github.com/zxy12/go_duplicate_112_new@v0.0.0-20200807091221-747231827200/src/cmd/compile/internal/ssa/regalloc.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Register allocation. 6 // 7 // We use a version of a linear scan register allocator. We treat the 8 // whole function as a single long basic block and run through 9 // it using a greedy register allocator. Then all merge edges 10 // (those targeting a block with len(Preds)>1) are processed to 11 // shuffle data into the place that the target of the edge expects. 12 // 13 // The greedy allocator moves values into registers just before they 14 // are used, spills registers only when necessary, and spills the 15 // value whose next use is farthest in the future. 16 // 17 // The register allocator requires that a block is not scheduled until 18 // at least one of its predecessors have been scheduled. The most recent 19 // such predecessor provides the starting register state for a block. 20 // 21 // It also requires that there are no critical edges (critical = 22 // comes from a block with >1 successor and goes to a block with >1 23 // predecessor). This makes it easy to add fixup code on merge edges - 24 // the source of a merge edge has only one successor, so we can add 25 // fixup code to the end of that block. 26 27 // Spilling 28 // 29 // During the normal course of the allocator, we might throw a still-live 30 // value out of all registers. When that value is subsequently used, we must 31 // load it from a slot on the stack. We must also issue an instruction to 32 // initialize that stack location with a copy of v. 33 // 34 // pre-regalloc: 35 // (1) v = Op ... 36 // (2) x = Op ... 37 // (3) ... = Op v ... 38 // 39 // post-regalloc: 40 // (1) v = Op ... : AX // computes v, store result in AX 41 // s = StoreReg v // spill v to a stack slot 42 // (2) x = Op ... : AX // some other op uses AX 43 // c = LoadReg s : CX // restore v from stack slot 44 // (3) ... = Op c ... // use the restored value 45 // 46 // Allocation occurs normally until we reach (3) and we realize we have 47 // a use of v and it isn't in any register. At that point, we allocate 48 // a spill (a StoreReg) for v. We can't determine the correct place for 49 // the spill at this point, so we allocate the spill as blockless initially. 50 // The restore is then generated to load v back into a register so it can 51 // be used. Subsequent uses of v will use the restored value c instead. 52 // 53 // What remains is the question of where to schedule the spill. 54 // During allocation, we keep track of the dominator of all restores of v. 55 // The spill of v must dominate that block. The spill must also be issued at 56 // a point where v is still in a register. 57 // 58 // To find the right place, start at b, the block which dominates all restores. 59 // - If b is v.Block, then issue the spill right after v. 60 // It is known to be in a register at that point, and dominates any restores. 61 // - Otherwise, if v is in a register at the start of b, 62 // put the spill of v at the start of b. 63 // - Otherwise, set b = immediate dominator of b, and repeat. 64 // 65 // Phi values are special, as always. We define two kinds of phis, those 66 // where the merge happens in a register (a "register" phi) and those where 67 // the merge happens in a stack location (a "stack" phi). 68 // 69 // A register phi must have the phi and all of its inputs allocated to the 70 // same register. Register phis are spilled similarly to regular ops. 71 // 72 // A stack phi must have the phi and all of its inputs allocated to the same 73 // stack location. Stack phis start out life already spilled - each phi 74 // input must be a store (using StoreReg) at the end of the corresponding 75 // predecessor block. 76 // b1: y = ... : AX b2: z = ... : BX 77 // y2 = StoreReg y z2 = StoreReg z 78 // goto b3 goto b3 79 // b3: x = phi(y2, z2) 80 // The stack allocator knows that StoreReg args of stack-allocated phis 81 // must be allocated to the same stack slot as the phi that uses them. 82 // x is now a spilled value and a restore must appear before its first use. 83 84 // TODO 85 86 // Use an affinity graph to mark two values which should use the 87 // same register. This affinity graph will be used to prefer certain 88 // registers for allocation. This affinity helps eliminate moves that 89 // are required for phi implementations and helps generate allocations 90 // for 2-register architectures. 91 92 // Note: regalloc generates a not-quite-SSA output. If we have: 93 // 94 // b1: x = ... : AX 95 // x2 = StoreReg x 96 // ... AX gets reused for something else ... 97 // if ... goto b3 else b4 98 // 99 // b3: x3 = LoadReg x2 : BX b4: x4 = LoadReg x2 : CX 100 // ... use x3 ... ... use x4 ... 101 // 102 // b2: ... use x3 ... 103 // 104 // If b3 is the primary predecessor of b2, then we use x3 in b2 and 105 // add a x4:CX->BX copy at the end of b4. 106 // But the definition of x3 doesn't dominate b2. We should really 107 // insert a dummy phi at the start of b2 (x5=phi(x3,x4):BX) to keep 108 // SSA form. For now, we ignore this problem as remaining in strict 109 // SSA form isn't needed after regalloc. We'll just leave the use 110 // of x3 not dominated by the definition of x3, and the CX->BX copy 111 // will have no use (so don't run deadcode after regalloc!). 112 // TODO: maybe we should introduce these extra phis? 113 114 package ssa 115 116 import ( 117 "cmd/compile/internal/types" 118 "cmd/internal/objabi" 119 "cmd/internal/src" 120 "cmd/internal/sys" 121 "fmt" 122 "math/bits" 123 "unsafe" 124 ) 125 126 const ( 127 moveSpills = iota 128 logSpills 129 regDebug 130 stackDebug 131 ) 132 133 // distance is a measure of how far into the future values are used. 134 // distance is measured in units of instructions. 135 const ( 136 likelyDistance = 1 137 normalDistance = 10 138 unlikelyDistance = 100 139 ) 140 141 // regalloc performs register allocation on f. It sets f.RegAlloc 142 // to the resulting allocation. 143 func regalloc(f *Func) { 144 var s regAllocState 145 s.init(f) 146 s.regalloc(f) 147 } 148 149 type register uint8 150 151 const noRegister register = 255 152 153 // A regMask encodes a set of machine registers. 154 // TODO: regMask -> regSet? 155 type regMask uint64 156 157 func (m regMask) String() string { 158 s := "" 159 for r := register(0); m != 0; r++ { 160 if m>>r&1 == 0 { 161 continue 162 } 163 m &^= regMask(1) << r 164 if s != "" { 165 s += " " 166 } 167 s += fmt.Sprintf("r%d", r) 168 } 169 return s 170 } 171 172 func (s *regAllocState) RegMaskString(m regMask) string { 173 str := "" 174 for r := register(0); m != 0; r++ { 175 if m>>r&1 == 0 { 176 continue 177 } 178 m &^= regMask(1) << r 179 if str != "" { 180 str += " " 181 } 182 str += s.registers[r].String() 183 } 184 return str 185 } 186 187 // countRegs returns the number of set bits in the register mask. 188 func countRegs(r regMask) int { 189 return bits.OnesCount64(uint64(r)) 190 } 191 192 // pickReg picks an arbitrary register from the register mask. 193 func pickReg(r regMask) register { 194 if r == 0 { 195 panic("can't pick a register from an empty set") 196 } 197 // pick the lowest one 198 return register(bits.TrailingZeros64(uint64(r))) 199 } 200 201 type use struct { 202 dist int32 // distance from start of the block to a use of a value 203 pos src.XPos // source position of the use 204 next *use // linked list of uses of a value in nondecreasing dist order 205 } 206 207 // A valState records the register allocation state for a (pre-regalloc) value. 208 type valState struct { 209 regs regMask // the set of registers holding a Value (usually just one) 210 uses *use // list of uses in this block 211 spill *Value // spilled copy of the Value (if any) 212 restoreMin int32 // minimum of all restores' blocks' sdom.entry 213 restoreMax int32 // maximum of all restores' blocks' sdom.exit 214 needReg bool // cached value of !v.Type.IsMemory() && !v.Type.IsVoid() && !.v.Type.IsFlags() 215 rematerializeable bool // cached value of v.rematerializeable() 216 } 217 218 type regState struct { 219 v *Value // Original (preregalloc) Value stored in this register. 220 c *Value // A Value equal to v which is currently in a register. Might be v or a copy of it. 221 // If a register is unused, v==c==nil 222 } 223 224 type regAllocState struct { 225 f *Func 226 227 sdom SparseTree 228 registers []Register 229 numRegs register 230 SPReg register 231 SBReg register 232 GReg register 233 allocatable regMask 234 235 // for each block, its primary predecessor. 236 // A predecessor of b is primary if it is the closest 237 // predecessor that appears before b in the layout order. 238 // We record the index in the Preds list where the primary predecessor sits. 239 primary []int32 240 241 // live values at the end of each block. live[b.ID] is a list of value IDs 242 // which are live at the end of b, together with a count of how many instructions 243 // forward to the next use. 244 live [][]liveInfo 245 // desired register assignments at the end of each block. 246 // Note that this is a static map computed before allocation occurs. Dynamic 247 // register desires (from partially completed allocations) will trump 248 // this information. 249 desired []desiredState 250 251 // current state of each (preregalloc) Value 252 values []valState 253 254 // ID of SP, SB values 255 sp, sb ID 256 257 // For each Value, map from its value ID back to the 258 // preregalloc Value it was derived from. 259 orig []*Value 260 261 // current state of each register 262 regs []regState 263 264 // registers that contain values which can't be kicked out 265 nospill regMask 266 267 // mask of registers currently in use 268 used regMask 269 270 // mask of registers used in the current instruction 271 tmpused regMask 272 273 // current block we're working on 274 curBlock *Block 275 276 // cache of use records 277 freeUseRecords *use 278 279 // endRegs[blockid] is the register state at the end of each block. 280 // encoded as a set of endReg records. 281 endRegs [][]endReg 282 283 // startRegs[blockid] is the register state at the start of merge blocks. 284 // saved state does not include the state of phi ops in the block. 285 startRegs [][]startReg 286 287 // spillLive[blockid] is the set of live spills at the end of each block 288 spillLive [][]ID 289 290 // a set of copies we generated to move things around, and 291 // whether it is used in shuffle. Unused copies will be deleted. 