if Debug['K'] != 0 { 468 Warn("buildssa: unknown position (line 0)") 469 } 470 } else { 471 s.lastPos = line 472 } 473 474 s.line = append(s.line, line) 475 } 476 477 // popLine pops the top of the line number stack. 478 func (s *state) popLine() { 479 s.line = s.line[:len(s.line)-1] 480 } 481 482 // peekPos peeks the top of the line number stack. 483 func (s *state) peekPos() src.XPos { 484 return s.line[len(s.line)-1] 485 } 486 487 // newValue0 adds a new value with no arguments to the current block. 488 func (s *state) newValue0(op ssa.Op, t *types.Type) *ssa.Value { 489 return s.curBlock.NewValue0(s.peekPos(), op, t) 490 } 491 492 // newValue0A adds a new value with no arguments and an aux value to the current block. 493 func (s *state) newValue0A(op ssa.Op, t *types.Type, aux interface{}) *ssa.Value { 494 return s.curBlock.NewValue0A(s.peekPos(), op, t, aux) 495 } 496 497 // newValue0I adds a new value with no arguments and an auxint value to the current block. 498 func (s *state) newValue0I(op ssa.Op, t *types.Type, auxint int64) *ssa.Value { 499 return s.curBlock.NewValue0I(s.peekPos(), op, t, auxint) 500 } 501 502 // newValue1 adds a new value with one argument to the current block. 503 func (s *state) newValue1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value { 504 return s.curBlock.NewValue1(s.peekPos(), op, t, arg) 505 } 506 507 // newValue1A adds a new value with one argument and an aux value to the current block. 508 func (s *state) newValue1A(op ssa.Op, t *types.Type, aux interface{}, arg *ssa.Value) *ssa.Value { 509 return s.curBlock.NewValue1A(s.peekPos(), op, t, aux, arg) 510 } 511 512 // newValue1Apos adds a new value with one argument and an aux value to the current block. 513 // isStmt determines whether the created values may be a statement or not 514 // (i.e., false means never, yes means maybe). 515 func (s *state) newValue1Apos(op ssa.Op, t *types.Type, aux interface{}, arg *ssa.Value, isStmt bool) *ssa.Value { 516 if isStmt { 517 return s.curBlock.NewValue1A(s.peekPos(), op, t, aux, arg) 518 } 519 return s.curBlock.NewValue1A(s.peekPos().WithNotStmt(), op, t, aux, arg) 520 } 521 522 // newValue1I adds a new value with one argument and an auxint value to the current block. 523 func (s *state) newValue1I(op ssa.Op, t *types.Type, aux int64, arg *ssa.Value) *ssa.Value { 524 return s.curBlock.NewValue1I(s.peekPos(), op, t, aux, arg) 525 } 526 527 // newValue2 adds a new value with two arguments to the current block. 528 func (s *state) newValue2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value { 529 return s.curBlock.NewValue2(s.peekPos(), op, t, arg0, arg1) 530 } 531 532 // newValue2Apos adds a new value with two arguments and an aux value to the current block. 533 // isStmt determines whether the created values may be a statement or not 534 // (i.e., false means never, yes means maybe). 535 func (s *state) newValue2Apos(op ssa.Op, t *types.Type, aux interface{}, arg0, arg1 *ssa.Value, isStmt bool) *ssa.Value { 536 if isStmt { 537 return s.curBlock.NewValue2A(s.peekPos(), op, t, aux, arg0, arg1) 538 } 539 return s.curBlock.NewValue2A(s.peekPos().WithNotStmt(), op, t, aux, arg0, arg1) 540 } 541 542 // newValue2I adds a new value with two arguments and an auxint value to the current block. 543 func (s *state) newValue2I(op ssa.Op, t *types.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value { 544 return s.curBlock.NewValue2I(s.peekPos(), op, t, aux, arg0, arg1) 545 } 546 547 // newValue3 adds a new value with three arguments to the current block. 548 func (s *state) newValue3(op ssa.Op, t *types.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value { 549 return s.curBlock.NewValue3(s.peekPos(), op, t, arg0, arg1, arg2) 550 } 551 552 // newValue3I adds a new value with three arguments and an auxint value to the current block. 553 func (s *state) newValue3I(op ssa.Op, t *types.Type, aux int64, arg0, arg1, arg2 *ssa.Value) *ssa.Value { 554 return s.curBlock.NewValue3I(s.peekPos(), op, t, aux, arg0, arg1, arg2) 555 } 556 557 // newValue3A adds a new value with three arguments and an aux value to the current block. 558 func (s *state) newValue3A(op ssa.Op, t *types.Type, aux interface{}, arg0, arg1, arg2 *ssa.Value) *ssa.Value { 559 return s.curBlock.NewValue3A(s.peekPos(), op, t, aux, arg0, arg1, arg2) 560 } 561 562 // newValue3Apos adds a new value with three arguments and an aux value to the current block. 563 // isStmt determines whether the created values may be a statement or not 564 // (i.e., false means never, yes means maybe). 565 func (s *state) newValue3Apos(op ssa.Op, t *types.Type, aux interface{}, arg0, arg1, arg2 *ssa.Value, isStmt bool) *ssa.Value { 566 if isStmt { 567 return s.curBlock.NewValue3A(s.peekPos(), op, t, aux, arg0, arg1, arg2) 568 } 569 return s.curBlock.NewValue3A(s.peekPos().WithNotStmt(), op, t, aux, arg0, arg1, arg2) 570 } 571 572 // newValue4 adds a new value with four arguments to the current block. 573 func (s *state) newValue4(op ssa.Op, t *types.Type, arg0, arg1, arg2, arg3 *ssa.Value) *ssa.Value { 574 return s.curBlock.NewValue4(s.peekPos(), op, t, arg0, arg1, arg2, arg3) 575 } 576 577 // entryNewValue0 adds a new value with no arguments to the entry block. 578 func (s *state) entryNewValue0(op ssa.Op, t *types.Type) *ssa.Value { 579 return s.f.Entry.NewValue0(src.NoXPos, op, t) 580 } 581 582 // entryNewValue0A adds a new value with no arguments and an aux value to the entry block. 583 func (s *state) entryNewValue0A(op ssa.Op, t *types.Type, aux interface{}) *ssa.Value { 584 return s.f.Entry.NewValue0A(src.NoXPos, op, t, aux) 585 } 586 587 // entryNewValue1 adds a new value with one argument to the entry block. 588 func (s *state) entryNewValue1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value { 589 return s.f.Entry.NewValue1(src.NoXPos, op, t, arg) 590 } 591 592 // entryNewValue1 adds a new value with one argument and an auxint value to the entry block. 593 func (s *state) entryNewValue1I(op ssa.Op, t *types.Type, auxint int64, arg *ssa.Value) *ssa.Value { 594 return s.f.Entry.NewValue1I(src.NoXPos, op, t, auxint, arg) 595 } 596 597 // entryNewValue1A adds a new value with one argument and an aux value to the entry block. 598 func (s *state) entryNewValue1A(op ssa.Op, t *types.Type, aux interface{}, arg *ssa.Value) *ssa.Value { 599 return s.f.Entry.NewValue1A(src.NoXPos, op, t, aux, arg) 600 } 601 602 // entryNewValue2 adds a new value with two arguments to the entry block. 603 func (s *state) entryNewValue2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value { 604 return s.f.Entry.NewValue2(src.NoXPos, op, t, arg0, arg1) 605 } 606 607 // entryNewValue2A adds a new value with two arguments and an aux value to the entry block. 608 func (s *state) entryNewValue2A(op ssa.Op, t *types.Type, aux interface{}, arg0, arg1 *ssa.Value) *ssa.Value { 609 return s.f.Entry.NewValue2A(src.NoXPos, op, t, aux, arg0, arg1) 610 } 611 612 // const* routines add a new const value to the entry block. 613 func (s *state) constSlice(t *types.Type) *ssa.Value { 614 return s.f.ConstSlice(t) 615 } 616 func (s *state) constInterface(t *types.Type) *ssa.Value { 617 return s.f.ConstInterface(t) 618 } 619 func (s *state) constNil(t *types.Type) *ssa.Value { return s.f.ConstNil(t) } 620 func (s *state) constEmptyString(t *types.Type) *ssa.Value { 621 return s.f.ConstEmptyString(t) 622 } 623 func (s *state) constBool(c bool) *ssa.Value { 624 return s.f.ConstBool(types.Types[TBOOL], c) 625 } 626 func (s *state) constInt8(t *types.Type, c int8) *ssa.Value { 627 return s.f.ConstInt8(t, c) 628 } 629 func (s *state) constInt16(t *types.Type, c int16) *ssa.Value { 630 return s.f.ConstInt16(t, c) 631 } 632 func (s *state) constInt32(t *types.Type, c int32) *ssa.Value { 633 return s.f.ConstInt32(t, c) 634 } 635 func (s *state) constInt64(t *types.Type, c int64) *ssa.Value { 636 return s.f.ConstInt64(t, c) 637 } 638 func (s *state) constFloat32(t *types.Type, c float64) *ssa.Value { 639 return s.f.ConstFloat32(t, c) 640 } 641 func (s *state) constFloat64(t *types.Type, c float64) *ssa.Value { 642 return s.f.ConstFloat64(t, c) 643 } 644 func (s *state) constInt(t *types.Type, c int64) *ssa.Value { 645 if s.config.PtrSize == 8 { 646 return s.constInt64(t, c) 647 } 648 if int64(int32(c)) != c { 649 s.Fatalf("integer constant too big %d", c) 650 } 651 return s.constInt32(t, int32(c)) 652 } 653 func (s *state) constOffPtrSP(t *types.Type, c int64) *ssa.Value { 654 return s.f.ConstOffPtrSP(t, c, s.sp) 655 } 656 657 // newValueOrSfCall* are wrappers around newValue*, which may create a call to a 658 // soft-float runtime function instead (when emitting soft-float code). 659 func (s *state) newValueOrSfCall1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value { 660 if s.softFloat { 661 if c, ok := s.sfcall(op, arg); ok { 662 return c 663 } 664 } 665 return s.newValue1(op, t, arg) 666 } 667 func (s *state) newValueOrSfCall2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value { 668 if s.softFloat { 669 if c, ok := s.sfcall(op, arg0, arg1); ok { 670 return c 671 } 672 } 673 return s.newValue2(op, t, arg0, arg1) 674 } 675 676 func (s *state) instrument(t *types.Type, addr *ssa.Value, wr bool) { 677 if !s.curfn.Func.InstrumentBody() { 678 return 679 } 680 681 w := t.Size() 682 if w == 0 { 683 return // can't race on zero-sized things 684 } 685 686 if ssa.IsSanitizerSafeAddr(addr) { 687 return 688 } 689 690 var fn *obj.LSym 691 needWidth := false 692 693 if flag_msan { 694 fn = msanread 695 if wr { 696 fn = msanwrite 697 } 698 needWidth = true 699 } else if flag_race && t.NumComponents(types.CountBlankFields) > 1 { 700 // for composite objects we have to write every address 701 // because a write might happen to any subobject. 702 // composites with only one element don't have subobjects, though. 703 fn = racereadrange 704 if wr { 705 fn = racewriterange 706 } 707 needWidth = true 708 } else if flag_race { 709 // for non-composite objects we can write just the start 710 // address, as any write must write the first byte. 711 fn = raceread 712 if wr { 713 fn = racewrite 714 } 715 } else { 716 panic("unreachable") 717 } 718 719 args := []*ssa.Value{addr} 720 if needWidth { 721 args = append(args, s.constInt(types.Types[TUINTPTR], w)) 722 } 723 s.rtcall(fn, true, nil, args...) 724 } 725 726 func (s *state) load(t *types.Type, src *ssa.Value) *ssa.Value { 727 s.instrument(t, src, false) 728 return s.rawLoad(t, src) 729 } 730 731 func (s *state) rawLoad(t *types.Type, src *ssa.Value) *ssa.Value { 732 return s.newValue2(ssa.OpLoad, t, src, s.mem()) 733 } 734 735 func (s *state) store(t *types.Type, dst, val *ssa.Value) { 736 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, dst, val, s.mem()) 737 } 738 739 func (s *state) zero(t *types.Type, dst *ssa.Value) { 740 s.instrument(t, dst, true) 741 store := s.newValue2I(ssa.OpZero, types.TypeMem, t.Size(), dst, s.mem()) 742 store.Aux = t 743 s.vars[&memVar] = store 744 } 745 746 func (s *state) move(t *types.Type, dst, src *ssa.Value) { 747 s.instrument(t, src, false) 748 s.instrument(t, dst, true) 749 store := s.newValue3I(ssa.OpMove, types.TypeMem, t.Size(), dst, src, s.mem()) 750 store.Aux = t 751 s.vars[&memVar] = store 752 } 753 754 // stmtList converts the statement list n to SSA and adds it to s. 755 func (s *state) stmtList(l Nodes) { 756 for _, n := range l.Slice() { 757 s.stmt(n) 758 } 759 } 760 761 // stmt converts the statement n to SSA and adds it to s. 762 func (s *state) stmt(n *Node) { 763 if !(n.Op == OVARKILL || n.Op == OVARLIVE || n.Op == OVARDEF) { 764 // OVARKILL, OVARLIVE, and OVARDEF are invisible to the programmer, so we don't use their line numbers to avoid confusion in debugging. 765 s.pushLine(n.Pos) 766 defer s.popLine() 767 } 768 769 // If s.curBlock is nil, and n isn't a label (which might have an associated goto somewhere), 770 // then this code is dead. Stop here. 771 if s.curBlock == nil && n.Op != OLABEL { 772 return 773 } 774 775 s.stmtList(n.Ninit) 776 switch n.Op { 777 778 case OBLOCK: 779 s.stmtList(n.List) 780 781 // No-ops 782 case OEMPTY, ODCLCONST, ODCLTYPE, OFALL: 783 784 // Expression statements 785 case OCALLFUNC: 786 if isIntrinsicCall(n) { 787 s.intrinsicCall(n) 788 return 789 } 790 fallthrough 791 792 case OCALLMETH, OCALLINTER: 793 s.call(n, callNormal) 794 if n.Op == OCALLFUNC && n.Left.Op == ONAME && n.Left.Class() == PFUNC { 795 if fn := n.Left.Sym.Name; compiling_runtime && fn == "throw" || 796 n.Left.Sym.Pkg == Runtimepkg && (fn == "throwinit" || fn == "gopanic" || fn == "panicwrap" || fn == "block" || fn == "panicmakeslicelen" || fn == "panicmakeslicecap") { 797 m := s.mem() 798 b := s.endBlock() 799 b.Kind = ssa.BlockExit 800 b.SetControl(m) 801 // TODO: never rewrite OPANIC to OCALLFUNC in the 802 // first place. Need to wait until all backends 803 // go through SSA. 804 } 805 } 806 case ODEFER: 807 s.call(n.Left, callDefer) 808 case OGO: 809 s.call(n.Left, callGo) 810 811 case OAS2DOTTYPE: 812 res, resok := s.dottype(n.Rlist.First(), true) 813 deref := false 814 if !canSSAType(n.Rlist.First().Type) { 815 if res.Op != ssa.OpLoad { 816 s.Fatalf("dottype of non-load") 817 } 818 mem := s.mem() 819 if mem.Op == ssa.OpVarKill { 820 mem = mem.Args[0] 821 } 822 if res.Args[1] != mem { 823 s.Fatalf("memory no longer live from 2-result dottype load") 824 } 825 deref = true 826 res = res.Args[0] 827 } 828 s.assign(n.List.First(), res, deref, 0) 829 s.assign(n.List.Second(), resok, false, 0) 830 return 831 832 case OAS2FUNC: 833 // We come here only when it is an intrinsic call returning two values. 834 if !isIntrinsicCall(n.Rlist.First()) { 835 s.Fatalf("non-intrinsic AS2FUNC not expanded %v", n.Rlist.First()) 836 } 837 v := s.intrinsicCall(n.Rlist.First()) 838 v1 := s.newValue1(ssa.OpSelect0, n.List.First().Type, v) 839 v2 := s.newValue1(ssa.OpSelect1, n.List.Second().Type, v) 840 s.assign(n.List.First(), v1, false, 0) 841 s.assign(n.List.Second(), v2, false, 0) 842 return 843 844 case ODCL: 845 if n.Left.Class() == PAUTOHEAP { 846 Fatalf("DCL %v", n) 847 } 848 849 case OLABEL: 850 sym := n.Sym 851 lab := s.label(sym) 852 853 // Associate label with its control flow node, if any 854 if ctl := n.labeledControl(); ctl != nil { 855 s.labeledNodes[ctl] = lab 856 } 857 858 // The label might already have a target block via a goto. 859 if lab.target == nil { 860 lab.target = s.f.NewBlock(ssa.BlockPlain) 861 } 862 863 // Go to that label. 864 // (We pretend "label:" is preceded by "goto label", unless the predecessor is unreachable.) 865 if s.curBlock != nil { 866 b := s.endBlock() 867 b.AddEdgeTo(lab.target) 868 } 869 s.startBlock(lab.target) 870 871 case OGOTO: 872 sym := n.Sym 873 874 lab := s.label(sym) 875 if lab.target == nil { 876 lab.target = s.f.NewBlock(ssa.BlockPlain) 877 } 878 879 b := s.endBlock() 880 b.Pos = s.lastPos.WithIsStmt() // Do this even if b is an empty block. 881 b.AddEdgeTo(lab.target) 882 883 case OAS: 884 if n.Left == n.Right && n.Left.Op == ONAME { 885 // An x=x assignment. No point in doing anything 886 // here. In addition, skipping this assignment 887 // prevents generating: 888 // VARDEF x 889 // COPY x -> x 890 // which is bad because x is incorrectly considered 891 // dead before the vardef. See issue #14904. 892 return 893 } 894 895 // Evaluate RHS. 896 rhs := n.Right 897 if rhs != nil { 898 switch rhs.Op { 899 case OSTRUCTLIT, OARRAYLIT, OSLICELIT: 900 // All literals with nonzero fields have already been 901 // rewritten during walk. Any that remain are just T{} 902 // or equivalents. Use the zero value. 903 if !isZero(rhs) { 904 Fatalf("literal with nonzero value in SSA: %v", rhs) 905 } 906 rhs = nil 907 case OAPPEND: 908 // Check whether we're writing the result of an append back to the same slice. 909 // If so, we handle it specially to avoid write barriers on the fast 910 // (non-growth) path. 911 if !samesafeexpr(n.Left, rhs.List.First()) || Debug['N'] != 0 { 912 break 913 } 914 // If the slice can be SSA'd, it'll be on the stack, 915 // so there will be no write barriers, 916 // so there's no need to attempt to prevent them. 917 if s.canSSA(n.Left) { 918 if Debug_append > 0 { // replicating old diagnostic message 919 Warnl(n.Pos, "append: len-only update (in local slice)") 920 } 921 break 922 } 923 if Debug_append > 0 { 924 Warnl(n.Pos, "append: len-only update") 925 } 926 s.append(rhs, true) 927 return 928 } 929 } 930 931 if n.Left.isBlank() { 932 // _ = rhs 933 // Just evaluate rhs for side-effects. 934 if rhs != nil { 935 s.expr(rhs) 936 } 937 return 938 } 939 940 var t *types.Type 941 if n.Right != nil { 942 t = n.Right.Type 943 } else { 944 t = n.Left.Type 945 } 946 947 var r *ssa.Value 948 deref := !canSSAType(t) 949 if deref { 950 if rhs == nil { 951 r = nil // Signal assign to use OpZero. 952 } else { 953 r = s.addr(rhs, false) 954 } 955 } else { 956 if rhs == nil { 957 r = s.zeroVal(t) 958 } else { 959 r = s.expr(rhs) 960 } 961 } 962 963 var skip skipMask 964 if rhs != nil && (rhs.Op == OSLICE || rhs.Op == OSLICE3 || rhs.Op == OSLICESTR) && samesafeexpr(rhs.Left, n.Left) { 965 // We're assigning a slicing operation back to its source. 966 // Don't write back fields we aren't changing. See issue #14855. 967 i, j, k := rhs.SliceBounds() 968 if i != nil && (i.Op == OLITERAL && i.Val().Ctype() == CTINT && i.Int64() == 0) { 969 // [0:...] is the same as [:...] 970 i = nil 971 } 972 // TODO: detect defaults for len/cap also. 973 // Currently doesn't really work because (*p)[:len(*p)] appears here as: 974 // tmp = len(*p) 975 // (*p)[:tmp] 976 //if j != nil && (j.Op == OLEN && samesafeexpr(j.Left, n.Left)) { 977 // j = nil 978 //} 979 //if k != nil && (k.Op == OCAP && samesafeexpr(k.Left, n.Left)) { 980 // k = nil 981 //} 982 if i == nil { 983 skip |= skipPtr 984 if j == nil { 985 skip |= skipLen 986 } 987 if k == nil { 988 skip |= skipCap 989 } 990 } 991 } 992 993 s.assign(n.Left, r, deref, skip) 994 995 case OIF: 996 bEnd := s.f.NewBlock(ssa.BlockPlain) 997 var likely int8 998 if n.Likely() { 999 likely = 1 1000 } 1001 var bThen *ssa.Block 1002 if n.Nbody.Len() != 0 { 1003 bThen = s.f.NewBlock(ssa.BlockPlain) 1004 } else { 1005 bThen = bEnd 1006 } 1007 var bElse *ssa.Block 1008 if n.Rlist.Len() != 0 { 1009 bElse = s.f.NewBlock(ssa.BlockPlain) 1010 } else { 1011 bElse = bEnd 1012 } 1013 s.condBranch(n.Left, bThen, bElse, likely) 1014 1015 if n.Nbody.Len() != 0 { 1016 s.startBlock(bThen) 1017 s.stmtList(n.Nbody) 1018 if b := s.endBlock(); b != nil { 1019 b.AddEdgeTo(bEnd) 1020 } 1021 } 1022 if n.Rlist.Len() != 0 { 1023 s.startBlock(bElse) 1024 s.stmtList(n.Rlist) 1025 if b := s.endBlock(); b != nil { 1026 b.AddEdgeTo(bEnd) 1027 } 1028 } 1029 s.startBlock(bEnd) 1030 1031 case ORETURN: 1032 s.stmtList(n.List) 1033 b := s.exit() 1034 b.Pos = s.lastPos.WithIsStmt() 1035 1036 case ORETJMP: 1037 s.stmtList(n.List) 1038 b := s.exit() 1039 b.Kind = ssa.BlockRetJmp // override BlockRet 1040 b.Aux = n.Sym.Linksym() 1041 1042 case OCONTINUE, OBREAK: 1043 var to *ssa.Block 1044 if n.Sym == nil { 1045 // plain break/continue 1046 switch n.Op { 1047 case OCONTINUE: 1048 to = s.continueTo 1049 case OBREAK: 1050 to = s.breakTo 1051 } 1052 } else { 1053 // labeled break/continue; look up the target 1054 sym := n.Sym 1055 lab := s.label(sym) 1056 switch n.Op { 1057 case OCONTINUE: 1058 to = lab.continueTarget 1059 case OBREAK: 1060 to = lab.breakTarget 1061 } 1062 } 1063 1064 b := s.endBlock() 1065 b.Pos = s.lastPos.WithIsStmt() // Do this even if b is an empty block. 1066 b.AddEdgeTo(to) 1067 1068 case OFOR, OFORUNTIL: 1069 // OFOR: for Ninit; Left; Right { Nbody } 1070 // cond (Left); body (Nbody); incr (Right) 1071 // 1072 // OFORUNTIL: for Ninit; Left; Right; List { Nbody } 1073 // => body: { Nbody }; incr: Right; if Left { lateincr: List; goto body }; end: 1074 bCond := s.f.NewBlock(ssa.BlockPlain) 1075 bBody := s.f.NewBlock(ssa.BlockPlain) 1076 bIncr := s.f.NewBlock(ssa.BlockPlain) 1077 bEnd := s.f.NewBlock(ssa.BlockPlain) 1078 1079 // first, jump to condition test (OFOR) or body (OFORUNTIL) 1080 b := s.endBlock() 1081 if n.Op == OFOR { 1082 b.AddEdgeTo(bCond) 1083 // generate code to test condition 1084 s.startBlock(bCond) 1085 if n.Left != nil { 1086 s.condBranch(n.Left, bBody, bEnd, 1) 1087 } else { 1088 b := s.endBlock() 1089 b.Kind = ssa.BlockPlain 1090 b.AddEdgeTo(bBody) 1091 } 1092 1093 } else { 1094 b.AddEdgeTo(bBody) 1095 } 1096 1097 // set up for continue/break in body 1098 prevContinue := s.continueTo 1099 prevBreak := s.breakTo 1100 s.continueTo = bIncr 1101 s.breakTo = bEnd 1102 lab := s.labeledNodes[n] 1103 if lab != nil { 1104 // labeled for loop 1105 lab.continueTarget = bIncr 1106 lab.breakTarget = bEnd 1107 } 1108 1109 // generate body 1110 s.startBlock(bBody) 1111 s.stmtList(n.Nbody) 1112 1113 // tear down continue/break 1114 s.continueTo = prevContinue 1115 s.breakTo = prevBreak 1116 if lab != nil { 1117 lab.continueTarget = nil 1118 lab.breakTarget = nil 1119 } 1120 1121 // done with body, goto incr 1122 if b := s.endBlock(); b != nil { 1123 b.AddEdgeTo(bIncr) 1124 } 1125 1126 // generate incr (and, for OFORUNTIL, condition) 1127 s.startBlock(bIncr) 1128 if n.Right != nil { 1129 s.stmt(n.Right) 1130 } 1131 if n.Op == OFOR { 1132 if b := s.endBlock(); b != nil { 1133 b.AddEdgeTo(bCond) 1134 // It can happen that bIncr ends in a block containing only VARKILL, 1135 // and that muddles the debugging experience. 1136 if n.Op != OFORUNTIL && b.Pos == src.NoXPos { 1137 b.Pos = bCond.Pos 1138 } 1139 } 1140 } else { 1141 // bCond is unused in OFORUNTIL, so repurpose it. 1142 bLateIncr := bCond 1143 // test condition 1144 s.condBranch(n.Left, bLateIncr, bEnd, 1) 1145 // generate late increment 1146 s.startBlock(bLateIncr) 1147 s.stmtList(n.List) 1148 s.endBlock().AddEdgeTo(bBody) 1149 } 1150 1151 s.startBlock(bEnd) 1152 1153 case OSWITCH, OSELECT: 1154 // These have been mostly rewritten by the front end into their Nbody fields. 1155 // Our main task is to correctly hook up any break statements. 1156 bEnd := s.f.NewBlock(ssa.BlockPlain) 1157 1158 prevBreak := s.breakTo 1159 s.breakTo = bEnd 1160 lab := s.labeledNodes[n] 1161 if lab != nil { 1162 // labeled 1163 lab.breakTarget = bEnd 1164 } 1165 1166 // generate body code 1167 s.stmtList(n.Nbody) 1168 1169 s.breakTo = prevBreak 1170 if lab != nil { 1171 lab.breakTarget = nil 1172 } 1173 1174 // walk adds explicit OBREAK nodes to the end of all reachable code paths. 1175 // If we still have a current block here, then mark it unreachable. 1176 if s.curBlock != nil { 1177 m := s.mem() 1178 b := s.endBlock() 1179 b.Kind = ssa.BlockExit 1180 b.SetControl(m) 1181 } 1182 s.startBlock(bEnd) 1183 1184 case OVARDEF: 1185 if !s.canSSA(n.Left) { 1186 s.vars[&memVar] = s.newValue1Apos(ssa.OpVarDef, types.TypeMem, n.Left, s.mem(), false) 1187 } 1188 case OVARKILL: 1189 // Insert a varkill op to record that a variable is no longer live. 1190 // We only care about liveness info at call sites, so putting the 1191 // varkill in the store chain is enough to keep it correctly ordered 1192 // with respect to call ops. 1193 if !s.canSSA(n.Left) { 1194 s.vars[&memVar] = s.newValue1Apos(ssa.OpVarKill, types.TypeMem, n.Left, s.mem(), false) 1195 } 1196 1197 case OVARLIVE: 1198 // Insert a varlive op to record that a variable is still live. 1199 if !n.Left.Addrtaken() { 1200 s.Fatalf("VARLIVE variable %v must have Addrtaken set", n.Left) 1201 } 1202 switch n.Left.Class() { 1203 case PAUTO, PPARAM, PPARAMOUT: 1204 default: 1205 s.Fatalf("VARLIVE variable %v must be Auto or Arg", n.Left) 1206 } 1207 s.vars[&memVar] = s.newValue1A(ssa.OpVarLive, types.TypeMem, n.Left, s.mem()) 1208 1209 case OCHECKNIL: 1210 p := s.expr(n.Left) 1211 s.nilCheck(p) 1212 1213 case OINLMARK: 1214 s.newValue1I(ssa.OpInlMark, types.TypeVoid, n.Xoffset, s.mem()) 1215 1216 default: 1217 s.Fatalf("unhandled stmt %v", n.Op) 1218 } 1219 } 1220 1221 // exit processes any code that needs to be generated just before returning. 