292 copies map[*Value]bool 293 294 loopnest *loopnest 295 296 // choose a good order in which to visit blocks for allocation purposes. 297 visitOrder []*Block 298 } 299 300 type endReg struct { 301 r register 302 v *Value // pre-regalloc value held in this register (TODO: can we use ID here?) 303 c *Value // cached version of the value 304 } 305 306 type startReg struct { 307 r register 308 v *Value // pre-regalloc value needed in this register 309 c *Value // cached version of the value 310 pos src.XPos // source position of use of this register 311 } 312 313 // freeReg frees up register r. Any current user of r is kicked out. 314 func (s *regAllocState) freeReg(r register) { 315 v := s.regs[r].v 316 if v == nil { 317 s.f.Fatalf("tried to free an already free register %d\n", r) 318 } 319 320 // Mark r as unused. 321 if s.f.pass.debug > regDebug { 322 fmt.Printf("freeReg %s (dump %s/%s)\n", &s.registers[r], v, s.regs[r].c) 323 } 324 s.regs[r] = regState{} 325 s.values[v.ID].regs &^= regMask(1) << r 326 s.used &^= regMask(1) << r 327 } 328 329 // freeRegs frees up all registers listed in m. 330 func (s *regAllocState) freeRegs(m regMask) { 331 for m&s.used != 0 { 332 s.freeReg(pickReg(m & s.used)) 333 } 334 } 335 336 // setOrig records that c's original value is the same as 337 // v's original value. 338 func (s *regAllocState) setOrig(c *Value, v *Value) { 339 for int(c.ID) >= len(s.orig) { 340 s.orig = append(s.orig, nil) 341 } 342 if s.orig[c.ID] != nil { 343 s.f.Fatalf("orig value set twice %s %s", c, v) 344 } 345 s.orig[c.ID] = s.orig[v.ID] 346 } 347 348 // assignReg assigns register r to hold c, a copy of v. 349 // r must be unused. 350 func (s *regAllocState) assignReg(r register, v *Value, c *Value) { 351 if s.f.pass.debug > regDebug { 352 fmt.Printf("assignReg %s %s/%s\n", &s.registers[r], v, c) 353 } 354 if s.regs[r].v != nil { 355 s.f.Fatalf("tried to assign register %d to %s/%s but it is already used by %s", r, v, c, s.regs[r].v) 356 } 357 358 // Update state. 359 s.regs[r] = regState{v, c} 360 s.values[v.ID].regs |= regMask(1) << r 361 s.used |= regMask(1) << r 362 s.f.setHome(c, &s.registers[r]) 363 } 364 365 // allocReg chooses a register from the set of registers in mask. 366 // If there is no unused register, a Value will be kicked out of 367 // a register to make room. 368 func (s *regAllocState) allocReg(mask regMask, v *Value) register { 369 if v.OnWasmStack { 370 return noRegister 371 } 372 373 mask &= s.allocatable 374 mask &^= s.nospill 375 if mask == 0 { 376 s.f.Fatalf("no register available for %s", v.LongString()) 377 } 378 379 // Pick an unused register if one is available. 380 if mask&^s.used != 0 { 381 return pickReg(mask &^ s.used) 382 } 383 384 // Pick a value to spill. Spill the value with the 385 // farthest-in-the-future use. 386 // TODO: Prefer registers with already spilled Values? 387 // TODO: Modify preference using affinity graph. 388 // TODO: if a single value is in multiple registers, spill one of them 389 // before spilling a value in just a single register. 390 391 // Find a register to spill. We spill the register containing the value 392 // whose next use is as far in the future as possible. 393 // https://en.wikipedia.org/wiki/Page_replacement_algorithm#The_theoretically_optimal_page_replacement_algorithm 394 var r register 395 maxuse := int32(-1) 396 for t := register(0); t < s.numRegs; t++ { 397 if mask>>t&1 == 0 { 398 continue 399 } 400 v := s.regs[t].v 401 if n := s.values[v.ID].uses.dist; n > maxuse { 402 // v's next use is farther in the future than any value 403 // we've seen so far. A new best spill candidate. 404 r = t 405 maxuse = n 406 } 407 } 408 if maxuse == -1 { 409 s.f.Fatalf("couldn't find register to spill") 410 } 411 412 if s.f.Config.ctxt.Arch.Arch == sys.ArchWasm { 413 // TODO(neelance): In theory this should never happen, because all wasm registers are equal. 414 // So if there is still a free register, the allocation should have picked that one in the first place insead of 415 // trying to kick some other value out. In practice, this case does happen and it breaks the stack optimization. 416 s.freeReg(r) 417 return r 418 } 419 420 // Try to move it around before kicking out, if there is a free register. 421 // We generate a Copy and record it. It will be deleted if never used. 422 v2 := s.regs[r].v 423 m := s.compatRegs(v2.Type) &^ s.used &^ s.tmpused &^ (regMask(1) << r) 424 if m != 0 && !s.values[v2.ID].rematerializeable && countRegs(s.values[v2.ID].regs) == 1 { 425 r2 := pickReg(m) 426 c := s.curBlock.NewValue1(v2.Pos, OpCopy, v2.Type, s.regs[r].c) 427 s.copies[c] = false 428 if s.f.pass.debug > regDebug { 429 fmt.Printf("copy %s to %s : %s\n", v2, c, &s.registers[r2]) 430 } 431 s.setOrig(c, v2) 432 s.assignReg(r2, v2, c) 433 } 434 s.freeReg(r) 435 return r 436 } 437 438 // makeSpill returns a Value which represents the spilled value of v. 439 // b is the block in which the spill is used. 440 func (s *regAllocState) makeSpill(v *Value, b *Block) *Value { 441 vi := &s.values[v.ID] 442 if vi.spill != nil { 443 // Final block not known - keep track of subtree where restores reside. 444 vi.restoreMin = min32(vi.restoreMin, s.sdom[b.ID].entry) 445 vi.restoreMax = max32(vi.restoreMax, s.sdom[b.ID].exit) 446 return vi.spill 447 } 448 // Make a spill for v. We don't know where we want 449 // to put it yet, so we leave it blockless for now. 450 spill := s.f.newValueNoBlock(OpStoreReg, v.Type, v.Pos) 451 // We also don't know what the spill's arg will be. 452 // Leave it argless for now. 453 s.setOrig(spill, v) 454 vi.spill = spill 455 vi.restoreMin = s.sdom[b.ID].entry 456 vi.restoreMax = s.sdom[b.ID].exit 457 return spill 458 } 459 460 // allocValToReg allocates v to a register selected from regMask and 461 // returns the register copy of v. Any previous user is kicked out and spilled 462 // (if necessary). Load code is added at the current pc. If nospill is set the 463 // allocated register is marked nospill so the assignment cannot be 464 // undone until the caller allows it by clearing nospill. Returns a 465 // *Value which is either v or a copy of v allocated to the chosen register. 466 func (s *regAllocState) allocValToReg(v *Value, mask regMask, nospill bool, pos src.XPos) *Value { 467 if s.f.Config.ctxt.Arch.Arch == sys.ArchWasm && v.rematerializeable() { 468 c := v.copyIntoWithXPos(s.curBlock, pos) 469 c.OnWasmStack = true 470 s.setOrig(c, v) 471 return c 472 } 473 if v.OnWasmStack { 474 return v 475 } 476 477 vi := &s.values[v.ID] 478 pos = pos.WithNotStmt() 479 // Check if v is already in a requested register. 480 if mask&vi.regs != 0 { 481 r := pickReg(mask & vi.regs) 482 if s.regs[r].v != v || s.regs[r].c == nil { 483 panic("bad register state") 484 } 485 if nospill { 486 s.nospill |= regMask(1) << r 487 } 488 return s.regs[r].c 489 } 490 491 var r register 492 // If nospill is set, the value is used immedately, so it can live on the WebAssembly stack. 493 onWasmStack := nospill && s.f.Config.ctxt.Arch.Arch == sys.ArchWasm 494 if !onWasmStack { 495 // Allocate a register. 496 r = s.allocReg(mask, v) 497 } 498 499 // Allocate v to the new register. 500 var c *Value 501 if vi.regs != 0 { 502 // Copy from a register that v is already in. 503 r2 := pickReg(vi.regs) 504 if s.regs[r2].v != v { 505 panic("bad register state") 506 } 507 c = s.curBlock.NewValue1(pos, OpCopy, v.Type, s.regs[r2].c) 508 } else if v.rematerializeable() { 509 // Rematerialize instead of loading from the spill location. 510 c = v.copyIntoWithXPos(s.curBlock, pos) 511 } else { 512 // Load v from its spill location. 513 spill := s.makeSpill(v, s.curBlock) 514 if s.f.pass.debug > logSpills { 515 s.f.Warnl(vi.spill.Pos, "load spill for %v from %v", v, spill) 516 } 517 c = s.curBlock.NewValue1(pos, OpLoadReg, v.Type, spill) 518 } 519 520 s.setOrig(c, v) 521 522 if onWasmStack { 523 c.OnWasmStack = true 524 return c 525 } 526 527 s.assignReg(r, v, c) 528 if c.Op == OpLoadReg && s.isGReg(r) { 529 s.f.Fatalf("allocValToReg.OpLoadReg targeting g: " + c.LongString()) 530 } 531 if nospill { 532 s.nospill |= regMask(1) << r 533 } 534 return c 535 } 536 537 // isLeaf reports whether f performs any calls. 538 func isLeaf(f *Func) bool { 539 for _, b := range f.Blocks { 540 for _, v := range b.Values { 541 if opcodeTable[v.Op].call { 542 return false 543 } 544 } 545 } 546 return true 547 } 548 549 func (s *regAllocState) init(f *Func) { 550 s.f = f 551 s.f.RegAlloc = s.f.Cache.locs[:0] 552 s.registers = f.Config.registers 553 if nr := len(s.registers); nr == 0 || nr > int(noRegister) || nr > int(unsafe.Sizeof(regMask(0))*8) { 554 s.f.Fatalf("bad number of registers: %d", nr) 555 } else { 556 s.numRegs = register(nr) 557 } 558 // Locate SP, SB, and g registers. 559 s.SPReg = noRegister 560 s.SBReg = noRegister 561 s.GReg = noRegister 562 for r := register(0); r < s.numRegs; r++ { 563 switch s.registers[r].String() { 564 case "SP": 565 s.SPReg = r 566 case "SB": 567 s.SBReg = r 568 case "g": 569 s.GReg = r 570 } 571 } 572 // Make sure we found all required registers. 573 switch noRegister { 574 case s.SPReg: 575 s.f.Fatalf("no SP register found") 576 case s.SBReg: 577 s.f.Fatalf("no SB register found") 578 case s.GReg: 579 if f.Config.hasGReg { 580 s.f.Fatalf("no g register found") 581 } 582 } 583 584 // Figure out which registers we're allowed to use. 585 s.allocatable = s.f.Config.gpRegMask | s.f.Config.fpRegMask | s.f.Config.specialRegMask 586 s.allocatable &^= 1 << s.SPReg 587 s.allocatable &^= 1 << s.SBReg 588 if s.f.Config.hasGReg { 589 s.allocatable &^= 1 << s.GReg 590 } 591 if s.f.Config.ctxt.Framepointer_enabled && s.f.Config.FPReg >= 0 { 592 s.allocatable &^= 1 << uint(s.f.Config.FPReg) 593 } 594 if s.f.Config.LinkReg != -1 { 595 if isLeaf(f) { 596 // Leaf functions don't save/restore the link register. 597 s.allocatable &^= 1 << uint(s.f.Config.LinkReg) 598 } 599 if s.f.Config.arch == "arm" && objabi.GOARM == 5 { 600 // On ARMv5 we insert softfloat calls at each FP instruction. 601 // This clobbers LR almost everywhere. Disable allocating LR 602 // on ARMv5. 603 s.allocatable &^= 1 << uint(s.f.Config.LinkReg) 604 } 605 } 606 if s.f.Config.ctxt.Flag_dynlink { 607 switch s.f.Config.arch { 608 case "amd64": 609 s.allocatable &^= 1 << 15 // R15 610 case "arm": 611 s.allocatable &^= 1 << 9 // R9 612 case "ppc64le": // R2 already reserved. 