1222 // It returns a BlockRet block that ends the control flow. Its control value 1223 // will be set to the final memory state. 1224 func (s *state) exit() *ssa.Block { 1225 if s.hasdefer { 1226 s.rtcall(Deferreturn, true, nil) 1227 } 1228 1229 // Run exit code. Typically, this code copies heap-allocated PPARAMOUT 1230 // variables back to the stack. 1231 s.stmtList(s.curfn.Func.Exit) 1232 1233 // Store SSAable PPARAMOUT variables back to stack locations. 1234 for _, n := range s.returns { 1235 addr := s.decladdrs[n] 1236 val := s.variable(n, n.Type) 1237 s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, n, s.mem()) 1238 s.store(n.Type, addr, val) 1239 // TODO: if val is ever spilled, we'd like to use the 1240 // PPARAMOUT slot for spilling it. That won't happen 1241 // currently. 1242 } 1243 1244 // Do actual return. 1245 m := s.mem() 1246 b := s.endBlock() 1247 b.Kind = ssa.BlockRet 1248 b.SetControl(m) 1249 return b 1250 } 1251 1252 type opAndType struct { 1253 op Op 1254 etype types.EType 1255 } 1256 1257 var opToSSA = map[opAndType]ssa.Op{ 1258 opAndType{OADD, TINT8}: ssa.OpAdd8, 1259 opAndType{OADD, TUINT8}: ssa.OpAdd8, 1260 opAndType{OADD, TINT16}: ssa.OpAdd16, 1261 opAndType{OADD, TUINT16}: ssa.OpAdd16, 1262 opAndType{OADD, TINT32}: ssa.OpAdd32, 1263 opAndType{OADD, TUINT32}: ssa.OpAdd32, 1264 opAndType{OADD, TINT64}: ssa.OpAdd64, 1265 opAndType{OADD, TUINT64}: ssa.OpAdd64, 1266 opAndType{OADD, TFLOAT32}: ssa.OpAdd32F, 1267 opAndType{OADD, TFLOAT64}: ssa.OpAdd64F, 1268 1269 opAndType{OSUB, TINT8}: ssa.OpSub8, 1270 opAndType{OSUB, TUINT8}: ssa.OpSub8, 1271 opAndType{OSUB, TINT16}: ssa.OpSub16, 1272 opAndType{OSUB, TUINT16}: ssa.OpSub16, 1273 opAndType{OSUB, TINT32}: ssa.OpSub32, 1274 opAndType{OSUB, TUINT32}: ssa.OpSub32, 1275 opAndType{OSUB, TINT64}: ssa.OpSub64, 1276 opAndType{OSUB, TUINT64}: ssa.OpSub64, 1277 opAndType{OSUB, TFLOAT32}: ssa.OpSub32F, 1278 opAndType{OSUB, TFLOAT64}: ssa.OpSub64F, 1279 1280 opAndType{ONOT, TBOOL}: ssa.OpNot, 1281 1282 opAndType{ONEG, TINT8}: ssa.OpNeg8, 1283 opAndType{ONEG, TUINT8}: ssa.OpNeg8, 1284 opAndType{ONEG, TINT16}: ssa.OpNeg16, 1285 opAndType{ONEG, TUINT16}: ssa.OpNeg16, 1286 opAndType{ONEG, TINT32}: ssa.OpNeg32, 1287 opAndType{ONEG, TUINT32}: ssa.OpNeg32, 1288 opAndType{ONEG, TINT64}: ssa.OpNeg64, 1289 opAndType{ONEG, TUINT64}: ssa.OpNeg64, 1290 opAndType{ONEG, TFLOAT32}: ssa.OpNeg32F, 1291 opAndType{ONEG, TFLOAT64}: ssa.OpNeg64F, 1292 1293 opAndType{OBITNOT, TINT8}: ssa.OpCom8, 1294 opAndType{OBITNOT, TUINT8}: ssa.OpCom8, 1295 opAndType{OBITNOT, TINT16}: ssa.OpCom16, 1296 opAndType{OBITNOT, TUINT16}: ssa.OpCom16, 1297 opAndType{OBITNOT, TINT32}: ssa.OpCom32, 1298 opAndType{OBITNOT, TUINT32}: ssa.OpCom32, 1299 opAndType{OBITNOT, TINT64}: ssa.OpCom64, 1300 opAndType{OBITNOT, TUINT64}: ssa.OpCom64, 1301 1302 opAndType{OIMAG, TCOMPLEX64}: ssa.OpComplexImag, 1303 opAndType{OIMAG, TCOMPLEX128}: ssa.OpComplexImag, 1304 opAndType{OREAL, TCOMPLEX64}: ssa.OpComplexReal, 1305 opAndType{OREAL, TCOMPLEX128}: ssa.OpComplexReal, 1306 1307 opAndType{OMUL, TINT8}: ssa.OpMul8, 1308 opAndType{OMUL, TUINT8}: ssa.OpMul8, 1309 opAndType{OMUL, TINT16}: ssa.OpMul16, 1310 opAndType{OMUL, TUINT16}: ssa.OpMul16, 1311 opAndType{OMUL, TINT32}: ssa.OpMul32, 1312 opAndType{OMUL, TUINT32}: ssa.OpMul32, 1313 opAndType{OMUL, TINT64}: ssa.OpMul64, 1314 opAndType{OMUL, TUINT64}: ssa.OpMul64, 1315 opAndType{OMUL, TFLOAT32}: ssa.OpMul32F, 1316 opAndType{OMUL, TFLOAT64}: ssa.OpMul64F, 1317 1318 opAndType{ODIV, TFLOAT32}: ssa.OpDiv32F, 1319 opAndType{ODIV, TFLOAT64}: ssa.OpDiv64F, 1320 1321 opAndType{ODIV, TINT8}: ssa.OpDiv8, 1322 opAndType{ODIV, TUINT8}: ssa.OpDiv8u, 1323 opAndType{ODIV, TINT16}: ssa.OpDiv16, 1324 opAndType{ODIV, TUINT16}: ssa.OpDiv16u, 1325 opAndType{ODIV, TINT32}: ssa.OpDiv32, 1326 opAndType{ODIV, TUINT32}: ssa.OpDiv32u, 1327 opAndType{ODIV, TINT64}: ssa.OpDiv64, 1328 opAndType{ODIV, TUINT64}: ssa.OpDiv64u, 1329 1330 opAndType{OMOD, TINT8}: ssa.OpMod8, 1331 opAndType{OMOD, TUINT8}: ssa.OpMod8u, 1332 opAndType{OMOD, TINT16}: ssa.OpMod16, 1333 opAndType{OMOD, TUINT16}: ssa.OpMod16u, 1334 opAndType{OMOD, TINT32}: ssa.OpMod32, 1335 opAndType{OMOD, TUINT32}: ssa.OpMod32u, 1336 opAndType{OMOD, TINT64}: ssa.OpMod64, 1337 opAndType{OMOD, TUINT64}: ssa.OpMod64u, 1338 1339 opAndType{OAND, TINT8}: ssa.OpAnd8, 1340 opAndType{OAND, TUINT8}: ssa.OpAnd8, 1341 opAndType{OAND, TINT16}: ssa.OpAnd16, 1342 opAndType{OAND, TUINT16}: ssa.OpAnd16, 1343 opAndType{OAND, TINT32}: ssa.OpAnd32, 1344 opAndType{OAND, TUINT32}: ssa.OpAnd32, 1345 opAndType{OAND, TINT64}: ssa.OpAnd64, 1346 opAndType{OAND, TUINT64}: ssa.OpAnd64, 1347 1348 opAndType{OOR, TINT8}: ssa.OpOr8, 1349 opAndType{OOR, TUINT8}: ssa.OpOr8, 1350 opAndType{OOR, TINT16}: ssa.OpOr16, 1351 opAndType{OOR, TUINT16}: ssa.OpOr16, 1352 opAndType{OOR, TINT32}: ssa.OpOr32, 1353 opAndType{OOR, TUINT32}: ssa.OpOr32, 1354 opAndType{OOR, TINT64}: ssa.OpOr64, 1355 opAndType{OOR, TUINT64}: ssa.OpOr64, 1356 1357 opAndType{OXOR, TINT8}: ssa.OpXor8, 1358 opAndType{OXOR, TUINT8}: ssa.OpXor8, 1359 opAndType{OXOR, TINT16}: ssa.OpXor16, 1360 opAndType{OXOR, TUINT16}: ssa.OpXor16, 1361 opAndType{OXOR, TINT32}: ssa.OpXor32, 1362 opAndType{OXOR, TUINT32}: ssa.OpXor32, 1363 opAndType{OXOR, TINT64}: ssa.OpXor64, 1364 opAndType{OXOR, TUINT64}: ssa.OpXor64, 1365 1366 opAndType{OEQ, TBOOL}: ssa.OpEqB, 1367 opAndType{OEQ, TINT8}: ssa.OpEq8, 1368 opAndType{OEQ, TUINT8}: ssa.OpEq8, 1369 opAndType{OEQ, TINT16}: ssa.OpEq16, 1370 opAndType{OEQ, TUINT16}: ssa.OpEq16, 1371 opAndType{OEQ, TINT32}: ssa.OpEq32, 1372 opAndType{OEQ, TUINT32}: ssa.OpEq32, 1373 opAndType{OEQ, TINT64}: ssa.OpEq64, 1374 opAndType{OEQ, TUINT64}: ssa.OpEq64, 1375 opAndType{OEQ, TINTER}: ssa.OpEqInter, 1376 opAndType{OEQ, TSLICE}: ssa.OpEqSlice, 1377 opAndType{OEQ, TFUNC}: ssa.OpEqPtr, 1378 opAndType{OEQ, TMAP}: ssa.OpEqPtr, 1379 opAndType{OEQ, TCHAN}: ssa.OpEqPtr, 1380 opAndType{OEQ, TPTR}: ssa.OpEqPtr, 1381 opAndType{OEQ, TUINTPTR}: ssa.OpEqPtr, 1382 opAndType{OEQ, TUNSAFEPTR}: ssa.OpEqPtr, 1383 opAndType{OEQ, TFLOAT64}: ssa.OpEq64F, 1384 opAndType{OEQ, TFLOAT32}: ssa.OpEq32F, 1385 1386 opAndType{ONE, TBOOL}: ssa.OpNeqB, 1387 opAndType{ONE, TINT8}: ssa.OpNeq8, 1388 opAndType{ONE, TUINT8}: ssa.OpNeq8, 1389 opAndType{ONE, TINT16}: ssa.OpNeq16, 1390 opAndType{ONE, TUINT16}: ssa.OpNeq16, 1391 opAndType{ONE, TINT32}: ssa.OpNeq32, 1392 opAndType{ONE, TUINT32}: ssa.OpNeq32, 1393 opAndType{ONE, TINT64}: ssa.OpNeq64, 1394 opAndType{ONE, TUINT64}: ssa.OpNeq64, 1395 opAndType{ONE, TINTER}: ssa.OpNeqInter, 1396 opAndType{ONE, TSLICE}: ssa.OpNeqSlice, 1397 opAndType{ONE, TFUNC}: ssa.OpNeqPtr, 1398 opAndType{ONE, TMAP}: ssa.OpNeqPtr, 1399 opAndType{ONE, TCHAN}: ssa.OpNeqPtr, 1400 opAndType{ONE, TPTR}: ssa.OpNeqPtr, 1401 opAndType{ONE, TUINTPTR}: ssa.OpNeqPtr, 1402 opAndType{ONE, TUNSAFEPTR}: ssa.OpNeqPtr, 1403 opAndType{ONE, TFLOAT64}: ssa.OpNeq64F, 1404 opAndType{ONE, TFLOAT32}: ssa.OpNeq32F, 1405 1406 opAndType{OLT, TINT8}: ssa.OpLess8, 1407 opAndType{OLT, TUINT8}: ssa.OpLess8U, 1408 opAndType{OLT, TINT16}: ssa.OpLess16, 1409 opAndType{OLT, TUINT16}: ssa.OpLess16U, 1410 opAndType{OLT, TINT32}: ssa.OpLess32, 1411 opAndType{OLT, TUINT32}: ssa.OpLess32U, 1412 opAndType{OLT, TINT64}: ssa.OpLess64, 1413 opAndType{OLT, TUINT64}: ssa.OpLess64U, 1414 opAndType{OLT, TFLOAT64}: ssa.OpLess64F, 1415 opAndType{OLT, TFLOAT32}: ssa.OpLess32F, 1416 1417 opAndType{OGT, TINT8}: ssa.OpGreater8, 1418 opAndType{OGT, TUINT8}: ssa.OpGreater8U, 1419 opAndType{OGT, TINT16}: ssa.OpGreater16, 1420 opAndType{OGT, TUINT16}: ssa.OpGreater16U, 1421 opAndType{OGT, TINT32}: ssa.OpGreater32, 1422 opAndType{OGT, TUINT32}: ssa.OpGreater32U, 1423 opAndType{OGT, TINT64}: ssa.OpGreater64, 1424 opAndType{OGT, TUINT64}: ssa.OpGreater64U, 1425 opAndType{OGT, TFLOAT64}: ssa.OpGreater64F, 1426 opAndType{OGT, TFLOAT32}: ssa.OpGreater32F, 1427 1428 opAndType{OLE, TINT8}: ssa.OpLeq8, 1429 opAndType{OLE, TUINT8}: ssa.OpLeq8U, 1430 opAndType{OLE, TINT16}: ssa.OpLeq16, 1431 opAndType{OLE, TUINT16}: ssa.OpLeq16U, 1432 opAndType{OLE, TINT32}: ssa.OpLeq32, 1433 opAndType{OLE, TUINT32}: ssa.OpLeq32U, 1434 opAndType{OLE, TINT64}: ssa.OpLeq64, 1435 opAndType{OLE, TUINT64}: ssa.OpLeq64U, 1436 opAndType{OLE, TFLOAT64}: ssa.OpLeq64F, 1437 opAndType{OLE, TFLOAT32}: ssa.OpLeq32F, 1438 1439 opAndType{OGE, TINT8}: ssa.OpGeq8, 1440 opAndType{OGE, TUINT8}: ssa.OpGeq8U, 1441 opAndType{OGE, TINT16}: ssa.OpGeq16, 1442 opAndType{OGE, TUINT16}: ssa.OpGeq16U, 1443 opAndType{OGE, TINT32}: ssa.OpGeq32, 1444 opAndType{OGE, TUINT32}: ssa.OpGeq32U, 1445 opAndType{OGE, TINT64}: ssa.OpGeq64, 1446 opAndType{OGE, TUINT64}: ssa.OpGeq64U, 1447 opAndType{OGE, TFLOAT64}: ssa.OpGeq64F, 1448 opAndType{OGE, TFLOAT32}: ssa.OpGeq32F, 1449 } 1450 1451 func (s *state) concreteEtype(t *types.Type) types.EType { 1452 e := t.Etype 1453 switch e { 1454 default: 1455 return e 1456 case TINT: 1457 if s.config.PtrSize == 8 { 1458 return TINT64 1459 } 1460 return TINT32 1461 case TUINT: 1462 if s.config.PtrSize == 8 { 1463 return TUINT64 1464 } 1465 return TUINT32 1466 case TUINTPTR: 1467 if s.config.PtrSize == 8 { 1468 return TUINT64 1469 } 1470 return TUINT32 1471 } 1472 } 1473 1474 func (s *state) ssaOp(op Op, t *types.Type) ssa.Op { 1475 etype := s.concreteEtype(t) 1476 x, ok := opToSSA[opAndType{op, etype}] 1477 if !ok { 1478 s.Fatalf("unhandled binary op %v %s", op, etype) 1479 } 1480 return x 1481 } 1482 1483 func floatForComplex(t *types.Type) *types.Type { 1484 if t.Size() == 8 { 1485 return types.Types[TFLOAT32] 1486 } else { 1487 return types.Types[TFLOAT64] 1488 } 1489 } 1490 1491 type opAndTwoTypes struct { 1492 op Op 1493 etype1 types.EType 1494 etype2 types.EType 1495 } 1496 1497 type twoTypes struct { 1498 etype1 types.EType 1499 etype2 types.EType 1500 } 1501 1502 type twoOpsAndType struct { 1503 op1 ssa.Op 1504 op2 ssa.Op 1505 intermediateType types.EType 1506 } 1507 1508 var fpConvOpToSSA = map[twoTypes]twoOpsAndType{ 1509 1510 twoTypes{TINT8, TFLOAT32}: twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to32F, TINT32}, 1511 twoTypes{TINT16, TFLOAT32}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to32F, TINT32}, 1512 twoTypes{TINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to32F, TINT32}, 1513 twoTypes{TINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to32F, TINT64}, 1514 1515 twoTypes{TINT8, TFLOAT64}: twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to64F, TINT32}, 1516 twoTypes{TINT16, TFLOAT64}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to64F, TINT32}, 1517 twoTypes{TINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to64F, TINT32}, 1518 twoTypes{TINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to64F, TINT64}, 1519 1520 twoTypes{TFLOAT32, TINT8}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32}, 1521 twoTypes{TFLOAT32, TINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32}, 1522 twoTypes{TFLOAT32, TINT32}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpCopy, TINT32}, 1523 twoTypes{TFLOAT32, TINT64}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpCopy, TINT64}, 1524 1525 twoTypes{TFLOAT64, TINT8}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32}, 1526 twoTypes{TFLOAT64, TINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32}, 1527 twoTypes{TFLOAT64, TINT32}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpCopy, TINT32}, 1528 twoTypes{TFLOAT64, TINT64}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpCopy, TINT64}, 1529 // unsigned 1530 twoTypes{TUINT8, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to32F, TINT32}, 1531 twoTypes{TUINT16, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to32F, TINT32}, 1532 twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to32F, TINT64}, // go wide to dodge unsigned 1533 twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64}, // Cvt64Uto32F, branchy code expansion instead 1534 1535 twoTypes{TUINT8, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to64F, TINT32}, 1536 twoTypes{TUINT16, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to64F, TINT32}, 1537 twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to64F, TINT64}, // go wide to dodge unsigned 1538 twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64}, // Cvt64Uto64F, branchy code expansion instead 1539 1540 twoTypes{TFLOAT32, TUINT8}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32}, 1541 twoTypes{TFLOAT32, TUINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32}, 1542 twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned 1543 twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64}, // Cvt32Fto64U, branchy code expansion instead 1544 1545 twoTypes{TFLOAT64, TUINT8}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32}, 1546 twoTypes{TFLOAT64, TUINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32}, 1547 twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned 1548 twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64}, // Cvt64Fto64U, branchy code expansion instead 1549 1550 // float 1551 twoTypes{TFLOAT64, TFLOAT32}: twoOpsAndType{ssa.OpCvt64Fto32F, ssa.OpCopy, TFLOAT32}, 1552 twoTypes{TFLOAT64, TFLOAT64}: twoOpsAndType{ssa.OpRound64F, ssa.OpCopy, TFLOAT64}, 1553 twoTypes{TFLOAT32, TFLOAT32}: twoOpsAndType{ssa.OpRound32F, ssa.OpCopy, TFLOAT32}, 1554 twoTypes{TFLOAT32, TFLOAT64}: twoOpsAndType{ssa.OpCvt32Fto64F, ssa.OpCopy, TFLOAT64}, 1555 } 1556 1557 // this map is used only for 32-bit arch, and only includes the difference 1558 // on 32-bit arch, don't use int64<->float conversion for uint32 1559 var fpConvOpToSSA32 = map[twoTypes]twoOpsAndType{ 1560 twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto32F, TUINT32}, 1561 twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto64F, TUINT32}, 1562 twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto32U, ssa.OpCopy, TUINT32}, 1563 twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto32U, ssa.OpCopy, TUINT32}, 1564 } 1565 1566 // uint64<->float conversions, only on machines that have intructions for that 1567 var uint64fpConvOpToSSA = map[twoTypes]twoOpsAndType{ 1568 twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto32F, TUINT64}, 1569 twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto64F, TUINT64}, 1570 twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpCvt32Fto64U, ssa.OpCopy, TUINT64}, 1571 twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpCvt64Fto64U, ssa.OpCopy, TUINT64}, 1572 } 1573 1574 var shiftOpToSSA = map[opAndTwoTypes]ssa.Op{ 1575 opAndTwoTypes{OLSH, TINT8, TUINT8}: ssa.OpLsh8x8, 1576 opAndTwoTypes{OLSH, TUINT8, TUINT8}: ssa.OpLsh8x8, 1577 opAndTwoTypes{OLSH, TINT8, TUINT16}: ssa.OpLsh8x16, 1578 opAndTwoTypes{OLSH, TUINT8, TUINT16}: ssa.OpLsh8x16, 1579 opAndTwoTypes{OLSH, TINT8, TUINT32}: ssa.OpLsh8x32, 1580 opAndTwoTypes{OLSH, TUINT8, TUINT32}: ssa.OpLsh8x32, 1581 opAndTwoTypes{OLSH, TINT8, TUINT64}: ssa.OpLsh8x64, 1582 opAndTwoTypes{OLSH, TUINT8, TUINT64}: ssa.OpLsh8x64, 1583 1584 opAndTwoTypes{OLSH, TINT16, TUINT8}: ssa.OpLsh16x8, 1585 opAndTwoTypes{OLSH, TUINT16, TUINT8}: ssa.OpLsh16x8, 1586 opAndTwoTypes{OLSH, TINT16, TUINT16}: ssa.OpLsh16x16, 1587 opAndTwoTypes{OLSH, TUINT16, TUINT16}: ssa.OpLsh16x16, 1588 opAndTwoTypes{OLSH, TINT16, TUINT32}: ssa.OpLsh16x32, 1589 opAndTwoTypes{OLSH, TUINT16, TUINT32}: ssa.OpLsh16x32, 1590 opAndTwoTypes{OLSH, TINT16, TUINT64}: ssa.OpLsh16x64, 1591 opAndTwoTypes{OLSH, TUINT16, TUINT64}: ssa.OpLsh16x64, 1592 1593 opAndTwoTypes{OLSH, TINT32, TUINT8}: ssa.OpLsh32x8, 1594 opAndTwoTypes{OLSH, TUINT32, TUINT8}: ssa.OpLsh32x8, 1595 opAndTwoTypes{OLSH, TINT32, TUINT16}: ssa.OpLsh32x16, 1596 opAndTwoTypes{OLSH, TUINT32, TUINT16}: ssa.OpLsh32x16, 1597 opAndTwoTypes{OLSH, TINT32, TUINT32}: ssa.OpLsh32x32, 1598 opAndTwoTypes{OLSH, TUINT32, TUINT32}: ssa.OpLsh32x32, 1599 opAndTwoTypes{OLSH, TINT32, TUINT64}: ssa.OpLsh32x64, 1600 opAndTwoTypes{OLSH, TUINT32, TUINT64}: ssa.OpLsh32x64, 1601 1602 opAndTwoTypes{OLSH, TINT64, TUINT8}: ssa.OpLsh64x8, 1603 opAndTwoTypes{OLSH, TUINT64, TUINT8}: ssa.OpLsh64x8, 1604 opAndTwoTypes{OLSH, TINT64, TUINT16}: ssa.OpLsh64x16, 1605 opAndTwoTypes{OLSH, TUINT64, TUINT16}: ssa.OpLsh64x16, 1606 opAndTwoTypes{OLSH, TINT64, TUINT32}: ssa.OpLsh64x32, 1607 opAndTwoTypes{OLSH, TUINT64, TUINT32}: ssa.OpLsh64x32, 1608 opAndTwoTypes{OLSH, TINT64, TUINT64}: ssa.OpLsh64x64, 1609 opAndTwoTypes{OLSH, TUINT64, TUINT64}: ssa.OpLsh64x64, 1610 1611 opAndTwoTypes{ORSH, TINT8, TUINT8}: ssa.OpRsh8x8, 1612 opAndTwoTypes{ORSH, TUINT8, TUINT8}: ssa.OpRsh8Ux8, 1613 opAndTwoTypes{ORSH, TINT8, TUINT16}: ssa.OpRsh8x16, 1614 opAndTwoTypes{ORSH, TUINT8, TUINT16}: ssa.OpRsh8Ux16, 1615 opAndTwoTypes{ORSH, TINT8, TUINT32}: ssa.OpRsh8x32, 1616 opAndTwoTypes{ORSH, TUINT8, TUINT32}: ssa.OpRsh8Ux32, 1617 opAndTwoTypes{ORSH, TINT8, TUINT64}: ssa.OpRsh8x64, 1618 opAndTwoTypes{ORSH, TUINT8, TUINT64}: ssa.OpRsh8Ux64, 1619 1620 opAndTwoTypes{ORSH, TINT16, TUINT8}: ssa.OpRsh16x8, 1621 opAndTwoTypes{ORSH, TUINT16, TUINT8}: ssa.OpRsh16Ux8, 1622 opAndTwoTypes{ORSH, TINT16, TUINT16}: ssa.OpRsh16x16, 1623 opAndTwoTypes{ORSH, TUINT16, TUINT16}: ssa.OpRsh16Ux16, 1624 opAndTwoTypes{ORSH, TINT16, TUINT32}: ssa.OpRsh16x32, 1625 opAndTwoTypes{ORSH, TUINT16, TUINT32}: ssa.OpRsh16Ux32, 1626 opAndTwoTypes{ORSH, TINT16, TUINT64}: ssa.OpRsh16x64, 1627 opAndTwoTypes{ORSH, TUINT16, TUINT64}: ssa.OpRsh16Ux64, 1628 1629 opAndTwoTypes{ORSH, TINT32, TUINT8}: ssa.OpRsh32x8, 1630 opAndTwoTypes{ORSH, TUINT32, TUINT8}: ssa.OpRsh32Ux8, 1631 opAndTwoTypes{ORSH, TINT32, TUINT16}: ssa.OpRsh32x16, 1632 opAndTwoTypes{ORSH, TUINT32, TUINT16}: ssa.OpRsh32Ux16, 1633 opAndTwoTypes{ORSH, TINT32, TUINT32}: ssa.OpRsh32x32, 1634 opAndTwoTypes{ORSH, TUINT32, TUINT32}: ssa.OpRsh32Ux32, 1635 opAndTwoTypes{ORSH, TINT32, TUINT64}: ssa.OpRsh32x64, 1636 opAndTwoTypes{ORSH, TUINT32, TUINT64}: ssa.OpRsh32Ux64, 1637 1638 opAndTwoTypes{ORSH, TINT64, TUINT8}: ssa.OpRsh64x8, 1639 opAndTwoTypes{ORSH, TUINT64, TUINT8}: ssa.OpRsh64Ux8, 1640 opAndTwoTypes{ORSH, TINT64, TUINT16}: ssa.OpRsh64x16, 1641 opAndTwoTypes{ORSH, TUINT64, TUINT16}: ssa.OpRsh64Ux16, 1642 opAndTwoTypes{ORSH, TINT64, TUINT32}: ssa.OpRsh64x32, 1643 opAndTwoTypes{ORSH, TUINT64, TUINT32}: ssa.OpRsh64Ux32, 1644 opAndTwoTypes{ORSH, TINT64, TUINT64}: ssa.OpRsh64x64, 1645 opAndTwoTypes{ORSH, TUINT64, TUINT64}: ssa.OpRsh64Ux64, 1646 } 1647 1648 func (s *state) ssaShiftOp(op Op, t *types.Type, u *types.Type) ssa.Op { 1649 etype1 := s.concreteEtype(t) 1650 etype2 := s.concreteEtype(u) 1651 x, ok := shiftOpToSSA[opAndTwoTypes{op, etype1, etype2}] 1652 if !ok { 1653 s.Fatalf("unhandled shift op %v etype=%s/%s", op, etype1, etype2) 1654 } 1655 return x 1656 } 1657 1658 // expr converts the expression n to ssa, adds it to s and returns the ssa result. 1659 func (s *state) expr(n *Node) *ssa.Value { 1660 if !(n.Op == ONAME || n.Op == OLITERAL && n.Sym != nil) { 1661 // ONAMEs and named OLITERALs have the line number 1662 // of the decl, not the use. See issue 14742. 1663 s.pushLine(n.Pos) 1664 defer s.popLine() 1665 } 1666 1667 s.stmtList(n.Ninit) 1668 switch n.Op { 1669 case OBYTES2STRTMP: 1670 slice := s.expr(n.Left) 1671 ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, slice) 1672 len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice) 1673 return s.newValue2(ssa.OpStringMake, n.Type, ptr, len) 1674 case OSTR2BYTESTMP: 1675 str := s.expr(n.Left) 1676 ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, str) 1677 len := s.newValue1(ssa.OpStringLen, types.Types[TINT], str) 1678 return s.newValue3(ssa.OpSliceMake, n.Type, ptr, len, len) 1679 case OCFUNC: 1680 aux := n.Left.Sym.Linksym() 1681 return s.entryNewValue1A(ssa.OpAddr, n.Type, aux, s.sb) 1682 case ONAME: 1683 if n.Class() == PFUNC { 1684 // "value" of a function is the address of the function's closure 1685 sym := funcsym(n.Sym).Linksym() 1686 return s.entryNewValue1A(ssa.OpAddr, types.NewPtr(n.Type), sym, s.sb) 1687 } 1688 if s.canSSA(n) { 1689 return s.variable(n, n.Type) 1690 } 1691 addr := s.addr(n, false) 1692 return s.load(n.Type, addr) 1693 case OCLOSUREVAR: 1694 addr := s.addr(n, false) 1695 return s.load(n.Type, addr) 1696 case OLITERAL: 1697 switch u := n.Val().U.(type) { 1698 case *Mpint: 1699 i := u.Int64() 1700 switch n.Type.Size() { 1701 case 1: 1702 return s.constInt8(n.Type, int8(i)) 1703 case 2: 1704 return s.constInt16(n.Type, int16(i)) 1705 case 4: 1706 return s.constInt32(n.Type, int32(i)) 1707 case 8: 1708 return s.constInt64(n.Type, i) 1709 default: 1710 s.Fatalf("bad integer size %d", n.Type.Size()) 1711 return nil 1712 } 1713 case string: 1714 if u == "" { 1715 return s.constEmptyString(n.Type) 1716 } 1717 return s.entryNewValue0A(ssa.OpConstString, n.Type, u) 1718 case bool: 1719 return s.constBool(u) 1720 case *NilVal: 1721 t := n.Type 1722 switch { 1723 case t.IsSlice(): 1724 return s.constSlice(t) 1725 case t.IsInterface(): 1726 return s.constInterface(t) 1727 default: 1728 return s.constNil(t) 1729 } 1730 case *Mpflt: 1731 switch n.Type.Size() { 1732 case 4: 1733 return s.constFloat32(n.Type, u.Float32()) 1734 case 8: 1735 return s.constFloat64(n.Type, u.Float64()) 1736 default: 1737 s.Fatalf("bad float size %d", n.Type.Size()) 1738 return nil 1739 } 1740 case *Mpcplx: 1741 r := &u.Real 1742 i := &u.Imag 1743 switch n.Type.Size() { 1744 case 8: 1745 pt := types.Types[TFLOAT32] 1746 return s.newValue2(ssa.OpComplexMake, n.Type, 1747 s.constFloat32(pt, r.Float32()), 1748 s.constFloat32(pt, i.Float32())) 1749 case 16: 1750 pt := types.Types[TFLOAT64] 1751 return s.newValue2(ssa.OpComplexMake, n.Type, 1752 s.constFloat64(pt, r.Float64()), 1753 s.constFloat64(pt, i.Float64())) 1754 default: 1755 s.Fatalf("bad float size %d", n.Type.Size()) 1756 return nil 1757 } 1758 1759 default: 1760 s.Fatalf("unhandled OLITERAL %v", n.Val().Ctype()) 1761 return nil 1762 } 1763 case OCONVNOP: 1764 to := n.Type 1765 from := n.Left.Type 1766 1767 // Assume everything will work out, so set up our return value. 1768 // Anything interesting that happens from here is a fatal. 1769 x := s.expr(n.Left) 1770 1771 // Special case for not confusing GC and liveness. 1772 // We don't want pointers accidentally classified 1773 // as not-pointers or vice-versa because of copy 1774 // elision. 1775 if to.IsPtrShaped() != from.IsPtrShaped() { 1776 return s.newValue2(ssa.OpConvert, to, x, s.mem()) 1777 } 1778 1779 v := s.newValue1(ssa.OpCopy, to, x) // ensure that v has the right type 1780 1781 // CONVNOP closure 1782 if to.Etype == TFUNC && from.IsPtrShaped() { 1783 return v 1784 } 1785 1786 // named <--> unnamed type or typed <--> untyped const 1787 if from.Etype == to.Etype { 1788 return v 1789 } 1790 1791 // unsafe.Pointer <--> *T 1792 if to.Etype == TUNSAFEPTR && from.IsPtrShaped() || from.Etype == TUNSAFEPTR && to.IsPtrShaped() { 1793 return v 1794 } 1795 1796 // map <--> *hmap 1797 if to.Etype == TMAP && from.IsPtr() && 1798 to.MapType().Hmap == from.Elem() { 1799 return v 1800 } 1801 1802 dowidth(from) 1803 dowidth(to) 1804 if from.Width != to.Width { 1805 s.Fatalf("CONVNOP width mismatch %v (%d) -> %v (%d)\n", from, from.Width, to, to.Width) 1806 return nil 1807 } 1808 if etypesign(from.Etype) != etypesign(to.Etype) { 1809 s.Fatalf("CONVNOP sign mismatch %v (%s) -> %v (%s)\n", from, from.Etype, to, to.Etype) 1810 return nil 1811 } 1812 1813 if instrumenting { 1814 // These appear to be fine, but they fail the 1815 // integer constraint below, so okay them here. 1816 // Sample non-integer conversion: map[string]string -> *uint8 1817 return v 1818 } 1819 1820 if etypesign(from.Etype) == 0 { 1821 s.Fatalf("CONVNOP unrecognized non-integer %v -> %v\n", from, to) 1822 return nil 1823 } 1824 1825 // integer, same width, same sign 1826 return v 1827 1828 case OCONV: 1829 x := s.expr(n.Left) 1830 ft := n.Left.Type // from type 1831 tt := n.Type // to type 1832 if ft.IsBoolean() && tt.IsKind(TUINT8) { 1833 // Bool -> uint8 is generated internally when indexing into runtime.staticbyte. 