613 // nothing to do 614 case "arm64": 615 // nothing to do? 616 case "386": 617 // nothing to do. 618 // Note that for Flag_shared (position independent code) 619 // we do need to be careful, but that carefulness is hidden 620 // in the rewrite rules so we always have a free register 621 // available for global load/stores. See gen/386.rules (search for Flag_shared). 622 case "s390x": 623 s.allocatable &^= 1 << 11 // R11 624 default: 625 s.f.fe.Fatalf(src.NoXPos, "arch %s not implemented", s.f.Config.arch) 626 } 627 } 628 if s.f.Config.nacl { 629 switch s.f.Config.arch { 630 case "arm": 631 s.allocatable &^= 1 << 9 // R9 is "thread pointer" on nacl/arm 632 case "amd64p32": 633 s.allocatable &^= 1 << 5 // BP - reserved for nacl 634 s.allocatable &^= 1 << 15 // R15 - reserved for nacl 635 } 636 } 637 if s.f.Config.use387 { 638 s.allocatable &^= 1 << 15 // X7 disallowed (one 387 register is used as scratch space during SSE->387 generation in ../x86/387.go) 639 } 640 641 // Linear scan register allocation can be influenced by the order in which blocks appear. 642 // Decouple the register allocation order from the generated block order. 643 // This also creates an opportunity for experiments to find a better order. 644 s.visitOrder = layoutRegallocOrder(f) 645 646 // Compute block order. This array allows us to distinguish forward edges 647 // from backward edges and compute how far they go. 648 blockOrder := make([]int32, f.NumBlocks()) 649 for i, b := range s.visitOrder { 650 blockOrder[b.ID] = int32(i) 651 } 652 653 s.regs = make([]regState, s.numRegs) 654 s.values = make([]valState, f.NumValues()) 655 s.orig = make([]*Value, f.NumValues()) 656 s.copies = make(map[*Value]bool) 657 for _, b := range s.visitOrder { 658 for _, v := range b.Values { 659 if !v.Type.IsMemory() && !v.Type.IsVoid() && !v.Type.IsFlags() && !v.Type.IsTuple() { 660 s.values[v.ID].needReg = true 661 s.values[v.ID].rematerializeable = v.rematerializeable() 662 s.orig[v.ID] = v 663 } 664 // Note: needReg is false for values returning Tuple types. 665 // Instead, we mark the corresponding Selects as needReg. 666 } 667 } 668 s.computeLive() 669 670 // Compute primary predecessors. 671 s.primary = make([]int32, f.NumBlocks()) 672 for _, b := range s.visitOrder { 673 best := -1 674 for i, e := range b.Preds { 675 p := e.b 676 if blockOrder[p.ID] >= blockOrder[b.ID] { 677 continue // backward edge 678 } 679 if best == -1 || blockOrder[p.ID] > blockOrder[b.Preds[best].b.ID] { 680 best = i 681 } 682 } 683 s.primary[b.ID] = int32(best) 684 } 685 686 s.endRegs = make([][]endReg, f.NumBlocks()) 687 s.startRegs = make([][]startReg, f.NumBlocks()) 688 s.spillLive = make([][]ID, f.NumBlocks()) 689 s.sdom = f.sdom() 690 691 // wasm: Mark instructions that can be optimized to have their values only on the WebAssembly stack. 692 if f.Config.ctxt.Arch.Arch == sys.ArchWasm { 693 canLiveOnStack := f.newSparseSet(f.NumValues()) 694 defer f.retSparseSet(canLiveOnStack) 695 for _, b := range f.Blocks { 696 // New block. Clear candidate set. 697 canLiveOnStack.clear() 698 if b.Control != nil && b.Control.Uses == 1 && !opcodeTable[b.Control.Op].generic { 699 canLiveOnStack.add(b.Control.ID) 700 } 701 // Walking backwards. 702 for i := len(b.Values) - 1; i >= 0; i-- { 703 v := b.Values[i] 704 if canLiveOnStack.contains(v.ID) { 705 v.OnWasmStack = true 706 } else { 707 // Value can not live on stack. Values are not allowed to be reordered, so clear candidate set. 708 canLiveOnStack.clear() 709 } 710 for _, arg := range v.Args { 711 // Value can live on the stack if: 712 // - it is only used once 713 // - it is used in the same basic block 714 // - it is not a "mem" value 715 // - it is a WebAssembly op 716 if arg.Uses == 1 && arg.Block == v.Block && !arg.Type.IsMemory() && !opcodeTable[arg.Op].generic { 717 canLiveOnStack.add(arg.ID) 718 } 719 } 720 } 721 } 722 } 723 } 724 725 // Adds a use record for id at distance dist from the start of the block. 726 // All calls to addUse must happen with nonincreasing dist. 727 func (s *regAllocState) addUse(id ID, dist int32, pos src.XPos) { 728 r := s.freeUseRecords 729 if r != nil { 730 s.freeUseRecords = r.next 731 } else { 732 r = &use{} 733 } 734 r.dist = dist 735 r.pos = pos 736 r.next = s.values[id].uses 737 s.values[id].uses = r 738 if r.next != nil && dist > r.next.dist { 739 s.f.Fatalf("uses added in wrong order") 740 } 741 } 742 743 // advanceUses advances the uses of v's args from the state before v to the state after v. 744 // Any values which have no more uses are deallocated from registers. 745 func (s *regAllocState) advanceUses(v *Value) { 746 for _, a := range v.Args { 747 if !s.values[a.ID].needReg { 748 continue 749 } 750 ai := &s.values[a.ID] 751 r := ai.uses 752 ai.uses = r.next 753 if r.next == nil { 754 // Value is dead, free all registers that hold it. 755 s.freeRegs(ai.regs) 756 } 757 r.next = s.freeUseRecords 758 s.freeUseRecords = r 759 } 760 } 761 762 // liveAfterCurrentInstruction reports whether v is live after 763 // the current instruction is completed. v must be used by the 764 // current instruction. 765 func (s *regAllocState) liveAfterCurrentInstruction(v *Value) bool { 766 u := s.values[v.ID].uses 767 d := u.dist 768 for u != nil && u.dist == d { 769 u = u.next 770 } 771 return u != nil && u.dist > d 772 } 773 774 // Sets the state of the registers to that encoded in regs. 775 func (s *regAllocState) setState(regs []endReg) { 776 s.freeRegs(s.used) 777 for _, x := range regs { 778 s.assignReg(x.r, x.v, x.c) 779 } 780 } 781 782 // compatRegs returns the set of registers which can store a type t. 783 func (s *regAllocState) compatRegs(t *types.Type) regMask { 784 var m regMask 785 if t.IsTuple() || t.IsFlags() { 786 return 0 787 } 788 if t.IsFloat() || t == types.TypeInt128 { 789 m = s.f.Config.fpRegMask 790 } else { 791 m = s.f.Config.gpRegMask 792 } 793 return m & s.allocatable 794 } 795 796 // regspec returns the regInfo for operation op. 797 func (s *regAllocState) regspec(op Op) regInfo { 798 if op == OpConvert { 799 // OpConvert is a generic op, so it doesn't have a 800 // register set in the static table. It can use any 801 // allocatable integer register. 802 m := s.allocatable & s.f.Config.gpRegMask 803 return regInfo{inputs: []inputInfo{{regs: m}}, outputs: []outputInfo{{regs: m}}} 804 } 805 return opcodeTable[op].reg 806 } 807 808 func (s *regAllocState) isGReg(r register) bool { 809 return s.f.Config.hasGReg && s.GReg == r 810 } 811 812 func (s *regAllocState) regalloc(f *Func) { 813 regValLiveSet := f.newSparseSet(f.NumValues()) // set of values that may be live in register 814 defer f.retSparseSet(regValLiveSet) 815 var oldSched []*Value 816 var phis []*Value 817 var phiRegs []register 818 var args []*Value 819 820 // Data structure used for computing desired registers. 821 var desired desiredState 822 823 // Desired registers for inputs & outputs for each instruction in the block. 824 type dentry struct { 825 out [4]register // desired output registers 826 in [3][4]register // desired input registers (for inputs 0,1, and 2) 827 } 828 var dinfo []dentry 829 830 if f.Entry != f.Blocks[0] { 831 f.Fatalf("entry block must be first") 832 } 833 834 for _, b := range s.visitOrder { 835 if s.f.pass.debug > regDebug { 836 fmt.Printf("Begin processing block %v\n", b) 837 } 838 s.curBlock = b 839 840 // Initialize regValLiveSet and uses fields for this block. 841 // Walk backwards through the block doing liveness analysis. 842 regValLiveSet.clear() 843 for _, e := range s.live[b.ID] { 844 s.addUse(e.ID, int32(len(b.Values))+e.dist, e.pos) // pseudo-uses from beyond end of block 845 regValLiveSet.add(e.ID) 846 } 847 if v := b.Control; v != nil && s.values[v.ID].needReg { 848 s.addUse(v.ID, int32(len(b.Values)), b.Pos) // pseudo-use by control value 849 regValLiveSet.add(v.ID) 850 } 851 for i := len(b.Values) - 1; i >= 0; i-- { 852 v := b.Values[i] 853 regValLiveSet.remove(v.ID) 854 if v.Op == OpPhi { 855 // Remove v from the live set, but don't add 856 // any inputs. This is the state the len(b.Preds)>1 857 // case below desires; it wants to process phis specially. 858 continue 859 } 860 if opcodeTable[v.Op].call { 861 // Function call clobbers all the registers but SP and SB. 862 regValLiveSet.clear() 863 if s.sp != 0 && s.values[s.sp].uses != nil { 864 regValLiveSet.add(s.sp) 865 } 866 if s.sb != 0 && s.values[s.sb].uses != nil { 867 regValLiveSet.add(s.sb) 868 } 869 } 870 for _, a := range v.Args { 871 if !s.values[a.ID].needReg { 872 continue 873 } 874 s.addUse(a.ID, int32(i), v.Pos) 875 regValLiveSet.add(a.ID) 876 } 877 } 878 if s.f.pass.debug > regDebug { 879 fmt.Printf("use distances for %s\n", b) 880 for i := range s.values { 881 vi := &s.values[i] 882 u := vi.uses 883 if u == nil { 884 continue 885 } 886 fmt.Printf(" v%d:", i) 887 for u != nil { 888 fmt.Printf(" %d", u.dist) 889 u = u.next 890 } 891 fmt.Println() 892 } 893 } 894 895 // Make a copy of the block schedule so we can generate a new one in place. 896 // We make a separate copy for phis and regular values. 897 nphi := 0 898 for _, v := range b.Values { 899 if v.Op != OpPhi { 900 break 901 } 902 nphi++ 903 } 904 phis = append(phis[:0], b.Values[:nphi]...) 905 oldSched = append(oldSched[:0], b.Values[nphi:]...) 906 b.Values = b.Values[:0] 907 908 // Initialize start state of block. 909 if b == f.Entry { 910 // Regalloc state is empty to start. 911 if nphi > 0 { 912 f.Fatalf("phis in entry block") 913 } 914 } else if len(b.Preds) == 1 { 915 // Start regalloc state with the end state of the previous block. 916 s.setState(s.endRegs[b.Preds[0].b.ID]) 917 if nphi > 0 { 918 f.Fatalf("phis in single-predecessor block") 919 } 920 // Drop any values which are no longer live. 921 // This may happen because at the end of p, a value may be 922 // live but only used by some other successor of p. 923 for r := register(0); r < s.numRegs; r++ { 924 v := s.regs[r].v 925 if v != nil && !regValLiveSet.contains(v.ID) { 926 s.freeReg(r) 927 } 928 } 929 } else { 930 // This is the complicated case. We have more than one predecessor, 931 // which means we may have Phi ops. 932 933 // Start with the final register state of the primary predecessor 934 idx := s.primary[b.ID] 935 if idx < 0 { 936 f.Fatalf("block with no primary predecessor %s", b) 937 } 938 p := b.Preds[idx].b 939 s.setState(s.endRegs[p.ID]) 940 941 if s.f.pass.debug > regDebug { 942 fmt.Printf("starting merge block %s with end state of %s:\n", b, p) 943 for _, x := range s.endRegs[p.ID] { 944 fmt.Printf(" %s: orig:%s cache:%s\n", &s.registers[x.r], x.v, x.c) 945 } 946 } 947 948 // Decide on registers for phi ops. Use the registers determined 949 // by the primary predecessor if we can. 950 // TODO: pick best of (already processed) predecessors? 951 // Majority vote? Deepest nesting level? 952 phiRegs = phiRegs[:0] 953 var phiUsed regMask 954 955 for _, v := range phis { 956 if !s.values[v.ID].needReg { 957 phiRegs = append(phiRegs, noRegister) 958 continue 959 } 960 a := v.Args[idx] 961 // Some instructions target not-allocatable registers. 962 // They're not suitable for further (phi-function) allocation. 963 m := s.values[a.ID].regs &^ phiUsed & s.allocatable 964 if m != 0 { 965 r := pickReg(m) 966 phiUsed |= regMask(1) << r 967 phiRegs = append(phiRegs, r) 968 } else { 969 phiRegs = append(phiRegs, noRegister) 970 } 971 } 972 973 // Second pass - deallocate any phi inputs which are now dead. 974 for i, v := range phis { 975 if !s.values[v.ID].needReg { 976 continue 977 } 978 a := v.Args[idx] 979 if !regValLiveSet.contains(a.ID) { 980 // Input is dead beyond the phi, deallocate 981 // anywhere else it might live. 982 s.freeRegs(s.values[a.ID].regs) 983 } else { 984 // Input is still live. 985 // Try to move it around before kicking out, if there is a free register. 986 // We generate a Copy in the predecessor block and record it. It will be 987 // deleted if never used. 988 r := phiRegs[i] 989 if r == noRegister { 990 continue 991 } 992 // Pick a free register. At this point some registers used in the predecessor 993 // block may have been deallocated. Those are the ones used for Phis. Exclude 994 // them (and they are not going to be helpful anyway). 995 m := s.compatRegs(a.Type) &^ s.used &^ phiUsed 996 if m != 0 && !s.values[a.ID].rematerializeable && countRegs(s.values[a.ID].regs) == 1 { 997 r2 := pickReg(m) 998 c := p.NewValue1(a.Pos, OpCopy, a.Type, s.regs[r].c) 999 s.copies[c] = false 1000 if s.f.pass.debug > regDebug { 1001 fmt.Printf("copy %s to %s : %s\n", a, c, &s.registers[r2]) 1002 } 1003 s.setOrig(c, a) 1004 s.assignReg(r2, a, c) 1005 s.endRegs[p.ID] = append(s.endRegs[p.ID], endReg{r2, a, c}) 1006 } 1007 s.freeReg(r) 1008 } 1009 } 1010 1011 // Copy phi ops into new schedule. 1012 b.Values = append(b.Values, phis...) 1013 1014 // Third pass - pick registers for phis whose inputs 1015 // were not in a register. 1016 for i, v := range phis { 1017 if !s.values[v.ID].needReg { 1018 continue 1019 } 1020 if phiRegs[i] != noRegister { 1021 continue 1022 } 1023 if s.f.Config.use387 && v.Type.IsFloat() { 1024 continue // 387 can't handle floats in registers between blocks 1025 } 1026 m := s.compatRegs(v.Type) &^ phiUsed &^ s.used 1027 if m != 0 { 1028 r := pickReg(m) 1029 phiRegs[i] = r 1030 phiUsed |= regMask(1) << r 1031 } 1032 } 1033 1034 // Set registers for phis. Add phi spill code. 1035 for i, v := range phis { 1036 if !s.values[v.ID].needReg { 1037 continue 1038 } 1039 r := phiRegs[i] 1040 if r == noRegister { 1041 // stack-based phi 1042 // Spills will be inserted in all the predecessors below. 1043 s.values[v.ID].spill = v // v starts life spilled 1044 continue 1045 } 1046 // register-based phi 1047 s.assignReg(r, v, v) 1048 } 1049 1050 // Deallocate any values which are no longer live. Phis are excluded. 1051 for r := register(0); r < s.numRegs; r++ { 1052 if phiUsed>>r&1 != 0 { 1053 continue 1054 } 1055 v := s.regs[r].v 1056 if v != nil && !regValLiveSet.contains(v.ID) { 1057 s.freeReg(r) 1058 } 1059 } 1060 1061 // Save the starting state for use by merge edges. 1062 // We append to a stack allocated variable that we'll 1063 // later copy into s.startRegs in one fell swoop, to save 1064 // on allocations. 1065 regList := make([]startReg, 0, 32) 1066 for r := register(0); r < s.numRegs; r++ { 1067 v := s.regs[r].v 1068 if v == nil { 1069 continue 1070 } 1071 if phiUsed>>r&1 != 0 { 1072 // Skip registers that phis used, we'll handle those 1073 // specially during merge edge processing. 1074 continue 1075 } 1076 regList = append(regList, startReg{r, v, s.regs[r].c, s.values[v.ID].uses.pos}) 1077 } 1078 s.startRegs[b.ID] = make([]startReg, len(regList)) 1079 copy(s.startRegs[b.ID], regList) 1080 1081 if s.f.pass.debug > regDebug { 1082 fmt.Printf("after phis\n") 1083 for _, x := range s.startRegs[b.ID] { 1084 fmt.Printf(" %s: v%d\n", &s.registers[x.r], x.v.ID) 1085 } 1086 } 1087 } 1088 1089 // Allocate space to record the desired registers for each value. 1090 if l := len(oldSched); cap(dinfo) < l { 1091 dinfo = make([]dentry, l) 1092 } else { 1093 dinfo = dinfo[:l] 1094 for i := range dinfo { 1095 dinfo[i] = dentry{} 1096 } 1097 } 1098 1099 // Load static desired register info at the end of the block. 1100 desired.copy(&s.desired[b.ID]) 1101 1102 // Check actual assigned registers at the start of the next block(s). 1103 // Dynamically assigned registers will trump the static 1104 // desired registers computed during liveness analysis. 1105 // Note that we do this phase after startRegs is set above, so that 1106 // we get the right behavior for a block which branches to itself. 1107 for _, e := range b.Succs { 1108 succ := e.b 1109 // TODO: prioritize likely successor? 1110 for _, x := range s.startRegs[succ.ID] { 1111 desired.add(x.v.ID, x.r) 1112 } 1113 // Process phi ops in succ. 1114 pidx := e.i 1115 for _, v := range succ.Values { 1116 if v.Op != OpPhi { 1117 break 1118 } 1119 if !s.values[v.ID].needReg { 1120 continue 1121 } 1122 rp, ok := s.f.getHome(v.ID).(*Register) 1123 if !ok { 1124 continue 1125 } 1126 desired.add(v.Args[pidx].ID, register(rp.num)) 1127 } 1128 } 1129 // Walk values backwards computing desired register info. 1130 // See computeLive for more comments. 1131 for i := len(oldSched) - 1; i >= 0; i-- { 1132 v := oldSched[i] 1133 prefs := desired.remove(v.ID) 1134 regspec := s.regspec(v.Op) 1135 desired.clobber(regspec.clobbers) 1136 for _, j := range regspec.inputs { 1137 if countRegs(j.regs) != 1 { 1138 continue 1139 } 1140 desired.clobber(j.regs) 1141 desired.add(v.Args[j.idx].ID, pickReg(j.regs)) 1142 } 1143 if opcodeTable[v.Op].resultInArg0 { 1144 if opcodeTable[v.Op].commutative { 1145 desired.addList(v.Args[1].ID, prefs) 1146 } 1147 desired.addList(v.Args[0].ID, prefs) 1148 } 1149 // Save desired registers for this value. 1150 dinfo[i].out = prefs 1151 for j, a := range v.Args { 1152 if j >= len(dinfo[i].in) { 1153 break 1154 } 1155 dinfo[i].in[j] = desired.get(a.ID) 1156 } 1157 } 1158 1159 // Process all the non-phi values. 1160 for idx, v := range oldSched { 1161 if s.f.pass.debug > regDebug { 1162 fmt.Printf(" processing %s\n", v.LongString()) 1163 } 1164 regspec := s.regspec(v.Op) 1165 if v.Op == OpPhi { 1166 f.Fatalf("phi %s not at start of block", v) 1167 } 1168 if v.Op == OpSP { 1169 s.assignReg(s.SPReg, v, v) 1170 b.Values = append(b.Values, v) 1171 s.advanceUses(v) 1172 s.sp = v.ID 1173 continue 1174 } 1175 if v.Op == OpSB { 1176 s.assignReg(s.SBReg, v, v) 1177 b.Values = append(b.Values, v) 1178 s.advanceUses(v) 1179 s.sb = v.ID 1180 continue 1181 } 1182 if v.Op == OpSelect0 || v.Op == OpSelect1 { 1183 if s.values[v.ID].needReg { 1184 var i = 0 1185 if v.Op == OpSelect1 { 1186 i = 1 1187 } 1188 s.assignReg(register(s.f.getHome(v.Args[0].ID).(LocPair)[i].(*Register).num), v, v) 1189 } 1190 b.Values = append(b.Values, v) 1191 s.advanceUses(v) 1192 goto issueSpill 1193 } 1194 if v.Op == OpGetG && s.f.Config.hasGReg { 1195 // use hardware g register 1196 if s.regs[s.GReg].v != nil { 1197 s.freeReg(s.GReg) // kick out the old value 1198 } 1199 s.assignReg(s.GReg, v, v) 1200 b.Values = append(b.Values, v) 1201 s.advanceUses(v) 1202 goto issueSpill 1203 } 1204 if v.Op == OpArg { 1205 // Args are "pre-spilled" values. We don't allocate 1206 // any register here. We just set up the spill pointer to 1207 // point at itself and any later user will restore it to use it. 1208 s.values[v.ID].spill = v 1209 b.Values = append(b.Values, v) 1210 s.advanceUses(v) 1211 continue 1212 } 1213 if v.Op == OpKeepAlive { 1214 // Make sure the argument to v is still live here. 1215 s.advanceUses(v) 1216 a := v.Args[0] 1217 vi := &s.values[a.ID] 1218 if vi.regs == 0 && !vi.rematerializeable { 1219 // Use the spill location. 1220 // This forces later liveness analysis to make the 1221 // value live at this point. 1222 v.SetArg(0, s.makeSpill(a, b)) 1223 } else if _, ok := a.Aux.(GCNode); ok && vi.rematerializeable { 1224 // Rematerializeable value with a gc.Node. This is the address of 1225 // a stack object (e.g. an LEAQ). Keep the object live. 1226 // Change it to VarLive, which is what plive expects for locals. 1227 v.Op = OpVarLive 1228 v.SetArgs1(v.Args[1]) 1229 v.Aux = a.Aux 1230 } else { 1231 // In-register and rematerializeable values are already live. 1232 // These are typically rematerializeable constants like nil, 1233 // or values of a variable that were modified since the last call. 1234 v.Op = OpCopy 1235 v.SetArgs1(v.Args[1]) 1236 } 1237 b.Values = append(b.Values, v) 1238 continue 1239 } 1240 if len(regspec.inputs) == 0 && len(regspec.outputs) == 0 { 1241 // No register allocation required (or none specified yet) 1242 s.freeRegs(regspec.clobbers) 1243 b.Values = append(b.Values, v) 1244 s.advanceUses(v) 1245 continue 1246 } 1247 1248 if s.values[v.ID].rematerializeable { 1249 // Value is rematerializeable, don't issue it here. 1250 // It will get issued just before each use (see 1251 // allocValueToReg). 1252 for _, a := range v.Args { 1253 a.Uses-- 1254 } 1255 s.advanceUses(v) 1256 continue 1257 } 1258 1259 if s.f.pass.debug > regDebug { 1260 fmt.Printf("value %s\n", v.LongString()) 1261 fmt.Printf(" out:") 1262 for _, r := range dinfo[idx].out { 1263 if r != noRegister { 1264 fmt.Printf(" %s", &s.registers[r]) 1265 } 1266 } 1267 fmt.Println() 1268 for i := 0; i < len(v.Args) && i < 3; i++ { 1269 fmt.Printf(" in%d:", i) 1270 for _, r := range dinfo[idx].in[i] { 1271 if r != noRegister { 1272 fmt.Printf(" %s", &s.registers[r]) 1273 } 1274 } 1275 fmt.Println() 1276 } 1277 } 1278 1279 // Move arguments to registers. Process in an ordering defined 1280 // by the register specification (most constrained first). 