1834 return s.newValue1(ssa.OpCopy, n.Type, x) 1835 } 1836 if ft.IsInteger() && tt.IsInteger() { 1837 var op ssa.Op 1838 if tt.Size() == ft.Size() { 1839 op = ssa.OpCopy 1840 } else if tt.Size() < ft.Size() { 1841 // truncation 1842 switch 10*ft.Size() + tt.Size() { 1843 case 21: 1844 op = ssa.OpTrunc16to8 1845 case 41: 1846 op = ssa.OpTrunc32to8 1847 case 42: 1848 op = ssa.OpTrunc32to16 1849 case 81: 1850 op = ssa.OpTrunc64to8 1851 case 82: 1852 op = ssa.OpTrunc64to16 1853 case 84: 1854 op = ssa.OpTrunc64to32 1855 default: 1856 s.Fatalf("weird integer truncation %v -> %v", ft, tt) 1857 } 1858 } else if ft.IsSigned() { 1859 // sign extension 1860 switch 10*ft.Size() + tt.Size() { 1861 case 12: 1862 op = ssa.OpSignExt8to16 1863 case 14: 1864 op = ssa.OpSignExt8to32 1865 case 18: 1866 op = ssa.OpSignExt8to64 1867 case 24: 1868 op = ssa.OpSignExt16to32 1869 case 28: 1870 op = ssa.OpSignExt16to64 1871 case 48: 1872 op = ssa.OpSignExt32to64 1873 default: 1874 s.Fatalf("bad integer sign extension %v -> %v", ft, tt) 1875 } 1876 } else { 1877 // zero extension 1878 switch 10*ft.Size() + tt.Size() { 1879 case 12: 1880 op = ssa.OpZeroExt8to16 1881 case 14: 1882 op = ssa.OpZeroExt8to32 1883 case 18: 1884 op = ssa.OpZeroExt8to64 1885 case 24: 1886 op = ssa.OpZeroExt16to32 1887 case 28: 1888 op = ssa.OpZeroExt16to64 1889 case 48: 1890 op = ssa.OpZeroExt32to64 1891 default: 1892 s.Fatalf("weird integer sign extension %v -> %v", ft, tt) 1893 } 1894 } 1895 return s.newValue1(op, n.Type, x) 1896 } 1897 1898 if ft.IsFloat() || tt.IsFloat() { 1899 conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}] 1900 if s.config.RegSize == 4 && thearch.LinkArch.Family != sys.MIPS && !s.softFloat { 1901 if conv1, ok1 := fpConvOpToSSA32[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 { 1902 conv = conv1 1903 } 1904 } 1905 if thearch.LinkArch.Family == sys.ARM64 || thearch.LinkArch.Family == sys.Wasm || s.softFloat { 1906 if conv1, ok1 := uint64fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 { 1907 conv = conv1 1908 } 1909 } 1910 1911 if thearch.LinkArch.Family == sys.MIPS && !s.softFloat { 1912 if ft.Size() == 4 && ft.IsInteger() && !ft.IsSigned() { 1913 // tt is float32 or float64, and ft is also unsigned 1914 if tt.Size() == 4 { 1915 return s.uint32Tofloat32(n, x, ft, tt) 1916 } 1917 if tt.Size() == 8 { 1918 return s.uint32Tofloat64(n, x, ft, tt) 1919 } 1920 } else if tt.Size() == 4 && tt.IsInteger() && !tt.IsSigned() { 1921 // ft is float32 or float64, and tt is unsigned integer 1922 if ft.Size() == 4 { 1923 return s.float32ToUint32(n, x, ft, tt) 1924 } 1925 if ft.Size() == 8 { 1926 return s.float64ToUint32(n, x, ft, tt) 1927 } 1928 } 1929 } 1930 1931 if !ok { 1932 s.Fatalf("weird float conversion %v -> %v", ft, tt) 1933 } 1934 op1, op2, it := conv.op1, conv.op2, conv.intermediateType 1935 1936 if op1 != ssa.OpInvalid && op2 != ssa.OpInvalid { 1937 // normal case, not tripping over unsigned 64 1938 if op1 == ssa.OpCopy { 1939 if op2 == ssa.OpCopy { 1940 return x 1941 } 1942 return s.newValueOrSfCall1(op2, n.Type, x) 1943 } 1944 if op2 == ssa.OpCopy { 1945 return s.newValueOrSfCall1(op1, n.Type, x) 1946 } 1947 return s.newValueOrSfCall1(op2, n.Type, s.newValueOrSfCall1(op1, types.Types[it], x)) 1948 } 1949 // Tricky 64-bit unsigned cases. 1950 if ft.IsInteger() { 1951 // tt is float32 or float64, and ft is also unsigned 1952 if tt.Size() == 4 { 1953 return s.uint64Tofloat32(n, x, ft, tt) 1954 } 1955 if tt.Size() == 8 { 1956 return s.uint64Tofloat64(n, x, ft, tt) 1957 } 1958 s.Fatalf("weird unsigned integer to float conversion %v -> %v", ft, tt) 1959 } 1960 // ft is float32 or float64, and tt is unsigned integer 1961 if ft.Size() == 4 { 1962 return s.float32ToUint64(n, x, ft, tt) 1963 } 1964 if ft.Size() == 8 { 1965 return s.float64ToUint64(n, x, ft, tt) 1966 } 1967 s.Fatalf("weird float to unsigned integer conversion %v -> %v", ft, tt) 1968 return nil 1969 } 1970 1971 if ft.IsComplex() && tt.IsComplex() { 1972 var op ssa.Op 1973 if ft.Size() == tt.Size() { 1974 switch ft.Size() { 1975 case 8: 1976 op = ssa.OpRound32F 1977 case 16: 1978 op = ssa.OpRound64F 1979 default: 1980 s.Fatalf("weird complex conversion %v -> %v", ft, tt) 1981 } 1982 } else if ft.Size() == 8 && tt.Size() == 16 { 1983 op = ssa.OpCvt32Fto64F 1984 } else if ft.Size() == 16 && tt.Size() == 8 { 1985 op = ssa.OpCvt64Fto32F 1986 } else { 1987 s.Fatalf("weird complex conversion %v -> %v", ft, tt) 1988 } 1989 ftp := floatForComplex(ft) 1990 ttp := floatForComplex(tt) 1991 return s.newValue2(ssa.OpComplexMake, tt, 1992 s.newValueOrSfCall1(op, ttp, s.newValue1(ssa.OpComplexReal, ftp, x)), 1993 s.newValueOrSfCall1(op, ttp, s.newValue1(ssa.OpComplexImag, ftp, x))) 1994 } 1995 1996 s.Fatalf("unhandled OCONV %s -> %s", n.Left.Type.Etype, n.Type.Etype) 1997 return nil 1998 1999 case ODOTTYPE: 2000 res, _ := s.dottype(n, false) 2001 return res 2002 2003 // binary ops 2004 case OLT, OEQ, ONE, OLE, OGE, OGT: 2005 a := s.expr(n.Left) 2006 b := s.expr(n.Right) 2007 if n.Left.Type.IsComplex() { 2008 pt := floatForComplex(n.Left.Type) 2009 op := s.ssaOp(OEQ, pt) 2010 r := s.newValueOrSfCall2(op, types.Types[TBOOL], s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)) 2011 i := s.newValueOrSfCall2(op, types.Types[TBOOL], s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b)) 2012 c := s.newValue2(ssa.OpAndB, types.Types[TBOOL], r, i) 2013 switch n.Op { 2014 case OEQ: 2015 return c 2016 case ONE: 2017 return s.newValue1(ssa.OpNot, types.Types[TBOOL], c) 2018 default: 2019 s.Fatalf("ordered complex compare %v", n.Op) 2020 } 2021 } 2022 if n.Left.Type.IsFloat() { 2023 return s.newValueOrSfCall2(s.ssaOp(n.Op, n.Left.Type), types.Types[TBOOL], a, b) 2024 } 2025 return s.newValue2(s.ssaOp(n.Op, n.Left.Type), types.Types[TBOOL], a, b) 2026 case OMUL: 2027 a := s.expr(n.Left) 2028 b := s.expr(n.Right) 2029 if n.Type.IsComplex() { 2030 mulop := ssa.OpMul64F 2031 addop := ssa.OpAdd64F 2032 subop := ssa.OpSub64F 2033 pt := floatForComplex(n.Type) // Could be Float32 or Float64 2034 wt := types.Types[TFLOAT64] // Compute in Float64 to minimize cancelation error 2035 2036 areal := s.newValue1(ssa.OpComplexReal, pt, a) 2037 breal := s.newValue1(ssa.OpComplexReal, pt, b) 2038 aimag := s.newValue1(ssa.OpComplexImag, pt, a) 2039 bimag := s.newValue1(ssa.OpComplexImag, pt, b) 2040 2041 if pt != wt { // Widen for calculation 2042 areal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, areal) 2043 breal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, breal) 2044 aimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, aimag) 2045 bimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, bimag) 2046 } 2047 2048 xreal := s.newValueOrSfCall2(subop, wt, s.newValueOrSfCall2(mulop, wt, areal, breal), s.newValueOrSfCall2(mulop, wt, aimag, bimag)) 2049 ximag := s.newValueOrSfCall2(addop, wt, s.newValueOrSfCall2(mulop, wt, areal, bimag), s.newValueOrSfCall2(mulop, wt, aimag, breal)) 2050 2051 if pt != wt { // Narrow to store back 2052 xreal = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, xreal) 2053 ximag = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, ximag) 2054 } 2055 2056 return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag) 2057 } 2058 2059 if n.Type.IsFloat() { 2060 return s.newValueOrSfCall2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 2061 } 2062 2063 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 2064 2065 case ODIV: 2066 a := s.expr(n.Left) 2067 b := s.expr(n.Right) 2068 if n.Type.IsComplex() { 2069 // TODO this is not executed because the front-end substitutes a runtime call. 2070 // That probably ought to change; with modest optimization the widen/narrow 2071 // conversions could all be elided in larger expression trees. 2072 mulop := ssa.OpMul64F 2073 addop := ssa.OpAdd64F 2074 subop := ssa.OpSub64F 2075 divop := ssa.OpDiv64F 2076 pt := floatForComplex(n.Type) // Could be Float32 or Float64 2077 wt := types.Types[TFLOAT64] // Compute in Float64 to minimize cancelation error 2078 2079 areal := s.newValue1(ssa.OpComplexReal, pt, a) 2080 breal := s.newValue1(ssa.OpComplexReal, pt, b) 2081 aimag := s.newValue1(ssa.OpComplexImag, pt, a) 2082 bimag := s.newValue1(ssa.OpComplexImag, pt, b) 2083 2084 if pt != wt { // Widen for calculation 2085 areal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, areal) 2086 breal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, breal) 2087 aimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, aimag) 2088 bimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, bimag) 2089 } 2090 2091 denom := s.newValueOrSfCall2(addop, wt, s.newValueOrSfCall2(mulop, wt, breal, breal), s.newValueOrSfCall2(mulop, wt, bimag, bimag)) 2092 xreal := s.newValueOrSfCall2(addop, wt, s.newValueOrSfCall2(mulop, wt, areal, breal), s.newValueOrSfCall2(mulop, wt, aimag, bimag)) 2093 ximag := s.newValueOrSfCall2(subop, wt, s.newValueOrSfCall2(mulop, wt, aimag, breal), s.newValueOrSfCall2(mulop, wt, areal, bimag)) 2094 2095 // TODO not sure if this is best done in wide precision or narrow 2096 // Double-rounding might be an issue. 2097 // Note that the pre-SSA implementation does the entire calculation 2098 // in wide format, so wide is compatible. 2099 xreal = s.newValueOrSfCall2(divop, wt, xreal, denom) 2100 ximag = s.newValueOrSfCall2(divop, wt, ximag, denom) 2101 2102 if pt != wt { // Narrow to store back 2103 xreal = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, xreal) 2104 ximag = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, ximag) 2105 } 2106 return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag) 2107 } 2108 if n.Type.IsFloat() { 2109 return s.newValueOrSfCall2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 2110 } 2111 return s.intDivide(n, a, b) 2112 case OMOD: 2113 a := s.expr(n.Left) 2114 b := s.expr(n.Right) 2115 return s.intDivide(n, a, b) 2116 case OADD, OSUB: 2117 a := s.expr(n.Left) 2118 b := s.expr(n.Right) 2119 if n.Type.IsComplex() { 2120 pt := floatForComplex(n.Type) 2121 op := s.ssaOp(n.Op, pt) 2122 return s.newValue2(ssa.OpComplexMake, n.Type, 2123 s.newValueOrSfCall2(op, pt, s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)), 2124 s.newValueOrSfCall2(op, pt, s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b))) 2125 } 2126 if n.Type.IsFloat() { 2127 return s.newValueOrSfCall2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 2128 } 2129 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 2130 case OAND, OOR, OXOR: 2131 a := s.expr(n.Left) 2132 b := s.expr(n.Right) 2133 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 2134 case OLSH, ORSH: 2135 a := s.expr(n.Left) 2136 b := s.expr(n.Right) 2137 return s.newValue2(s.ssaShiftOp(n.Op, n.Type, n.Right.Type), a.Type, a, b) 2138 case OANDAND, OOROR: 2139 // To implement OANDAND (and OOROR), we introduce a 2140 // new temporary variable to hold the result. The 2141 // variable is associated with the OANDAND node in the 2142 // s.vars table (normally variables are only 2143 // associated with ONAME nodes). We convert 2144 // A && B 2145 // to 2146 // var = A 2147 // if var { 2148 // var = B 2149 // } 2150 // Using var in the subsequent block introduces the 2151 // necessary phi variable. 2152 el := s.expr(n.Left) 2153 s.vars[n] = el 2154 2155 b := s.endBlock() 2156 b.Kind = ssa.BlockIf 2157 b.SetControl(el) 2158 // In theory, we should set b.Likely here based on context. 2159 // However, gc only gives us likeliness hints 2160 // in a single place, for plain OIF statements, 2161 // and passing around context is finnicky, so don't bother for now. 2162 2163 bRight := s.f.NewBlock(ssa.BlockPlain) 2164 bResult := s.f.NewBlock(ssa.BlockPlain) 2165 if n.Op == OANDAND { 2166 b.AddEdgeTo(bRight) 2167 b.AddEdgeTo(bResult) 2168 } else if n.Op == OOROR { 2169 b.AddEdgeTo(bResult) 2170 b.AddEdgeTo(bRight) 2171 } 2172 2173 s.startBlock(bRight) 2174 er := s.expr(n.Right) 2175 s.vars[n] = er 2176 2177 b = s.endBlock() 2178 b.AddEdgeTo(bResult) 2179 2180 s.startBlock(bResult) 2181 return s.variable(n, types.Types[TBOOL]) 2182 case OCOMPLEX: 2183 r := s.expr(n.Left) 2184 i := s.expr(n.Right) 2185 return s.newValue2(ssa.OpComplexMake, n.Type, r, i) 2186 2187 // unary ops 2188 case ONEG: 2189 a := s.expr(n.Left) 2190 if n.Type.IsComplex() { 2191 tp := floatForComplex(n.Type) 2192 negop := s.ssaOp(n.Op, tp) 2193 return s.newValue2(ssa.OpComplexMake, n.Type, 2194 s.newValue1(negop, tp, s.newValue1(ssa.OpComplexReal, tp, a)), 2195 s.newValue1(negop, tp, s.newValue1(ssa.OpComplexImag, tp, a))) 2196 } 2197 return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a) 2198 case ONOT, OBITNOT: 2199 a := s.expr(n.Left) 2200 return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a) 2201 case OIMAG, OREAL: 2202 a := s.expr(n.Left) 2203 return s.newValue1(s.ssaOp(n.Op, n.Left.Type), n.Type, a) 2204 case OPLUS: 2205 return s.expr(n.Left) 2206 2207 case OADDR: 2208 return s.addr(n.Left, n.Bounded()) 2209 2210 case OINDREGSP: 2211 addr := s.constOffPtrSP(types.NewPtr(n.Type), n.Xoffset) 2212 return s.load(n.Type, addr) 2213 2214 case ODEREF: 2215 p := s.exprPtr(n.Left, false, n.Pos) 2216 return s.load(n.Type, p) 2217 2218 case ODOT: 2219 if n.Left.Op == OSTRUCTLIT { 2220 // All literals with nonzero fields have already been 2221 // rewritten during walk. Any that remain are just T{} 2222 // or equivalents. Use the zero value. 2223 if !isZero(n.Left) { 2224 Fatalf("literal with nonzero value in SSA: %v", n.Left) 2225 } 2226 return s.zeroVal(n.Type) 2227 } 2228 // If n is addressable and can't be represented in 2229 // SSA, then load just the selected field. This 2230 // prevents false memory dependencies in race/msan 2231 // instrumentation. 2232 if islvalue(n) && !s.canSSA(n) { 2233 p := s.addr(n, false) 2234 return s.load(n.Type, p) 2235 } 2236 v := s.expr(n.Left) 2237 return s.newValue1I(ssa.OpStructSelect, n.Type, int64(fieldIdx(n)), v) 2238 2239 case ODOTPTR: 2240 p := s.exprPtr(n.Left, false, n.Pos) 2241 p = s.newValue1I(ssa.OpOffPtr, types.NewPtr(n.Type), n.Xoffset, p) 2242 return s.load(n.Type, p) 2243 2244 case OINDEX: 2245 switch { 2246 case n.Left.Type.IsString(): 2247 if n.Bounded() && Isconst(n.Left, CTSTR) && Isconst(n.Right, CTINT) { 2248 // Replace "abc"[1] with 'b'. 2249 // Delayed until now because "abc"[1] is not an ideal constant. 2250 // See test/fixedbugs/issue11370.go. 2251 return s.newValue0I(ssa.OpConst8, types.Types[TUINT8], int64(int8(n.Left.Val().U.(string)[n.Right.Int64()]))) 2252 } 2253 a := s.expr(n.Left) 2254 i := s.expr(n.Right) 2255 i = s.extendIndex(i, panicindex) 2256 if !n.Bounded() { 2257 len := s.newValue1(ssa.OpStringLen, types.Types[TINT], a) 2258 s.boundsCheck(i, len) 2259 } 2260 ptrtyp := s.f.Config.Types.BytePtr 2261 ptr := s.newValue1(ssa.OpStringPtr, ptrtyp, a) 2262 if Isconst(n.Right, CTINT) { 2263 ptr = s.newValue1I(ssa.OpOffPtr, ptrtyp, n.Right.Int64(), ptr) 2264 } else { 2265 ptr = s.newValue2(ssa.OpAddPtr, ptrtyp, ptr, i) 2266 } 2267 return s.load(types.Types[TUINT8], ptr) 2268 case n.Left.Type.IsSlice(): 2269 p := s.addr(n, false) 2270 return s.load(n.Left.Type.Elem(), p) 2271 case n.Left.Type.IsArray(): 2272 if canSSAType(n.Left.Type) { 2273 // SSA can handle arrays of length at most 1. 2274 bound := n.Left.Type.NumElem() 2275 a := s.expr(n.Left) 2276 i := s.expr(n.Right) 2277 if bound == 0 { 2278 // Bounds check will never succeed. Might as well 2279 // use constants for the bounds check. 2280 z := s.constInt(types.Types[TINT], 0) 2281 s.boundsCheck(z, z) 2282 // The return value won't be live, return junk. 2283 return s.newValue0(ssa.OpUnknown, n.Type) 2284 } 2285 i = s.extendIndex(i, panicindex) 2286 if !n.Bounded() { 2287 s.boundsCheck(i, s.constInt(types.Types[TINT], bound)) 2288 } 2289 return s.newValue1I(ssa.OpArraySelect, n.Type, 0, a) 2290 } 2291 p := s.addr(n, false) 2292 return s.load(n.Left.Type.Elem(), p) 2293 default: 2294 s.Fatalf("bad type for index %v", n.Left.Type) 2295 return nil 2296 } 2297 2298 case OLEN, OCAP: 2299 switch { 2300 case n.Left.Type.IsSlice(): 2301 op := ssa.OpSliceLen 2302 if n.Op == OCAP { 2303 op = ssa.OpSliceCap 2304 } 2305 return s.newValue1(op, types.Types[TINT], s.expr(n.Left)) 2306 case n.Left.Type.IsString(): // string; not reachable for OCAP 2307 return s.newValue1(ssa.OpStringLen, types.Types[TINT], s.expr(n.Left)) 2308 case n.Left.Type.IsMap(), n.Left.Type.IsChan(): 2309 return s.referenceTypeBuiltin(n, s.expr(n.Left)) 2310 default: // array 2311 return s.constInt(types.Types[TINT], n.Left.Type.NumElem()) 2312 } 2313 2314 case OSPTR: 2315 a := s.expr(n.Left) 2316 if n.Left.Type.IsSlice() { 2317 return s.newValue1(ssa.OpSlicePtr, n.Type, a) 2318 } else { 2319 return s.newValue1(ssa.OpStringPtr, n.Type, a) 2320 } 2321 2322 case OITAB: 2323 a := s.expr(n.Left) 2324 return s.newValue1(ssa.OpITab, n.Type, a) 2325 2326 case OIDATA: 2327 a := s.expr(n.Left) 2328 return s.newValue1(ssa.OpIData, n.Type, a) 2329 2330 case OEFACE: 2331 tab := s.expr(n.Left) 2332 data := s.expr(n.Right) 2333 return s.newValue2(ssa.OpIMake, n.Type, tab, data) 2334 2335 case OSLICEHEADER: 2336 p := s.expr(n.Left) 2337 l := s.expr(n.List.First()) 2338 c := s.expr(n.List.Second()) 2339 return s.newValue3(ssa.OpSliceMake, n.Type, p, l, c) 2340 2341 case OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR: 2342 v := s.expr(n.Left) 2343 var i, j, k *ssa.Value 2344 low, high, max := n.SliceBounds() 2345 if low != nil { 2346 i = s.extendIndex(s.expr(low), panicslice) 2347 } 2348 if high != nil { 2349 j = s.extendIndex(s.expr(high), panicslice) 2350 } 2351 if max != nil { 2352 k = s.extendIndex(s.expr(max), panicslice) 2353 } 2354 p, l, c := s.slice(n.Left.Type, v, i, j, k, n.Bounded()) 2355 return s.newValue3(ssa.OpSliceMake, n.Type, p, l, c) 2356 2357 case OSLICESTR: 2358 v := s.expr(n.Left) 2359 var i, j *ssa.Value 2360 low, high, _ := n.SliceBounds() 2361 if low != nil { 2362 i = s.extendIndex(s.expr(low), panicslice) 2363 } 2364 if high != nil { 2365 j = s.extendIndex(s.expr(high), panicslice) 2366 } 2367 p, l, _ := s.slice(n.Left.Type, v, i, j, nil, n.Bounded()) 2368 return s.newValue2(ssa.OpStringMake, n.Type, p, l) 2369 2370 case OCALLFUNC: 2371 if isIntrinsicCall(n) { 2372 return s.intrinsicCall(n) 2373 } 2374 fallthrough 2375 2376 case OCALLINTER, OCALLMETH: 2377 a := s.call(n, callNormal) 2378 return s.load(n.Type, a) 2379 2380 case OGETG: 2381 return s.newValue1(ssa.OpGetG, n.Type, s.mem()) 2382 2383 case OAPPEND: 2384 return s.append(n, false) 2385 2386 case OSTRUCTLIT, OARRAYLIT: 2387 // All literals with nonzero fields have already been 2388 // rewritten during walk. Any that remain are just T{} 2389 // or equivalents. Use the zero value. 2390 if !isZero(n) { 2391 Fatalf("literal with nonzero value in SSA: %v", n) 2392 } 2393 return s.zeroVal(n.Type) 2394 2395 default: 2396 s.Fatalf("unhandled expr %v", n.Op) 2397 return nil 2398 } 2399 } 2400 2401 // append converts an OAPPEND node to SSA. 2402 // If inplace is false, it converts the OAPPEND expression n to an ssa.Value, 2403 // adds it to s, and returns the Value. 2404 // If inplace is true, it writes the result of the OAPPEND expression n 2405 // back to the slice being appended to, and returns nil. 2406 // inplace MUST be set to false if the slice can be SSA'd. 2407 func (s *state) append(n *Node, inplace bool) *ssa.Value { 2408 // If inplace is false, process as expression "append(s, e1, e2, e3)": 2409 // 2410 // ptr, len, cap := s 2411 // newlen := len + 3 2412 // if newlen > cap { 2413 // ptr, len, cap = growslice(s, newlen) 2414 // newlen = len + 3 // recalculate to avoid a spill 2415 // } 2416 // // with write barriers, if needed: 2417 // *(ptr+len) = e1 2418 // *(ptr+len+1) = e2 2419 // *(ptr+len+2) = e3 2420 // return makeslice(ptr, newlen, cap) 2421 // 2422 // 2423 // If inplace is true, process as statement "s = append(s, e1, e2, e3)": 2424 // 2425 // a := &s 2426 // ptr, len, cap := s 2427 // newlen := len + 3 2428 // if uint(newlen) > uint(cap) { 2429 // newptr, len, newcap = growslice(ptr, len, cap, newlen) 2430 // vardef(a) // if necessary, advise liveness we are writing a new a 2431 // *a.cap = newcap // write before ptr to avoid a spill 2432 // *a.ptr = newptr // with write barrier 2433 // } 2434 // newlen = len + 3 // recalculate to avoid a spill 2435 // *a.len = newlen 2436 // // with write barriers, if needed: 2437 // *(ptr+len) = e1 2438 // *(ptr+len+1) = e2 2439 // *(ptr+len+2) = e3 2440 2441 et := n.Type.Elem() 2442 pt := types.NewPtr(et) 2443 2444 // Evaluate slice 2445 sn := n.List.First() // the slice node is the first in the list 2446 2447 var slice, addr *ssa.Value 2448 if inplace { 2449 addr = s.addr(sn, false) 2450 slice = s.load(n.Type, addr) 2451 } else { 2452 slice = s.expr(sn) 2453 } 2454 2455 // Allocate new blocks 2456 grow := s.f.NewBlock(ssa.BlockPlain) 2457 assign := s.f.NewBlock(ssa.BlockPlain) 2458 2459 // Decide if we need to grow 2460 nargs := int64(n.List.Len() - 1) 2461 p := s.newValue1(ssa.OpSlicePtr, pt, slice) 2462 l := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice) 2463 c := s.newValue1(ssa.OpSliceCap, types.Types[TINT], slice) 2464 nl := s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], l, s.constInt(types.Types[TINT], nargs)) 2465 2466 cmp := s.newValue2(s.ssaOp(OGT, types.Types[TUINT]), types.Types[TBOOL], nl, c) 2467 s.vars[&ptrVar] = p 2468 2469 if !inplace { 2470 s.vars[&newlenVar] = nl 2471 s.vars[&capVar] = c 2472 } else { 2473 s.vars[&lenVar] = l 2474 } 2475 2476 b := s.endBlock() 2477 b.Kind = ssa.BlockIf 2478 b.Likely = ssa.BranchUnlikely 2479 b.SetControl(cmp) 2480 b.AddEdgeTo(grow) 2481 b.AddEdgeTo(assign) 2482 2483 // Call growslice 2484 s.startBlock(grow) 2485 taddr := s.expr(n.Left) 2486 r := s.rtcall(growslice, true, []*types.Type{pt, types.Types[TINT], types.Types[TINT]}, taddr, p, l, c, nl) 2487 2488 if inplace { 2489 if sn.Op == ONAME && sn.Class() != PEXTERN { 2490 // Tell liveness we're about to build a new slice 2491 s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, sn, s.mem()) 2492 } 2493 capaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, int64(array_cap), addr) 2494 s.store(types.Types[TINT], capaddr, r[2]) 2495 s.store(pt, addr, r[0]) 2496 // load the value we just stored to avoid having to spill it 2497 s.vars[&ptrVar] = s.load(pt, addr) 2498 s.vars[&lenVar] = r[1] // avoid a spill in the fast path 2499 } else { 2500 s.vars[&ptrVar] = r[0] 2501 s.vars[&newlenVar] = s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], r[1], s.constInt(types.Types[TINT], nargs)) 2502 s.vars[&capVar] = r[2] 2503 } 2504 2505 b = s.endBlock() 2506 b.AddEdgeTo(assign) 2507 2508 // assign new elements to slots 2509 s.startBlock(assign) 2510 2511 if inplace { 2512 l = s.variable(&lenVar, types.Types[TINT]) // generates phi for len 2513 nl = s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], l, s.constInt(types.Types[TINT], nargs)) 2514 lenaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, int64(array_nel), addr) 2515 s.store(types.Types[TINT], lenaddr, nl) 2516 } 2517 2518 // Evaluate args 2519 type argRec struct { 2520 // if store is true, we're appending the value v. If false, we're appending the 2521 // value at *v. 2522 v *ssa.Value 2523 store bool 2524 } 2525 args := make([]argRec, 0, nargs) 2526 for _, n := range n.List.Slice()[1:] { 2527 if canSSAType(n.Type) { 2528 args = append(args, argRec{v: s.expr(n), store: true}) 2529 } else { 2530 v := s.addr(n, false) 2531 args = append(args, argRec{v: v}) 2532 } 2533 } 2534 2535 p = s.variable(&ptrVar, pt) // generates phi for ptr 2536 if !inplace { 2537 nl = s.variable(&newlenVar, types.Types[TINT]) // generates phi for nl 2538 c = s.variable(&capVar, types.Types[TINT]) // generates phi for cap 2539 } 2540 p2 := s.newValue2(ssa.OpPtrIndex, pt, p, l) 2541 for i, arg := range args { 2542 addr := s.newValue2(ssa.OpPtrIndex, pt, p2, s.constInt(types.Types[TINT], int64(i))) 2543 if arg.store { 2544 s.storeType(et, addr, arg.v, 0, true) 2545 } else { 2546 s.move(et, addr, arg.v) 2547 } 2548 } 2549 2550 delete(s.vars, &ptrVar) 2551 if inplace { 2552 delete(s.vars, &lenVar) 2553 return nil 2554 } 2555 delete(s.vars, &newlenVar) 2556 delete(s.vars, &capVar) 2557 // make result 2558 return s.newValue3(ssa.OpSliceMake, n.Type, p, nl, c) 2559 } 2560 2561 // condBranch evaluates the boolean expression cond and branches to yes 2562 // if cond is true and no if cond is false. 