1281 args = append(args[:0], v.Args...) 1282 for _, i := range regspec.inputs { 1283 mask := i.regs 1284 if mask&s.values[args[i.idx].ID].regs == 0 { 1285 // Need a new register for the input. 1286 mask &= s.allocatable 1287 mask &^= s.nospill 1288 // Used desired register if available. 1289 if i.idx < 3 { 1290 for _, r := range dinfo[idx].in[i.idx] { 1291 if r != noRegister && (mask&^s.used)>>r&1 != 0 { 1292 // Desired register is allowed and unused. 1293 mask = regMask(1) << r 1294 break 1295 } 1296 } 1297 } 1298 // Avoid registers we're saving for other values. 1299 if mask&^desired.avoid != 0 { 1300 mask &^= desired.avoid 1301 } 1302 } 1303 args[i.idx] = s.allocValToReg(args[i.idx], mask, true, v.Pos) 1304 } 1305 1306 // If the output clobbers the input register, make sure we have 1307 // at least two copies of the input register so we don't 1308 // have to reload the value from the spill location. 1309 if opcodeTable[v.Op].resultInArg0 { 1310 var m regMask 1311 if !s.liveAfterCurrentInstruction(v.Args[0]) { 1312 // arg0 is dead. We can clobber its register. 1313 goto ok 1314 } 1315 if s.values[v.Args[0].ID].rematerializeable { 1316 // We can rematerialize the input, don't worry about clobbering it. 1317 goto ok 1318 } 1319 if countRegs(s.values[v.Args[0].ID].regs) >= 2 { 1320 // we have at least 2 copies of arg0. We can afford to clobber one. 1321 goto ok 1322 } 1323 if opcodeTable[v.Op].commutative { 1324 if !s.liveAfterCurrentInstruction(v.Args[1]) { 1325 args[0], args[1] = args[1], args[0] 1326 goto ok 1327 } 1328 if s.values[v.Args[1].ID].rematerializeable { 1329 args[0], args[1] = args[1], args[0] 1330 goto ok 1331 } 1332 if countRegs(s.values[v.Args[1].ID].regs) >= 2 { 1333 args[0], args[1] = args[1], args[0] 1334 goto ok 1335 } 1336 } 1337 1338 // We can't overwrite arg0 (or arg1, if commutative). So we 1339 // need to make a copy of an input so we have a register we can modify. 1340 1341 // Possible new registers to copy into. 1342 m = s.compatRegs(v.Args[0].Type) &^ s.used 1343 if m == 0 { 1344 // No free registers. In this case we'll just clobber 1345 // an input and future uses of that input must use a restore. 1346 // TODO(khr): We should really do this like allocReg does it, 1347 // spilling the value with the most distant next use. 1348 goto ok 1349 } 1350 1351 // Try to move an input to the desired output. 1352 for _, r := range dinfo[idx].out { 1353 if r != noRegister && m>>r&1 != 0 { 1354 m = regMask(1) << r 1355 args[0] = s.allocValToReg(v.Args[0], m, true, v.Pos) 1356 // Note: we update args[0] so the instruction will 1357 // use the register copy we just made. 1358 goto ok 1359 } 1360 } 1361 // Try to copy input to its desired location & use its old 1362 // location as the result register. 1363 for _, r := range dinfo[idx].in[0] { 1364 if r != noRegister && m>>r&1 != 0 { 1365 m = regMask(1) << r 1366 c := s.allocValToReg(v.Args[0], m, true, v.Pos) 1367 s.copies[c] = false 1368 // Note: no update to args[0] so the instruction will 1369 // use the original copy. 1370 goto ok 1371 } 1372 } 1373 if opcodeTable[v.Op].commutative { 1374 for _, r := range dinfo[idx].in[1] { 1375 if r != noRegister && m>>r&1 != 0 { 1376 m = regMask(1) << r 1377 c := s.allocValToReg(v.Args[1], m, true, v.Pos) 1378 s.copies[c] = false 1379 args[0], args[1] = args[1], args[0] 1380 goto ok 1381 } 1382 } 1383 } 1384 // Avoid future fixed uses if we can. 1385 if m&^desired.avoid != 0 { 1386 m &^= desired.avoid 1387 } 1388 // Save input 0 to a new register so we can clobber it. 1389 c := s.allocValToReg(v.Args[0], m, true, v.Pos) 1390 s.copies[c] = false 1391 } 1392 1393 ok: 1394 // Now that all args are in regs, we're ready to issue the value itself. 1395 // Before we pick a register for the output value, allow input registers 1396 // to be deallocated. We do this here so that the output can use the 1397 // same register as a dying input. 1398 if !opcodeTable[v.Op].resultNotInArgs { 1399 s.tmpused = s.nospill 1400 s.nospill = 0 1401 s.advanceUses(v) // frees any registers holding args that are no longer live 1402 } 1403 1404 // Dump any registers which will be clobbered 1405 s.freeRegs(regspec.clobbers) 1406 s.tmpused |= regspec.clobbers 1407 1408 // Pick registers for outputs. 1409 { 1410 outRegs := [2]register{noRegister, noRegister} 1411 var used regMask 1412 for _, out := range regspec.outputs { 1413 mask := out.regs & s.allocatable &^ used 1414 if mask == 0 { 1415 continue 1416 } 1417 if opcodeTable[v.Op].resultInArg0 && out.idx == 0 { 1418 if !opcodeTable[v.Op].commutative { 1419 // Output must use the same register as input 0. 1420 r := register(s.f.getHome(args[0].ID).(*Register).num) 1421 mask = regMask(1) << r 1422 } else { 1423 // Output must use the same register as input 0 or 1. 1424 r0 := register(s.f.getHome(args[0].ID).(*Register).num) 1425 r1 := register(s.f.getHome(args[1].ID).(*Register).num) 1426 // Check r0 and r1 for desired output register. 1427 found := false 1428 for _, r := range dinfo[idx].out { 1429 if (r == r0 || r == r1) && (mask&^s.used)>>r&1 != 0 { 1430 mask = regMask(1) << r 1431 found = true 1432 if r == r1 { 1433 args[0], args[1] = args[1], args[0] 1434 } 1435 break 1436 } 1437 } 1438 if !found { 1439 // Neither are desired, pick r0. 1440 mask = regMask(1) << r0 1441 } 1442 } 1443 } 1444 for _, r := range dinfo[idx].out { 1445 if r != noRegister && (mask&^s.used)>>r&1 != 0 { 1446 // Desired register is allowed and unused. 1447 mask = regMask(1) << r 1448 break 1449 } 1450 } 1451 // Avoid registers we're saving for other values. 1452 if mask&^desired.avoid != 0 { 1453 mask &^= desired.avoid 1454 } 1455 r := s.allocReg(mask, v) 1456 outRegs[out.idx] = r 1457 used |= regMask(1) << r 1458 s.tmpused |= regMask(1) << r 1459 } 1460 // Record register choices 1461 if v.Type.IsTuple() { 1462 var outLocs LocPair 1463 if r := outRegs[0]; r != noRegister { 1464 outLocs[0] = &s.registers[r] 1465 } 1466 if r := outRegs[1]; r != noRegister { 1467 outLocs[1] = &s.registers[r] 1468 } 1469 s.f.setHome(v, outLocs) 1470 // Note that subsequent SelectX instructions will do the assignReg calls. 1471 } else { 1472 if r := outRegs[0]; r != noRegister { 1473 s.assignReg(r, v, v) 1474 } 1475 } 1476 } 1477 1478 // deallocate dead args, if we have not done so 1479 if opcodeTable[v.Op].resultNotInArgs { 1480 s.nospill = 0 1481 s.advanceUses(v) // frees any registers holding args that are no longer live 1482 } 1483 s.tmpused = 0 1484 1485 // Issue the Value itself. 1486 for i, a := range args { 1487 v.SetArg(i, a) // use register version of arguments 1488 } 1489 b.Values = append(b.Values, v) 1490 1491 issueSpill: 1492 } 1493 1494 // Load control value into reg. 1495 if v := b.Control; v != nil && s.values[v.ID].needReg { 1496 if s.f.pass.debug > regDebug { 1497 fmt.Printf(" processing control %s\n", v.LongString()) 1498 } 1499 // We assume that a control input can be passed in any 1500 // type-compatible register. If this turns out not to be true, 1501 // we'll need to introduce a regspec for a block's control value. 1502 b.Control = s.allocValToReg(v, s.compatRegs(v.Type), false, b.Pos) 1503 if b.Control != v { 1504 v.Uses-- 1505 b.Control.Uses++ 1506 } 1507 // Remove this use from the uses list. 1508 vi := &s.values[v.ID] 1509 u := vi.uses 1510 vi.uses = u.next 1511 if u.next == nil { 1512 s.freeRegs(vi.regs) // value is dead 1513 } 1514 u.next = s.freeUseRecords 1515 s.freeUseRecords = u 1516 } 1517 1518 // Spill any values that can't live across basic block boundaries. 1519 if s.f.Config.use387 { 1520 s.freeRegs(s.f.Config.fpRegMask) 1521 } 1522 1523 // If we are approaching a merge point and we are the primary 1524 // predecessor of it, find live values that we use soon after 1525 // the merge point and promote them to registers now. 1526 if len(b.Succs) == 1 { 1527 if s.f.Config.hasGReg && s.regs[s.GReg].v != nil { 1528 s.freeReg(s.GReg) // Spill value in G register before any merge. 1529 } 1530 // For this to be worthwhile, the loop must have no calls in it. 1531 top := b.Succs[0].b 1532 loop := s.loopnest.b2l[top.ID] 1533 if loop == nil || loop.header != top || loop.containsUnavoidableCall { 1534 goto badloop 1535 } 1536 1537 // TODO: sort by distance, pick the closest ones? 1538 for _, live := range s.live[b.ID] { 1539 if live.dist >= unlikelyDistance { 1540 // Don't preload anything live after the loop. 1541 continue 1542 } 1543 vid := live.ID 1544 vi := &s.values[vid] 1545 if vi.regs != 0 { 1546 continue 1547 } 1548 if vi.rematerializeable { 1549 continue 1550 } 1551 v := s.orig[vid] 1552 if s.f.Config.use387 && v.Type.IsFloat() { 1553 continue // 387 can't handle floats in registers between blocks 1554 } 1555 m := s.compatRegs(v.Type) &^ s.used 1556 if m&^desired.avoid != 0 { 1557 m &^= desired.avoid 1558 } 1559 if m != 0 { 1560 s.allocValToReg(v, m, false, b.Pos) 1561 } 1562 } 1563 } 1564 badloop: 1565 ; 1566 1567 // Save end-of-block register state. 1568 // First count how many, this cuts allocations in half. 1569 k := 0 1570 for r := register(0); r < s.numRegs; r++ { 1571 v := s.regs[r].v 1572 if v == nil { 1573 continue 1574 } 1575 k++ 1576 } 1577 regList := make([]endReg, 0, k) 1578 for r := register(0); r < s.numRegs; r++ { 1579 v := s.regs[r].v 1580 if v == nil { 1581 continue 1582 } 1583 regList = append(regList, endReg{r, v, s.regs[r].c}) 1584 } 1585 s.endRegs[b.ID] = regList 1586 1587 if checkEnabled { 1588 regValLiveSet.clear() 1589 for _, x := range s.live[b.ID] { 1590 regValLiveSet.add(x.ID) 1591 } 1592 for r := register(0); r < s.numRegs; r++ { 1593 v := s.regs[r].v 1594 if v == nil { 1595 continue 1596 } 1597 if !regValLiveSet.contains(v.ID) { 1598 s.f.Fatalf("val %s is in reg but not live at end of %s", v, b) 1599 } 1600 } 1601 } 1602 1603 // If a value is live at the end of the block and 1604 // isn't in a register, generate a use for the spill location. 1605 // We need to remember this information so that 1606 // the liveness analysis in stackalloc is correct. 1607 for _, e := range s.live[b.ID] { 1608 vi := &s.values[e.ID] 1609 if vi.regs != 0 { 1610 // in a register, we'll use that source for the merge. 1611 continue 1612 } 1613 if vi.rematerializeable { 1614 // we'll rematerialize during the merge. 