2563 // This function is intended to handle && and || better than just calling 2564 // s.expr(cond) and branching on the result. 2565 func (s *state) condBranch(cond *Node, yes, no *ssa.Block, likely int8) { 2566 switch cond.Op { 2567 case OANDAND: 2568 mid := s.f.NewBlock(ssa.BlockPlain) 2569 s.stmtList(cond.Ninit) 2570 s.condBranch(cond.Left, mid, no, max8(likely, 0)) 2571 s.startBlock(mid) 2572 s.condBranch(cond.Right, yes, no, likely) 2573 return 2574 // Note: if likely==1, then both recursive calls pass 1. 2575 // If likely==-1, then we don't have enough information to decide 2576 // whether the first branch is likely or not. So we pass 0 for 2577 // the likeliness of the first branch. 2578 // TODO: have the frontend give us branch prediction hints for 2579 // OANDAND and OOROR nodes (if it ever has such info). 2580 case OOROR: 2581 mid := s.f.NewBlock(ssa.BlockPlain) 2582 s.stmtList(cond.Ninit) 2583 s.condBranch(cond.Left, yes, mid, min8(likely, 0)) 2584 s.startBlock(mid) 2585 s.condBranch(cond.Right, yes, no, likely) 2586 return 2587 // Note: if likely==-1, then both recursive calls pass -1. 2588 // If likely==1, then we don't have enough info to decide 2589 // the likelihood of the first branch. 2590 case ONOT: 2591 s.stmtList(cond.Ninit) 2592 s.condBranch(cond.Left, no, yes, -likely) 2593 return 2594 } 2595 c := s.expr(cond) 2596 b := s.endBlock() 2597 b.Kind = ssa.BlockIf 2598 b.SetControl(c) 2599 b.Likely = ssa.BranchPrediction(likely) // gc and ssa both use -1/0/+1 for likeliness 2600 b.AddEdgeTo(yes) 2601 b.AddEdgeTo(no) 2602 } 2603 2604 type skipMask uint8 2605 2606 const ( 2607 skipPtr skipMask = 1 << iota 2608 skipLen 2609 skipCap 2610 ) 2611 2612 // assign does left = right. 2613 // Right has already been evaluated to ssa, left has not. 2614 // If deref is true, then we do left = *right instead (and right has already been nil-checked). 2615 // If deref is true and right == nil, just do left = 0. 2616 // skip indicates assignments (at the top level) that can be avoided. 2617 func (s *state) assign(left *Node, right *ssa.Value, deref bool, skip skipMask) { 2618 if left.Op == ONAME && left.isBlank() { 2619 return 2620 } 2621 t := left.Type 2622 dowidth(t) 2623 if s.canSSA(left) { 2624 if deref { 2625 s.Fatalf("can SSA LHS %v but not RHS %s", left, right) 2626 } 2627 if left.Op == ODOT { 2628 // We're assigning to a field of an ssa-able value. 2629 // We need to build a new structure with the new value for the 2630 // field we're assigning and the old values for the other fields. 2631 // For instance: 2632 // type T struct {a, b, c int} 2633 // var T x 2634 // x.b = 5 2635 // For the x.b = 5 assignment we want to generate x = T{x.a, 5, x.c} 2636 2637 // Grab information about the structure type. 2638 t := left.Left.Type 2639 nf := t.NumFields() 2640 idx := fieldIdx(left) 2641 2642 // Grab old value of structure. 2643 old := s.expr(left.Left) 2644 2645 // Make new structure. 2646 new := s.newValue0(ssa.StructMakeOp(t.NumFields()), t) 2647 2648 // Add fields as args. 2649 for i := 0; i < nf; i++ { 2650 if i == idx { 2651 new.AddArg(right) 2652 } else { 2653 new.AddArg(s.newValue1I(ssa.OpStructSelect, t.FieldType(i), int64(i), old)) 2654 } 2655 } 2656 2657 // Recursively assign the new value we've made to the base of the dot op. 2658 s.assign(left.Left, new, false, 0) 2659 // TODO: do we need to update named values here? 2660 return 2661 } 2662 if left.Op == OINDEX && left.Left.Type.IsArray() { 2663 // We're assigning to an element of an ssa-able array. 2664 // a[i] = v 2665 t := left.Left.Type 2666 n := t.NumElem() 2667 2668 i := s.expr(left.Right) // index 2669 if n == 0 { 2670 // The bounds check must fail. Might as well 2671 // ignore the actual index and just use zeros. 2672 z := s.constInt(types.Types[TINT], 0) 2673 s.boundsCheck(z, z) 2674 return 2675 } 2676 if n != 1 { 2677 s.Fatalf("assigning to non-1-length array") 2678 } 2679 // Rewrite to a = [1]{v} 2680 i = s.extendIndex(i, panicindex) 2681 s.boundsCheck(i, s.constInt(types.Types[TINT], 1)) 2682 v := s.newValue1(ssa.OpArrayMake1, t, right) 2683 s.assign(left.Left, v, false, 0) 2684 return 2685 } 2686 // Update variable assignment. 2687 s.vars[left] = right 2688 s.addNamedValue(left, right) 2689 return 2690 } 2691 // Left is not ssa-able. Compute its address. 2692 if left.Op == ONAME && left.Class() != PEXTERN && skip == 0 { 2693 s.vars[&memVar] = s.newValue1Apos(ssa.OpVarDef, types.TypeMem, left, s.mem(), !left.IsAutoTmp()) 2694 } 2695 addr := s.addr(left, false) 2696 if isReflectHeaderDataField(left) { 2697 // Package unsafe's documentation says storing pointers into 2698 // reflect.SliceHeader and reflect.StringHeader's Data fields 2699 // is valid, even though they have type uintptr (#19168). 2700 // Mark it pointer type to signal the writebarrier pass to 2701 // insert a write barrier. 2702 t = types.Types[TUNSAFEPTR] 2703 } 2704 if deref { 2705 // Treat as a mem->mem move. 2706 if right == nil { 2707 s.zero(t, addr) 2708 } else { 2709 s.move(t, addr, right) 2710 } 2711 return 2712 } 2713 // Treat as a store. 2714 s.storeType(t, addr, right, skip, !left.IsAutoTmp()) 2715 } 2716 2717 // zeroVal returns the zero value for type t. 2718 func (s *state) zeroVal(t *types.Type) *ssa.Value { 2719 switch { 2720 case t.IsInteger(): 2721 switch t.Size() { 2722 case 1: 2723 return s.constInt8(t, 0) 2724 case 2: 2725 return s.constInt16(t, 0) 2726 case 4: 2727 return s.constInt32(t, 0) 2728 case 8: 2729 return s.constInt64(t, 0) 2730 default: 2731 s.Fatalf("bad sized integer type %v", t) 2732 } 2733 case t.IsFloat(): 2734 switch t.Size() { 2735 case 4: 2736 return s.constFloat32(t, 0) 2737 case 8: 2738 return s.constFloat64(t, 0) 2739 default: 2740 s.Fatalf("bad sized float type %v", t) 2741 } 2742 case t.IsComplex(): 2743 switch t.Size() { 2744 case 8: 2745 z := s.constFloat32(types.Types[TFLOAT32], 0) 2746 return s.entryNewValue2(ssa.OpComplexMake, t, z, z) 2747 case 16: 2748 z := s.constFloat64(types.Types[TFLOAT64], 0) 2749 return s.entryNewValue2(ssa.OpComplexMake, t, z, z) 2750 default: 2751 s.Fatalf("bad sized complex type %v", t) 2752 } 2753 2754 case t.IsString(): 2755 return s.constEmptyString(t) 2756 case t.IsPtrShaped(): 2757 return s.constNil(t) 2758 case t.IsBoolean(): 2759 return s.constBool(false) 2760 case t.IsInterface(): 2761 return s.constInterface(t) 2762 case t.IsSlice(): 2763 return s.constSlice(t) 2764 case t.IsStruct(): 2765 n := t.NumFields() 2766 v := s.entryNewValue0(ssa.StructMakeOp(t.NumFields()), t) 2767 for i := 0; i < n; i++ { 2768 v.AddArg(s.zeroVal(t.FieldType(i))) 2769 } 2770 return v 2771 case t.IsArray(): 2772 switch t.NumElem() { 2773 case 0: 2774 return s.entryNewValue0(ssa.OpArrayMake0, t) 2775 case 1: 2776 return s.entryNewValue1(ssa.OpArrayMake1, t, s.zeroVal(t.Elem())) 2777 } 2778 } 2779 s.Fatalf("zero for type %v not implemented", t) 2780 return nil 2781 } 2782 2783 type callKind int8 2784 2785 const ( 2786 callNormal callKind = iota 2787 callDefer 2788 callGo 2789 ) 2790 2791 type sfRtCallDef struct { 2792 rtfn *obj.LSym 2793 rtype types.EType 2794 } 2795 2796 var softFloatOps map[ssa.Op]sfRtCallDef 2797 2798 func softfloatInit() { 2799 // Some of these operations get transformed by sfcall. 2800 softFloatOps = map[ssa.Op]sfRtCallDef{ 2801 ssa.OpAdd32F: sfRtCallDef{sysfunc("fadd32"), TFLOAT32}, 2802 ssa.OpAdd64F: sfRtCallDef{sysfunc("fadd64"), TFLOAT64}, 2803 ssa.OpSub32F: sfRtCallDef{sysfunc("fadd32"), TFLOAT32}, 2804 ssa.OpSub64F: sfRtCallDef{sysfunc("fadd64"), TFLOAT64}, 2805 ssa.OpMul32F: sfRtCallDef{sysfunc("fmul32"), TFLOAT32}, 2806 ssa.OpMul64F: sfRtCallDef{sysfunc("fmul64"), TFLOAT64}, 2807 ssa.OpDiv32F: sfRtCallDef{sysfunc("fdiv32"), TFLOAT32}, 2808 ssa.OpDiv64F: sfRtCallDef{sysfunc("fdiv64"), TFLOAT64}, 2809 2810 ssa.OpEq64F: sfRtCallDef{sysfunc("feq64"), TBOOL}, 2811 ssa.OpEq32F: sfRtCallDef{sysfunc("feq32"), TBOOL}, 2812 ssa.OpNeq64F: sfRtCallDef{sysfunc("feq64"), TBOOL}, 2813 ssa.OpNeq32F: sfRtCallDef{sysfunc("feq32"), TBOOL}, 2814 ssa.OpLess64F: sfRtCallDef{sysfunc("fgt64"), TBOOL}, 2815 ssa.OpLess32F: sfRtCallDef{sysfunc("fgt32"), TBOOL}, 2816 ssa.OpGreater64F: sfRtCallDef{sysfunc("fgt64"), TBOOL}, 2817 ssa.OpGreater32F: sfRtCallDef{sysfunc("fgt32"), TBOOL}, 2818 ssa.OpLeq64F: sfRtCallDef{sysfunc("fge64"), TBOOL}, 2819 ssa.OpLeq32F: sfRtCallDef{sysfunc("fge32"), TBOOL}, 2820 ssa.OpGeq64F: sfRtCallDef{sysfunc("fge64"), TBOOL}, 2821 ssa.OpGeq32F: sfRtCallDef{sysfunc("fge32"), TBOOL}, 2822 2823 ssa.OpCvt32to32F: sfRtCallDef{sysfunc("fint32to32"), TFLOAT32}, 2824 ssa.OpCvt32Fto32: sfRtCallDef{sysfunc("f32toint32"), TINT32}, 2825 ssa.OpCvt64to32F: sfRtCallDef{sysfunc("fint64to32"), TFLOAT32}, 2826 ssa.OpCvt32Fto64: sfRtCallDef{sysfunc("f32toint64"), TINT64}, 2827 ssa.OpCvt64Uto32F: sfRtCallDef{sysfunc("fuint64to32"), TFLOAT32}, 2828 ssa.OpCvt32Fto64U: sfRtCallDef{sysfunc("f32touint64"), TUINT64}, 2829 ssa.OpCvt32to64F: sfRtCallDef{sysfunc("fint32to64"), TFLOAT64}, 2830 ssa.OpCvt64Fto32: sfRtCallDef{sysfunc("f64toint32"), TINT32}, 2831 ssa.OpCvt64to64F: sfRtCallDef{sysfunc("fint64to64"), TFLOAT64}, 2832 ssa.OpCvt64Fto64: sfRtCallDef{sysfunc("f64toint64"), TINT64}, 2833 ssa.OpCvt64Uto64F: sfRtCallDef{sysfunc("fuint64to64"), TFLOAT64}, 2834 ssa.OpCvt64Fto64U: sfRtCallDef{sysfunc("f64touint64"), TUINT64}, 2835 ssa.OpCvt32Fto64F: sfRtCallDef{sysfunc("f32to64"), TFLOAT64}, 2836 ssa.OpCvt64Fto32F: sfRtCallDef{sysfunc("f64to32"), TFLOAT32}, 2837 } 2838 } 2839 2840 // TODO: do not emit sfcall if operation can be optimized to constant in later 2841 // opt phase 2842 func (s *state) sfcall(op ssa.Op, args ...*ssa.Value) (*ssa.Value, bool) { 2843 if callDef, ok := softFloatOps[op]; ok { 2844 switch op { 2845 case ssa.OpLess32F, 2846 ssa.OpLess64F, 2847 ssa.OpLeq32F, 2848 ssa.OpLeq64F: 2849 args[0], args[1] = args[1], args[0] 2850 case ssa.OpSub32F, 2851 ssa.OpSub64F: 2852 args[1] = s.newValue1(s.ssaOp(ONEG, types.Types[callDef.rtype]), args[1].Type, args[1]) 2853 } 2854 2855 result := s.rtcall(callDef.rtfn, true, []*types.Type{types.Types[callDef.rtype]}, args...)[0] 2856 if op == ssa.OpNeq32F || op == ssa.OpNeq64F { 2857 result = s.newValue1(ssa.OpNot, result.Type, result) 2858 } 2859 return result, true 2860 } 2861 return nil, false 2862 } 2863 2864 var intrinsics map[intrinsicKey]intrinsicBuilder 2865 2866 // An intrinsicBuilder converts a call node n into an ssa value that 2867 // implements that call as an intrinsic. args is a list of arguments to the func. 2868 type intrinsicBuilder func(s *state, n *Node, args []*ssa.Value) *ssa.Value 2869 2870 type intrinsicKey struct { 2871 arch *sys.Arch 2872 pkg string 2873 fn string 2874 } 2875 2876 func init() { 2877 intrinsics = map[intrinsicKey]intrinsicBuilder{} 2878 2879 var all []*sys.Arch 2880 var p4 []*sys.Arch 2881 var p8 []*sys.Arch 2882 var lwatomics []*sys.Arch 2883 for _, a := range sys.Archs { 2884 all = append(all, a) 2885 if a.PtrSize == 4 { 2886 p4 = append(p4, a) 2887 } else { 2888 p8 = append(p8, a) 2889 } 2890 if a.Family != sys.PPC64 { 2891 lwatomics = append(lwatomics, a) 2892 } 2893 } 2894 2895 // add adds the intrinsic b for pkg.fn for the given list of architectures. 2896 add := func(pkg, fn string, b intrinsicBuilder, archs ...*sys.Arch) { 2897 for _, a := range archs { 2898 intrinsics[intrinsicKey{a, pkg, fn}] = b 2899 } 2900 } 2901 // addF does the same as add but operates on architecture families. 2902 addF := func(pkg, fn string, b intrinsicBuilder, archFamilies ...sys.ArchFamily) { 2903 m := 0 2904 for _, f := range archFamilies { 2905 if f >= 32 { 2906 panic("too many architecture families") 2907 } 2908 m |= 1 << uint(f) 2909 } 2910 for _, a := range all { 2911 if m>>uint(a.Family)&1 != 0 { 2912 intrinsics[intrinsicKey{a, pkg, fn}] = b 2913 } 2914 } 2915 } 2916 // alias defines pkg.fn = pkg2.fn2 for all architectures in archs for which pkg2.fn2 exists. 2917 alias := func(pkg, fn, pkg2, fn2 string, archs ...*sys.Arch) { 2918 for _, a := range archs { 2919 if b, ok := intrinsics[intrinsicKey{a, pkg2, fn2}]; ok { 2920 intrinsics[intrinsicKey{a, pkg, fn}] = b 2921 } 2922 } 2923 } 2924 2925 /******** runtime ********/ 2926 if !instrumenting { 2927 add("runtime", "slicebytetostringtmp", 2928 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2929 // Compiler frontend optimizations emit OBYTES2STRTMP nodes 2930 // for the backend instead of slicebytetostringtmp calls 2931 // when not instrumenting. 2932 slice := args[0] 2933 ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, slice) 2934 len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice) 2935 return s.newValue2(ssa.OpStringMake, n.Type, ptr, len) 2936 }, 2937 all...) 2938 } 2939 addF("runtime/internal/math", "MulUintptr", 2940 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2941 if s.config.PtrSize == 4 { 2942 return s.newValue2(ssa.OpMul32uover, types.NewTuple(types.Types[TUINT], types.Types[TUINT]), args[0], args[1]) 2943 } 2944 return s.newValue2(ssa.OpMul64uover, types.NewTuple(types.Types[TUINT], types.Types[TUINT]), args[0], args[1]) 2945 }, 2946 sys.AMD64, sys.I386) 2947 add("runtime", "KeepAlive", 2948 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2949 data := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, args[0]) 2950 s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, types.TypeMem, data, s.mem()) 2951 return nil 2952 }, 2953 all...) 2954 add("runtime", "getclosureptr", 2955 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2956 return s.newValue0(ssa.OpGetClosurePtr, s.f.Config.Types.Uintptr) 2957 }, 2958 all...) 2959 2960 add("runtime", "getcallerpc", 2961 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2962 return s.newValue0(ssa.OpGetCallerPC, s.f.Config.Types.Uintptr) 2963 }, 2964 all...) 2965 2966 add("runtime", "getcallersp", 2967 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2968 return s.newValue0(ssa.OpGetCallerSP, s.f.Config.Types.Uintptr) 2969 }, 2970 all...) 2971 2972 /******** runtime/internal/sys ********/ 2973 addF("runtime/internal/sys", "Ctz32", 2974 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2975 return s.newValue1(ssa.OpCtz32, types.Types[TINT], args[0]) 2976 }, 2977 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64) 2978 addF("runtime/internal/sys", "Ctz64", 2979 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2980 return s.newValue1(ssa.OpCtz64, types.Types[TINT], args[0]) 2981 }, 2982 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64) 2983 addF("runtime/internal/sys", "Bswap32", 2984 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2985 return s.newValue1(ssa.OpBswap32, types.Types[TUINT32], args[0]) 2986 }, 2987 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X) 2988 addF("runtime/internal/sys", "Bswap64", 2989 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2990 return s.newValue1(ssa.OpBswap64, types.Types[TUINT64], args[0]) 2991 }, 2992 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X) 2993 2994 /******** runtime/internal/atomic ********/ 2995 addF("runtime/internal/atomic", "Load", 2996 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 2997 v := s.newValue2(ssa.OpAtomicLoad32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], s.mem()) 2998 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 2999 return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v) 3000 }, 3001 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64) 3002 addF("runtime/internal/atomic", "Load64", 3003 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3004 v := s.newValue2(ssa.OpAtomicLoad64, types.NewTuple(types.Types[TUINT64], types.TypeMem), args[0], s.mem()) 3005 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 3006 return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v) 3007 }, 3008 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS64, sys.PPC64) 3009 addF("runtime/internal/atomic", "LoadAcq", 3010 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3011 v := s.newValue2(ssa.OpAtomicLoadAcq32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], s.mem()) 3012 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 3013 return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v) 3014 }, 3015 sys.PPC64) 3016 addF("runtime/internal/atomic", "Loadp", 3017 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3018 v := s.newValue2(ssa.OpAtomicLoadPtr, types.NewTuple(s.f.Config.Types.BytePtr, types.TypeMem), args[0], s.mem()) 3019 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 3020 return s.newValue1(ssa.OpSelect0, s.f.Config.Types.BytePtr, v) 3021 }, 3022 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64) 3023 3024 addF("runtime/internal/atomic", "Store", 3025 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3026 s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore32, types.TypeMem, args[0], args[1], s.mem()) 3027 return nil 3028 }, 3029 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64) 3030 addF("runtime/internal/atomic", "Store64", 3031 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3032 s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore64, types.TypeMem, args[0], args[1], s.mem()) 3033 return nil 3034 }, 3035 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS64, sys.PPC64) 3036 addF("runtime/internal/atomic", "StorepNoWB", 3037 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3038 s.vars[&memVar] = s.newValue3(ssa.OpAtomicStorePtrNoWB, types.TypeMem, args[0], args[1], s.mem()) 3039 return nil 3040 }, 3041 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64) 3042 addF("runtime/internal/atomic", "StoreRel", 3043 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3044 s.vars[&memVar] = s.newValue3(ssa.OpAtomicStoreRel32, types.TypeMem, args[0], args[1], s.mem()) 3045 return nil 3046 }, 3047 sys.PPC64) 3048 3049 addF("runtime/internal/atomic", "Xchg", 3050 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3051 v := s.newValue3(ssa.OpAtomicExchange32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], args[1], s.mem()) 3052 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 3053 return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v) 3054 }, 3055 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64) 3056 addF("runtime/internal/atomic", "Xchg64", 3057 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3058 v := s.newValue3(ssa.OpAtomicExchange64, types.NewTuple(types.Types[TUINT64], types.TypeMem), args[0], args[1], s.mem()) 3059 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 3060 return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v) 3061 }, 3062 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS64, sys.PPC64) 3063 3064 addF("runtime/internal/atomic", "Xadd", 3065 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3066 v := s.newValue3(ssa.OpAtomicAdd32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], args[1], s.mem()) 3067 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 3068 return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v) 3069 }, 3070 sys.AMD64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64) 3071 addF("runtime/internal/atomic", "Xadd64", 3072 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3073 v := s.newValue3(ssa.OpAtomicAdd64, types.NewTuple(types.Types[TUINT64], types.TypeMem), args[0], args[1], s.mem()) 3074 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 3075 return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v) 3076 }, 3077 sys.AMD64, sys.S390X, sys.MIPS64, sys.PPC64) 3078 3079 makeXaddARM64 := func(op0 ssa.Op, op1 ssa.Op, ty types.EType) func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3080 return func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3081 // Target Atomic feature is identified by dynamic detection 3082 addr := s.entryNewValue1A(ssa.OpAddr, types.Types[TBOOL].PtrTo(), arm64HasATOMICS, s.sb) 3083 v := s.load(types.Types[TBOOL], addr) 3084 b := s.endBlock() 3085 b.Kind = ssa.BlockIf 3086 b.SetControl(v) 3087 bTrue := s.f.NewBlock(ssa.BlockPlain) 3088 bFalse := s.f.NewBlock(ssa.BlockPlain) 3089 bEnd := s.f.NewBlock(ssa.BlockPlain) 3090 b.AddEdgeTo(bTrue) 3091 b.AddEdgeTo(bFalse) 3092 b.Likely = ssa.BranchUnlikely // most machines don't have Atomics nowadays 3093 3094 // We have atomic instructions - use it directly. 3095 s.startBlock(bTrue) 3096 v0 := s.newValue3(op1, types.NewTuple(types.Types[ty], types.TypeMem), args[0], args[1], s.mem()) 3097 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v0) 3098 s.vars[n] = s.newValue1(ssa.OpSelect0, types.Types[ty], v0) 3099 s.endBlock().AddEdgeTo(bEnd) 3100 3101 // Use original instruction sequence. 3102 s.startBlock(bFalse) 3103 v1 := s.newValue3(op0, types.NewTuple(types.Types[ty], types.TypeMem), args[0], args[1], s.mem()) 3104 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v1) 3105 s.vars[n] = s.newValue1(ssa.OpSelect0, types.Types[ty], v1) 3106 s.endBlock().AddEdgeTo(bEnd) 3107 3108 // Merge results. 3109 s.startBlock(bEnd) 3110 return s.variable(n, types.Types[ty]) 3111 } 3112 } 3113 3114 addF("runtime/internal/atomic", "Xadd", 3115 makeXaddARM64(ssa.OpAtomicAdd32, ssa.OpAtomicAdd32Variant, TUINT32), 3116 sys.ARM64) 3117 addF("runtime/internal/atomic", "Xadd64", 3118 makeXaddARM64(ssa.OpAtomicAdd64, ssa.OpAtomicAdd64Variant, TUINT64), 3119 sys.ARM64) 3120 3121 addF("runtime/internal/atomic", "Cas", 3122 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3123 v := s.newValue4(ssa.OpAtomicCompareAndSwap32, types.NewTuple(types.Types[TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem()) 3124 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 3125 return s.newValue1(ssa.OpSelect0, types.Types[TBOOL], v) 3126 }, 3127 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64) 3128 addF("runtime/internal/atomic", "Cas64", 3129 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3130 v := s.newValue4(ssa.OpAtomicCompareAndSwap64, types.NewTuple(types.Types[TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem()) 3131 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 3132 return s.newValue1(ssa.OpSelect0, types.Types[TBOOL], v) 3133 }, 3134 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS64, sys.PPC64) 3135 addF("runtime/internal/atomic", "CasRel", 3136 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3137 v := s.newValue4(ssa.OpAtomicCompareAndSwap32, types.NewTuple(types.Types[TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem()) 3138 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 3139 return s.newValue1(ssa.OpSelect0, types.Types[TBOOL], v) 3140 }, 3141 sys.PPC64) 3142 3143 addF("runtime/internal/atomic", "And8", 3144 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3145 s.vars[&memVar] = s.newValue3(ssa.OpAtomicAnd8, types.TypeMem, args[0], args[1], s.mem()) 3146 return nil 3147 }, 3148 sys.AMD64, sys.ARM64, sys.MIPS, sys.PPC64) 3149 addF("runtime/internal/atomic", "Or8", 3150 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3151 s.vars[&memVar] = s.newValue3(ssa.OpAtomicOr8, types.TypeMem, args[0], args[1], s.mem()) 3152 return nil 3153 }, 3154 sys.AMD64, sys.ARM64, sys.MIPS, sys.PPC64) 3155 3156 alias("runtime/internal/atomic", "Loadint64", "runtime/internal/atomic", "Load64", all...) 3157 alias("runtime/internal/atomic", "Xaddint64", "runtime/internal/atomic", "Xadd64", all...) 3158 alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load", p4...) 3159 alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load64", p8...) 3160 alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load", p4...) 3161 alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load64", p8...) 3162 alias("runtime/internal/atomic", "LoadAcq", "runtime/internal/atomic", "Load", lwatomics...) 3163 alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store", p4...) 3164 alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store64", p8...) 3165 alias("runtime/internal/atomic", "StoreRel", "runtime/internal/atomic", "Store", lwatomics...) 3166 alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg", p4...) 3167 alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg64", p8...) 3168 alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd", p4...) 3169 alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd64", p8...) 3170 alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas", p4...) 3171 alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas64", p8...) 3172 alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas", p4...) 3173 alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas64", p8...) 3174 alias("runtime/internal/atomic", "CasRel", "runtime/internal/atomic", "Cas", lwatomics...) 3175 3176 alias("runtime/internal/sys", "Ctz8", "math/bits", "TrailingZeros8", all...) 3177 3178 /******** math ********/ 3179 addF("math", "Sqrt", 3180 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3181 return s.newValue1(ssa.OpSqrt, types.Types[TFLOAT64], args[0]) 3182 }, 3183 sys.I386, sys.AMD64, sys.ARM, sys.ARM64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.S390X) 3184 addF("math", "Trunc", 3185 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3186 return s.newValue1(ssa.OpTrunc, types.Types[TFLOAT64], args[0]) 3187 }, 3188 sys.ARM64, sys.PPC64, sys.S390X) 3189 addF("math", "Ceil", 3190 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3191 return s.newValue1(ssa.OpCeil, types.Types[TFLOAT64], args[0]) 3192 }, 3193 sys.ARM64, sys.PPC64, sys.S390X) 3194 addF("math", "Floor", 3195 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3196 return s.newValue1(ssa.OpFloor, types.Types[TFLOAT64], args[0]) 3197 }, 3198 sys.ARM64, sys.PPC64, sys.S390X) 3199 addF("math", "Round", 3200 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3201 return s.newValue1(ssa.OpRound, types.Types[TFLOAT64], args[0]) 3202 }, 3203 sys.ARM64, sys.PPC64, sys.S390X) 3204 addF("math", "RoundToEven", 3205 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3206 return s.newValue1(ssa.OpRoundToEven, types.Types[TFLOAT64], args[0]) 3207 }, 3208 sys.ARM64, sys.S390X) 3209 addF("math", "Abs", 3210 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3211 return s.newValue1(ssa.OpAbs, types.Types[TFLOAT64], args[0]) 3212 }, 3213 sys.ARM64, sys.PPC64) 3214 addF("math", "Copysign", 3215 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3216 return s.newValue2(ssa.OpCopysign, types.Types[TFLOAT64], args[0], args[1]) 3217 }, 3218 sys.PPC64) 3219 3220 makeRoundAMD64 := func(op ssa.Op) func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3221 return func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3222 addr := s.entryNewValue1A(ssa.OpAddr, types.Types[TBOOL].PtrTo(), x86HasSSE41, s.sb) 3223 v := s.load(types.Types[TBOOL], addr) 3224 b := s.endBlock() 3225 b.Kind = ssa.BlockIf 3226 b.SetControl(v) 3227 bTrue := s.f.NewBlock(ssa.BlockPlain) 3228 bFalse := s.f.NewBlock(ssa.BlockPlain) 3229 bEnd := s.f.NewBlock(ssa.BlockPlain) 3230 b.AddEdgeTo(bTrue) 3231 b.AddEdgeTo(bFalse) 3232 b.Likely = ssa.BranchLikely // most machines have sse4.1 nowadays 3233 3234 // We have the intrinsic - use it directly. 3235 s.startBlock(bTrue) 3236 s.vars[n] = s.newValue1(op, types.Types[TFLOAT64], args[0]) 3237 s.endBlock().AddEdgeTo(bEnd) 3238 3239 // Call the pure Go version. 3240 s.startBlock(bFalse) 3241 a := s.call(n, callNormal) 3242 s.vars[n] = s.load(types.Types[TFLOAT64], a) 3243 s.endBlock().AddEdgeTo(bEnd) 3244 3245 // Merge results. 3246 s.startBlock(bEnd) 3247 return s.variable(n, types.Types[TFLOAT64]) 3248 } 3249 } 3250 addF("math", "RoundToEven", 3251 makeRoundAMD64(ssa.OpRoundToEven), 3252 sys.AMD64) 3253 addF("math", "Floor", 3254 makeRoundAMD64(ssa.OpFloor), 3255 sys.AMD64) 3256 addF("math", "Ceil", 3257 makeRoundAMD64(ssa.OpCeil), 3258 sys.AMD64) 3259 addF("math", "Trunc", 3260 makeRoundAMD64(ssa.OpTrunc), 3261 sys.AMD64) 3262 3263 /******** math/bits ********/ 3264 addF("math/bits", "TrailingZeros64", 3265 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3266 return s.newValue1(ssa.OpCtz64, types.Types[TINT], args[0]) 3267 }, 3268 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64) 3269 addF("math/bits", "TrailingZeros32", 3270 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3271 return s.newValue1(ssa.OpCtz32, types.Types[TINT], args[0]) 3272 }, 3273 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64) 3274 addF("math/bits", "TrailingZeros16", 3275 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3276 x := s.newValue1(ssa.OpZeroExt16to32, types.Types[TUINT32], args[0]) 3277 c := s.constInt32(types.Types[TUINT32], 1<<16) 3278 y := s.newValue2(ssa.OpOr32, types.Types[TUINT32], x, c) 3279 return s.newValue1(ssa.OpCtz32, types.Types[TINT], y) 3280 }, 3281 sys.ARM, sys.MIPS) 3282 addF("math/bits", "TrailingZeros16", 3283 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3284 return s.newValue1(ssa.OpCtz16, types.Types[TINT], args[0]) 3285 }, 3286 sys.AMD64) 3287 addF("math/bits", "TrailingZeros16", 3288 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3289 x := s.newValue1(ssa.OpZeroExt16to64, types.Types[TUINT64], args[0]) 3290 c := s.constInt64(types.Types[TUINT64], 1<<16) 3291 y := s.newValue2(ssa.OpOr64, types.Types[TUINT64], x, c) 3292 return s.newValue1(ssa.OpCtz64, types.Types[TINT], y) 3293 }, 3294 sys.ARM64, sys.S390X, sys.PPC64) 3295 addF("math/bits", "TrailingZeros8", 3296 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3297 x := s.newValue1(ssa.OpZeroExt8to32, types.Types[TUINT32], args[0]) 3298 c := s.constInt32(types.Types[TUINT32], 1<<8) 3299 y := s.newValue2(ssa.OpOr32, types.Types[TUINT32], x, c) 3300 return s.newValue1(ssa.OpCtz32, types.Types[TINT], y) 3301 }, 3302 sys.ARM, sys.MIPS) 3303 addF("math/bits", "TrailingZeros8", 3304 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3305 return s.newValue1(ssa.OpCtz8, types.Types[TINT], args[0]) 3306 }, 3307 sys.AMD64) 3308 addF("math/bits", "TrailingZeros8", 3309 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3310 x := s.newValue1(ssa.OpZeroExt8to64, types.Types[TUINT64], args[0]) 3311 c := s.constInt64(types.Types[TUINT64], 1<<8) 3312 y := s.newValue2(ssa.OpOr64, types.Types[TUINT64], x, c) 3313 return s.newValue1(ssa.OpCtz64, types.Types[TINT], y) 3314 }, 3315 sys.ARM64, sys.S390X) 3316 alias("math/bits", "ReverseBytes64", "runtime/internal/sys", "Bswap64", all...) 3317 alias("math/bits", "ReverseBytes32", "runtime/internal/sys", "Bswap32", all...) 3318 // ReverseBytes inlines correctly, no need to intrinsify it. 3319 // ReverseBytes16 lowers to a rotate, no need for anything special here. 3320 addF("math/bits", "Len64", 3321 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3322 return s.newValue1(ssa.OpBitLen64, types.Types[TINT], args[0]) 3323 }, 3324 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64) 3325 addF("math/bits", "Len32", 3326 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3327 return s.newValue1(ssa.OpBitLen32, types.Types[TINT], args[0]) 3328 }, 3329 sys.AMD64) 3330 addF("math/bits", "Len32", 3331 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3332 if s.config.PtrSize == 4 { 3333 return s.newValue1(ssa.OpBitLen32, types.Types[TINT], args[0]) 3334 } 3335 x := s.newValue1(ssa.OpZeroExt32to64, types.Types[TUINT64], args[0]) 3336 return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x) 3337 }, 3338 sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64) 3339 addF("math/bits", "Len16", 3340 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3341 if s.config.PtrSize == 4 { 3342 x := s.newValue1(ssa.OpZeroExt16to32, types.Types[TUINT32], args[0]) 3343 return s.newValue1(ssa.OpBitLen32, types.Types[TINT], x) 3344 } 3345 x := s.newValue1(ssa.OpZeroExt16to64, types.Types[TUINT64], args[0]) 3346 return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x) 3347 }, 3348 sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64) 3349 addF("math/bits", "Len16", 3350 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3351 return s.newValue1(ssa.OpBitLen16, types.Types[TINT], args[0]) 3352 }, 3353 sys.AMD64) 3354 addF("math/bits", "Len8", 3355 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3356 if s.config.PtrSize == 4 { 3357 x := s.newValue1(ssa.OpZeroExt8to32, types.Types[TUINT32], args[0]) 3358 return s.newValue1(ssa.OpBitLen32, types.Types[TINT], x) 3359 } 3360 x := s.newValue1(ssa.OpZeroExt8to64, types.Types[TUINT64], args[0]) 3361 return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x) 3362 }, 3363 sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64) 3364 addF("math/bits", "Len8", 3365 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3366 return s.newValue1(ssa.OpBitLen8, types.Types[TINT], args[0]) 3367 }, 3368 sys.AMD64) 3369 addF("math/bits", "Len", 3370 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3371 if s.config.PtrSize == 4 { 3372 return s.newValue1(ssa.OpBitLen32, types.Types[TINT], args[0]) 3373 } 3374 return s.newValue1(ssa.OpBitLen64, types.Types[TINT], args[0]) 3375 }, 3376 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64) 3377 // LeadingZeros is handled because it trivially calls Len. 3378 addF("math/bits", "Reverse64", 3379 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3380 return s.newValue1(ssa.OpBitRev64, types.Types[TINT], args[0]) 3381 }, 3382 sys.ARM64) 3383 addF("math/bits", "Reverse32", 3384 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3385 return s.newValue1(ssa.OpBitRev32, types.Types[TINT], args[0]) 3386 }, 3387 sys.ARM64) 3388 addF("math/bits", "Reverse16", 3389 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3390 return s.newValue1(ssa.OpBitRev16, types.Types[TINT], args[0]) 3391 }, 3392 sys.ARM64) 3393 addF("math/bits", "Reverse8", 3394 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3395 return s.newValue1(ssa.OpBitRev8, types.Types[TINT], args[0]) 3396 }, 3397 sys.ARM64) 3398 addF("math/bits", "Reverse", 3399 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3400 if s.config.PtrSize == 4 { 3401 return s.newValue1(ssa.OpBitRev32, types.Types[TINT], args[0]) 3402 } 3403 return s.newValue1(ssa.OpBitRev64, types.Types[TINT], args[0]) 3404 }, 3405 sys.ARM64) 3406 addF("math/bits", "RotateLeft8", 3407 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3408 return s.newValue2(ssa.OpRotateLeft8, types.Types[TUINT8], args[0], args[1]) 3409 }, 3410 sys.AMD64) 3411 addF("math/bits", "RotateLeft16", 3412 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3413 return s.newValue2(ssa.OpRotateLeft16, types.Types[TUINT16], args[0], args[1]) 3414 }, 3415 sys.AMD64) 3416 addF("math/bits", "RotateLeft32", 3417 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3418 return s.newValue2(ssa.OpRotateLeft32, types.Types[TUINT32], args[0], args[1]) 3419 }, 3420 sys.AMD64, sys.ARM64, sys.S390X) 3421 addF("math/bits", "RotateLeft64", 3422 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3423 return s.newValue2(ssa.OpRotateLeft64, types.Types[TUINT64], args[0], args[1]) 3424 }, 3425 sys.AMD64, sys.ARM64, sys.S390X) 3426 alias("math/bits", "RotateLeft", "math/bits", "RotateLeft64", p8...) 3427 3428 makeOnesCountAMD64 := func(op64 ssa.Op, op32 ssa.Op) func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3429 return func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3430 addr := s.entryNewValue1A(ssa.OpAddr, types.Types[TBOOL].PtrTo(), x86HasPOPCNT, s.sb) 3431 v := s.load(types.Types[TBOOL], addr) 3432 b := s.endBlock() 3433 b.Kind = ssa.BlockIf 3434 b.SetControl(v) 3435 bTrue := s.f.NewBlock(ssa.BlockPlain) 3436 bFalse := s.f.NewBlock(ssa.BlockPlain) 3437 bEnd := s.f.NewBlock(ssa.BlockPlain) 3438 b.AddEdgeTo(bTrue) 3439 b.AddEdgeTo(bFalse) 3440 b.Likely = ssa.BranchLikely // most machines have popcnt nowadays 3441 3442 // We have the intrinsic - use it directly. 3443 s.startBlock(bTrue) 3444 op := op64 3445 if s.config.PtrSize == 4 { 3446 op = op32 3447 } 3448 s.vars[n] = s.newValue1(op, types.Types[TINT], args[0]) 3449 s.endBlock().AddEdgeTo(bEnd) 3450 3451 // Call the pure Go version. 3452 s.startBlock(bFalse) 3453 a := s.call(n, callNormal) 3454 s.vars[n] = s.load(types.Types[TINT], a) 3455 s.endBlock().AddEdgeTo(bEnd) 3456 3457 // Merge results. 3458 s.startBlock(bEnd) 3459 return s.variable(n, types.Types[TINT]) 3460 } 3461 } 3462 addF("math/bits", "OnesCount64", 3463 makeOnesCountAMD64(ssa.OpPopCount64, ssa.OpPopCount64), 3464 sys.AMD64) 3465 addF("math/bits", "OnesCount64", 3466 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3467 return s.newValue1(ssa.OpPopCount64, types.Types[TINT], args[0]) 3468 }, 3469 sys.PPC64, sys.ARM64, sys.S390X) 3470 addF("math/bits", "OnesCount32", 3471 makeOnesCountAMD64(ssa.OpPopCount32, ssa.OpPopCount32), 3472 sys.AMD64) 3473 addF("math/bits", "OnesCount32", 3474 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3475 return s.newValue1(ssa.OpPopCount32, types.Types[TINT], args[0]) 3476 }, 3477 sys.PPC64, sys.ARM64, sys.S390X) 3478 addF("math/bits", "OnesCount16", 3479 makeOnesCountAMD64(ssa.OpPopCount16, ssa.OpPopCount16), 3480 sys.AMD64) 3481 addF("math/bits", "OnesCount16", 3482 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3483 return s.newValue1(ssa.OpPopCount16, types.Types[TINT], args[0]) 3484 }, 3485 sys.ARM64, sys.S390X, sys.PPC64) 3486 addF("math/bits", "OnesCount8", 3487 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3488 return s.newValue1(ssa.OpPopCount8, types.Types[TINT], args[0]) 3489 }, 3490 sys.S390X, sys.PPC64) 3491 addF("math/bits", "OnesCount", 3492 makeOnesCountAMD64(ssa.OpPopCount64, ssa.OpPopCount32), 3493 sys.AMD64) 3494 addF("math/bits", "Mul64", 3495 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3496 return s.newValue2(ssa.OpMul64uhilo, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1]) 3497 }, 3498 sys.AMD64, sys.ARM64, sys.PPC64) 3499 alias("math/bits", "Mul", "math/bits", "Mul64", sys.ArchAMD64, sys.ArchARM64, sys.ArchPPC64) 3500 addF("math/bits", "Add64", 3501 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3502 return s.newValue3(ssa.OpAdd64carry, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1], args[2]) 3503 }, 3504 sys.AMD64) 3505 alias("math/bits", "Add", "math/bits", "Add64", sys.ArchAMD64) 3506 addF("math/bits", "Sub64", 3507 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3508 return s.newValue3(ssa.OpSub64borrow, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1], args[2]) 3509 }, 3510 sys.AMD64) 3511 alias("math/bits", "Sub", "math/bits", "Sub64", sys.ArchAMD64) 3512 addF("math/bits", "Div64", 3513 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3514 // check for divide-by-zero/overflow and panic with appropriate message 3515 cmpZero := s.newValue2(s.ssaOp(ONE, types.Types[TUINT64]), types.Types[TBOOL], args[2], s.zeroVal(types.Types[TUINT64])) 3516 s.check(cmpZero, panicdivide) 3517 cmpOverflow := s.newValue2(s.ssaOp(OLT, types.Types[TUINT64]), types.Types[TBOOL], args[0], args[2]) 3518 s.check(cmpOverflow, panicoverflow) 3519 return s.newValue3(ssa.OpDiv128u, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1], args[2]) 3520 }, 3521 sys.AMD64) 3522 alias("math/bits", "Div", "math/bits", "Div64", sys.ArchAMD64) 3523 3524 /******** sync/atomic ********/ 3525 3526 // Note: these are disabled by flag_race in findIntrinsic below. 3527 alias("sync/atomic", "LoadInt32", "runtime/internal/atomic", "Load", all...) 3528 alias("sync/atomic", "LoadInt64", "runtime/internal/atomic", "Load64", all...) 3529 alias("sync/atomic", "LoadPointer", "runtime/internal/atomic", "Loadp", all...) 3530 alias("sync/atomic", "LoadUint32", "runtime/internal/atomic", "Load", all...) 3531 alias("sync/atomic", "LoadUint64", "runtime/internal/atomic", "Load64", all...) 3532 alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load", p4...) 3533 alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load64", p8...) 3534 3535 alias("sync/atomic", "StoreInt32", "runtime/internal/atomic", "Store", all...) 3536 alias("sync/atomic", "StoreInt64", "runtime/internal/atomic", "Store64", all...) 3537 // Note: not StorePointer, that needs a write barrier. Same below for {CompareAnd}Swap. 3538 alias("sync/atomic", "StoreUint32", "runtime/internal/atomic", "Store", all...) 3539 alias("sync/atomic", "StoreUint64", "runtime/internal/atomic", "Store64", all...) 3540 alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store", p4...) 3541 alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store64", p8...) 3542 3543 alias("sync/atomic", "SwapInt32", "runtime/internal/atomic", "Xchg", all...) 3544 alias("sync/atomic", "SwapInt64", "runtime/internal/atomic", "Xchg64", all...) 3545 alias("sync/atomic", "SwapUint32", "runtime/internal/atomic", "Xchg", all...) 3546 alias("sync/atomic", "SwapUint64", "runtime/internal/atomic", "Xchg64", all...) 3547 alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg", p4...) 3548 alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg64", p8...) 3549 3550 alias("sync/atomic", "CompareAndSwapInt32", "runtime/internal/atomic", "Cas", all...) 3551 alias("sync/atomic", "CompareAndSwapInt64", "runtime/internal/atomic", "Cas64", all...) 3552 alias("sync/atomic", "CompareAndSwapUint32", "runtime/internal/atomic", "Cas", all...) 3553 alias("sync/atomic", "CompareAndSwapUint64", "runtime/internal/atomic", "Cas64", all...) 3554 alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas", p4...) 3555 alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas64", p8...) 3556 3557 alias("sync/atomic", "AddInt32", "runtime/internal/atomic", "Xadd", all...) 3558 alias("sync/atomic", "AddInt64", "runtime/internal/atomic", "Xadd64", all...) 3559 alias("sync/atomic", "AddUint32", "runtime/internal/atomic", "Xadd", all...) 3560 alias("sync/atomic", "AddUint64", "runtime/internal/atomic", "Xadd64", all...) 3561 alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd", p4...) 3562 alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd64", p8...) 3563 3564 /******** math/big ********/ 3565 add("math/big", "mulWW", 3566 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3567 return s.newValue2(ssa.OpMul64uhilo, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1]) 3568 }, 3569 sys.ArchAMD64, sys.ArchARM64, sys.ArchPPC64LE, sys.ArchPPC64) 3570 add("math/big", "divWW", 3571 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3572 return s.newValue3(ssa.OpDiv128u, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1], args[2]) 3573 }, 3574 sys.ArchAMD64) 3575 } 3576 3577 // findIntrinsic returns a function which builds the SSA equivalent of the 3578 // function identified by the symbol sym. If sym is not an intrinsic call, returns nil. 3579 func findIntrinsic(sym *types.Sym) intrinsicBuilder { 3580 if ssa.IntrinsicsDisable { 3581 return nil 3582 } 3583 if sym == nil || sym.Pkg == nil { 3584 return nil 3585 } 3586 pkg := sym.Pkg.Path 3587 if sym.Pkg == localpkg { 3588 pkg = myimportpath 3589 } 3590 if flag_race && pkg == "sync/atomic" { 3591 // The race detector needs to be able to intercept these calls. 3592 // We can't intrinsify them. 3593 return nil 3594 } 3595 // Skip intrinsifying math functions (which may contain hard-float 3596 // instructions) when soft-float 3597 if thearch.SoftFloat && pkg == "math" { 3598 return nil 3599 } 3600 3601 fn := sym.Name 3602 return intrinsics[intrinsicKey{thearch.LinkArch.Arch, pkg, fn}] 3603 } 3604 3605 func isIntrinsicCall(n *Node) bool { 3606 if n == nil || n.Left == nil { 3607 return false 3608 } 3609 return findIntrinsic(n.Left.Sym) != nil 3610 } 3611 3612 // intrinsicCall converts a call to a recognized intrinsic function into the intrinsic SSA operation. 3613 func (s *state) intrinsicCall(n *Node) *ssa.Value { 3614 v := findIntrinsic(n.Left.Sym)(s, n, s.intrinsicArgs(n)) 3615 if ssa.IntrinsicsDebug > 0 { 3616 x := v 3617 if x == nil { 3618 x = s.mem() 3619 } 3620 if x.Op == ssa.OpSelect0 || x.Op == ssa.OpSelect1 { 3621 x = x.Args[0] 3622 } 3623 Warnl(n.Pos, "intrinsic substitution for %v with %s", n.Left.Sym.Name, x.LongString()) 3624 } 3625 return v 3626 } 3627 3628 // intrinsicArgs extracts args from n, evaluates them to SSA values, and returns them. 3629 func (s *state) intrinsicArgs(n *Node) []*ssa.Value { 3630 // Construct map of temps; see comments in s.call about the structure of n. 3631 temps := map[*Node]*ssa.Value{} 3632 for _, a := range n.List.Slice() { 3633 if a.Op != OAS { 3634 s.Fatalf("non-assignment as a temp function argument %v", a.Op) 3635 } 3636 l, r := a.Left, a.Right 3637 if l.Op != ONAME { 3638 s.Fatalf("non-ONAME temp function argument %v", a.Op) 3639 } 3640 // Evaluate and store to "temporary". 3641 // Walk ensures these temporaries are dead outside of n. 3642 temps[l] = s.expr(r) 3643 } 3644 args := make([]*ssa.Value, n.Rlist.Len()) 3645 for i, n := range n.Rlist.Slice() { 3646 // Store a value to an argument slot. 3647 if x, ok := temps[n]; ok { 3648 // This is a previously computed temporary. 3649 args[i] = x 3650 continue 3651 } 3652 // This is an explicit value; evaluate it. 3653 args[i] = s.expr(n) 3654 } 3655 return args 3656 } 3657 3658 // Calls the function n using the specified call type. 3659 // Returns the address of the return value (or nil if none). 3660 func (s *state) call(n *Node, k callKind) *ssa.Value { 3661 var sym *types.Sym // target symbol (if static) 3662 var closure *ssa.Value // ptr to closure to run (if dynamic) 3663 var codeptr *ssa.Value // ptr to target code (if dynamic) 3664 var rcvr *ssa.Value // receiver to set 3665 fn := n.Left 3666 switch n.Op { 3667 case OCALLFUNC: 3668 if k == callNormal && fn.Op == ONAME && fn.Class() == PFUNC { 3669 sym = fn.Sym 3670 break 3671 } 3672 closure = s.expr(fn) 3673 if thearch.LinkArch.Family == sys.Wasm || objabi.GOOS == "aix" && k != callGo { 3674 // On AIX, the closure needs to be verified as fn can be nil, except if it's a call go. This needs to be handled by the runtime to have the "go of nil func value" error. 3675 // TODO(neelance): On other architectures this should be eliminated by the optimization steps 3676 s.nilCheck(closure) 3677 } 3678 case OCALLMETH: 3679 if fn.Op != ODOTMETH { 3680 Fatalf("OCALLMETH: n.Left not an ODOTMETH: %v", fn) 3681 } 3682 if k == callNormal { 3683 sym = fn.Sym 3684 break 3685 } 3686 // Make a name n2 for the function. 3687 // fn.Sym might be sync.(*Mutex).Unlock. 3688 // Make a PFUNC node out of that, then evaluate it. 3689 // We get back an SSA value representing &sync.(*Mutex).Unlock·f. 3690 // We can then pass that to defer or go. 3691 n2 := newnamel(fn.Pos, fn.Sym) 3692 n2.Name.Curfn = s.curfn 3693 n2.SetClass(PFUNC) 3694 // n2.Sym already existed, so it's already marked as a function. 3695 n2.Pos = fn.Pos 3696 n2.Type = types.Types[TUINT8] // dummy type for a static closure. Could use runtime.funcval if we had it. 3697 closure = s.expr(n2) 3698 // Note: receiver is already present in n.Rlist, so we don't 3699 // want to set it here. 3700 case OCALLINTER: 3701 if fn.Op != ODOTINTER { 3702 Fatalf("OCALLINTER: n.Left not an ODOTINTER: %v", fn.Op) 3703 } 3704 i := s.expr(fn.Left) 3705 itab := s.newValue1(ssa.OpITab, types.Types[TUINTPTR], i) 3706 s.nilCheck(itab) 3707 itabidx := fn.Xoffset + 2*int64(Widthptr) + 8 // offset of fun field in runtime.itab 3708 itab = s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.UintptrPtr, itabidx, itab) 3709 if k == callNormal { 3710 codeptr = s.load(types.Types[TUINTPTR], itab) 3711 } else { 3712 closure = itab 3713 } 3714 rcvr = s.newValue1(ssa.OpIData, types.Types[TUINTPTR], i) 3715 } 3716 dowidth(fn.Type) 3717 stksize := fn.Type.ArgWidth() // includes receiver 3718 3719 // Run all assignments of temps. 