1615 continue 1616 } 1617 //fmt.Printf("live-at-end spill for %s at %s\n", s.orig[e.ID], b) 1618 spill := s.makeSpill(s.orig[e.ID], b) 1619 s.spillLive[b.ID] = append(s.spillLive[b.ID], spill.ID) 1620 } 1621 1622 // Clear any final uses. 1623 // All that is left should be the pseudo-uses added for values which 1624 // are live at the end of b. 1625 for _, e := range s.live[b.ID] { 1626 u := s.values[e.ID].uses 1627 if u == nil { 1628 f.Fatalf("live at end, no uses v%d", e.ID) 1629 } 1630 if u.next != nil { 1631 f.Fatalf("live at end, too many uses v%d", e.ID) 1632 } 1633 s.values[e.ID].uses = nil 1634 u.next = s.freeUseRecords 1635 s.freeUseRecords = u 1636 } 1637 } 1638 1639 // Decide where the spills we generated will go. 1640 s.placeSpills() 1641 1642 // Anything that didn't get a register gets a stack location here. 1643 // (StoreReg, stack-based phis, inputs, ...) 1644 stacklive := stackalloc(s.f, s.spillLive) 1645 1646 // Fix up all merge edges. 1647 s.shuffle(stacklive) 1648 1649 // Erase any copies we never used. 1650 // Also, an unused copy might be the only use of another copy, 1651 // so continue erasing until we reach a fixed point. 1652 for { 1653 progress := false 1654 for c, used := range s.copies { 1655 if !used && c.Uses == 0 { 1656 if s.f.pass.debug > regDebug { 1657 fmt.Printf("delete copied value %s\n", c.LongString()) 1658 } 1659 c.RemoveArg(0) 1660 f.freeValue(c) 1661 delete(s.copies, c) 1662 progress = true 1663 } 1664 } 1665 if !progress { 1666 break 1667 } 1668 } 1669 1670 for _, b := range s.visitOrder { 1671 i := 0 1672 for _, v := range b.Values { 1673 if v.Op == OpInvalid { 1674 continue 1675 } 1676 b.Values[i] = v 1677 i++ 1678 } 1679 b.Values = b.Values[:i] 1680 } 1681 } 1682 1683 func (s *regAllocState) placeSpills() { 1684 f := s.f 1685 1686 // Precompute some useful info. 1687 phiRegs := make([]regMask, f.NumBlocks()) 1688 for _, b := range s.visitOrder { 1689 var m regMask 1690 for _, v := range b.Values { 1691 if v.Op != OpPhi { 1692 break 1693 } 1694 if r, ok := f.getHome(v.ID).(*Register); ok { 1695 m |= regMask(1) << uint(r.num) 1696 } 1697 } 1698 phiRegs[b.ID] = m 1699 } 1700 1701 // Start maps block IDs to the list of spills 1702 // that go at the start of the block (but after any phis). 1703 start := map[ID][]*Value{} 1704 // After maps value IDs to the list of spills 1705 // that go immediately after that value ID. 1706 after := map[ID][]*Value{} 1707 1708 for i := range s.values { 1709 vi := s.values[i] 1710 spill := vi.spill 1711 if spill == nil { 1712 continue 1713 } 1714 if spill.Block != nil { 1715 // Some spills are already fully set up, 1716 // like OpArgs and stack-based phis. 1717 continue 1718 } 1719 v := s.orig[i] 1720 1721 // Walk down the dominator tree looking for a good place to 1722 // put the spill of v. At the start "best" is the best place 1723 // we have found so far. 1724 // TODO: find a way to make this O(1) without arbitrary cutoffs. 1725 best := v.Block 1726 bestArg := v 1727 var bestDepth int16 1728 if l := s.loopnest.b2l[best.ID]; l != nil { 1729 bestDepth = l.depth 1730 } 1731 b := best 1732 const maxSpillSearch = 100 1733 for i := 0; i < maxSpillSearch; i++ { 1734 // Find the child of b in the dominator tree which 1735 // dominates all restores. 1736 p := b 1737 b = nil 1738 for c := s.sdom.Child(p); c != nil && i < maxSpillSearch; c, i = s.sdom.Sibling(c), i+1 { 1739 if s.sdom[c.ID].entry <= vi.restoreMin && s.sdom[c.ID].exit >= vi.restoreMax { 1740 // c also dominates all restores. Walk down into c. 1741 b = c 1742 break 1743 } 1744 } 1745 if b == nil { 1746 // Ran out of blocks which dominate all restores. 1747 break 1748 } 1749 1750 var depth int16 1751 if l := s.loopnest.b2l[b.ID]; l != nil { 1752 depth = l.depth 1753 } 1754 if depth > bestDepth { 1755 // Don't push the spill into a deeper loop. 1756 continue 1757 } 1758 1759 // If v is in a register at the start of b, we can 1760 // place the spill here (after the phis). 1761 if len(b.Preds) == 1 { 1762 for _, e := range s.endRegs[b.Preds[0].b.ID] { 1763 if e.v == v { 1764 // Found a better spot for the spill. 1765 best = b 1766 bestArg = e.c 1767 bestDepth = depth 1768 break 1769 } 1770 } 1771 } else { 1772 for _, e := range s.startRegs[b.ID] { 1773 if e.v == v { 1774 // Found a better spot for the spill. 1775 best = b 1776 bestArg = e.c 1777 bestDepth = depth 1778 break 1779 } 1780 } 1781 } 1782 } 1783 1784 // Put the spill in the best block we found. 1785 spill.Block = best 1786 spill.AddArg(bestArg) 1787 if best == v.Block && v.Op != OpPhi { 1788 // Place immediately after v. 1789 after[v.ID] = append(after[v.ID], spill) 1790 } else { 1791 // Place at the start of best block. 1792 start[best.ID] = append(start[best.ID], spill) 1793 } 1794 } 1795 1796 // Insert spill instructions into the block schedules. 1797 var oldSched []*Value 1798 for _, b := range s.visitOrder { 1799 nphi := 0 1800 for _, v := range b.Values { 1801 if v.Op != OpPhi { 1802 break 1803 } 1804 nphi++ 1805 } 1806 oldSched = append(oldSched[:0], b.Values[nphi:]...) 1807 b.Values = b.Values[:nphi] 1808 b.Values = append(b.Values, start[b.ID]...) 1809 for _, v := range oldSched { 1810 b.Values = append(b.Values, v) 1811 b.Values = append(b.Values, after[v.ID]...) 1812 } 1813 } 1814 } 1815 1816 // shuffle fixes up all the merge edges (those going into blocks of indegree > 1). 1817 func (s *regAllocState) shuffle(stacklive [][]ID) { 1818 var e edgeState 1819 e.s = s 1820 e.cache = map[ID][]*Value{} 1821 e.contents = map[Location]contentRecord{} 1822 if s.f.pass.debug > regDebug { 1823 fmt.Printf("shuffle %s\n", s.f.Name) 1824 fmt.Println(s.f.String()) 1825 } 1826 1827 for _, b := range s.visitOrder { 1828 if len(b.Preds) <= 1 { 1829 continue 1830 } 1831 e.b = b 1832 for i, edge := range b.Preds { 1833 p := edge.b 1834 e.p = p 1835 e.setup(i, s.endRegs[p.ID], s.startRegs[b.ID], stacklive[p.ID]) 1836 e.process() 1837 } 1838 } 1839 } 1840 1841 type edgeState struct { 1842 s *regAllocState 1843 p, b *Block // edge goes from p->b. 1844 1845 // for each pre-regalloc value, a list of equivalent cached values 1846 cache map[ID][]*Value 1847 cachedVals []ID // (superset of) keys of the above map, for deterministic iteration 1848 1849 // map from location to the value it contains 1850 contents map[Location]contentRecord 1851 1852 // desired destination locations 1853 destinations []dstRecord 1854 extra []dstRecord 1855 1856 usedRegs regMask // registers currently holding something 1857 uniqueRegs regMask // registers holding the only copy of a value 1858 finalRegs regMask // registers holding final target 1859 rematerializeableRegs regMask // registers that hold rematerializeable values 1860 } 1861 1862 type contentRecord struct { 1863 vid ID // pre-regalloc value 1864 c *Value // cached value 1865 final bool // this is a satisfied destination 1866 pos src.XPos // source position of use of the value 1867 } 1868 1869 type dstRecord struct { 1870 loc Location // register or stack slot 1871 vid ID // pre-regalloc value it should contain 1872 splice **Value // place to store reference to the generating instruction 1873 pos src.XPos // source position of use of this location 1874 } 1875 1876 // setup initializes the edge state for shuffling. 1877 func (e *edgeState) setup(idx int, srcReg []endReg, dstReg []startReg, stacklive []ID) { 1878 if e.s.f.pass.debug > regDebug { 1879 fmt.Printf("edge %s->%s\n", e.p, e.b) 1880 } 1881 1882 // Clear state. 1883 for _, vid := range e.cachedVals { 1884 delete(e.cache, vid) 1885 } 1886 e.cachedVals = e.cachedVals[:0] 1887 for k := range e.contents { 1888 delete(e.contents, k) 1889 } 1890 e.usedRegs = 0 1891 e.uniqueRegs = 0 1892 e.finalRegs = 0 1893 e.rematerializeableRegs = 0 1894 1895 // Live registers can be sources. 1896 for _, x := range srcReg { 1897 e.set(&e.s.registers[x.r], x.v.ID, x.c, false, src.NoXPos) // don't care the position of the source 1898 } 1899 // So can all of the spill locations. 1900 for _, spillID := range stacklive { 1901 v := e.s.orig[spillID] 1902 spill := e.s.values[v.ID].spill 1903 if !e.s.sdom.isAncestorEq(spill.Block, e.p) { 1904 // Spills were placed that only dominate the uses found 1905 // during the first regalloc pass. The edge fixup code 1906 // can't use a spill location if the spill doesn't dominate 1907 // the edge. 1908 // We are guaranteed that if the spill doesn't dominate this edge, 1909 // then the value is available in a register (because we called 1910 // makeSpill for every value not in a register at the start 1911 // of an edge). 1912 continue 1913 } 1914 e.set(e.s.f.getHome(spillID), v.ID, spill, false, src.NoXPos) // don't care the position of the source 1915 } 1916 1917 // Figure out all the destinations we need. 1918 dsts := e.destinations[:0] 1919 for _, x := range dstReg { 1920 dsts = append(dsts, dstRecord{&e.s.registers[x.r], x.v.ID, nil, x.pos}) 1921 } 1922 // Phis need their args to end up in a specific location. 1923 for _, v := range e.b.Values { 1924 if v.Op != OpPhi { 1925 break 1926 } 1927 loc := e.s.f.getHome(v.ID) 1928 if loc == nil { 1929 continue 1930 } 1931 dsts = append(dsts, dstRecord{loc, v.Args[idx].ID, &v.Args[idx], v.Pos}) 1932 } 1933 e.destinations = dsts 1934 1935 if e.s.f.pass.debug > regDebug { 1936 for _, vid := range e.cachedVals { 1937 a := e.cache[vid] 1938 for _, c := range a { 1939 fmt.Printf("src %s: v%d cache=%s\n", e.s.f.getHome(c.ID), vid, c) 1940 } 1941 } 1942 for _, d := range e.destinations { 1943 fmt.Printf("dst %s: v%d\n", d.loc, d.vid) 1944 } 1945 } 1946 } 1947 1948 // process generates code to move all the values to the right destination locations. 1949 func (e *edgeState) process() { 1950 dsts := e.destinations 1951 1952 // Process the destinations until they are all satisfied. 1953 for len(dsts) > 0 { 1954 i := 0 1955 for _, d := range dsts { 1956 if !e.processDest(d.loc, d.vid, d.splice, d.pos) { 1957 // Failed - save for next iteration. 1958 dsts[i] = d 1959 i++ 1960 } 1961 } 1962 if i < len(dsts) { 1963 // Made some progress. Go around again. 1964 dsts = dsts[:i] 1965 1966 // Append any extras destinations we generated. 1967 dsts = append(dsts, e.extra...) 1968 e.extra = e.extra[:0] 1969 continue 1970 } 1971 1972 // We made no progress. That means that any 1973 // remaining unsatisfied moves are in simple cycles. 1974 // For example, A -> B -> C -> D -> A. 1975 // A ----> B 1976 // ^ | 1977 // | | 1978 // | v 1979 // D <---- C 1980 1981 // To break the cycle, we pick an unused register, say R, 1982 // and put a copy of B there. 