3720 // The temps are introduced to avoid overwriting argument 3721 // slots when arguments themselves require function calls. 3722 s.stmtList(n.List) 3723 3724 // Store arguments to stack, including defer/go arguments and receiver for method calls. 3725 // These are written in SP-offset order. 3726 argStart := Ctxt.FixedFrameSize() 3727 // Defer/go args. 3728 if k != callNormal { 3729 // Write argsize and closure (args to newproc/deferproc). 3730 argsize := s.constInt32(types.Types[TUINT32], int32(stksize)) 3731 addr := s.constOffPtrSP(s.f.Config.Types.UInt32Ptr, argStart) 3732 s.store(types.Types[TUINT32], addr, argsize) 3733 addr = s.constOffPtrSP(s.f.Config.Types.UintptrPtr, argStart+int64(Widthptr)) 3734 s.store(types.Types[TUINTPTR], addr, closure) 3735 stksize += 2 * int64(Widthptr) 3736 argStart += 2 * int64(Widthptr) 3737 } 3738 3739 // Set receiver (for interface calls). 3740 if rcvr != nil { 3741 addr := s.constOffPtrSP(s.f.Config.Types.UintptrPtr, argStart) 3742 s.store(types.Types[TUINTPTR], addr, rcvr) 3743 } 3744 3745 // Write args. 3746 t := n.Left.Type 3747 args := n.Rlist.Slice() 3748 if n.Op == OCALLMETH { 3749 f := t.Recv() 3750 s.storeArg(args[0], f.Type, argStart+f.Offset) 3751 args = args[1:] 3752 } 3753 for i, n := range args { 3754 f := t.Params().Field(i) 3755 s.storeArg(n, f.Type, argStart+f.Offset) 3756 } 3757 3758 // call target 3759 var call *ssa.Value 3760 switch { 3761 case k == callDefer: 3762 call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, deferproc, s.mem()) 3763 case k == callGo: 3764 call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, newproc, s.mem()) 3765 case closure != nil: 3766 // rawLoad because loading the code pointer from a 3767 // closure is always safe, but IsSanitizerSafeAddr 3768 // can't always figure that out currently, and it's 3769 // critical that we not clobber any arguments already 3770 // stored onto the stack. 3771 codeptr = s.rawLoad(types.Types[TUINTPTR], closure) 3772 call = s.newValue3(ssa.OpClosureCall, types.TypeMem, codeptr, closure, s.mem()) 3773 case codeptr != nil: 3774 call = s.newValue2(ssa.OpInterCall, types.TypeMem, codeptr, s.mem()) 3775 case sym != nil: 3776 call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, sym.Linksym(), s.mem()) 3777 default: 3778 Fatalf("bad call type %v %v", n.Op, n) 3779 } 3780 call.AuxInt = stksize // Call operations carry the argsize of the callee along with them 3781 s.vars[&memVar] = call 3782 3783 // Finish block for defers 3784 if k == callDefer { 3785 b := s.endBlock() 3786 b.Kind = ssa.BlockDefer 3787 b.SetControl(call) 3788 bNext := s.f.NewBlock(ssa.BlockPlain) 3789 b.AddEdgeTo(bNext) 3790 // Add recover edge to exit code. 3791 r := s.f.NewBlock(ssa.BlockPlain) 3792 s.startBlock(r) 3793 s.exit() 3794 b.AddEdgeTo(r) 3795 b.Likely = ssa.BranchLikely 3796 s.startBlock(bNext) 3797 } 3798 3799 res := n.Left.Type.Results() 3800 if res.NumFields() == 0 || k != callNormal { 3801 // call has no return value. Continue with the next statement. 3802 return nil 3803 } 3804 fp := res.Field(0) 3805 return s.constOffPtrSP(types.NewPtr(fp.Type), fp.Offset+Ctxt.FixedFrameSize()) 3806 } 3807 3808 // etypesign returns the signed-ness of e, for integer/pointer etypes. 3809 // -1 means signed, +1 means unsigned, 0 means non-integer/non-pointer. 3810 func etypesign(e types.EType) int8 { 3811 switch e { 3812 case TINT8, TINT16, TINT32, TINT64, TINT: 3813 return -1 3814 case TUINT8, TUINT16, TUINT32, TUINT64, TUINT, TUINTPTR, TUNSAFEPTR: 3815 return +1 3816 } 3817 return 0 3818 } 3819 3820 // addr converts the address of the expression n to SSA, adds it to s and returns the SSA result. 3821 // The value that the returned Value represents is guaranteed to be non-nil. 3822 // If bounded is true then this address does not require a nil check for its operand 3823 // even if that would otherwise be implied. 3824 func (s *state) addr(n *Node, bounded bool) *ssa.Value { 3825 t := types.NewPtr(n.Type) 3826 switch n.Op { 3827 case ONAME: 3828 switch n.Class() { 3829 case PEXTERN: 3830 // global variable 3831 v := s.entryNewValue1A(ssa.OpAddr, t, n.Sym.Linksym(), s.sb) 3832 // TODO: Make OpAddr use AuxInt as well as Aux. 3833 if n.Xoffset != 0 { 3834 v = s.entryNewValue1I(ssa.OpOffPtr, v.Type, n.Xoffset, v) 3835 } 3836 return v 3837 case PPARAM: 3838 // parameter slot 3839 v := s.decladdrs[n] 3840 if v != nil { 3841 return v 3842 } 3843 if n == nodfp { 3844 // Special arg that points to the frame pointer (Used by ORECOVER). 3845 return s.entryNewValue2A(ssa.OpLocalAddr, t, n, s.sp, s.startmem) 3846 } 3847 s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs) 3848 return nil 3849 case PAUTO: 3850 return s.newValue2Apos(ssa.OpLocalAddr, t, n, s.sp, s.mem(), !n.IsAutoTmp()) 3851 3852 case PPARAMOUT: // Same as PAUTO -- cannot generate LEA early. 3853 // ensure that we reuse symbols for out parameters so 3854 // that cse works on their addresses 3855 return s.newValue2Apos(ssa.OpLocalAddr, t, n, s.sp, s.mem(), true) 3856 default: 3857 s.Fatalf("variable address class %v not implemented", n.Class()) 3858 return nil 3859 } 3860 case OINDREGSP: 3861 // indirect off REGSP 3862 // used for storing/loading arguments/returns to/from callees 3863 return s.constOffPtrSP(t, n.Xoffset) 3864 case OINDEX: 3865 if n.Left.Type.IsSlice() { 3866 a := s.expr(n.Left) 3867 i := s.expr(n.Right) 3868 i = s.extendIndex(i, panicindex) 3869 len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], a) 3870 if !n.Bounded() { 3871 s.boundsCheck(i, len) 3872 } 3873 p := s.newValue1(ssa.OpSlicePtr, t, a) 3874 return s.newValue2(ssa.OpPtrIndex, t, p, i) 3875 } else { // array 3876 a := s.addr(n.Left, bounded) 3877 i := s.expr(n.Right) 3878 i = s.extendIndex(i, panicindex) 3879 len := s.constInt(types.Types[TINT], n.Left.Type.NumElem()) 3880 if !n.Bounded() { 3881 s.boundsCheck(i, len) 3882 } 3883 return s.newValue2(ssa.OpPtrIndex, types.NewPtr(n.Left.Type.Elem()), a, i) 3884 } 3885 case ODEREF: 3886 return s.exprPtr(n.Left, bounded, n.Pos) 3887 case ODOT: 3888 p := s.addr(n.Left, bounded) 3889 return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p) 3890 case ODOTPTR: 3891 p := s.exprPtr(n.Left, bounded, n.Pos) 3892 return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p) 3893 case OCLOSUREVAR: 3894 return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, 3895 s.entryNewValue0(ssa.OpGetClosurePtr, s.f.Config.Types.BytePtr)) 3896 case OCONVNOP: 3897 addr := s.addr(n.Left, bounded) 3898 return s.newValue1(ssa.OpCopy, t, addr) // ensure that addr has the right type 3899 case OCALLFUNC, OCALLINTER, OCALLMETH: 3900 return s.call(n, callNormal) 3901 case ODOTTYPE: 3902 v, _ := s.dottype(n, false) 3903 if v.Op != ssa.OpLoad { 3904 s.Fatalf("dottype of non-load") 3905 } 3906 if v.Args[1] != s.mem() { 3907 s.Fatalf("memory no longer live from dottype load") 3908 } 3909 return v.Args[0] 3910 default: 3911 s.Fatalf("unhandled addr %v", n.Op) 3912 return nil 3913 } 3914 } 3915 3916 // canSSA reports whether n is SSA-able. 3917 // n must be an ONAME (or an ODOT sequence with an ONAME base). 3918 func (s *state) canSSA(n *Node) bool { 3919 if Debug['N'] != 0 { 3920 return false 3921 } 3922 for n.Op == ODOT || (n.Op == OINDEX && n.Left.Type.IsArray()) { 3923 n = n.Left 3924 } 3925 if n.Op != ONAME { 3926 return false 3927 } 3928 if n.Addrtaken() { 3929 return false 3930 } 3931 if n.isParamHeapCopy() { 3932 return false 3933 } 3934 if n.Class() == PAUTOHEAP { 3935 Fatalf("canSSA of PAUTOHEAP %v", n) 3936 } 3937 switch n.Class() { 3938 case PEXTERN: 3939 return false 3940 case PPARAMOUT: 3941 if s.hasdefer { 3942 // TODO: handle this case? Named return values must be 3943 // in memory so that the deferred function can see them. 3944 // Maybe do: if !strings.HasPrefix(n.String(), "~") { return false } 3945 // Or maybe not, see issue 18860. Even unnamed return values 3946 // must be written back so if a defer recovers, the caller can see them. 3947 return false 3948 } 3949 if s.cgoUnsafeArgs { 3950 // Cgo effectively takes the address of all result args, 3951 // but the compiler can't see that. 3952 return false 3953 } 3954 } 3955 if n.Class() == PPARAM && n.Sym != nil && n.Sym.Name == ".this" { 3956 // wrappers generated by genwrapper need to update 3957 // the .this pointer in place. 3958 // TODO: treat as a PPARMOUT? 3959 return false 3960 } 3961 return canSSAType(n.Type) 3962 // TODO: try to make more variables SSAable? 3963 } 3964 3965 // canSSA reports whether variables of type t are SSA-able. 3966 func canSSAType(t *types.Type) bool { 3967 dowidth(t) 3968 if t.Width > int64(4*Widthptr) { 3969 // 4*Widthptr is an arbitrary constant. We want it 3970 // to be at least 3*Widthptr so slices can be registerized. 3971 // Too big and we'll introduce too much register pressure. 3972 return false 3973 } 3974 switch t.Etype { 3975 case TARRAY: 3976 // We can't do larger arrays because dynamic indexing is 3977 // not supported on SSA variables. 3978 // TODO: allow if all indexes are constant. 3979 if t.NumElem() <= 1 { 3980 return canSSAType(t.Elem()) 3981 } 3982 return false 3983 case TSTRUCT: 3984 if t.NumFields() > ssa.MaxStruct { 3985 return false 3986 } 3987 for _, t1 := range t.Fields().Slice() { 3988 if !canSSAType(t1.Type) { 3989 return false 3990 } 3991 } 3992 return true 3993 default: 3994 return true 3995 } 3996 } 3997 3998 // exprPtr evaluates n to a pointer and nil-checks it. 3999 func (s *state) exprPtr(n *Node, bounded bool, lineno src.XPos) *ssa.Value { 4000 p := s.expr(n) 4001 if bounded || n.NonNil() { 4002 if s.f.Frontend().Debug_checknil() && lineno.Line() > 1 { 4003 s.f.Warnl(lineno, "removed nil check") 4004 } 4005 return p 4006 } 4007 s.nilCheck(p) 4008 return p 4009 } 4010 4011 // nilCheck generates nil pointer checking code. 4012 // Used only for automatically inserted nil checks, 4013 // not for user code like 'x != nil'. 4014 func (s *state) nilCheck(ptr *ssa.Value) { 4015 if disable_checknil != 0 || s.curfn.Func.NilCheckDisabled() { 4016 return 4017 } 4018 s.newValue2(ssa.OpNilCheck, types.TypeVoid, ptr, s.mem()) 4019 } 4020 4021 // boundsCheck generates bounds checking code. Checks if 0 <= idx < len, branches to exit if not. 4022 // Starts a new block on return. 4023 // idx is already converted to full int width. 4024 func (s *state) boundsCheck(idx, len *ssa.Value) { 4025 if Debug['B'] != 0 { 4026 return 4027 } 4028 4029 // bounds check 4030 cmp := s.newValue2(ssa.OpIsInBounds, types.Types[TBOOL], idx, len) 4031 s.check(cmp, panicindex) 4032 } 4033 4034 func couldBeNegative(v *ssa.Value) bool { 4035 switch v.Op { 4036 case ssa.OpSliceLen, ssa.OpSliceCap, ssa.OpStringLen: 4037 return false 4038 case ssa.OpConst64: 4039 return v.AuxInt < 0 4040 case ssa.OpConst32: 4041 return int32(v.AuxInt) < 0 4042 } 4043 return true 4044 } 4045 4046 // sliceBoundsCheck generates slice bounds checking code. Checks if 0 <= idx <= len, branches to exit if not. 4047 // Starts a new block on return. 4048 // idx and len are already converted to full int width. 4049 func (s *state) sliceBoundsCheck(idx, len *ssa.Value) { 4050 if Debug['B'] != 0 { 4051 return 4052 } 4053 if couldBeNegative(len) { 4054 // OpIsSliceInBounds requires second arg not negative; if it's not obviously true, must check. 4055 cmpop := ssa.OpGeq64 4056 if len.Type.Size() == 4 { 4057 cmpop = ssa.OpGeq32 4058 } 4059 cmp := s.newValue2(cmpop, types.Types[TBOOL], len, s.zeroVal(len.Type)) 4060 s.check(cmp, panicslice) 4061 } 4062 4063 // bounds check 4064 cmp := s.newValue2(ssa.OpIsSliceInBounds, types.Types[TBOOL], idx, len) 4065 s.check(cmp, panicslice) 4066 } 4067 4068 // If cmp (a bool) is false, panic using the given function. 4069 func (s *state) check(cmp *ssa.Value, fn *obj.LSym) { 4070 b := s.endBlock() 4071 b.Kind = ssa.BlockIf 4072 b.SetControl(cmp) 4073 b.Likely = ssa.BranchLikely 4074 bNext := s.f.NewBlock(ssa.BlockPlain) 4075 line := s.peekPos() 4076 pos := Ctxt.PosTable.Pos(line) 4077 fl := funcLine{f: fn, base: pos.Base(), line: pos.Line()} 4078 bPanic := s.panics[fl] 4079 if bPanic == nil { 4080 bPanic = s.f.NewBlock(ssa.BlockPlain) 4081 s.panics[fl] = bPanic 4082 s.startBlock(bPanic) 4083 // The panic call takes/returns memory to ensure that the right 4084 // memory state is observed if the panic happens. 4085 s.rtcall(fn, false, nil) 4086 } 4087 b.AddEdgeTo(bNext) 4088 b.AddEdgeTo(bPanic) 4089 s.startBlock(bNext) 4090 } 4091 4092 func (s *state) intDivide(n *Node, a, b *ssa.Value) *ssa.Value { 4093 needcheck := true 4094 switch b.Op { 4095 case ssa.OpConst8, ssa.OpConst16, ssa.OpConst32, ssa.OpConst64: 4096 if b.AuxInt != 0 { 4097 needcheck = false 4098 } 4099 } 4100 if needcheck { 4101 // do a size-appropriate check for zero 4102 cmp := s.newValue2(s.ssaOp(ONE, n.Type), types.Types[TBOOL], b, s.zeroVal(n.Type)) 4103 s.check(cmp, panicdivide) 4104 } 4105 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 4106 } 4107 4108 // rtcall issues a call to the given runtime function fn with the listed args. 4109 // Returns a slice of results of the given result types. 4110 // The call is added to the end of the current block. 4111 // If returns is false, the block is marked as an exit block. 4112 func (s *state) rtcall(fn *obj.LSym, returns bool, results []*types.Type, args ...*ssa.Value) []*ssa.Value { 4113 // Write args to the stack 4114 off := Ctxt.FixedFrameSize() 4115 for _, arg := range args { 4116 t := arg.Type 4117 off = Rnd(off, t.Alignment()) 4118 ptr := s.constOffPtrSP(t.PtrTo(), off) 4119 size := t.Size() 4120 s.store(t, ptr, arg) 4121 off += size 4122 } 4123 off = Rnd(off, int64(Widthreg)) 4124 4125 // Issue call 4126 call := s.newValue1A(ssa.OpStaticCall, types.TypeMem, fn, s.mem()) 4127 s.vars[&memVar] = call 4128 4129 if !returns { 4130 // Finish block 4131 b := s.endBlock() 4132 b.Kind = ssa.BlockExit 4133 b.SetControl(call) 4134 call.AuxInt = off - Ctxt.FixedFrameSize() 4135 if len(results) > 0 { 4136 Fatalf("panic call can't have results") 4137 } 4138 return nil 4139 } 4140 4141 // Load results 4142 res := make([]*ssa.Value, len(results)) 4143 for i, t := range results { 4144 off = Rnd(off, t.Alignment()) 4145 ptr := s.constOffPtrSP(types.NewPtr(t), off) 4146 res[i] = s.load(t, ptr) 4147 off += t.Size() 4148 } 4149 off = Rnd(off, int64(Widthptr)) 4150 4151 // Remember how much callee stack space we needed. 4152 call.AuxInt = off 4153 4154 return res 4155 } 4156 4157 // do *left = right for type t. 4158 func (s *state) storeType(t *types.Type, left, right *ssa.Value, skip skipMask, leftIsStmt bool) { 4159 s.instrument(t, left, true) 4160 4161 if skip == 0 && (!types.Haspointers(t) || ssa.IsStackAddr(left)) { 4162 // Known to not have write barrier. Store the whole type. 4163 s.vars[&memVar] = s.newValue3Apos(ssa.OpStore, types.TypeMem, t, left, right, s.mem(), leftIsStmt) 4164 return 4165 } 4166 4167 // store scalar fields first, so write barrier stores for 4168 // pointer fields can be grouped together, and scalar values 4169 // don't need to be live across the write barrier call. 4170 // TODO: if the writebarrier pass knows how to reorder stores, 4171 // we can do a single store here as long as skip==0. 4172 s.storeTypeScalars(t, left, right, skip) 4173 if skip&skipPtr == 0 && types.Haspointers(t) { 4174 s.storeTypePtrs(t, left, right) 4175 } 4176 } 4177 4178 // do *left = right for all scalar (non-pointer) parts of t. 4179 func (s *state) storeTypeScalars(t *types.Type, left, right *ssa.Value, skip skipMask) { 4180 switch { 4181 case t.IsBoolean() || t.IsInteger() || t.IsFloat() || t.IsComplex(): 4182 s.store(t, left, right) 4183 case t.IsPtrShaped(): 4184 // no scalar fields. 4185 case t.IsString(): 4186 if skip&skipLen != 0 { 4187 return 4188 } 4189 len := s.newValue1(ssa.OpStringLen, types.Types[TINT], right) 4190 lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left) 4191 s.store(types.Types[TINT], lenAddr, len) 4192 case t.IsSlice(): 4193 if skip&skipLen == 0 { 4194 len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], right) 4195 lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left) 4196 s.store(types.Types[TINT], lenAddr, len) 4197 } 4198 if skip&skipCap == 0 { 4199 cap := s.newValue1(ssa.OpSliceCap, types.Types[TINT], right) 4200 capAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, 2*s.config.PtrSize, left) 4201 s.store(types.Types[TINT], capAddr, cap) 4202 } 4203 case t.IsInterface(): 4204 // itab field doesn't need a write barrier (even though it is a pointer). 4205 itab := s.newValue1(ssa.OpITab, s.f.Config.Types.BytePtr, right) 4206 s.store(types.Types[TUINTPTR], left, itab) 4207 case t.IsStruct(): 4208 n := t.NumFields() 4209 for i := 0; i < n; i++ { 4210 ft := t.FieldType(i) 4211 addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left) 4212 val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right) 4213 s.storeTypeScalars(ft, addr, val, 0) 4214 } 4215 case t.IsArray() && t.NumElem() == 0: 4216 // nothing 4217 case t.IsArray() && t.NumElem() == 1: 4218 s.storeTypeScalars(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right), 0) 4219 default: 4220 s.Fatalf("bad write barrier type %v", t) 4221 } 4222 } 4223 4224 // do *left = right for all pointer parts of t. 4225 func (s *state) storeTypePtrs(t *types.Type, left, right *ssa.Value) { 4226 switch { 4227 case t.IsPtrShaped(): 4228 s.store(t, left, right) 4229 case t.IsString(): 4230 ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, right) 4231 s.store(s.f.Config.Types.BytePtr, left, ptr) 4232 case t.IsSlice(): 4233 elType := types.NewPtr(t.Elem()) 4234 ptr := s.newValue1(ssa.OpSlicePtr, elType, right) 4235 s.store(elType, left, ptr) 4236 case t.IsInterface(): 4237 // itab field is treated as a scalar. 4238 idata := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, right) 4239 idataAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.BytePtrPtr, s.config.PtrSize, left) 4240 s.store(s.f.Config.Types.BytePtr, idataAddr, idata) 4241 case t.IsStruct(): 4242 n := t.NumFields() 4243 for i := 0; i < n; i++ { 4244 ft := t.FieldType(i) 4245 if !types.Haspointers(ft) { 4246 continue 4247 } 4248 addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left) 4249 val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right) 4250 s.storeTypePtrs(ft, addr, val) 4251 } 4252 case t.IsArray() && t.NumElem() == 0: 4253 // nothing 4254 case t.IsArray() && t.NumElem() == 1: 4255 s.storeTypePtrs(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right)) 4256 default: 4257 s.Fatalf("bad write barrier type %v", t) 4258 } 4259 } 4260 4261 func (s *state) storeArg(n *Node, t *types.Type, off int64) { 4262 pt := types.NewPtr(t) 4263 sp := s.constOffPtrSP(pt, off) 4264 4265 if !canSSAType(t) { 4266 a := s.addr(n, false) 4267 s.move(t, sp, a) 4268 return 4269 } 4270 4271 a := s.expr(n) 4272 s.storeType(t, sp, a, 0, false) 4273 } 4274 4275 // slice computes the slice v[i:j:k] and returns ptr, len, and cap of result. 4276 // i,j,k may be nil, in which case they are set to their default value. 4277 // t is a slice, ptr to array, or string type. 4278 func (s *state) slice(t *types.Type, v, i, j, k *ssa.Value, bounded bool) (p, l, c *ssa.Value) { 4279 var elemtype *types.Type 4280 var ptrtype *types.Type 4281 var ptr *ssa.Value 4282 var len *ssa.Value 4283 var cap *ssa.Value 4284 zero := s.constInt(types.Types[TINT], 0) 4285 switch { 4286 case t.IsSlice(): 4287 elemtype = t.Elem() 4288 ptrtype = types.NewPtr(elemtype) 4289 ptr = s.newValue1(ssa.OpSlicePtr, ptrtype, v) 4290 len = s.newValue1(ssa.OpSliceLen, types.Types[TINT], v) 4291 cap = s.newValue1(ssa.OpSliceCap, types.Types[TINT], v) 4292 case t.IsString(): 4293 elemtype = types.Types[TUINT8] 4294 ptrtype = types.NewPtr(elemtype) 4295 ptr = s.newValue1(ssa.OpStringPtr, ptrtype, v) 4296 len = s.newValue1(ssa.OpStringLen, types.Types[TINT], v) 4297 cap = len 4298 case t.IsPtr(): 4299 if !t.Elem().IsArray() { 4300 s.Fatalf("bad ptr to array in slice %v\n", t) 4301 } 4302 elemtype = t.Elem().Elem() 4303 ptrtype = types.NewPtr(elemtype) 4304 s.nilCheck(v) 4305 ptr = v 4306 len = s.constInt(types.Types[TINT], t.Elem().NumElem()) 4307 cap = len 4308 default: 4309 s.Fatalf("bad type in slice %v\n", t) 4310 } 4311 4312 // Set default values 4313 if i == nil { 4314 i = zero 4315 } 4316 if j == nil { 4317 j = len 4318 } 4319 if k == nil { 4320 k = cap 4321 } 4322 4323 if !bounded { 4324 // Panic if slice indices are not in bounds. 4325 s.sliceBoundsCheck(i, j) 4326 if j != k { 4327 s.sliceBoundsCheck(j, k) 4328 } 4329 if k != cap { 4330 s.sliceBoundsCheck(k, cap) 4331 } 4332 } 4333 4334 // Generate the following code assuming that indexes are in bounds. 4335 // The masking is to make sure that we don't generate a slice 4336 // that points to the next object in memory. 4337 // rlen = j - i 4338 // rcap = k - i 4339 // delta = i * elemsize 4340 // rptr = p + delta&mask(rcap) 4341 // result = (SliceMake rptr rlen rcap) 4342 // where mask(x) is 0 if x==0 and -1 if x>0. 4343 subOp := s.ssaOp(OSUB, types.Types[TINT]) 4344 mulOp := s.ssaOp(OMUL, types.Types[TINT]) 4345 andOp := s.ssaOp(OAND, types.Types[TINT]) 4346 rlen := s.newValue2(subOp, types.Types[TINT], j, i) 4347 var rcap *ssa.Value 4348 switch { 4349 case t.IsString(): 4350 // Capacity of the result is unimportant. However, we use 4351 // rcap to test if we've generated a zero-length slice. 4352 // Use length of strings for that. 4353 rcap = rlen 4354 case j == k: 4355 rcap = rlen 4356 default: 4357 rcap = s.newValue2(subOp, types.Types[TINT], k, i) 4358 } 4359 4360 var rptr *ssa.Value 4361 if (i.Op == ssa.OpConst64 || i.Op == ssa.OpConst32) && i.AuxInt == 0 { 4362 // No pointer arithmetic necessary. 4363 rptr = ptr 4364 } else { 4365 // delta = # of bytes to offset pointer by. 4366 delta := s.newValue2(mulOp, types.Types[TINT], i, s.constInt(types.Types[TINT], elemtype.Width)) 4367 // If we're slicing to the point where the capacity is zero, 4368 // zero out the delta. 4369 mask := s.newValue1(ssa.OpSlicemask, types.Types[TINT], rcap) 4370 delta = s.newValue2(andOp, types.Types[TINT], delta, mask) 4371 // Compute rptr = ptr + delta 4372 rptr = s.newValue2(ssa.OpAddPtr, ptrtype, ptr, delta) 4373 } 4374 4375 return rptr, rlen, rcap 4376 } 4377 4378 type u642fcvtTab struct { 4379 geq, cvt2F, and, rsh, or, add ssa.Op 4380 one func(*state, *types.Type, int64) *ssa.Value 4381 } 4382 4383 var u64_f64 = u642fcvtTab{ 4384 geq: ssa.OpGeq64, 4385 cvt2F: ssa.OpCvt64to64F, 4386 and: ssa.OpAnd64, 4387 rsh: ssa.OpRsh64Ux64, 4388 or: ssa.OpOr64, 4389 add: ssa.OpAdd64F, 4390 one: (*state).constInt64, 4391 } 4392 4393 var u64_f32 = u642fcvtTab{ 4394 geq: ssa.OpGeq64, 4395 cvt2F: ssa.OpCvt64to32F, 4396 and: ssa.OpAnd64, 4397 rsh: ssa.OpRsh64Ux64, 4398 or: ssa.OpOr64, 4399 add: ssa.OpAdd32F, 4400 one: (*state).constInt64, 4401 } 4402 4403 func (s *state) uint64Tofloat64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 4404 return s.uint64Tofloat(&u64_f64, n, x, ft, tt) 4405 } 4406 4407 func (s *state) uint64Tofloat32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 4408 return s.uint64Tofloat(&u64_f32, n, x, ft, tt) 4409 } 4410 4411 func (s *state) uint64Tofloat(cvttab *u642fcvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 4412 // if x >= 0 { 4413 // result = (floatY) x 4414 // } else { 4415 // y = uintX(x) ; y = x & 1 4416 // z = uintX(x) ; z = z >> 1 4417 // z = z >> 1 4418 // z = z | y 4419 // result = floatY(z) 4420 // result = result + result 4421 // } 4422 // 4423 // Code borrowed from old code generator. 4424 // What's going on: large 64-bit "unsigned" looks like 4425 // negative number to hardware's integer-to-float 4426 // conversion. However, because the mantissa is only 4427 // 63 bits, we don't need the LSB, so instead we do an 4428 // unsigned right shift (divide by two), convert, and 4429 // double. However, before we do that, we need to be 4430 // sure that we do not lose a "1" if that made the 4431 // difference in the resulting rounding. Therefore, we 4432 // preserve it, and OR (not ADD) it back in. The case 4433 // that matters is when the eleven discarded bits are 4434 // equal to 10000000001; that rounds up, and the 1 cannot 4435 // be lost else it would round down if the LSB of the 4436 // candidate mantissa is 0. 4437 cmp := s.newValue2(cvttab.geq, types.Types[TBOOL], x, s.zeroVal(ft)) 4438 b := s.endBlock() 4439 b.Kind = ssa.BlockIf 4440 b.SetControl(cmp) 4441 b.Likely = ssa.BranchLikely 4442 4443 bThen := s.f.NewBlock(ssa.BlockPlain) 4444 bElse := s.f.NewBlock(ssa.BlockPlain) 4445 bAfter := s.f.NewBlock(ssa.BlockPlain) 4446 4447 b.AddEdgeTo(bThen) 4448 s.startBlock(bThen) 4449 a0 := s.newValue1(cvttab.cvt2F, tt, x) 4450 s.vars[n] = a0 4451 s.endBlock() 4452 bThen.AddEdgeTo(bAfter) 4453 4454 b.AddEdgeTo(bElse) 4455 s.startBlock(bElse) 4456 one := cvttab.one(s, ft, 1) 4457 y := s.newValue2(cvttab.and, ft, x, one) 4458 z := s.newValue2(cvttab.rsh, ft, x, one) 4459 z = s.newValue2(cvttab.or, ft, z, y) 4460 a := s.newValue1(cvttab.cvt2F, tt, z) 4461 a1 := s.newValue2(cvttab.add, tt, a, a) 4462 s.vars[n] = a1 4463 s.endBlock() 4464 bElse.AddEdgeTo(bAfter) 4465 4466 s.startBlock(bAfter) 4467 return s.variable(n, n.Type) 4468 } 4469 4470 type u322fcvtTab struct { 4471 cvtI2F, cvtF2F ssa.Op 4472 } 4473 4474 var u32_f64 = u322fcvtTab{ 4475 cvtI2F: ssa.OpCvt32to64F, 4476 cvtF2F: ssa.OpCopy, 4477 } 4478 4479 var u32_f32 = u322fcvtTab{ 4480 cvtI2F: ssa.OpCvt32to32F, 4481 cvtF2F: ssa.OpCvt64Fto32F, 4482 } 4483 4484 func (s *state) uint32Tofloat64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 4485 return s.uint32Tofloat(&u32_f64, n, x, ft, tt) 4486 } 4487 4488 func (s *state) uint32Tofloat32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 4489 return s.uint32Tofloat(&u32_f32, n, x, ft, tt) 4490 } 4491 4492 func (s *state) uint32Tofloat(cvttab *u322fcvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 4493 // if x >= 0 { 4494 // result = floatY(x) 4495 // } else { 4496 // result = floatY(float64(x) + (1<<32)) 4497 // } 4498 cmp := s.newValue2(ssa.OpGeq32, types.Types[TBOOL], x, s.zeroVal(ft)) 4499 b := s.endBlock() 4500 b.Kind = ssa.BlockIf 4501 b.SetControl(cmp) 4502 b.Likely = ssa.BranchLikely 4503 4504 bThen := s.f.NewBlock(ssa.BlockPlain) 4505 bElse := s.f.NewBlock(ssa.BlockPlain) 4506 bAfter := s.f.NewBlock(ssa.BlockPlain) 4507 4508 b.AddEdgeTo(bThen) 4509 s.startBlock(bThen) 4510 a0 := s.newValue1(cvttab.cvtI2F, tt, x) 4511 s.vars[n] = a0 4512 s.endBlock() 4513 bThen.AddEdgeTo(bAfter) 4514 4515 b.AddEdgeTo(bElse) 4516 s.startBlock(bElse) 4517 a1 := s.newValue1(ssa.OpCvt32to64F, types.Types[TFLOAT64], x) 4518 twoToThe32 := s.constFloat64(types.Types[TFLOAT64], float64(1<<32)) 4519 a2 := s.newValue2(ssa.OpAdd64F, types.Types[TFLOAT64], a1, twoToThe32) 4520 a3 := s.newValue1(cvttab.cvtF2F, tt, a2) 4521 4522 s.vars[n] = a3 4523 s.endBlock() 4524 bElse.AddEdgeTo(bAfter) 4525 4526 s.startBlock(bAfter) 4527 return s.variable(n, n.Type) 4528 } 4529 4530 // referenceTypeBuiltin generates code for the len/cap builtins for maps and channels. 4531 func (s *state) referenceTypeBuiltin(n *Node, x *ssa.Value) *ssa.Value { 4532 if !n.Left.Type.IsMap() && !n.Left.Type.IsChan() { 4533 s.Fatalf("node must be a map or a channel") 4534 } 4535 // if n == nil { 4536 // return 0 4537 // } else { 4538 // // len 4539 // return *((*int)n) 4540 // // cap 4541 // return *(((*int)n)+1) 4542 // } 4543 lenType := n.Type 4544 nilValue := s.constNil(types.Types[TUINTPTR]) 4545 cmp := s.newValue2(ssa.OpEqPtr, types.Types[TBOOL], x, nilValue) 4546 b := s.endBlock() 4547 b.Kind = ssa.BlockIf 4548 b.SetControl(cmp) 4549 b.Likely = ssa.BranchUnlikely 4550 4551 bThen := s.f.NewBlock(ssa.BlockPlain) 4552 bElse := s.f.NewBlock(ssa.BlockPlain) 4553 bAfter := s.f.NewBlock(ssa.BlockPlain) 4554 4555 // length/capacity of a nil map/chan is zero 4556 b.AddEdgeTo(bThen) 4557 s.startBlock(bThen) 4558 s.vars[n] = s.zeroVal(lenType) 4559 s.endBlock() 4560 bThen.AddEdgeTo(bAfter) 4561 4562 b.AddEdgeTo(bElse) 4563 s.startBlock(bElse) 4564 switch n.Op { 4565 case OLEN: 4566 // length is stored in the first word for map/chan 4567 s.vars[n] = s.load(lenType, x) 4568 case OCAP: 4569 // capacity is stored in the second word for chan 4570 sw := s.newValue1I(ssa.OpOffPtr, lenType.PtrTo(), lenType.Width, x) 4571 s.vars[n] = s.load(lenType, sw) 4572 default: 4573 s.Fatalf("op must be OLEN or OCAP") 4574 } 4575 s.endBlock() 4576 bElse.AddEdgeTo(bAfter) 4577 4578 s.startBlock(bAfter) 4579 return s.variable(n, lenType) 4580 } 4581 4582 type f2uCvtTab struct { 4583 ltf, cvt2U, subf, or ssa.Op 4584 floatValue func(*state, *types.Type, float64) *ssa.Value 4585 intValue func(*state, *types.Type, int64) *ssa.Value 4586 cutoff uint64 4587 } 4588 4589 var f32_u64 = f2uCvtTab{ 4590 ltf: ssa.OpLess32F, 4591 cvt2U: ssa.OpCvt32Fto64, 4592 subf: ssa.OpSub32F, 4593 or: ssa.OpOr64, 4594 floatValue: (*state).constFloat32, 4595 intValue: (*state).constInt64, 4596 cutoff: 9223372036854775808, 4597 } 4598 4599 var f64_u64 = f2uCvtTab{ 4600 ltf: ssa.OpLess64F, 4601 cvt2U: ssa.OpCvt64Fto64, 4602 subf: ssa.OpSub64F, 4603 or: ssa.OpOr64, 4604 floatValue: (*state).constFloat64, 4605 intValue: (*state).constInt64, 4606 cutoff: 9223372036854775808, 4607 } 4608 4609 var f32_u32 = f2uCvtTab{ 4610 ltf: ssa.OpLess32F, 4611 cvt2U: ssa.OpCvt32Fto32, 4612 subf: ssa.OpSub32F, 4613 or: ssa.OpOr32, 4614 floatValue: (*state).constFloat32, 4615 intValue: func(s *state, t *types.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) }, 4616 cutoff: 2147483648, 4617 } 4618 4619 var f64_u32 = f2uCvtTab{ 4620 ltf: ssa.OpLess64F, 4621 cvt2U: ssa.OpCvt64Fto32, 4622 subf: ssa.OpSub64F, 4623 or: ssa.OpOr32, 4624 floatValue: (*state).constFloat64, 4625 intValue: func(s *state, t *types.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) }, 4626 cutoff: 2147483648, 4627 } 4628 4629 func (s *state) float32ToUint64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 4630 return s.floatToUint(&f32_u64, n, x, ft, tt) 4631 } 4632 func (s *state) float64ToUint64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 4633 return s.floatToUint(&f64_u64, n, x, ft, tt) 4634 } 4635 4636 func (s *state) float32ToUint32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 4637 return s.floatToUint(&f32_u32, n, x, ft, tt) 4638 } 4639 4640 func (s *state) float64ToUint32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 4641 return s.floatToUint(&f64_u32, n, x, ft, tt) 4642 } 4643 4644 func (s *state) floatToUint(cvttab *f2uCvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 4645 // cutoff:=1<<(intY_Size-1) 4646 // if x < floatX(cutoff) { 4647 // result = uintY(x) 4648 // } else { 4649 // y = x - floatX(cutoff) 4650 // z = uintY(y) 4651 // result = z | -(cutoff) 4652 // } 4653 cutoff := cvttab.floatValue(s, ft, float64(cvttab.cutoff)) 4654 cmp := s.newValue2(cvttab.ltf, types.Types[TBOOL], x, cutoff) 4655 b := s.endBlock() 4656 b.Kind = ssa.BlockIf 4657 b.SetControl(cmp) 4658 b.Likely = ssa.BranchLikely 4659 4660 bThen := s.f.NewBlock(ssa.BlockPlain) 4661 bElse := s.f.NewBlock(ssa.BlockPlain) 4662 bAfter := s.f.NewBlock(ssa.BlockPlain) 4663 4664 b.AddEdgeTo(bThen) 4665 s.startBlock(bThen) 4666 a0 := s.newValue1(cvttab.cvt2U, tt, x) 4667 s.vars[n] = a0 4668 s.endBlock() 4669 bThen.AddEdgeTo(bAfter) 4670 4671 b.AddEdgeTo(bElse) 4672 s.startBlock(bElse) 4673 y := s.newValue2(cvttab.subf, ft, x, cutoff) 4674 y = s.newValue1(cvttab.cvt2U, tt, y) 4675 z := cvttab.intValue(s, tt, int64(-cvttab.cutoff)) 4676 a1 := s.newValue2(cvttab.or, tt, y, z) 4677 s.vars[n] = a1 4678 s.endBlock() 4679 bElse.AddEdgeTo(bAfter) 4680 4681 s.startBlock(bAfter) 4682 return s.variable(n, n.Type) 4683 } 4684 4685 // dottype generates SSA for a type assertion node. 4686 // commaok indicates whether to panic or return a bool. 4687 // If commaok is false, resok will be nil. 4688 func (s *state) dottype(n *Node, commaok bool) (res, resok *ssa.Value) { 4689 iface := s.expr(n.Left) // input interface 4690 target := s.expr(n.Right) // target type 4691 byteptr := s.f.Config.Types.BytePtr 4692 4693 if n.Type.IsInterface() { 4694 if n.Type.IsEmptyInterface() { 4695 // Converting to an empty interface. 4696 // Input could be an empty or nonempty interface. 4697 if Debug_typeassert > 0 { 4698 Warnl(n.Pos, "type assertion inlined") 4699 } 4700 4701 // Get itab/type field from input. 4702 itab := s.newValue1(ssa.OpITab, byteptr, iface) 4703 // Conversion succeeds iff that field is not nil. 4704 cond := s.newValue2(ssa.OpNeqPtr, types.Types[TBOOL], itab, s.constNil(byteptr)) 4705 4706 if n.Left.Type.IsEmptyInterface() && commaok { 4707 // Converting empty interface to empty interface with ,ok is just a nil check. 4708 return iface, cond 4709 } 4710 4711 // Branch on nilness. 4712 b := s.endBlock() 4713 b.Kind = ssa.BlockIf 4714 b.SetControl(cond) 4715 b.Likely = ssa.BranchLikely 4716 bOk := s.f.NewBlock(ssa.BlockPlain) 4717 bFail := s.f.NewBlock(ssa.BlockPlain) 4718 b.AddEdgeTo(bOk) 4719 b.AddEdgeTo(bFail) 4720 4721 if !commaok { 4722 // On failure, panic by calling panicnildottype. 4723 s.startBlock(bFail) 4724 s.rtcall(panicnildottype, false, nil, target) 4725 4726 // On success, return (perhaps modified) input interface. 4727 s.startBlock(bOk) 4728 if n.Left.Type.IsEmptyInterface() { 4729 res = iface // Use input interface unchanged. 4730 return 4731 } 4732 // Load type out of itab, build interface with existing idata. 4733 off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab) 4734 typ := s.load(byteptr, off) 4735 idata := s.newValue1(ssa.OpIData, n.Type, iface) 4736 res = s.newValue2(ssa.OpIMake, n.Type, typ, idata) 4737 return 4738 } 4739 4740 s.startBlock(bOk) 4741 // nonempty -> empty 4742 // Need to load type from itab 4743 off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab) 4744 s.vars[&typVar] = s.load(byteptr, off) 4745 s.endBlock() 4746 4747 // itab is nil, might as well use that as the nil result. 4748 s.startBlock(bFail) 4749 s.vars[&typVar] = itab 4750 s.endBlock() 4751 4752 // Merge point. 4753 bEnd := s.f.NewBlock(ssa.BlockPlain) 4754 bOk.AddEdgeTo(bEnd) 4755 bFail.AddEdgeTo(bEnd) 4756 s.startBlock(bEnd) 4757 idata := s.newValue1(ssa.OpIData, n.Type, iface) 4758 res = s.newValue2(ssa.OpIMake, n.Type, s.variable(&typVar, byteptr), idata) 4759 resok = cond 4760 delete(s.vars, &typVar) 4761 return 4762 } 4763 // converting to a nonempty interface needs a runtime call. 4764 if Debug_typeassert > 0 { 4765 Warnl(n.Pos, "type assertion not inlined") 4766 } 4767 if n.Left.Type.IsEmptyInterface() { 4768 if commaok { 4769 call := s.rtcall(assertE2I2, true, []*types.Type{n.Type, types.Types[TBOOL]}, target, iface) 4770 return call[0], call[1] 4771 } 4772 return s.rtcall(assertE2I, true, []*types.Type{n.Type}, target, iface)[0], nil 4773 } 4774 if commaok { 4775 call := s.rtcall(assertI2I2, true, []*types.Type{n.Type, types.Types[TBOOL]}, target, iface) 4776 return call[0], call[1] 4777 } 4778 return s.rtcall(assertI2I, true, []*types.Type{n.Type}, target, iface)[0], nil 4779 } 4780 4781 if Debug_typeassert > 0 { 4782 Warnl(n.Pos, "type assertion inlined") 4783 } 4784 4785 // Converting to a concrete type. 4786 direct := isdirectiface(n.Type) 4787 itab := s.newValue1(ssa.OpITab, byteptr, iface) // type word of interface 4788 if Debug_typeassert > 0 { 4789 Warnl(n.Pos, "type assertion inlined") 4790 } 4791 var targetITab *ssa.Value 4792 if n.Left.Type.IsEmptyInterface() { 4793 // Looking for pointer to target type. 4794 targetITab = target 4795 } else { 4796 // Looking for pointer to itab for target type and source interface. 4797 targetITab = s.expr(n.List.First()) 4798 } 4799 4800 var tmp *Node // temporary for use with large types 4801 var addr *ssa.Value // address of tmp 4802 if commaok && !canSSAType(n.Type) { 4803 // unSSAable type, use temporary. 4804 // TODO: get rid of some of these temporaries. 4805 tmp = tempAt(n.Pos, s.curfn, n.Type) 4806 s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, tmp, s.mem()) 4807 addr = s.addr(tmp, false) 4808 } 4809 4810 cond := s.newValue2(ssa.OpEqPtr, types.Types[TBOOL], itab, targetITab) 4811 b := s.endBlock() 4812 b.Kind = ssa.BlockIf 4813 b.SetControl(cond) 4814 b.Likely = ssa.BranchLikely 4815 4816 bOk := s.f.NewBlock(ssa.BlockPlain) 4817 bFail := s.f.NewBlock(ssa.BlockPlain) 4818 b.AddEdgeTo(bOk) 4819 b.AddEdgeTo(bFail) 4820 4821 if !commaok { 4822 // on failure, panic by calling panicdottype 4823 s.startBlock(bFail) 4824 taddr := s.expr(n.Right.Right) 4825 if n.Left.Type.IsEmptyInterface() { 4826 s.rtcall(panicdottypeE, false, nil, itab, target, taddr) 4827 } else { 4828 s.rtcall(panicdottypeI, false, nil, itab, target, taddr) 4829 } 4830 4831 // on success, return data from interface 4832 s.startBlock(bOk) 4833 if direct { 4834 return s.newValue1(ssa.OpIData, n.Type, iface), nil 4835 } 4836 p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface) 4837 return s.load(n.Type, p), nil 4838 } 4839 4840 // commaok is the more complicated case because we have 4841 // a control flow merge point. 4842 bEnd := s.f.NewBlock(ssa.BlockPlain) 4843 // Note that we need a new valVar each time (unlike okVar where we can 4844 // reuse the variable) because it might have a different type every time. 4845 valVar := &Node{Op: ONAME, Sym: &types.Sym{Name: "val"}} 4846 4847 // type assertion succeeded 4848 s.startBlock(bOk) 4849 if tmp == nil { 4850 if direct { 4851 s.vars[valVar] = s.newValue1(ssa.OpIData, n.Type, iface) 4852 } else { 4853 p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface) 4854 s.vars[valVar] = s.load(n.Type, p) 4855 } 4856 } else { 4857 p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface) 4858 s.move(n.Type, addr, p) 4859 } 4860 s.vars[&okVar] = s.constBool(true) 4861 s.endBlock() 4862 bOk.AddEdgeTo(bEnd) 4863 4864 // type assertion failed 4865 s.startBlock(bFail) 4866 if tmp == nil { 4867 s.vars[valVar] = s.zeroVal(n.Type) 4868 } else { 4869 s.zero(n.Type, addr) 4870 } 4871 s.vars[&okVar] = s.constBool(false) 4872 s.endBlock() 4873 bFail.AddEdgeTo(bEnd) 4874 4875 // merge point 4876 s.startBlock(bEnd) 4877 if tmp == nil { 4878 res = s.variable(valVar, n.Type) 4879 delete(s.vars, valVar) 4880 } else { 4881 res = s.load(n.Type, addr) 4882 s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, types.TypeMem, tmp, s.mem()) 4883 } 4884 resok = s.variable(&okVar, types.Types[TBOOL]) 4885 delete(s.vars, &okVar) 4886 return res, resok 4887 } 4888 4889 // variable returns the value of a variable at the current location. 4890 func (s *state) variable(name *Node, t *types.Type) *ssa.Value { 4891 v := s.vars[name] 4892 if v != nil { 4893 return v 4894 } 4895 v = s.fwdVars[name] 4896 if v != nil { 4897 return v 4898 } 4899 4900 if s.curBlock == s.f.Entry { 4901 // No variable should be live at entry. 4902 s.Fatalf("Value live at entry. It shouldn't be. func %s, node %v, value %v", s.f.Name, name, v) 4903 } 4904 // Make a FwdRef, which records a value that's live on block input. 4905 // We'll find the matching definition as part of insertPhis. 4906 v = s.newValue0A(ssa.OpFwdRef, t, name) 4907 s.fwdVars[name] = v 4908 s.addNamedValue(name, v) 4909 return v 4910 } 4911 4912 func (s *state) mem() *ssa.Value { 4913 return s.variable(&memVar, types.TypeMem) 4914 } 4915 4916 func (s *state) addNamedValue(n *Node, v *ssa.Value) { 4917 if n.Class() == Pxxx { 4918 // Don't track our dummy nodes (&memVar etc.). 4919 return 4920 } 4921 if n.IsAutoTmp() { 4922 // Don't track temporary variables. 4923 return 4924 } 4925 if n.Class() == PPARAMOUT { 4926 // Don't track named output values. This prevents return values 4927 // from being assigned too early. See #14591 and #14762. TODO: allow this. 4928 return 4929 } 4930 if n.Class() == PAUTO && n.Xoffset != 0 { 4931 s.Fatalf("AUTO var with offset %v %d", n, n.Xoffset) 4932 } 4933 loc := ssa.LocalSlot{N: n, Type: n.Type, Off: 0} 4934 values, ok := s.f.NamedValues[loc] 4935 if !ok { 4936 s.f.Names = append(s.f.Names, loc) 4937 } 4938 s.f.NamedValues[loc] = append(values, v) 4939 } 4940 4941 // Branch is an unresolved branch. 4942 type Branch struct { 4943 P *obj.Prog // branch instruction 4944 B *ssa.Block // target 4945 } 4946 4947 // SSAGenState contains state needed during Prog generation. 4948 type SSAGenState struct { 4949 pp *Progs 4950 4951 // Branches remembers all the branch instructions we've seen 4952 // and where they would like to go. 4953 Branches []Branch 4954 4955 // bstart remembers where each block starts (indexed by block ID) 4956 bstart []*obj.Prog 4957 4958 // 387 port: maps from SSE registers (REG_X?) to 387 registers (REG_F?) 4959 SSEto387 map[int16]int16 4960 // Some architectures require a 64-bit temporary for FP-related register shuffling. Examples include x86-387, PPC, and Sparc V8. 4961 ScratchFpMem *Node 4962 4963 maxarg int64 // largest frame size for arguments to calls made by the function 4964 4965 // Map from GC safe points to liveness index, generated by 4966 // liveness analysis. 4967 livenessMap LivenessMap 4968 4969 // lineRunStart records the beginning of the current run of instructions 4970 // within a single block sharing the same line number 4971 // Used to move statement marks to the beginning of such runs. 4972 lineRunStart *obj.Prog 4973 4974 // wasm: The number of values on the WebAssembly stack. This is only used as a safeguard. 4975 OnWasmStackSkipped int 4976 } 4977 4978 // Prog appends a new Prog. 4979 func (s *SSAGenState) Prog(as obj.As) *obj.Prog { 4980 p := s.pp.Prog(as) 4981 if ssa.LosesStmtMark(as) { 4982 return p 4983 } 4984 // Float a statement start to the beginning of any same-line run. 4985 // lineRunStart is reset at block boundaries, which appears to work well. 4986 if s.lineRunStart == nil || s.lineRunStart.Pos.Line() != p.Pos.Line() { 4987 s.lineRunStart = p 4988 } else if p.Pos.IsStmt() == src.PosIsStmt { 4989 s.lineRunStart.Pos = s.lineRunStart.Pos.WithIsStmt() 4990 p.Pos = p.Pos.WithNotStmt() 4991 } 4992 return p 4993 } 4994 4995 // Pc returns the current Prog. 4996 func (s *SSAGenState) Pc() *obj.Prog { 4997 return s.pp.next 4998 } 4999 5000 // SetPos sets the current source position. 5001 func (s *SSAGenState) SetPos(pos src.XPos) { 5002 s.pp.pos = pos 5003 } 5004 5005 // Br emits a single branch instruction and returns the instruction. 5006 // Not all architectures need the returned instruction, but otherwise 5007 // the boilerplate is common to all. 5008 func (s *SSAGenState) Br(op obj.As, target *ssa.Block) *obj.Prog { 5009 p := s.Prog(op) 5010 p.To.Type = obj.TYPE_BRANCH 5011 s.Branches = append(s.Branches, Branch{P: p, B: target}) 5012 return p 5013 } 5014 5015 // DebugFriendlySetPos adjusts Pos.IsStmt subject to heuristics 5016 // that reduce "jumpy" line number churn when debugging. 5017 // Spill/fill/copy instructions from the register allocator, 5018 // phi functions, and instructions with a no-pos position 5019 // are examples of instructions that can cause churn. 5020 func (s *SSAGenState) DebugFriendlySetPosFrom(v *ssa.Value) { 5021 switch v.Op { 5022 case ssa.OpPhi, ssa.OpCopy, ssa.OpLoadReg, ssa.OpStoreReg: 5023 // These are not statements 5024 s.SetPos(v.Pos.WithNotStmt()) 5025 default: 5026 p := v.Pos 5027 if p != src.NoXPos { 5028 // If the position is defined, update the position. 5029 // Also convert default IsStmt to NotStmt; only 5030 // explicit statement boundaries should appear 5031 // in the generated code. 5032 if p.IsStmt() != src.PosIsStmt { 5033 p = p.WithNotStmt() 5034 } 5035 s.SetPos(p) 5036 } 5037 } 5038 } 5039 5040 // byXoffset implements sort.Interface for []*Node using Xoffset as the ordering. 5041 type byXoffset []*Node 5042 5043 func (s byXoffset) Len() int { return len(s) } 5044 func (s byXoffset) Less(i, j int) bool { return s[i].Xoffset < s[j].Xoffset } 5045 func (s byXoffset) Swap(i, j int) { s[i], s[j] = s[j], s[i] } 5046 5047 func emitStackObjects(e *ssafn, pp *Progs) { 5048 var vars []*Node 5049 for _, n := range e.curfn.Func.Dcl { 5050 if livenessShouldTrack(n) && n.Addrtaken() { 5051 vars = append(vars, n) 5052 } 5053 } 5054 if len(vars) == 0 { 5055 return 5056 } 5057 5058 // Sort variables from lowest to highest address. 5059 sort.Sort(byXoffset(vars)) 5060 5061 // Populate the stack object data. 5062 // Format must match runtime/stack.go:stackObjectRecord. 5063 x := e.curfn.Func.lsym.Func.StackObjects 5064 off := 0 5065 off = duintptr(x, off, uint64(len(vars))) 5066 for _, v := range vars { 5067 // Note: arguments and return values have non-negative Xoffset, 5068 // in which case the offset is relative to argp. 5069 // Locals have a negative Xoffset, in which case the offset is relative to varp. 5070 off = duintptr(x, off, uint64(v.Xoffset)) 5071 if !typesym(v.Type).Siggen() { 5072 Fatalf("stack object's type symbol not generated for type %s", v.Type) 5073 } 5074 off = dsymptr(x, off, dtypesym(v.Type), 0) 5075 } 5076 5077 // Emit a funcdata pointing at the stack object data. 5078 p := pp.Prog(obj.AFUNCDATA) 5079 Addrconst(&p.From, objabi.FUNCDATA_StackObjects) 5080 p.To.Type = obj.TYPE_MEM 5081 p.To.Name = obj.NAME_EXTERN 5082 p.To.Sym = x 5083 5084 if debuglive != 0 { 5085 for _, v := range vars { 5086 Warnl(v.Pos, "stack object %v %s", v, v.Type.String()) 5087 } 5088 } 5089 } 5090 5091 // genssa appends entries to pp for each instruction in f. 5092 func genssa(f *ssa.Func, pp *Progs) { 5093 var s SSAGenState 5094 5095 e := f.Frontend().(*ssafn) 5096 5097 s.livenessMap = liveness(e, f, pp) 5098 emitStackObjects(e, pp) 5099 5100 // Remember where each block starts. 5101 s.bstart = make([]*obj.Prog, f.NumBlocks()) 5102 s.pp = pp 5103 var progToValue map[*obj.Prog]*ssa.Value 5104 var progToBlock map[*obj.Prog]*ssa.Block 5105 var valueToProgAfter []*obj.Prog // The first Prog following computation of a value v; v is visible at this point. 5106 if f.PrintOrHtmlSSA { 5107 progToValue = make(map[*obj.Prog]*ssa.Value, f.NumValues()) 5108 progToBlock = make(map[*obj.Prog]*ssa.Block, f.NumBlocks()) 5109 f.Logf("genssa %s\n", f.Name) 5110 progToBlock[s.pp.next] = f.Blocks[0] 5111 } 5112 5113 if thearch.Use387 { 5114 s.SSEto387 = map[int16]int16{} 5115 } 5116 5117 s.ScratchFpMem = e.scratchFpMem 5118 5119 if Ctxt.Flag_locationlists { 5120 if cap(f.Cache.ValueToProgAfter) < f.NumValues() { 5121 f.Cache.ValueToProgAfter = make([]*obj.Prog, f.NumValues()) 5122 } 5123 valueToProgAfter = f.Cache.ValueToProgAfter[:f.NumValues()] 5124 for i := range valueToProgAfter { 5125 valueToProgAfter[i] = nil 5126 } 5127 } 5128 5129 // If the very first instruction is not tagged as a statement, 5130 // debuggers may attribute it to previous function in program. 5131 firstPos := src.NoXPos 5132 for _, v := range f.Entry.Values { 5133 if v.Pos.IsStmt() == src.PosIsStmt { 5134 firstPos = v.Pos 5135 v.Pos = firstPos.WithDefaultStmt() 5136 break 5137 } 5138 } 5139 5140 // Emit basic blocks 5141 for i, b := range f.Blocks { 5142 s.bstart[b.ID] = s.pp.next 5143 s.pp.nextLive = LivenessInvalid 5144 s.lineRunStart = nil 5145 5146 // Emit values in block 5147 thearch.SSAMarkMoves(&s, b) 5148 for _, v := range b.Values { 5149 x := s.pp.next 5150 s.DebugFriendlySetPosFrom(v) 5151 // Attach this safe point to the next 5152 // instruction. 5153 s.pp.nextLive = s.livenessMap.Get(v) 5154 switch v.Op { 5155 case ssa.OpInitMem: 5156 // memory arg needs no code 5157 case ssa.OpArg: 5158 // input args need no code 5159 case ssa.OpSP, ssa.OpSB: 5160 // nothing to do 5161 case ssa.OpSelect0, ssa.OpSelect1: 5162 // nothing to do 5163 case ssa.OpGetG: 5164 // nothing to do when there's a g register, 5165 // and checkLower complains if there's not 5166 case ssa.OpVarDef, ssa.OpVarLive, ssa.OpKeepAlive, ssa.OpVarKill: 5167 // nothing to do; already used by liveness 5168 case ssa.OpPhi: 5169 CheckLoweredPhi(v) 5170 case ssa.OpConvert: 5171 // nothing to do; no-op conversion for liveness 5172 if v.Args[0].Reg() != v.Reg() { 5173 v.Fatalf("OpConvert should be a no-op: %s; %s", v.Args[0].LongString(), v.LongString()) 5174 } 5175 case ssa.OpInlMark: 5176 p := thearch.Ginsnop(s.pp) 5177 if pp.curfn.Func.lsym != nil { 5178 // lsym is nil if the function name is "_". 