1983 // A ----> B 1984 // ^ | 1985 // | | 1986 // | v 1987 // D <---- C <---- R=copyofB 1988 // When we resume the outer loop, the A->B move can now proceed, 1989 // and eventually the whole cycle completes. 1990 1991 // Copy any cycle location to a temp register. This duplicates 1992 // one of the cycle entries, allowing the just duplicated value 1993 // to be overwritten and the cycle to proceed. 1994 d := dsts[0] 1995 loc := d.loc 1996 vid := e.contents[loc].vid 1997 c := e.contents[loc].c 1998 r := e.findRegFor(c.Type) 1999 if e.s.f.pass.debug > regDebug { 2000 fmt.Printf("breaking cycle with v%d in %s:%s\n", vid, loc, c) 2001 } 2002 e.erase(r) 2003 pos := d.pos.WithNotStmt() 2004 if _, isReg := loc.(*Register); isReg { 2005 c = e.p.NewValue1(pos, OpCopy, c.Type, c) 2006 } else { 2007 c = e.p.NewValue1(pos, OpLoadReg, c.Type, c) 2008 } 2009 e.set(r, vid, c, false, pos) 2010 if c.Op == OpLoadReg && e.s.isGReg(register(r.(*Register).num)) { 2011 e.s.f.Fatalf("process.OpLoadReg targeting g: " + c.LongString()) 2012 } 2013 } 2014 } 2015 2016 // processDest generates code to put value vid into location loc. Returns true 2017 // if progress was made. 2018 func (e *edgeState) processDest(loc Location, vid ID, splice **Value, pos src.XPos) bool { 2019 pos = pos.WithNotStmt() 2020 occupant := e.contents[loc] 2021 if occupant.vid == vid { 2022 // Value is already in the correct place. 2023 e.contents[loc] = contentRecord{vid, occupant.c, true, pos} 2024 if splice != nil { 2025 (*splice).Uses-- 2026 *splice = occupant.c 2027 occupant.c.Uses++ 2028 } 2029 // Note: if splice==nil then c will appear dead. This is 2030 // non-SSA formed code, so be careful after this pass not to run 2031 // deadcode elimination. 2032 if _, ok := e.s.copies[occupant.c]; ok { 2033 // The copy at occupant.c was used to avoid spill. 2034 e.s.copies[occupant.c] = true 2035 } 2036 return true 2037 } 2038 2039 // Check if we're allowed to clobber the destination location. 2040 if len(e.cache[occupant.vid]) == 1 && !e.s.values[occupant.vid].rematerializeable { 2041 // We can't overwrite the last copy 2042 // of a value that needs to survive. 2043 return false 2044 } 2045 2046 // Copy from a source of v, register preferred. 2047 v := e.s.orig[vid] 2048 var c *Value 2049 var src Location 2050 if e.s.f.pass.debug > regDebug { 2051 fmt.Printf("moving v%d to %s\n", vid, loc) 2052 fmt.Printf("sources of v%d:", vid) 2053 } 2054 for _, w := range e.cache[vid] { 2055 h := e.s.f.getHome(w.ID) 2056 if e.s.f.pass.debug > regDebug { 2057 fmt.Printf(" %s:%s", h, w) 2058 } 2059 _, isreg := h.(*Register) 2060 if src == nil || isreg { 2061 c = w 2062 src = h 2063 } 2064 } 2065 if e.s.f.pass.debug > regDebug { 2066 if src != nil { 2067 fmt.Printf(" [use %s]\n", src) 2068 } else { 2069 fmt.Printf(" [no source]\n") 2070 } 2071 } 2072 _, dstReg := loc.(*Register) 2073 2074 // Pre-clobber destination. This avoids the 2075 // following situation: 2076 // - v is currently held in R0 and stacktmp0. 2077 // - We want to copy stacktmp1 to stacktmp0. 2078 // - We choose R0 as the temporary register. 2079 // During the copy, both R0 and stacktmp0 are 2080 // clobbered, losing both copies of v. Oops! 2081 // Erasing the destination early means R0 will not 2082 // be chosen as the temp register, as it will then 2083 // be the last copy of v. 2084 e.erase(loc) 2085 var x *Value 2086 if c == nil || e.s.values[vid].rematerializeable { 2087 if !e.s.values[vid].rematerializeable { 2088 e.s.f.Fatalf("can't find source for %s->%s: %s\n", e.p, e.b, v.LongString()) 2089 } 2090 if dstReg { 2091 x = v.copyInto(e.p) 2092 } else { 2093 // Rematerialize into stack slot. Need a free 2094 // register to accomplish this. 2095 r := e.findRegFor(v.Type) 2096 e.erase(r) 2097 x = v.copyIntoWithXPos(e.p, pos) 2098 e.set(r, vid, x, false, pos) 2099 // Make sure we spill with the size of the slot, not the 2100 // size of x (which might be wider due to our dropping 2101 // of narrowing conversions). 2102 x = e.p.NewValue1(pos, OpStoreReg, loc.(LocalSlot).Type, x) 2103 } 2104 } else { 2105 // Emit move from src to dst. 2106 _, srcReg := src.(*Register) 2107 if srcReg { 2108 if dstReg { 2109 x = e.p.NewValue1(pos, OpCopy, c.Type, c) 2110 } else { 2111 x = e.p.NewValue1(pos, OpStoreReg, loc.(LocalSlot).Type, c) 2112 } 2113 } else { 2114 if dstReg { 2115 x = e.p.NewValue1(pos, OpLoadReg, c.Type, c) 2116 } else { 2117 // mem->mem. Use temp register. 2118 r := e.findRegFor(c.Type) 2119 e.erase(r) 2120 t := e.p.NewValue1(pos, OpLoadReg, c.Type, c) 2121 e.set(r, vid, t, false, pos) 2122 x = e.p.NewValue1(pos, OpStoreReg, loc.(LocalSlot).Type, t) 2123 } 2124 } 2125 } 2126 e.set(loc, vid, x, true, pos) 2127 if x.Op == OpLoadReg && e.s.isGReg(register(loc.(*Register).num)) { 2128 e.s.f.Fatalf("processDest.OpLoadReg targeting g: " + x.LongString()) 2129 } 2130 if splice != nil { 2131 (*splice).Uses-- 2132 *splice = x 2133 x.Uses++ 2134 } 2135 return true 2136 } 2137 2138 // set changes the contents of location loc to hold the given value and its cached representative. 2139 func (e *edgeState) set(loc Location, vid ID, c *Value, final bool, pos src.XPos) { 2140 e.s.f.setHome(c, loc) 2141 e.contents[loc] = contentRecord{vid, c, final, pos} 2142 a := e.cache[vid] 2143 if len(a) == 0 { 2144 e.cachedVals = append(e.cachedVals, vid) 2145 } 2146 a = append(a, c) 2147 e.cache[vid] = a 2148 if r, ok := loc.(*Register); ok { 2149 e.usedRegs |= regMask(1) << uint(r.num) 2150 if final { 2151 e.finalRegs |= regMask(1) << uint(r.num) 2152 } 2153 if len(a) == 1 { 2154 e.uniqueRegs |= regMask(1) << uint(r.num) 2155 } 2156 if len(a) == 2 { 2157 if t, ok := e.s.f.getHome(a[0].ID).(*Register); ok { 2158 e.uniqueRegs &^= regMask(1) << uint(t.num) 2159 } 2160 } 2161 if e.s.values[vid].rematerializeable { 2162 e.rematerializeableRegs |= regMask(1) << uint(r.num) 2163 } 2164 } 2165 if e.s.f.pass.debug > regDebug { 2166 fmt.Printf("%s\n", c.LongString()) 2167 fmt.Printf("v%d now available in %s:%s\n", vid, loc, c) 2168 } 2169 } 2170 2171 // erase removes any user of loc. 2172 func (e *edgeState) erase(loc Location) { 2173 cr := e.contents[loc] 2174 if cr.c == nil { 2175 return 2176 } 2177 vid := cr.vid 2178 2179 if cr.final { 2180 // Add a destination to move this value back into place. 2181 // Make sure it gets added to the tail of the destination queue 2182 // so we make progress on other moves first. 2183 e.extra = append(e.extra, dstRecord{loc, cr.vid, nil, cr.pos}) 2184 } 2185 2186 // Remove c from the list of cached values. 2187 a := e.cache[vid] 2188 for i, c := range a { 2189 if e.s.f.getHome(c.ID) == loc { 2190 if e.s.f.pass.debug > regDebug { 2191 fmt.Printf("v%d no longer available in %s:%s\n", vid, loc, c) 2192 } 2193 a[i], a = a[len(a)-1], a[:len(a)-1] 2194 break 2195 } 2196 } 2197 e.cache[vid] = a 2198 2199 // Update register masks. 2200 if r, ok := loc.(*Register); ok { 2201 e.usedRegs &^= regMask(1) << uint(r.num) 2202 if cr.final { 2203 e.finalRegs &^= regMask(1) << uint(r.num) 2204 } 2205 e.rematerializeableRegs &^= regMask(1) << uint(r.num) 2206 } 2207 if len(a) == 1 { 2208 if r, ok := e.s.f.getHome(a[0].ID).(*Register); ok { 2209 e.uniqueRegs |= regMask(1) << uint(r.num) 2210 } 2211 } 2212 } 2213 2214 // findRegFor finds a register we can use to make a temp copy of type typ. 2215 func (e *edgeState) findRegFor(typ *types.Type) Location { 2216 // Which registers are possibilities. 2217 var m regMask 2218 types := &e.s.f.Config.Types 2219 if typ.IsFloat() { 2220 m = e.s.compatRegs(types.Float64) 2221 } else { 2222 m = e.s.compatRegs(types.Int64) 2223 } 2224 2225 // Pick a register. In priority order: 2226 // 1) an unused register 2227 // 2) a non-unique register not holding a final value 2228 // 3) a non-unique register 2229 // 4) a register holding a rematerializeable value 2230 x := m &^ e.usedRegs 2231 if x != 0 { 2232 return &e.s.registers[pickReg(x)] 2233 } 2234 x = m &^ e.uniqueRegs &^ e.finalRegs 2235 if x != 0 { 2236 return &e.s.registers[pickReg(x)] 2237 } 2238 x = m &^ e.uniqueRegs 2239 if x != 0 { 2240 return &e.s.registers[pickReg(x)] 2241 } 2242 x = m & e.rematerializeableRegs 2243 if x != 0 { 2244 return &e.s.registers[pickReg(x)] 2245 } 2246 2247 // No register is available. 2248 // Pick a register to spill. 2249 for _, vid := range e.cachedVals { 2250 a := e.cache[vid] 2251 for _, c := range a { 2252 if r, ok := e.s.f.getHome(c.ID).(*Register); ok && m>>uint(r.num)&1 != 0 { 2253 if !c.rematerializeable() { 2254 x := e.p.NewValue1(c.Pos, OpStoreReg, c.Type, c) 2255 // Allocate a temp location to spill a register to. 2256 // The type of the slot is immaterial - it will not be live across 2257 // any safepoint. Just use a type big enough to hold any register. 2258 t := LocalSlot{N: e.s.f.fe.Auto(c.Pos, types.Int64), Type: types.Int64} 2259 // TODO: reuse these slots. They'll need to be erased first. 2260 e.set(t, vid, x, false, c.Pos) 2261 if e.s.f.pass.debug > regDebug { 2262 fmt.Printf(" SPILL %s->%s %s\n", r, t, x.LongString()) 2263 } 2264 } 2265 // r will now be overwritten by the caller. At some point 2266 // later, the newly saved value will be moved back to its 2267 // final destination in processDest. 2268 return r 2269 } 2270 } 2271 } 2272 2273 fmt.Printf("m:%d unique:%d final:%d rematerializable:%d\n", m, e.uniqueRegs, e.finalRegs, e.rematerializeableRegs) 2274 for _, vid := range e.cachedVals { 2275 a := e.cache[vid] 2276 for _, c := range a { 2277 fmt.Printf("v%d: %s %s\n", vid, c, e.s.f.getHome(c.ID)) 2278 } 2279 } 2280 e.s.f.Fatalf("can't find empty register on edge %s->%s", e.p, e.b) 2281 return nil 2282 } 2283 2284 // rematerializeable reports whether the register allocator should recompute 2285 // a value instead of spilling/restoring it. 2286 func (v *Value) rematerializeable() bool { 2287 if !opcodeTable[v.Op].rematerializeable { 2288 return false 2289 } 2290 for _, a := range v.Args { 2291 // SP and SB (generated by OpSP and OpSB) are always available. 2292 if a.Op != OpSP && a.Op != OpSB { 2293 return false 2294 } 2295 } 2296 return true 2297 } 2298 2299 type liveInfo struct { 2300 ID ID // ID of value 2301 dist int32 // # of instructions before next use 2302 pos src.XPos // source position of next use 2303 } 2304 2305 // computeLive computes a map from block ID to a list of value IDs live at the end 2306 // of that block. Together with the value ID is a count of how many instructions 2307 // to the next use of that value. The resulting map is stored in s.live. 2308 // computeLive also computes the desired register information at the end of each block. 