5179 pp.curfn.Func.lsym.Func.AddInlMark(p, v.AuxInt32()) 5180 } 5181 // TODO: if matching line number, merge somehow with previous instruction? 5182 5183 default: 5184 // let the backend handle it 5185 // Special case for first line in function; move it to the start. 5186 if firstPos != src.NoXPos { 5187 s.SetPos(firstPos) 5188 firstPos = src.NoXPos 5189 } 5190 thearch.SSAGenValue(&s, v) 5191 } 5192 5193 if Ctxt.Flag_locationlists { 5194 valueToProgAfter[v.ID] = s.pp.next 5195 } 5196 5197 if f.PrintOrHtmlSSA { 5198 for ; x != s.pp.next; x = x.Link { 5199 progToValue[x] = v 5200 } 5201 } 5202 } 5203 // Emit control flow instructions for block 5204 var next *ssa.Block 5205 if i < len(f.Blocks)-1 && Debug['N'] == 0 { 5206 // If -N, leave next==nil so every block with successors 5207 // ends in a JMP (except call blocks - plive doesn't like 5208 // select{send,recv} followed by a JMP call). Helps keep 5209 // line numbers for otherwise empty blocks. 5210 next = f.Blocks[i+1] 5211 } 5212 x := s.pp.next 5213 s.SetPos(b.Pos) 5214 thearch.SSAGenBlock(&s, b, next) 5215 if f.PrintOrHtmlSSA { 5216 for ; x != s.pp.next; x = x.Link { 5217 progToBlock[x] = b 5218 } 5219 } 5220 } 5221 5222 if Ctxt.Flag_locationlists { 5223 e.curfn.Func.DebugInfo = ssa.BuildFuncDebug(Ctxt, f, Debug_locationlist > 1, stackOffset) 5224 bstart := s.bstart 5225 // Note that at this moment, Prog.Pc is a sequence number; it's 5226 // not a real PC until after assembly, so this mapping has to 5227 // be done later. 5228 e.curfn.Func.DebugInfo.GetPC = func(b, v ssa.ID) int64 { 5229 switch v { 5230 case ssa.BlockStart.ID: 5231 if b == f.Entry.ID { 5232 return 0 // Start at the very beginning, at the assembler-generated prologue. 5233 // this should only happen for function args (ssa.OpArg) 5234 } 5235 return bstart[b].Pc 5236 case ssa.BlockEnd.ID: 5237 return e.curfn.Func.lsym.Size 5238 default: 5239 return valueToProgAfter[v].Pc 5240 } 5241 } 5242 } 5243 5244 // Resolve branches, and relax DefaultStmt into NotStmt 5245 for _, br := range s.Branches { 5246 br.P.To.Val = s.bstart[br.B.ID] 5247 if br.P.Pos.IsStmt() != src.PosIsStmt { 5248 br.P.Pos = br.P.Pos.WithNotStmt() 5249 } 5250 } 5251 5252 if e.log { // spew to stdout 5253 filename := "" 5254 for p := pp.Text; p != nil; p = p.Link { 5255 if p.Pos.IsKnown() && p.InnermostFilename() != filename { 5256 filename = p.InnermostFilename() 5257 f.Logf("# %s\n", filename) 5258 } 5259 5260 var s string 5261 if v, ok := progToValue[p]; ok { 5262 s = v.String() 5263 } else if b, ok := progToBlock[p]; ok { 5264 s = b.String() 5265 } else { 5266 s = " " // most value and branch strings are 2-3 characters long 5267 } 5268 f.Logf(" %-6s\t%.5d (%s)\t%s\n", s, p.Pc, p.InnermostLineNumber(), p.InstructionString()) 5269 } 5270 } 5271 if f.HTMLWriter != nil { // spew to ssa.html 5272 var buf bytes.Buffer 5273 buf.WriteString("<code>") 5274 buf.WriteString("<dl class=\"ssa-gen\">") 5275 filename := "" 5276 for p := pp.Text; p != nil; p = p.Link { 5277 // Don't spam every line with the file name, which is often huge. 5278 // Only print changes, and "unknown" is not a change. 5279 if p.Pos.IsKnown() && p.InnermostFilename() != filename { 5280 filename = p.InnermostFilename() 5281 buf.WriteString("<dt class=\"ssa-prog-src\"></dt><dd class=\"ssa-prog\">") 5282 buf.WriteString(html.EscapeString("# " + filename)) 5283 buf.WriteString("</dd>") 5284 } 5285 5286 buf.WriteString("<dt class=\"ssa-prog-src\">") 5287 if v, ok := progToValue[p]; ok { 5288 buf.WriteString(v.HTML()) 5289 } else if b, ok := progToBlock[p]; ok { 5290 buf.WriteString("<b>" + b.HTML() + "</b>") 5291 } 5292 buf.WriteString("</dt>") 5293 buf.WriteString("<dd class=\"ssa-prog\">") 5294 buf.WriteString(fmt.Sprintf("%.5d <span class=\"l%v line-number\">(%s)</span> %s", p.Pc, p.InnermostLineNumber(), p.InnermostLineNumberHTML(), html.EscapeString(p.InstructionString()))) 5295 buf.WriteString("</dd>") 5296 } 5297 buf.WriteString("</dl>") 5298 buf.WriteString("</code>") 5299 f.HTMLWriter.WriteColumn("genssa", "genssa", "ssa-prog", buf.String()) 5300 } 5301 5302 defframe(&s, e) 5303 5304 f.HTMLWriter.Close() 5305 f.HTMLWriter = nil 5306 } 5307 5308 func defframe(s *SSAGenState, e *ssafn) { 5309 pp := s.pp 5310 5311 frame := Rnd(s.maxarg+e.stksize, int64(Widthreg)) 5312 if thearch.PadFrame != nil { 5313 frame = thearch.PadFrame(frame) 5314 } 5315 5316 // Fill in argument and frame size. 5317 pp.Text.To.Type = obj.TYPE_TEXTSIZE 5318 pp.Text.To.Val = int32(Rnd(e.curfn.Type.ArgWidth(), int64(Widthreg))) 5319 pp.Text.To.Offset = frame 5320 5321 // Insert code to zero ambiguously live variables so that the 5322 // garbage collector only sees initialized values when it 5323 // looks for pointers. 5324 p := pp.Text 5325 var lo, hi int64 5326 5327 // Opaque state for backend to use. Current backends use it to 5328 // keep track of which helper registers have been zeroed. 5329 var state uint32 5330 5331 // Iterate through declarations. They are sorted in decreasing Xoffset order. 5332 for _, n := range e.curfn.Func.Dcl { 5333 if !n.Name.Needzero() { 5334 continue 5335 } 5336 if n.Class() != PAUTO { 5337 Fatalf("needzero class %d", n.Class()) 5338 } 5339 if n.Type.Size()%int64(Widthptr) != 0 || n.Xoffset%int64(Widthptr) != 0 || n.Type.Size() == 0 { 5340 Fatalf("var %L has size %d offset %d", n, n.Type.Size(), n.Xoffset) 5341 } 5342 5343 if lo != hi && n.Xoffset+n.Type.Size() >= lo-int64(2*Widthreg) { 5344 // Merge with range we already have. 5345 lo = n.Xoffset 5346 continue 5347 } 5348 5349 // Zero old range 5350 p = thearch.ZeroRange(pp, p, frame+lo, hi-lo, &state) 5351 5352 // Set new range. 5353 lo = n.Xoffset 5354 hi = lo + n.Type.Size() 5355 } 5356 5357 // Zero final range. 5358 thearch.ZeroRange(pp, p, frame+lo, hi-lo, &state) 5359 } 5360 5361 type FloatingEQNEJump struct { 5362 Jump obj.As 5363 Index int 5364 } 5365 5366 func (s *SSAGenState) oneFPJump(b *ssa.Block, jumps *FloatingEQNEJump) { 5367 p := s.Prog(jumps.Jump) 5368 p.To.Type = obj.TYPE_BRANCH 5369 p.Pos = b.Pos 5370 to := jumps.Index 5371 s.Branches = append(s.Branches, Branch{p, b.Succs[to].Block()}) 5372 } 5373 5374 func (s *SSAGenState) FPJump(b, next *ssa.Block, jumps *[2][2]FloatingEQNEJump) { 5375 switch next { 5376 case b.Succs[0].Block(): 5377 s.oneFPJump(b, &jumps[0][0]) 5378 s.oneFPJump(b, &jumps[0][1]) 5379 case b.Succs[1].Block(): 5380 s.oneFPJump(b, &jumps[1][0]) 5381 s.oneFPJump(b, &jumps[1][1]) 5382 default: 5383 s.oneFPJump(b, &jumps[1][0]) 5384 s.oneFPJump(b, &jumps[1][1]) 5385 q := s.Prog(obj.AJMP) 5386 q.Pos = b.Pos 5387 q.To.Type = obj.TYPE_BRANCH 5388 s.Branches = append(s.Branches, Branch{q, b.Succs[1].Block()}) 5389 } 5390 } 5391 5392 func AuxOffset(v *ssa.Value) (offset int64) { 5393 if v.Aux == nil { 5394 return 0 5395 } 5396 n, ok := v.Aux.(*Node) 5397 if !ok { 5398 v.Fatalf("bad aux type in %s\n", v.LongString()) 5399 } 5400 if n.Class() == PAUTO { 5401 return n.Xoffset 5402 } 5403 return 0 5404 } 5405 5406 // AddAux adds the offset in the aux fields (AuxInt and Aux) of v to a. 5407 func AddAux(a *obj.Addr, v *ssa.Value) { 5408 AddAux2(a, v, v.AuxInt) 5409 } 5410 func AddAux2(a *obj.Addr, v *ssa.Value, offset int64) { 5411 if a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR { 5412 v.Fatalf("bad AddAux addr %v", a) 5413 } 5414 // add integer offset 5415 a.Offset += offset 5416 5417 // If no additional symbol offset, we're done. 5418 if v.Aux == nil { 5419 return 5420 } 5421 // Add symbol's offset from its base register. 5422 switch n := v.Aux.(type) { 5423 case *obj.LSym: 5424 a.Name = obj.NAME_EXTERN 5425 a.Sym = n 5426 case *Node: 5427 if n.Class() == PPARAM || n.Class() == PPARAMOUT { 5428 a.Name = obj.NAME_PARAM 5429 a.Sym = n.Orig.Sym.Linksym() 5430 a.Offset += n.Xoffset 5431 break 5432 } 5433 a.Name = obj.NAME_AUTO 5434 a.Sym = n.Sym.Linksym() 5435 a.Offset += n.Xoffset 5436 default: 5437 v.Fatalf("aux in %s not implemented %#v", v, v.Aux) 5438 } 5439 } 5440 5441 // extendIndex extends v to a full int width. 5442 // panic using the given function if v does not fit in an int (only on 32-bit archs). 5443 func (s *state) extendIndex(v *ssa.Value, panicfn *obj.LSym) *ssa.Value { 5444 size := v.Type.Size() 5445 if size == s.config.PtrSize { 5446 return v 5447 } 5448 if size > s.config.PtrSize { 5449 // truncate 64-bit indexes on 32-bit pointer archs. Test the 5450 // high word and branch to out-of-bounds failure if it is not 0. 5451 if Debug['B'] == 0 { 5452 hi := s.newValue1(ssa.OpInt64Hi, types.Types[TUINT32], v) 5453 cmp := s.newValue2(ssa.OpEq32, types.Types[TBOOL], hi, s.constInt32(types.Types[TUINT32], 0)) 5454 s.check(cmp, panicfn) 5455 } 5456 return s.newValue1(ssa.OpTrunc64to32, types.Types[TINT], v) 5457 } 5458 5459 // Extend value to the required size 5460 var op ssa.Op 5461 if v.Type.IsSigned() { 5462 switch 10*size + s.config.PtrSize { 5463 case 14: 5464 op = ssa.OpSignExt8to32 5465 case 18: 5466 op = ssa.OpSignExt8to64 5467 case 24: 5468 op = ssa.OpSignExt16to32 5469 case 28: 5470 op = ssa.OpSignExt16to64 5471 case 48: 5472 op = ssa.OpSignExt32to64 5473 default: 5474 s.Fatalf("bad signed index extension %s", v.Type) 5475 } 5476 } else { 5477 switch 10*size + s.config.PtrSize { 5478 case 14: 5479 op = ssa.OpZeroExt8to32 5480 case 18: 5481 op = ssa.OpZeroExt8to64 5482 case 24: 5483 op = ssa.OpZeroExt16to32 5484 case 28: 5485 op = ssa.OpZeroExt16to64 5486 case 48: 5487 op = ssa.OpZeroExt32to64 5488 default: 5489 s.Fatalf("bad unsigned index extension %s", v.Type) 5490 } 5491 } 5492 return s.newValue1(op, types.Types[TINT], v) 5493 } 5494 5495 // CheckLoweredPhi checks that regalloc and stackalloc correctly handled phi values. 5496 // Called during ssaGenValue. 5497 func CheckLoweredPhi(v *ssa.Value) { 5498 if v.Op != ssa.OpPhi { 5499 v.Fatalf("CheckLoweredPhi called with non-phi value: %v", v.LongString()) 5500 } 5501 if v.Type.IsMemory() { 5502 return 5503 } 5504 f := v.Block.Func 5505 loc := f.RegAlloc[v.ID] 5506 for _, a := range v.Args { 5507 if aloc := f.RegAlloc[a.ID]; aloc != loc { // TODO: .Equal() instead? 5508 v.Fatalf("phi arg at different location than phi: %v @ %s, but arg %v @ %s\n%s\n", v, loc, a, aloc, v.Block.Func) 5509 } 5510 } 5511 } 5512 5513 // CheckLoweredGetClosurePtr checks that v is the first instruction in the function's entry block. 5514 // The output of LoweredGetClosurePtr is generally hardwired to the correct register. 5515 // That register contains the closure pointer on closure entry. 5516 func CheckLoweredGetClosurePtr(v *ssa.Value) { 5517 entry := v.Block.Func.Entry 5518 if entry != v.Block || entry.Values[0] != v { 5519 Fatalf("in %s, badly placed LoweredGetClosurePtr: %v %v", v.Block.Func.Name, v.Block, v) 5520 } 5521 } 5522 5523 // AutoVar returns a *Node and int64 representing the auto variable and offset within it 5524 // where v should be spilled. 5525 func AutoVar(v *ssa.Value) (*Node, int64) { 5526 loc := v.Block.Func.RegAlloc[v.ID].(ssa.LocalSlot) 5527 if v.Type.Size() > loc.Type.Size() { 5528 v.Fatalf("spill/restore type %s doesn't fit in slot type %s", v.Type, loc.Type) 5529 } 5530 return loc.N.(*Node), loc.Off 5531 } 5532 5533 func AddrAuto(a *obj.Addr, v *ssa.Value) { 5534 n, off := AutoVar(v) 5535 a.Type = obj.TYPE_MEM 5536 a.Sym = n.Sym.Linksym() 5537 a.Reg = int16(thearch.REGSP) 5538 a.Offset = n.Xoffset + off 5539 if n.Class() == PPARAM || n.Class() == PPARAMOUT { 5540 a.Name = obj.NAME_PARAM 5541 } else { 5542 a.Name = obj.NAME_AUTO 5543 } 5544 } 5545 5546 func (s *SSAGenState) AddrScratch(a *obj.Addr) { 5547 if s.ScratchFpMem == nil { 5548 panic("no scratch memory available; forgot to declare usesScratch for Op?") 5549 } 5550 a.Type = obj.TYPE_MEM 5551 a.Name = obj.NAME_AUTO 5552 a.Sym = s.ScratchFpMem.Sym.Linksym() 5553 a.Reg = int16(thearch.REGSP) 5554 a.Offset = s.ScratchFpMem.Xoffset 5555 } 5556 5557 // Call returns a new CALL instruction for the SSA value v. 5558 // It uses PrepareCall to prepare the call. 5559 func (s *SSAGenState) Call(v *ssa.Value) *obj.Prog { 5560 s.PrepareCall(v) 5561 5562 p := s.Prog(obj.ACALL) 5563 p.Pos = v.Pos 5564 if sym, ok := v.Aux.(*obj.LSym); ok { 5565 p.To.Type = obj.TYPE_MEM 5566 p.To.Name = obj.NAME_EXTERN 5567 p.To.Sym = sym 5568 } else { 5569 // TODO(mdempsky): Can these differences be eliminated? 5570 switch thearch.LinkArch.Family { 5571 case sys.AMD64, sys.I386, sys.PPC64, sys.S390X, sys.Wasm: 5572 p.To.Type = obj.TYPE_REG 5573 case sys.ARM, sys.ARM64, sys.MIPS, sys.MIPS64: 5574 p.To.Type = obj.TYPE_MEM 5575 default: 5576 Fatalf("unknown indirect call family") 5577 } 5578 p.To.Reg = v.Args[0].Reg() 5579 } 5580 return p 5581 } 5582 5583 // PrepareCall prepares to emit a CALL instruction for v and does call-related bookkeeping. 5584 // It must be called immediately before emitting the actual CALL instruction, 5585 // since it emits PCDATA for the stack map at the call (calls are safe points). 5586 func (s *SSAGenState) PrepareCall(v *ssa.Value) { 5587 idx := s.livenessMap.Get(v) 5588 if !idx.Valid() { 5589 // typedmemclr and typedmemmove are write barriers and 5590 // deeply non-preemptible. They are unsafe points and 5591 // hence should not have liveness maps. 5592 if sym, _ := v.Aux.(*obj.LSym); !(sym == typedmemclr || sym == typedmemmove) { 5593 Fatalf("missing stack map index for %v", v.LongString()) 5594 } 5595 } 5596 5597 if sym, _ := v.Aux.(*obj.LSym); sym == Deferreturn { 5598 // Deferred calls will appear to be returning to 5599 // the CALL deferreturn(SB) that we are about to emit. 5600 // However, the stack trace code will show the line 5601 // of the instruction byte before the return PC. 5602 // To avoid that being an unrelated instruction, 5603 // insert an actual hardware NOP that will have the right line number. 5604 // This is different from obj.ANOP, which is a virtual no-op 5605 // that doesn't make it into the instruction stream. 5606 thearch.Ginsnopdefer(s.pp) 5607 } 5608 5609 if sym, ok := v.Aux.(*obj.LSym); ok { 5610 // Record call graph information for nowritebarrierrec 5611 // analysis. 5612 if nowritebarrierrecCheck != nil { 5613 nowritebarrierrecCheck.recordCall(s.pp.curfn, sym, v.Pos) 5614 } 5615 } 5616 5617 if s.maxarg < v.AuxInt { 5618 s.maxarg = v.AuxInt 5619 } 5620 } 5621 5622 // fieldIdx finds the index of the field referred to by the ODOT node n. 5623 func fieldIdx(n *Node) int { 5624 t := n.Left.Type 5625 f := n.Sym 5626 if !t.IsStruct() { 5627 panic("ODOT's LHS is not a struct") 5628 } 5629 5630 var i int 5631 for _, t1 := range t.Fields().Slice() { 5632 if t1.Sym != f { 5633 i++ 5634 continue 5635 } 5636 if t1.Offset != n.Xoffset { 5637 panic("field offset doesn't match") 5638 } 5639 return i 5640 } 5641 panic(fmt.Sprintf("can't find field in expr %v\n", n)) 5642 5643 // TODO: keep the result of this function somewhere in the ODOT Node 5644 // so we don't have to recompute it each time we need it. 5645 } 5646 5647 // ssafn holds frontend information about a function that the backend is processing. 5648 // It also exports a bunch of compiler services for the ssa backend. 5649 type ssafn struct { 5650 curfn *Node 5651 strings map[string]interface{} // map from constant string to data symbols 5652 scratchFpMem *Node // temp for floating point register / memory moves on some architectures 5653 stksize int64 // stack size for current frame 5654 stkptrsize int64 // prefix of stack containing pointers 5655 log bool // print ssa debug to the stdout 5656 } 5657 5658 // StringData returns a symbol (a *types.Sym wrapped in an interface) which 5659 // is the data component of a global string constant containing s. 5660 func (e *ssafn) StringData(s string) interface{} { 5661 if aux, ok := e.strings[s]; ok { 5662 return aux 5663 } 5664 if e.strings == nil { 5665 e.strings = make(map[string]interface{}) 5666 } 5667 data := stringsym(e.curfn.Pos, s) 5668 e.strings[s] = data 5669 return data 5670 } 5671 5672 func (e *ssafn) Auto(pos src.XPos, t *types.Type) ssa.GCNode { 5673 n := tempAt(pos, e.curfn, t) // Note: adds new auto to e.curfn.Func.Dcl list 5674 return n 5675 } 5676 5677 func (e *ssafn) SplitString(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) { 5678 n := name.N.(*Node) 5679 ptrType := types.NewPtr(types.Types[TUINT8]) 5680 lenType := types.Types[TINT] 5681 if n.Class() == PAUTO && !n.Addrtaken() { 5682 // Split this string up into two separate variables. 5683 p := e.splitSlot(&name, ".ptr", 0, ptrType) 5684 l := e.splitSlot(&name, ".len", ptrType.Size(), lenType) 5685 return p, l 5686 } 5687 // Return the two parts of the larger variable. 5688 return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off}, ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)} 5689 } 5690 5691 func (e *ssafn) SplitInterface(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) { 5692 n := name.N.(*Node) 5693 u := types.Types[TUINTPTR] 5694 t := types.NewPtr(types.Types[TUINT8]) 5695 if n.Class() == PAUTO && !n.Addrtaken() { 5696 // Split this interface up into two separate variables. 5697 f := ".itab" 5698 if n.Type.IsEmptyInterface() { 5699 f = ".type" 5700 } 5701 c := e.splitSlot(&name, f, 0, u) // see comment in plive.go:onebitwalktype1. 5702 d := e.splitSlot(&name, ".data", u.Size(), t) 5703 return c, d 5704 } 5705 // Return the two parts of the larger variable. 5706 return ssa.LocalSlot{N: n, Type: u, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + int64(Widthptr)} 5707 } 5708 5709 func (e *ssafn) SplitSlice(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot, ssa.LocalSlot) { 5710 n := name.N.(*Node) 5711 ptrType := types.NewPtr(name.Type.Elem()) 5712 lenType := types.Types[TINT] 5713 if n.Class() == PAUTO && !n.Addrtaken() { 5714 // Split this slice up into three separate variables. 5715 p := e.splitSlot(&name, ".ptr", 0, ptrType) 5716 l := e.splitSlot(&name, ".len", ptrType.Size(), lenType) 5717 c := e.splitSlot(&name, ".cap", ptrType.Size()+lenType.Size(), lenType) 5718 return p, l, c 5719 } 5720 // Return the three parts of the larger variable. 5721 return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off}, 5722 ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)}, 5723 ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(2*Widthptr)} 5724 } 5725 5726 func (e *ssafn) SplitComplex(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) { 5727 n := name.N.(*Node) 5728 s := name.Type.Size() / 2 5729 var t *types.Type 5730 if s == 8 { 5731 t = types.Types[TFLOAT64] 5732 } else { 5733 t = types.Types[TFLOAT32] 5734 } 5735 if n.Class() == PAUTO && !n.Addrtaken() { 5736 // Split this complex up into two separate variables. 5737 r := e.splitSlot(&name, ".real", 0, t) 5738 i := e.splitSlot(&name, ".imag", t.Size(), t) 5739 return r, i 5740 } 5741 // Return the two parts of the larger variable. 5742 return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + s} 5743 } 5744 5745 func (e *ssafn) SplitInt64(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) { 5746 n := name.N.(*Node) 5747 var t *types.Type 5748 if name.Type.IsSigned() { 5749 t = types.Types[TINT32] 5750 } else { 5751 t = types.Types[TUINT32] 5752 } 5753 if n.Class() == PAUTO && !n.Addrtaken() { 5754 // Split this int64 up into two separate variables. 5755 if thearch.LinkArch.ByteOrder == binary.BigEndian { 5756 return e.splitSlot(&name, ".hi", 0, t), e.splitSlot(&name, ".lo", t.Size(), types.Types[TUINT32]) 5757 } 5758 return e.splitSlot(&name, ".hi", t.Size(), t), e.splitSlot(&name, ".lo", 0, types.Types[TUINT32]) 5759 } 5760 // Return the two parts of the larger variable. 5761 if thearch.LinkArch.ByteOrder == binary.BigEndian { 5762 return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: types.Types[TUINT32], Off: name.Off + 4} 5763 } 5764 return ssa.LocalSlot{N: n, Type: t, Off: name.Off + 4}, ssa.LocalSlot{N: n, Type: types.Types[TUINT32], Off: name.Off} 5765 } 5766 5767 func (e *ssafn) SplitStruct(name ssa.LocalSlot, i int) ssa.LocalSlot { 5768 n := name.N.(*Node) 5769 st := name.Type 5770 ft := st.FieldType(i) 5771 var offset int64 5772 for f := 0; f < i; f++ { 5773 offset += st.FieldType(f).Size() 5774 } 5775 if n.Class() == PAUTO && !n.Addrtaken() { 5776 // Note: the _ field may appear several times. But 5777 // have no fear, identically-named but distinct Autos are 5778 // ok, albeit maybe confusing for a debugger. 5779 return e.splitSlot(&name, "."+st.FieldName(i), offset, ft) 5780 } 5781 return ssa.LocalSlot{N: n, Type: ft, Off: name.Off + st.FieldOff(i)} 5782 } 5783 5784 func (e *ssafn) SplitArray(name ssa.LocalSlot) ssa.LocalSlot { 5785 n := name.N.(*Node) 5786 at := name.Type 5787 if at.NumElem() != 1 { 5788 Fatalf("bad array size") 5789 } 5790 et := at.Elem() 5791 if n.Class() == PAUTO && !n.Addrtaken() { 5792 return e.splitSlot(&name, "[0]", 0, et) 5793 } 5794 return ssa.LocalSlot{N: n, Type: et, Off: name.Off} 5795 } 5796 5797 func (e *ssafn) DerefItab(it *obj.LSym, offset int64) *obj.LSym { 5798 return itabsym(it, offset) 5799 } 5800 5801 // splitSlot returns a slot representing the data of parent starting at offset. 5802 func (e *ssafn) splitSlot(parent *ssa.LocalSlot, suffix string, offset int64, t *types.Type) ssa.LocalSlot { 5803 s := &types.Sym{Name: parent.N.(*Node).Sym.Name + suffix, Pkg: localpkg} 5804 5805 n := &Node{ 5806 Name: new(Name), 5807 Op: ONAME, 5808 Pos: parent.N.(*Node).Pos, 5809 } 5810 n.Orig = n 5811 5812 s.Def = asTypesNode(n) 5813 asNode(s.Def).Name.SetUsed(true) 5814 n.Sym = s 5815 n.Type = t 5816 n.SetClass(PAUTO) 5817 n.SetAddable(true) 5818 n.Esc = EscNever 5819 n.Name.Curfn = e.curfn 5820 e.curfn.Func.Dcl = append(e.curfn.Func.Dcl, n) 5821 dowidth(t) 5822 return ssa.LocalSlot{N: n, Type: t, Off: 0, SplitOf: parent, SplitOffset: offset} 5823 } 5824 5825 func (e *ssafn) CanSSA(t *types.Type) bool { 5826 return canSSAType(t) 5827 } 5828 5829 func (e *ssafn) Line(pos src.XPos) string { 5830 return linestr(pos) 5831 } 5832 5833 // Log logs a message from the compiler. 5834 func (e *ssafn) Logf(msg string, args ...interface{}) { 5835 if e.log { 5836 fmt.Printf(msg, args...) 5837 } 5838 } 5839 5840 func (e *ssafn) Log() bool { 5841 return e.log 5842 } 5843 5844 // Fatal reports a compiler error and exits. 5845 func (e *ssafn) Fatalf(pos src.XPos, msg string, args ...interface{}) { 5846 lineno = pos 5847 nargs := append([]interface{}{e.curfn.funcname()}, args...) 5848 Fatalf("'%s': "+msg, nargs...) 5849 } 5850 5851 // Warnl reports a "warning", which is usually flag-triggered 5852 // logging output for the benefit of tests. 5853 func (e *ssafn) Warnl(pos src.XPos, fmt_ string, args ...interface{}) { 5854 Warnl(pos, fmt_, args...) 5855 } 5856 5857 func (e *ssafn) Debug_checknil() bool { 5858 return Debug_checknil != 0 5859 } 5860 5861 func (e *ssafn) UseWriteBarrier() bool { 5862 return use_writebarrier 5863 } 5864 5865 func (e *ssafn) Syslook(name string) *obj.LSym { 5866 switch name { 5867 case "goschedguarded": 5868 return goschedguarded 5869 case "writeBarrier": 5870 return writeBarrier 5871 case "gcWriteBarrier": 5872 return gcWriteBarrier 5873 case "typedmemmove": 5874 return typedmemmove 5875 case "typedmemclr": 5876 return typedmemclr 5877 } 5878 Fatalf("unknown Syslook func %v", name) 5879 return nil 5880 } 5881 5882 func (e *ssafn) SetWBPos(pos src.XPos) { 5883 e.curfn.Func.setWBPos(pos) 5884 } 5885 5886 func (n *Node) Typ() *types.Type { 5887 return n.Type 5888 } 5889 func (n *Node) StorageClass() ssa.StorageClass { 5890 switch n.Class() { 5891 case PPARAM: 5892 return ssa.ClassParam 5893 case PPARAMOUT: 5894 return ssa.ClassParamOut 5895 case PAUTO: 5896 return ssa.ClassAuto 5897 default: 5898 Fatalf("untranslatable storage class for %v: %s", n, n.Class()) 5899 return 0 5900 } 5901 }