2309 // This desired register information is stored in s.desired. 2310 // TODO: this could be quadratic if lots of variables are live across lots of 2311 // basic blocks. Figure out a way to make this function (or, more precisely, the user 2312 // of this function) require only linear size & time. 2313 func (s *regAllocState) computeLive() { 2314 f := s.f 2315 s.live = make([][]liveInfo, f.NumBlocks()) 2316 s.desired = make([]desiredState, f.NumBlocks()) 2317 var phis []*Value 2318 2319 live := f.newSparseMap(f.NumValues()) 2320 defer f.retSparseMap(live) 2321 t := f.newSparseMap(f.NumValues()) 2322 defer f.retSparseMap(t) 2323 2324 // Keep track of which value we want in each register. 2325 var desired desiredState 2326 2327 // Instead of iterating over f.Blocks, iterate over their postordering. 2328 // Liveness information flows backward, so starting at the end 2329 // increases the probability that we will stabilize quickly. 2330 // TODO: Do a better job yet. Here's one possibility: 2331 // Calculate the dominator tree and locate all strongly connected components. 2332 // If a value is live in one block of an SCC, it is live in all. 2333 // Walk the dominator tree from end to beginning, just once, treating SCC 2334 // components as single blocks, duplicated calculated liveness information 2335 // out to all of them. 2336 po := f.postorder() 2337 s.loopnest = f.loopnest() 2338 s.loopnest.calculateDepths() 2339 for { 2340 changed := false 2341 2342 for _, b := range po { 2343 // Start with known live values at the end of the block. 2344 // Add len(b.Values) to adjust from end-of-block distance 2345 // to beginning-of-block distance. 2346 live.clear() 2347 for _, e := range s.live[b.ID] { 2348 live.set(e.ID, e.dist+int32(len(b.Values)), e.pos) 2349 } 2350 2351 // Mark control value as live 2352 if b.Control != nil && s.values[b.Control.ID].needReg { 2353 live.set(b.Control.ID, int32(len(b.Values)), b.Pos) 2354 } 2355 2356 // Propagate backwards to the start of the block 2357 // Assumes Values have been scheduled. 2358 phis = phis[:0] 2359 for i := len(b.Values) - 1; i >= 0; i-- { 2360 v := b.Values[i] 2361 live.remove(v.ID) 2362 if v.Op == OpPhi { 2363 // save phi ops for later 2364 phis = append(phis, v) 2365 continue 2366 } 2367 if opcodeTable[v.Op].call { 2368 c := live.contents() 2369 for i := range c { 2370 c[i].val += unlikelyDistance 2371 } 2372 } 2373 for _, a := range v.Args { 2374 if s.values[a.ID].needReg { 2375 live.set(a.ID, int32(i), v.Pos) 2376 } 2377 } 2378 } 2379 // Propagate desired registers backwards. 2380 desired.copy(&s.desired[b.ID]) 2381 for i := len(b.Values) - 1; i >= 0; i-- { 2382 v := b.Values[i] 2383 prefs := desired.remove(v.ID) 2384 if v.Op == OpPhi { 2385 // TODO: if v is a phi, save desired register for phi inputs. 2386 // For now, we just drop it and don't propagate 2387 // desired registers back though phi nodes. 2388 continue 2389 } 2390 regspec := s.regspec(v.Op) 2391 // Cancel desired registers if they get clobbered. 2392 desired.clobber(regspec.clobbers) 2393 // Update desired registers if there are any fixed register inputs. 2394 for _, j := range regspec.inputs { 2395 if countRegs(j.regs) != 1 { 2396 continue 2397 } 2398 desired.clobber(j.regs) 2399 desired.add(v.Args[j.idx].ID, pickReg(j.regs)) 2400 } 2401 // Set desired register of input 0 if this is a 2-operand instruction. 2402 if opcodeTable[v.Op].resultInArg0 { 2403 if opcodeTable[v.Op].commutative { 2404 desired.addList(v.Args[1].ID, prefs) 2405 } 2406 desired.addList(v.Args[0].ID, prefs) 2407 } 2408 } 2409 2410 // For each predecessor of b, expand its list of live-at-end values. 2411 // invariant: live contains the values live at the start of b (excluding phi inputs) 2412 for i, e := range b.Preds { 2413 p := e.b 2414 // Compute additional distance for the edge. 2415 // Note: delta must be at least 1 to distinguish the control 2416 // value use from the first user in a successor block. 2417 delta := int32(normalDistance) 2418 if len(p.Succs) == 2 { 2419 if p.Succs[0].b == b && p.Likely == BranchLikely || 2420 p.Succs[1].b == b && p.Likely == BranchUnlikely { 2421 delta = likelyDistance 2422 } 2423 if p.Succs[0].b == b && p.Likely == BranchUnlikely || 2424 p.Succs[1].b == b && p.Likely == BranchLikely { 2425 delta = unlikelyDistance 2426 } 2427 } 2428 2429 // Update any desired registers at the end of p. 2430 s.desired[p.ID].merge(&desired) 2431 2432 // Start t off with the previously known live values at the end of p. 2433 t.clear() 2434 for _, e := range s.live[p.ID] { 2435 t.set(e.ID, e.dist, e.pos) 2436 } 2437 update := false 2438 2439 // Add new live values from scanning this block. 2440 for _, e := range live.contents() { 2441 d := e.val + delta 2442 if !t.contains(e.key) || d < t.get(e.key) { 2443 update = true 2444 t.set(e.key, d, e.aux) 2445 } 2446 } 2447 // Also add the correct arg from the saved phi values. 2448 // All phis are at distance delta (we consider them 2449 // simultaneously happening at the start of the block). 2450 for _, v := range phis { 2451 id := v.Args[i].ID 2452 if s.values[id].needReg && (!t.contains(id) || delta < t.get(id)) { 2453 update = true 2454 t.set(id, delta, v.Pos) 2455 } 2456 } 2457 2458 if !update { 2459 continue 2460 } 2461 // The live set has changed, update it. 2462 l := s.live[p.ID][:0] 2463 if cap(l) < t.size() { 2464 l = make([]liveInfo, 0, t.size()) 2465 } 2466 for _, e := range t.contents() { 2467 l = append(l, liveInfo{e.key, e.val, e.aux}) 2468 } 2469 s.live[p.ID] = l 2470 changed = true 2471 } 2472 } 2473 2474 if !changed { 2475 break 2476 } 2477 } 2478 if f.pass.debug > regDebug { 2479 fmt.Println("live values at end of each block") 2480 for _, b := range f.Blocks { 2481 fmt.Printf(" %s:", b) 2482 for _, x := range s.live[b.ID] { 2483 fmt.Printf(" v%d", x.ID) 2484 for _, e := range s.desired[b.ID].entries { 2485 if e.ID != x.ID { 2486 continue 2487 } 2488 fmt.Printf("[") 2489 first := true 2490 for _, r := range e.regs { 2491 if r == noRegister { 2492 continue 2493 } 2494 if !first { 2495 fmt.Printf(",") 2496 } 2497 fmt.Print(&s.registers[r]) 2498 first = false 2499 } 2500 fmt.Printf("]") 2501 } 2502 } 2503 if avoid := s.desired[b.ID].avoid; avoid != 0 { 2504 fmt.Printf(" avoid=%v", s.RegMaskString(avoid)) 2505 } 2506 fmt.Println() 2507 } 2508 } 2509 } 2510 2511 // A desiredState represents desired register assignments. 2512 type desiredState struct { 2513 // Desired assignments will be small, so we just use a list 2514 // of valueID+registers entries. 2515 entries []desiredStateEntry 2516 // Registers that other values want to be in. This value will 2517 // contain at least the union of the regs fields of entries, but 2518 // may contain additional entries for values that were once in 2519 // this data structure but are no longer. 2520 avoid regMask 2521 } 2522 type desiredStateEntry struct { 2523 // (pre-regalloc) value 2524 ID ID 2525 // Registers it would like to be in, in priority order. 2526 // Unused slots are filled with noRegister. 2527 regs [4]register 2528 } 2529 2530 func (d *desiredState) clear() { 2531 d.entries = d.entries[:0] 2532 d.avoid = 0 2533 } 2534 2535 // get returns a list of desired registers for value vid. 2536 func (d *desiredState) get(vid ID) [4]register { 2537 for _, e := range d.entries { 2538 if e.ID == vid { 2539 return e.regs 2540 } 2541 } 2542 return [4]register{noRegister, noRegister, noRegister, noRegister} 2543 } 2544 2545 // add records that we'd like value vid to be in register r. 2546 func (d *desiredState) add(vid ID, r register) { 2547 d.avoid |= regMask(1) << r 2548 for i := range d.entries { 2549 e := &d.entries[i] 2550 if e.ID != vid { 2551 continue 2552 } 2553 if e.regs[0] == r { 2554 // Already known and highest priority 2555 return 2556 } 2557 for j := 1; j < len(e.regs); j++ { 2558 if e.regs[j] == r { 2559 // Move from lower priority to top priority 2560 copy(e.regs[1:], e.regs[:j]) 2561 e.regs[0] = r 2562 return 2563 } 2564 } 2565 copy(e.regs[1:], e.regs[:]) 2566 e.regs[0] = r 2567 return 2568 } 2569 d.entries = append(d.entries, desiredStateEntry{vid, [4]register{r, noRegister, noRegister, noRegister}}) 2570 } 2571 2572 func (d *desiredState) addList(vid ID, regs [4]register) { 2573 // regs is in priority order, so iterate in reverse order. 2574 for i := len(regs) - 1; i >= 0; i-- { 2575 r := regs[i] 2576 if r != noRegister { 2577 d.add(vid, r) 2578 } 2579 } 2580 } 2581 2582 // clobber erases any desired registers in the set m. 2583 func (d *desiredState) clobber(m regMask) { 2584 for i := 0; i < len(d.entries); { 2585 e := &d.entries[i] 2586 j := 0 2587 for _, r := range e.regs { 2588 if r != noRegister && m>>r&1 == 0 { 2589 e.regs[j] = r 2590 j++ 2591 } 2592 } 2593 if j == 0 { 2594 // No more desired registers for this value. 2595 d.entries[i] = d.entries[len(d.entries)-1] 2596 d.entries = d.entries[:len(d.entries)-1] 2597 continue 2598 } 2599 for ; j < len(e.regs); j++ { 2600 e.regs[j] = noRegister 2601 } 2602 i++ 2603 } 2604 d.avoid &^= m 2605 } 2606 2607 // copy copies a desired state from another desiredState x. 2608 func (d *desiredState) copy(x *desiredState) { 2609 d.entries = append(d.entries[:0], x.entries...) 2610 d.avoid = x.avoid 2611 } 2612 2613 // remove removes the desired registers for vid and returns them. 2614 func (d *desiredState) remove(vid ID) [4]register { 2615 for i := range d.entries { 2616 if d.entries[i].ID == vid { 2617 regs := d.entries[i].regs 2618 d.entries[i] = d.entries[len(d.entries)-1] 2619 d.entries = d.entries[:len(d.entries)-1] 2620 return regs 2621 } 2622 } 2623 return [4]register{noRegister, noRegister, noRegister, noRegister} 2624 } 2625 2626 // merge merges another desired state x into d. 2627 func (d *desiredState) merge(x *desiredState) { 2628 d.avoid |= x.avoid 2629 // There should only be a few desired registers, so 2630 // linear insert is ok. 2631 for _, e := range x.entries { 2632 d.addList(e.ID, e.regs) 2633 } 2634 } 2635 2636 func min32(x, y int32) int32 { 2637 if x < y { 2638 return x 2639 } 2640 return y 2641 } 2642 func max32(x, y int32) int32 { 2643 if x > y { 2644 return x 2645 } 2646 return y 2647 }